Add configure script
[fio.git] / fio.1
1 .TH fio 1 "September 2007" "User Manual"
2 .SH NAME
3 fio \- flexible I/O tester
4 .SH SYNOPSIS
5 .B fio
6 [\fIoptions\fR] [\fIjobfile\fR]...
7 .SH DESCRIPTION
8 .B fio
9 is a tool that will spawn a number of threads or processes doing a
10 particular type of I/O action as specified by the user.
11 The typical use of fio is to write a job file matching the I/O load
12 one wants to simulate.
13 .SH OPTIONS
14 .TP
15 .BI \-\-debug \fR=\fPtype
16 Enable verbose tracing of various fio actions. May be `all' for all types
17 or individual types separated by a comma (eg \-\-debug=io,file). `help' will
18 list all available tracing options.
19 .TP
20 .BI \-\-output \fR=\fPfilename
21 Write output to \fIfilename\fR.
22 .TP
23 .BI \-\-runtime \fR=\fPruntime
24 Limit run time to \fIruntime\fR seconds.
25 .TP
26 .B \-\-latency\-log
27 Generate per-job latency logs.
28 .TP
29 .B \-\-bandwidth\-log
30 Generate per-job bandwidth logs.
31 .TP
32 .B \-\-minimal
33 Print statistics in a terse, semicolon-delimited format.
34 .TP
35 .B \-\-version
36 Display version information and exit.
37 .TP
38 .BI \-\-terse\-version \fR=\fPversion
39 Set terse version output format (Current version 3, or older version 2).
40 .TP
41 .B \-\-help
42 Display usage information and exit.
43 .TP
44 .BI \-\-cmdhelp \fR=\fPcommand
45 Print help information for \fIcommand\fR.  May be `all' for all commands.
46 .TP
47 .BI \-\-enghelp \fR=\fPioengine[,command]
48 List all commands defined by \fIioengine\fR, or print help for \fIcommand\fR defined by \fIioengine\fR.
49 .TP
50 .BI \-\-showcmd \fR=\fPjobfile
51 Convert \fIjobfile\fR to a set of command-line options.
52 .TP
53 .B \-\-readonly
54 Enable read-only safety checks.
55 .TP
56 .BI \-\-eta \fR=\fPwhen
57 Specifies when real-time ETA estimate should be printed.  \fIwhen\fR may
58 be one of `always', `never' or `auto'.
59 .TP
60 .BI \-\-readonly
61 Turn on safety read-only checks, preventing any attempted write.
62 .TP
63 .BI \-\-section \fR=\fPsec
64 Only run section \fIsec\fR from job file. Multiple of these options can be given, adding more sections to run.
65 .TP
66 .BI \-\-alloc\-size \fR=\fPkb
67 Set the internal smalloc pool size to \fIkb\fP kilobytes.
68 .TP
69 .BI \-\-warnings\-fatal
70 All fio parser warnings are fatal, causing fio to exit with an error.
71 .TP
72 .BI \-\-max\-jobs \fR=\fPnr
73 Set the maximum allowed number of jobs (threads/processes) to support.
74 .TP
75 .BI \-\-server \fR=\fPargs
76 Start a backend server, with \fIargs\fP specifying what to listen to. See client/server section.
77 .TP
78 .BI \-\-daemonize \fR=\fPpidfile
79 Background a fio server, writing the pid to the given pid file.
80 .TP
81 .BI \-\-client \fR=\fPhost
82 Instead of running the jobs locally, send and run them on the given host.
83 .SH "JOB FILE FORMAT"
84 Job files are in `ini' format. They consist of one or more
85 job definitions, which begin with a job name in square brackets and
86 extend to the next job name.  The job name can be any ASCII string
87 except `global', which has a special meaning.  Following the job name is
88 a sequence of zero or more parameters, one per line, that define the
89 behavior of the job.  Any line starting with a `;' or `#' character is
90 considered a comment and ignored.
91 .P
92 If \fIjobfile\fR is specified as `-', the job file will be read from
93 standard input.
94 .SS "Global Section"
95 The global section contains default parameters for jobs specified in the
96 job file.  A job is only affected by global sections residing above it,
97 and there may be any number of global sections.  Specific job definitions
98 may override any parameter set in global sections.
99 .SH "JOB PARAMETERS"
100 .SS Types
101 Some parameters may take arguments of a specific type.  The types used are:
102 .TP
103 .I str
104 String: a sequence of alphanumeric characters.
105 .TP
106 .I int
107 SI integer: a whole number, possibly containing a suffix denoting the base unit
108 of the value.  Accepted suffixes are `k', 'M', 'G', 'T', and 'P', denoting
109 kilo (1024), mega (1024^2), giga (1024^3), tera (1024^4), and peta (1024^5)
110 respectively. The suffix is not case sensitive. If prefixed with '0x', the
111 value is assumed to be base 16 (hexadecimal). A suffix may include a trailing 'b',
112 for instance 'kb' is identical to 'k'. You can specify a base 10 value
113 by using 'KiB', 'MiB', 'GiB', etc. This is useful for disk drives where
114 values are often given in base 10 values. Specifying '30GiB' will get you
115 30*1000^3 bytes.
116 .TP
117 .I bool
118 Boolean: a true or false value. `0' denotes false, `1' denotes true.
119 .TP
120 .I irange
121 Integer range: a range of integers specified in the format
122 \fIlower\fR:\fIupper\fR or \fIlower\fR\-\fIupper\fR. \fIlower\fR and
123 \fIupper\fR may contain a suffix as described above.  If an option allows two
124 sets of ranges, they are separated with a `,' or `/' character. For example:
125 `8\-8k/8M\-4G'.
126 .TP
127 .I float_list
128 List of floating numbers: A list of floating numbers, separated by
129 a ':' charcater.
130 .SS "Parameter List"
131 .TP
132 .BI name \fR=\fPstr
133 May be used to override the job name.  On the command line, this parameter
134 has the special purpose of signalling the start of a new job.
135 .TP
136 .BI description \fR=\fPstr
137 Human-readable description of the job. It is printed when the job is run, but
138 otherwise has no special purpose.
139 .TP
140 .BI directory \fR=\fPstr
141 Prefix filenames with this directory.  Used to place files in a location other
142 than `./'.
143 .TP
144 .BI filename \fR=\fPstr
145 .B fio
146 normally makes up a file name based on the job name, thread number, and file
147 number. If you want to share files between threads in a job or several jobs,
148 specify a \fIfilename\fR for each of them to override the default.
149 If the I/O engine is file-based, you can specify
150 a number of files by separating the names with a `:' character. `\-' is a
151 reserved name, meaning stdin or stdout, depending on the read/write direction
152 set.
153 .TP
154 .BI lockfile \fR=\fPstr
155 Fio defaults to not locking any files before it does IO to them. If a file or
156 file descriptor is shared, fio can serialize IO to that file to make the end
157 result consistent. This is usual for emulating real workloads that share files.
158 The lock modes are:
159 .RS
160 .RS
161 .TP
162 .B none
163 No locking. This is the default.
164 .TP
165 .B exclusive
166 Only one thread or process may do IO at the time, excluding all others.
167 .TP
168 .B readwrite
169 Read-write locking on the file. Many readers may access the file at the same
170 time, but writes get exclusive access.
171 .RE
172 .P
173 The option may be post-fixed with a lock batch number. If set, then each
174 thread/process may do that amount of IOs to the file before giving up the lock.
175 Since lock acquisition is expensive, batching the lock/unlocks will speed up IO.
176 .RE
177 .P
178 .BI opendir \fR=\fPstr
179 Recursively open any files below directory \fIstr\fR.
180 .TP
181 .BI readwrite \fR=\fPstr "\fR,\fP rw" \fR=\fPstr
182 Type of I/O pattern.  Accepted values are:
183 .RS
184 .RS
185 .TP
186 .B read
187 Sequential reads.
188 .TP
189 .B write
190 Sequential writes.
191 .TP
192 .B randread
193 Random reads.
194 .TP
195 .B randwrite
196 Random writes.
197 .TP
198 .B rw, readwrite
199 Mixed sequential reads and writes.
200 .TP
201 .B randrw 
202 Mixed random reads and writes.
203 .RE
204 .P
205 For mixed I/O, the default split is 50/50. For certain types of io the result
206 may still be skewed a bit, since the speed may be different. It is possible to
207 specify a number of IO's to do before getting a new offset, this is done by
208 appending a `:\fI<nr>\fR to the end of the string given. For a random read, it
209 would look like \fBrw=randread:8\fR for passing in an offset modifier with a
210 value of 8. If the postfix is used with a sequential IO pattern, then the value
211 specified will be added to the generated offset for each IO. For instance,
212 using \fBrw=write:4k\fR will skip 4k for every write. It turns sequential IO
213 into sequential IO with holes. See the \fBrw_sequencer\fR option.
214 .RE
215 .TP
216 .BI rw_sequencer \fR=\fPstr
217 If an offset modifier is given by appending a number to the \fBrw=<str>\fR line,
218 then this option controls how that number modifies the IO offset being
219 generated. Accepted values are:
220 .RS
221 .RS
222 .TP
223 .B sequential
224 Generate sequential offset
225 .TP
226 .B identical
227 Generate the same offset
228 .RE
229 .P
230 \fBsequential\fR is only useful for random IO, where fio would normally
231 generate a new random offset for every IO. If you append eg 8 to randread, you
232 would get a new random offset for every 8 IO's. The result would be a seek for
233 only every 8 IO's, instead of for every IO. Use \fBrw=randread:8\fR to specify
234 that. As sequential IO is already sequential, setting \fBsequential\fR for that
235 would not result in any differences.  \fBidentical\fR behaves in a similar
236 fashion, except it sends the same offset 8 number of times before generating a
237 new offset.
238 .RE
239 .P
240 .TP
241 .BI kb_base \fR=\fPint
242 The base unit for a kilobyte. The defacto base is 2^10, 1024.  Storage
243 manufacturers like to use 10^3 or 1000 as a base ten unit instead, for obvious
244 reasons. Allow values are 1024 or 1000, with 1024 being the default.
245 .TP
246 .BI randrepeat \fR=\fPbool
247 Seed the random number generator in a predictable way so results are repeatable
248 across runs.  Default: true.
249 .TP
250 .BI use_os_rand \fR=\fPbool
251 Fio can either use the random generator supplied by the OS to generator random
252 offsets, or it can use it's own internal generator (based on Tausworthe).
253 Default is to use the internal generator, which is often of better quality and
254 faster. Default: false.
255 .TP
256 .BI fallocate \fR=\fPstr
257 Whether pre-allocation is performed when laying down files. Accepted values
258 are:
259 .RS
260 .RS
261 .TP
262 .B none
263 Do not pre-allocate space.
264 .TP
265 .B posix
266 Pre-allocate via posix_fallocate().
267 .TP
268 .B keep
269 Pre-allocate via fallocate() with FALLOC_FL_KEEP_SIZE set.
270 .TP
271 .B 0
272 Backward-compatible alias for 'none'.
273 .TP
274 .B 1
275 Backward-compatible alias for 'posix'.
276 .RE
277 .P
278 May not be available on all supported platforms. 'keep' is only
279 available on Linux. If using ZFS on Solaris this must be set to 'none'
280 because ZFS doesn't support it. Default: 'posix'.
281 .RE
282 .TP
283 .BI fadvise_hint \fR=\fPbool
284 Use of \fIposix_fadvise\fR\|(2) to advise the kernel what I/O patterns
285 are likely to be issued. Default: true.
286 .TP
287 .BI size \fR=\fPint
288 Total size of I/O for this job.  \fBfio\fR will run until this many bytes have
289 been transfered, unless limited by other options (\fBruntime\fR, for instance).
290 Unless \fBnrfiles\fR and \fBfilesize\fR options are given, this amount will be
291 divided between the available files for the job. If not set, fio will use the
292 full size of the given files or devices. If the the files do not exist, size
293 must be given. It is also possible to give size as a percentage between 1 and
294 100. If size=20% is given, fio will use 20% of the full size of the given files
295 or devices.
296 .TP
297 .BI fill_device \fR=\fPbool "\fR,\fB fill_fs" \fR=\fPbool
298 Sets size to something really large and waits for ENOSPC (no space left on
299 device) as the terminating condition. Only makes sense with sequential write.
300 For a read workload, the mount point will be filled first then IO started on
301 the result. This option doesn't make sense if operating on a raw device node,
302 since the size of that is already known by the file system. Additionally,
303 writing beyond end-of-device will not return ENOSPC there.
304 .TP
305 .BI filesize \fR=\fPirange
306 Individual file sizes. May be a range, in which case \fBfio\fR will select sizes
307 for files at random within the given range, limited to \fBsize\fR in total (if
308 that is given). If \fBfilesize\fR is not specified, each created file is the
309 same size.
310 .TP
311 .BI blocksize \fR=\fPint[,int] "\fR,\fB bs" \fR=\fPint[,int]
312 Block size for I/O units.  Default: 4k.  Values for reads and writes can be
313 specified separately in the format \fIread\fR,\fIwrite\fR, either of
314 which may be empty to leave that value at its default.
315 .TP
316 .BI blocksize_range \fR=\fPirange[,irange] "\fR,\fB bsrange" \fR=\fPirange[,irange]
317 Specify a range of I/O block sizes.  The issued I/O unit will always be a
318 multiple of the minimum size, unless \fBblocksize_unaligned\fR is set.  Applies
319 to both reads and writes if only one range is given, but can be specified
320 separately with a comma seperating the values. Example: bsrange=1k-4k,2k-8k.
321 Also (see \fBblocksize\fR).
322 .TP
323 .BI bssplit \fR=\fPstr
324 This option allows even finer grained control of the block sizes issued,
325 not just even splits between them. With this option, you can weight various
326 block sizes for exact control of the issued IO for a job that has mixed
327 block sizes. The format of the option is bssplit=blocksize/percentage,
328 optionally adding as many definitions as needed separated by a colon.
329 Example: bssplit=4k/10:64k/50:32k/40 would issue 50% 64k blocks, 10% 4k
330 blocks and 40% 32k blocks. \fBbssplit\fR also supports giving separate
331 splits to reads and writes. The format is identical to what the
332 \fBbs\fR option accepts, the read and write parts are separated with a
333 comma.
334 .TP
335 .B blocksize_unaligned\fR,\fP bs_unaligned
336 If set, any size in \fBblocksize_range\fR may be used.  This typically won't
337 work with direct I/O, as that normally requires sector alignment.
338 .TP
339 .BI blockalign \fR=\fPint[,int] "\fR,\fB ba" \fR=\fPint[,int]
340 At what boundary to align random IO offsets. Defaults to the same as 'blocksize'
341 the minimum blocksize given.  Minimum alignment is typically 512b
342 for using direct IO, though it usually depends on the hardware block size.
343 This option is mutually exclusive with using a random map for files, so it
344 will turn off that option.
345 .TP
346 .B zero_buffers
347 Initialise buffers with all zeros. Default: fill buffers with random data.
348 .TP
349 .B refill_buffers
350 If this option is given, fio will refill the IO buffers on every submit. The
351 default is to only fill it at init time and reuse that data. Only makes sense
352 if zero_buffers isn't specified, naturally. If data verification is enabled,
353 refill_buffers is also automatically enabled.
354 .TP
355 .BI scramble_buffers \fR=\fPbool
356 If \fBrefill_buffers\fR is too costly and the target is using data
357 deduplication, then setting this option will slightly modify the IO buffer
358 contents to defeat normal de-dupe attempts. This is not enough to defeat
359 more clever block compression attempts, but it will stop naive dedupe
360 of blocks. Default: true.
361 .TP
362 .BI buffer_compress_percentage \fR=\fPint
363 If this is set, then fio will attempt to provide IO buffer content (on WRITEs)
364 that compress to the specified level. Fio does this by providing a mix of
365 random data and zeroes. Note that this is per block size unit, for file/disk
366 wide compression level that matches this setting, you'll also want to set
367 \fBrefill_buffers\fR.
368 .TP
369 .BI buffer_compress_chunk \fR=\fPint
370 See \fBbuffer_compress_percentage\fR. This setting allows fio to manage how
371 big the ranges of random data and zeroed data is. Without this set, fio will
372 provide \fBbuffer_compress_percentage\fR of blocksize random data, followed by
373 the remaining zeroed. With this set to some chunk size smaller than the block
374 size, fio can alternate random and zeroed data throughout the IO buffer.
375 .TP
376 .BI nrfiles \fR=\fPint
377 Number of files to use for this job.  Default: 1.
378 .TP
379 .BI openfiles \fR=\fPint
380 Number of files to keep open at the same time.  Default: \fBnrfiles\fR.
381 .TP
382 .BI file_service_type \fR=\fPstr
383 Defines how files to service are selected.  The following types are defined:
384 .RS
385 .RS
386 .TP
387 .B random
388 Choose a file at random
389 .TP
390 .B roundrobin
391 Round robin over open files (default).
392 .B sequential
393 Do each file in the set sequentially.
394 .RE
395 .P
396 The number of I/Os to issue before switching a new file can be specified by
397 appending `:\fIint\fR' to the service type.
398 .RE
399 .TP
400 .BI ioengine \fR=\fPstr
401 Defines how the job issues I/O.  The following types are defined:
402 .RS
403 .RS
404 .TP
405 .B sync
406 Basic \fIread\fR\|(2) or \fIwrite\fR\|(2) I/O.  \fIfseek\fR\|(2) is used to
407 position the I/O location.
408 .TP
409 .B psync
410 Basic \fIpread\fR\|(2) or \fIpwrite\fR\|(2) I/O.
411 .TP
412 .B vsync
413 Basic \fIreadv\fR\|(2) or \fIwritev\fR\|(2) I/O. Will emulate queuing by
414 coalescing adjacents IOs into a single submission.
415 .TP
416 .B libaio
417 Linux native asynchronous I/O. This ioengine defines engine specific options.
418 .TP
419 .B posixaio
420 POSIX asynchronous I/O using \fIaio_read\fR\|(3) and \fIaio_write\fR\|(3).
421 .TP
422 .B solarisaio
423 Solaris native asynchronous I/O.
424 .TP
425 .B windowsaio
426 Windows native asynchronous I/O.
427 .TP
428 .B mmap
429 File is memory mapped with \fImmap\fR\|(2) and data copied using
430 \fImemcpy\fR\|(3).
431 .TP
432 .B splice
433 \fIsplice\fR\|(2) is used to transfer the data and \fIvmsplice\fR\|(2) to
434 transfer data from user-space to the kernel.
435 .TP
436 .B syslet-rw
437 Use the syslet system calls to make regular read/write asynchronous.
438 .TP
439 .B sg
440 SCSI generic sg v3 I/O. May be either synchronous using the SG_IO ioctl, or if
441 the target is an sg character device, we use \fIread\fR\|(2) and
442 \fIwrite\fR\|(2) for asynchronous I/O.
443 .TP
444 .B null
445 Doesn't transfer any data, just pretends to.  Mainly used to exercise \fBfio\fR
446 itself and for debugging and testing purposes.
447 .TP
448 .B net
449 Transfer over the network.  The protocol to be used can be defined with the
450 \fBprotocol\fR parameter.  Depending on the protocol, \fBfilename\fR,
451 \fBhostname\fR, \fBport\fR, or \fBlisten\fR must be specified.
452 This ioengine defines engine specific options.
453 .TP
454 .B netsplice
455 Like \fBnet\fR, but uses \fIsplice\fR\|(2) and \fIvmsplice\fR\|(2) to map data
456 and send/receive. This ioengine defines engine specific options.
457 .TP
458 .B cpuio
459 Doesn't transfer any data, but burns CPU cycles according to \fBcpuload\fR and
460 \fBcpucycles\fR parameters.
461 .TP
462 .B guasi
463 The GUASI I/O engine is the Generic Userspace Asynchronous Syscall Interface
464 approach to asycnronous I/O.
465 .br
466 See <http://www.xmailserver.org/guasi\-lib.html>.
467 .TP
468 .B rdma
469 The RDMA I/O engine supports both RDMA memory semantics (RDMA_WRITE/RDMA_READ)
470 and channel semantics (Send/Recv) for the InfiniBand, RoCE and iWARP protocols.
471 .TP
472 .B external
473 Loads an external I/O engine object file.  Append the engine filename as
474 `:\fIenginepath\fR'.
475 .TP
476 .B falloc
477    IO engine that does regular linux native fallocate callt to simulate data
478 transfer as fio ioengine
479 .br
480   DDIR_READ  does fallocate(,mode = FALLOC_FL_KEEP_SIZE,)
481 .br
482   DIR_WRITE does fallocate(,mode = 0)
483 .br
484   DDIR_TRIM does fallocate(,mode = FALLOC_FL_KEEP_SIZE|FALLOC_FL_PUNCH_HOLE)
485 .TP
486 .B e4defrag
487 IO engine that does regular EXT4_IOC_MOVE_EXT ioctls to simulate defragment activity
488 request to DDIR_WRITE event
489 .RE
490 .P
491 .RE
492 .TP
493 .BI iodepth \fR=\fPint
494 Number of I/O units to keep in flight against the file. Note that increasing
495 iodepth beyond 1 will not affect synchronous ioengines (except for small
496 degress when verify_async is in use). Even async engines my impose OS
497 restrictions causing the desired depth not to be achieved.  This may happen on
498 Linux when using libaio and not setting \fBdirect\fR=1, since buffered IO is
499 not async on that OS. Keep an eye on the IO depth distribution in the
500 fio output to verify that the achieved depth is as expected. Default: 1.
501 .TP
502 .BI iodepth_batch \fR=\fPint
503 Number of I/Os to submit at once.  Default: \fBiodepth\fR.
504 .TP
505 .BI iodepth_batch_complete \fR=\fPint
506 This defines how many pieces of IO to retrieve at once. It defaults to 1 which
507  means that we'll ask for a minimum of 1 IO in the retrieval process from the
508 kernel. The IO retrieval will go on until we hit the limit set by
509 \fBiodepth_low\fR. If this variable is set to 0, then fio will always check for
510 completed events before queuing more IO. This helps reduce IO latency, at the
511 cost of more retrieval system calls.
512 .TP
513 .BI iodepth_low \fR=\fPint
514 Low watermark indicating when to start filling the queue again.  Default:
515 \fBiodepth\fR. 
516 .TP
517 .BI direct \fR=\fPbool
518 If true, use non-buffered I/O (usually O_DIRECT).  Default: false.
519 .TP
520 .BI buffered \fR=\fPbool
521 If true, use buffered I/O.  This is the opposite of the \fBdirect\fR parameter.
522 Default: true.
523 .TP
524 .BI offset \fR=\fPint
525 Offset in the file to start I/O. Data before the offset will not be touched.
526 .TP
527 .BI offset_increment \fR=\fPint
528 If this is provided, then the real offset becomes the
529 offset + offset_increment * thread_number, where the thread number is a counter
530 that starts at 0 and is incremented for each job. This option is useful if
531 there are several jobs which are intended to operate on a file in parallel in
532 disjoint segments, with even spacing between the starting points.
533 .TP
534 .BI fsync \fR=\fPint
535 How many I/Os to perform before issuing an \fBfsync\fR\|(2) of dirty data.  If
536 0, don't sync.  Default: 0.
537 .TP
538 .BI fdatasync \fR=\fPint
539 Like \fBfsync\fR, but uses \fBfdatasync\fR\|(2) instead to only sync the
540 data parts of the file. Default: 0.
541 .TP
542 .BI sync_file_range \fR=\fPstr:int
543 Use sync_file_range() for every \fRval\fP number of write operations. Fio will
544 track range of writes that have happened since the last sync_file_range() call.
545 \fRstr\fP can currently be one or more of:
546 .RS
547 .TP
548 .B wait_before
549 SYNC_FILE_RANGE_WAIT_BEFORE
550 .TP
551 .B write
552 SYNC_FILE_RANGE_WRITE
553 .TP
554 .B wait_after
555 SYNC_FILE_RANGE_WRITE
556 .TP
557 .RE
558 .P
559 So if you do sync_file_range=wait_before,write:8, fio would use
560 \fBSYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE\fP for every 8 writes.
561 Also see the sync_file_range(2) man page.  This option is Linux specific.
562 .TP
563 .BI overwrite \fR=\fPbool
564 If writing, setup the file first and do overwrites.  Default: false.
565 .TP
566 .BI end_fsync \fR=\fPbool
567 Sync file contents when job exits.  Default: false.
568 .TP
569 .BI fsync_on_close \fR=\fPbool
570 If true, sync file contents on close.  This differs from \fBend_fsync\fR in that
571 it will happen on every close, not just at the end of the job.  Default: false.
572 .TP
573 .BI rwmixread \fR=\fPint
574 Percentage of a mixed workload that should be reads. Default: 50.
575 .TP
576 .BI rwmixwrite \fR=\fPint
577 Percentage of a mixed workload that should be writes.  If \fBrwmixread\fR and
578 \fBrwmixwrite\fR are given and do not sum to 100%, the latter of the two
579 overrides the first. This may interfere with a given rate setting, if fio is
580 asked to limit reads or writes to a certain rate. If that is the case, then
581 the distribution may be skewed. Default: 50.
582 .TP
583 .BI random_distribution \fR=\fPstr:float
584 By default, fio will use a completely uniform random distribution when asked
585 to perform random IO. Sometimes it is useful to skew the distribution in
586 specific ways, ensuring that some parts of the data is more hot than others.
587 Fio includes the following distribution models:
588 .RS
589 .TP
590 .B random
591 Uniform random distribution
592 .TP
593 .B zipf
594 Zipf distribution
595 .TP
596 .B pareto
597 Pareto distribution
598 .TP
599 .RE
600 .P
601 When using a zipf or pareto distribution, an input value is also needed to
602 define the access pattern. For zipf, this is the zipf theta. For pareto,
603 it's the pareto power. Fio includes a test program, genzipf, that can be
604 used visualize what the given input values will yield in terms of hit rates.
605 If you wanted to use zipf with a theta of 1.2, you would use
606 random_distribution=zipf:1.2 as the option. If a non-uniform model is used,
607 fio will disable use of the random map.
608 .TP
609 .B norandommap
610 Normally \fBfio\fR will cover every block of the file when doing random I/O. If
611 this parameter is given, a new offset will be chosen without looking at past
612 I/O history.  This parameter is mutually exclusive with \fBverify\fR.
613 .TP
614 .BI softrandommap \fR=\fPbool
615 See \fBnorandommap\fR. If fio runs with the random block map enabled and it
616 fails to allocate the map, if this option is set it will continue without a
617 random block map. As coverage will not be as complete as with random maps, this
618 option is disabled by default.
619 .TP
620 .BI random_generator \fR=\fPstr
621 Fio supports the following engines for generating IO offsets for random IO:
622 .RS
623 .TP
624 .B tausworthe
625 Strong 2^88 cycle random number generator
626 .TP
627 .B lfsr
628 Linear feedback shift register generator
629 .TP
630 .RE
631 .P
632 Tausworthe is a strong random number generator, but it requires tracking on the
633 side if we want to ensure that blocks are only read or written once. LFSR
634 guarantees that we never generate the same offset twice, and it's also less
635 computationally expensive. It's not a true random generator, however, though
636 for IO purposes it's typically good enough. LFSR only works with single block
637 sizes, not with workloads that use multiple block sizes. If used with such a
638 workload, fio may read or write some blocks multiple times.
639 .TP
640 .BI nice \fR=\fPint
641 Run job with given nice value.  See \fInice\fR\|(2).
642 .TP
643 .BI prio \fR=\fPint
644 Set I/O priority value of this job between 0 (highest) and 7 (lowest).  See
645 \fIionice\fR\|(1).
646 .TP
647 .BI prioclass \fR=\fPint
648 Set I/O priority class.  See \fIionice\fR\|(1).
649 .TP
650 .BI thinktime \fR=\fPint
651 Stall job for given number of microseconds between issuing I/Os.
652 .TP
653 .BI thinktime_spin \fR=\fPint
654 Pretend to spend CPU time for given number of microseconds, sleeping the rest
655 of the time specified by \fBthinktime\fR.  Only valid if \fBthinktime\fR is set.
656 .TP
657 .BI thinktime_blocks \fR=\fPint
658 Number of blocks to issue before waiting \fBthinktime\fR microseconds.
659 Default: 1.
660 .TP
661 .BI rate \fR=\fPint
662 Cap bandwidth used by this job. The number is in bytes/sec, the normal postfix
663 rules apply. You can use \fBrate\fR=500k to limit reads and writes to 500k each,
664 or you can specify read and writes separately. Using \fBrate\fR=1m,500k would
665 limit reads to 1MB/sec and writes to 500KB/sec. Capping only reads or writes
666 can be done with \fBrate\fR=,500k or \fBrate\fR=500k,. The former will only
667 limit writes (to 500KB/sec), the latter will only limit reads.
668 .TP
669 .BI ratemin \fR=\fPint
670 Tell \fBfio\fR to do whatever it can to maintain at least the given bandwidth.
671 Failing to meet this requirement will cause the job to exit. The same format
672 as \fBrate\fR is used for read vs write separation.
673 .TP
674 .BI rate_iops \fR=\fPint
675 Cap the bandwidth to this number of IOPS. Basically the same as rate, just
676 specified independently of bandwidth. The same format as \fBrate\fR is used for
677 read vs write seperation. If \fBblocksize\fR is a range, the smallest block
678 size is used as the metric.
679 .TP
680 .BI rate_iops_min \fR=\fPint
681 If this rate of I/O is not met, the job will exit. The same format as \fBrate\fR
682 is used for read vs write seperation.
683 .TP
684 .BI ratecycle \fR=\fPint
685 Average bandwidth for \fBrate\fR and \fBratemin\fR over this number of
686 milliseconds.  Default: 1000ms.
687 .TP
688 .BI max_latency \fR=\fPint
689 If set, fio will exit the job if it exceeds this maximum latency. It will exit
690 with an ETIME error.
691 .TP
692 .BI cpumask \fR=\fPint
693 Set CPU affinity for this job. \fIint\fR is a bitmask of allowed CPUs the job
694 may run on.  See \fBsched_setaffinity\fR\|(2).
695 .TP
696 .BI cpus_allowed \fR=\fPstr
697 Same as \fBcpumask\fR, but allows a comma-delimited list of CPU numbers.
698 .TP
699 .BI numa_cpu_nodes \fR=\fPstr
700 Set this job running on spcified NUMA nodes' CPUs. The arguments allow
701 comma delimited list of cpu numbers, A-B ranges, or 'all'.
702 .TP
703 .BI numa_mem_policy \fR=\fPstr
704 Set this job's memory policy and corresponding NUMA nodes. Format of
705 the argements:
706 .RS
707 .TP
708 .B <mode>[:<nodelist>]
709 .TP
710 .B mode
711 is one of the following memory policy:
712 .TP
713 .B default, prefer, bind, interleave, local
714 .TP
715 .RE
716 For \fBdefault\fR and \fBlocal\fR memory policy, no \fBnodelist\fR is
717 needed to be specified. For \fBprefer\fR, only one node is
718 allowed. For \fBbind\fR and \fBinterleave\fR, \fBnodelist\fR allows
719 comma delimited list of numbers, A-B ranges, or 'all'.
720 .TP
721 .BI startdelay \fR=\fPint
722 Delay start of job for the specified number of seconds.
723 .TP
724 .BI runtime \fR=\fPint
725 Terminate processing after the specified number of seconds.
726 .TP
727 .B time_based
728 If given, run for the specified \fBruntime\fR duration even if the files are
729 completely read or written. The same workload will be repeated as many times
730 as \fBruntime\fR allows.
731 .TP
732 .BI ramp_time \fR=\fPint
733 If set, fio will run the specified workload for this amount of time before
734 logging any performance numbers. Useful for letting performance settle before
735 logging results, thus minimizing the runtime required for stable results. Note
736 that the \fBramp_time\fR is considered lead in time for a job, thus it will
737 increase the total runtime if a special timeout or runtime is specified.
738 .TP
739 .BI invalidate \fR=\fPbool
740 Invalidate buffer-cache for the file prior to starting I/O.  Default: true.
741 .TP
742 .BI sync \fR=\fPbool
743 Use synchronous I/O for buffered writes.  For the majority of I/O engines,
744 this means using O_SYNC.  Default: false.
745 .TP
746 .BI iomem \fR=\fPstr "\fR,\fP mem" \fR=\fPstr
747 Allocation method for I/O unit buffer.  Allowed values are:
748 .RS
749 .RS
750 .TP
751 .B malloc
752 Allocate memory with \fImalloc\fR\|(3).
753 .TP
754 .B shm
755 Use shared memory buffers allocated through \fIshmget\fR\|(2).
756 .TP
757 .B shmhuge
758 Same as \fBshm\fR, but use huge pages as backing.
759 .TP
760 .B mmap
761 Use \fImmap\fR\|(2) for allocation.  Uses anonymous memory unless a filename
762 is given after the option in the format `:\fIfile\fR'.
763 .TP
764 .B mmaphuge
765 Same as \fBmmap\fR, but use huge files as backing.
766 .RE
767 .P
768 The amount of memory allocated is the maximum allowed \fBblocksize\fR for the
769 job multiplied by \fBiodepth\fR.  For \fBshmhuge\fR or \fBmmaphuge\fR to work,
770 the system must have free huge pages allocated.  \fBmmaphuge\fR also needs to
771 have hugetlbfs mounted, and \fIfile\fR must point there. At least on Linux,
772 huge pages must be manually allocated. See \fB/proc/sys/vm/nr_hugehages\fR
773 and the documentation for that. Normally you just need to echo an appropriate
774 number, eg echoing 8 will ensure that the OS has 8 huge pages ready for
775 use.
776 .RE
777 .TP
778 .BI iomem_align \fR=\fPint "\fR,\fP mem_align" \fR=\fPint
779 This indiciates the memory alignment of the IO memory buffers. Note that the
780 given alignment is applied to the first IO unit buffer, if using \fBiodepth\fR
781 the alignment of the following buffers are given by the \fBbs\fR used. In
782 other words, if using a \fBbs\fR that is a multiple of the page sized in the
783 system, all buffers will be aligned to this value. If using a \fBbs\fR that
784 is not page aligned, the alignment of subsequent IO memory buffers is the
785 sum of the \fBiomem_align\fR and \fBbs\fR used.
786 .TP
787 .BI hugepage\-size \fR=\fPint
788 Defines the size of a huge page.  Must be at least equal to the system setting.
789 Should be a multiple of 1MB. Default: 4MB.
790 .TP
791 .B exitall
792 Terminate all jobs when one finishes.  Default: wait for each job to finish.
793 .TP
794 .BI bwavgtime \fR=\fPint
795 Average bandwidth calculations over the given time in milliseconds.  Default:
796 500ms.
797 .TP
798 .BI iopsavgtime \fR=\fPint
799 Average IOPS calculations over the given time in milliseconds.  Default:
800 500ms.
801 .TP
802 .BI create_serialize \fR=\fPbool
803 If true, serialize file creation for the jobs.  Default: true.
804 .TP
805 .BI create_fsync \fR=\fPbool
806 \fIfsync\fR\|(2) data file after creation.  Default: true.
807 .TP
808 .BI create_on_open \fR=\fPbool
809 If true, the files are not created until they are opened for IO by the job.
810 .TP
811 .BI create_only \fR=\fPbool
812 If true, fio will only run the setup phase of the job. If files need to be
813 laid out or updated on disk, only that will be done. The actual job contents
814 are not executed.
815 .TP
816 .BI pre_read \fR=\fPbool
817 If this is given, files will be pre-read into memory before starting the given
818 IO operation. This will also clear the \fR \fBinvalidate\fR flag, since it is
819 pointless to pre-read and then drop the cache. This will only work for IO
820 engines that are seekable, since they allow you to read the same data
821 multiple times. Thus it will not work on eg network or splice IO.
822 .TP
823 .BI unlink \fR=\fPbool
824 Unlink job files when done.  Default: false.
825 .TP
826 .BI loops \fR=\fPint
827 Specifies the number of iterations (runs of the same workload) of this job.
828 Default: 1.
829 .TP
830 .BI do_verify \fR=\fPbool
831 Run the verify phase after a write phase.  Only valid if \fBverify\fR is set.
832 Default: true.
833 .TP
834 .BI verify \fR=\fPstr
835 Method of verifying file contents after each iteration of the job.  Allowed
836 values are:
837 .RS
838 .RS
839 .TP
840 .B md5 crc16 crc32 crc32c crc32c-intel crc64 crc7 sha256 sha512 sha1
841 Store appropriate checksum in the header of each block. crc32c-intel is
842 hardware accelerated SSE4.2 driven, falls back to regular crc32c if
843 not supported by the system.
844 .TP
845 .B meta
846 Write extra information about each I/O (timestamp, block number, etc.). The
847 block number is verified. See \fBverify_pattern\fR as well.
848 .TP
849 .B null
850 Pretend to verify.  Used for testing internals.
851 .RE
852
853 This option can be used for repeated burn-in tests of a system to make sure
854 that the written data is also correctly read back. If the data direction given
855 is a read or random read, fio will assume that it should verify a previously
856 written file. If the data direction includes any form of write, the verify will
857 be of the newly written data.
858 .RE
859 .TP
860 .BI verify_sort \fR=\fPbool
861 If true, written verify blocks are sorted if \fBfio\fR deems it to be faster to
862 read them back in a sorted manner.  Default: true.
863 .TP
864 .BI verify_offset \fR=\fPint
865 Swap the verification header with data somewhere else in the block before
866 writing.  It is swapped back before verifying.
867 .TP
868 .BI verify_interval \fR=\fPint
869 Write the verification header for this number of bytes, which should divide
870 \fBblocksize\fR.  Default: \fBblocksize\fR.
871 .TP
872 .BI verify_pattern \fR=\fPstr
873 If set, fio will fill the io buffers with this pattern. Fio defaults to filling
874 with totally random bytes, but sometimes it's interesting to fill with a known
875 pattern for io verification purposes. Depending on the width of the pattern,
876 fio will fill 1/2/3/4 bytes of the buffer at the time(it can be either a
877 decimal or a hex number). The verify_pattern if larger than a 32-bit quantity
878 has to be a hex number that starts with either "0x" or "0X". Use with
879 \fBverify\fP=meta.
880 .TP
881 .BI verify_fatal \fR=\fPbool
882 If true, exit the job on the first observed verification failure.  Default:
883 false.
884 .TP
885 .BI verify_dump \fR=\fPbool
886 If set, dump the contents of both the original data block and the data block we
887 read off disk to files. This allows later analysis to inspect just what kind of
888 data corruption occurred. Off by default.
889 .TP
890 .BI verify_async \fR=\fPint
891 Fio will normally verify IO inline from the submitting thread. This option
892 takes an integer describing how many async offload threads to create for IO
893 verification instead, causing fio to offload the duty of verifying IO contents
894 to one or more separate threads.  If using this offload option, even sync IO
895 engines can benefit from using an \fBiodepth\fR setting higher than 1, as it
896 allows them to have IO in flight while verifies are running.
897 .TP
898 .BI verify_async_cpus \fR=\fPstr
899 Tell fio to set the given CPU affinity on the async IO verification threads.
900 See \fBcpus_allowed\fP for the format used.
901 .TP
902 .BI verify_backlog \fR=\fPint
903 Fio will normally verify the written contents of a job that utilizes verify
904 once that job has completed. In other words, everything is written then
905 everything is read back and verified. You may want to verify continually
906 instead for a variety of reasons. Fio stores the meta data associated with an
907 IO block in memory, so for large verify workloads, quite a bit of memory would
908 be used up holding this meta data. If this option is enabled, fio will write
909 only N blocks before verifying these blocks.
910 .TP
911 .BI verify_backlog_batch \fR=\fPint
912 Control how many blocks fio will verify if verify_backlog is set. If not set,
913 will default to the value of \fBverify_backlog\fR (meaning the entire queue is
914 read back and verified).  If \fBverify_backlog_batch\fR is less than 
915 \fBverify_backlog\fR then not all blocks will be verified,  if 
916 \fBverify_backlog_batch\fR is larger than \fBverify_backlog\fR,  some blocks
917 will be verified more than once.
918 .TP
919 .B stonewall "\fR,\fP wait_for_previous"
920 Wait for preceding jobs in the job file to exit before starting this one.
921 \fBstonewall\fR implies \fBnew_group\fR.
922 .TP
923 .B new_group
924 Start a new reporting group.  If not given, all jobs in a file will be part
925 of the same reporting group, unless separated by a stonewall.
926 .TP
927 .BI numjobs \fR=\fPint
928 Number of clones (processes/threads performing the same workload) of this job.  
929 Default: 1.
930 .TP
931 .B group_reporting
932 If set, display per-group reports instead of per-job when \fBnumjobs\fR is
933 specified.
934 .TP
935 .B thread
936 Use threads created with \fBpthread_create\fR\|(3) instead of processes created
937 with \fBfork\fR\|(2).
938 .TP
939 .BI zonesize \fR=\fPint
940 Divide file into zones of the specified size in bytes.  See \fBzoneskip\fR.
941 .TP
942 .BI zoneskip \fR=\fPint
943 Skip the specified number of bytes when \fBzonesize\fR bytes of data have been
944 read.
945 .TP
946 .BI write_iolog \fR=\fPstr
947 Write the issued I/O patterns to the specified file.  Specify a separate file
948 for each job, otherwise the iologs will be interspersed and the file may be
949 corrupt.
950 .TP
951 .BI read_iolog \fR=\fPstr
952 Replay the I/O patterns contained in the specified file generated by
953 \fBwrite_iolog\fR, or may be a \fBblktrace\fR binary file.
954 .TP
955 .BI replay_no_stall \fR=\fPint
956 While replaying I/O patterns using \fBread_iolog\fR the default behavior
957 attempts to respect timing information between I/Os.  Enabling
958 \fBreplay_no_stall\fR causes I/Os to be replayed as fast as possible while
959 still respecting ordering.
960 .TP
961 .BI replay_redirect \fR=\fPstr
962 While replaying I/O patterns using \fBread_iolog\fR the default behavior
963 is to replay the IOPS onto the major/minor device that each IOP was recorded
964 from.  Setting \fBreplay_redirect\fR causes all IOPS to be replayed onto the
965 single specified device regardless of the device it was recorded from.
966 .TP
967 .BI write_bw_log \fR=\fPstr
968 If given, write a bandwidth log of the jobs in this job file. Can be used to
969 store data of the bandwidth of the jobs in their lifetime. The included
970 fio_generate_plots script uses gnuplot to turn these text files into nice
971 graphs. See \fBwrite_log_log\fR for behaviour of given filename. For this
972 option, the postfix is _bw.log.
973 .TP
974 .BI write_lat_log \fR=\fPstr
975 Same as \fBwrite_bw_log\fR, but writes I/O completion latencies.  If no
976 filename is given with this option, the default filename of "jobname_type.log"
977 is used. Even if the filename is given, fio will still append the type of log.
978 .TP
979 .BI write_iops_log \fR=\fPstr
980 Same as \fBwrite_bw_log\fR, but writes IOPS. If no filename is given with this
981 option, the default filename of "jobname_type.log" is used. Even if the
982 filename is given, fio will still append the type of log.
983 .TP
984 .BI log_avg_msec \fR=\fPint
985 By default, fio will log an entry in the iops, latency, or bw log for every
986 IO that completes. When writing to the disk log, that can quickly grow to a
987 very large size. Setting this option makes fio average the each log entry
988 over the specified period of time, reducing the resolution of the log.
989 Defaults to 0.
990 .TP
991 .BI disable_lat \fR=\fPbool
992 Disable measurements of total latency numbers. Useful only for cutting
993 back the number of calls to gettimeofday, as that does impact performance at
994 really high IOPS rates.  Note that to really get rid of a large amount of these
995 calls, this option must be used with disable_slat and disable_bw as well.
996 .TP
997 .BI disable_clat \fR=\fPbool
998 Disable measurements of completion latency numbers. See \fBdisable_lat\fR.
999 .TP
1000 .BI disable_slat \fR=\fPbool
1001 Disable measurements of submission latency numbers. See \fBdisable_lat\fR.
1002 .TP
1003 .BI disable_bw_measurement \fR=\fPbool
1004 Disable measurements of throughput/bandwidth numbers. See \fBdisable_lat\fR.
1005 .TP
1006 .BI lockmem \fR=\fPint
1007 Pin the specified amount of memory with \fBmlock\fR\|(2).  Can be used to
1008 simulate a smaller amount of memory.
1009 .TP
1010 .BI exec_prerun \fR=\fPstr
1011 Before running the job, execute the specified command with \fBsystem\fR\|(3).
1012 .TP
1013 .BI exec_postrun \fR=\fPstr
1014 Same as \fBexec_prerun\fR, but the command is executed after the job completes.
1015 .TP
1016 .BI ioscheduler \fR=\fPstr
1017 Attempt to switch the device hosting the file to the specified I/O scheduler.
1018 .TP
1019 .BI cpuload \fR=\fPint
1020 If the job is a CPU cycle-eater, attempt to use the specified percentage of
1021 CPU cycles.
1022 .TP
1023 .BI cpuchunks \fR=\fPint
1024 If the job is a CPU cycle-eater, split the load into cycles of the
1025 given time in milliseconds.
1026 .TP
1027 .BI disk_util \fR=\fPbool
1028 Generate disk utilization statistics if the platform supports it. Default: true.
1029 .TP
1030 .BI clocksource \fR=\fPstr
1031 Use the given clocksource as the base of timing. The supported options are:
1032 .RS
1033 .TP
1034 .B gettimeofday
1035 gettimeofday(2)
1036 .TP
1037 .B clock_gettime
1038 clock_gettime(2)
1039 .TP
1040 .B cpu
1041 Internal CPU clock source
1042 .TP
1043 .RE
1044 .P
1045 \fBcpu\fR is the preferred clocksource if it is reliable, as it is very fast
1046 (and fio is heavy on time calls). Fio will automatically use this clocksource
1047 if it's supported and considered reliable on the system it is running on,
1048 unless another clocksource is specifically set. For x86/x86-64 CPUs, this
1049 means supporting TSC Invariant.
1050 .TP
1051 .BI gtod_reduce \fR=\fPbool
1052 Enable all of the gettimeofday() reducing options (disable_clat, disable_slat,
1053 disable_bw) plus reduce precision of the timeout somewhat to really shrink the
1054 gettimeofday() call count. With this option enabled, we only do about 0.4% of
1055 the gtod() calls we would have done if all time keeping was enabled.
1056 .TP
1057 .BI gtod_cpu \fR=\fPint
1058 Sometimes it's cheaper to dedicate a single thread of execution to just getting
1059 the current time. Fio (and databases, for instance) are very intensive on
1060 gettimeofday() calls. With this option, you can set one CPU aside for doing
1061 nothing but logging current time to a shared memory location. Then the other
1062 threads/processes that run IO workloads need only copy that segment, instead of
1063 entering the kernel with a gettimeofday() call. The CPU set aside for doing
1064 these time calls will be excluded from other uses. Fio will manually clear it
1065 from the CPU mask of other jobs.
1066 .TP
1067 .BI ignore_error \fR=\fPstr
1068 Sometimes you want to ignore some errors during test in that case you can specify
1069 error list for each error type.
1070 .br
1071 ignore_error=READ_ERR_LIST,WRITE_ERR_LIST,VERIFY_ERR_LIST
1072 .br
1073 errors for given error type is separated with ':'.
1074 Error may be symbol ('ENOSPC', 'ENOMEM') or an integer.
1075 .br
1076 Example: ignore_error=EAGAIN,ENOSPC:122 .
1077 .br     
1078 This option will ignore EAGAIN from READ, and ENOSPC and 122(EDQUOT) from WRITE. 
1079 .TP
1080 .BI error_dump \fR=\fPbool
1081 If set dump every error even if it is non fatal, true by default. If disabled
1082 only fatal error will be dumped
1083 .TP
1084 .BI cgroup \fR=\fPstr
1085 Add job to this control group. If it doesn't exist, it will be created.
1086 The system must have a mounted cgroup blkio mount point for this to work. If
1087 your system doesn't have it mounted, you can do so with:
1088
1089 # mount \-t cgroup \-o blkio none /cgroup
1090 .TP
1091 .BI cgroup_weight \fR=\fPint
1092 Set the weight of the cgroup to this value. See the documentation that comes
1093 with the kernel, allowed values are in the range of 100..1000.
1094 .TP
1095 .BI cgroup_nodelete \fR=\fPbool
1096 Normally fio will delete the cgroups it has created after the job completion.
1097 To override this behavior and to leave cgroups around after the job completion,
1098 set cgroup_nodelete=1. This can be useful if one wants to inspect various
1099 cgroup files after job completion. Default: false
1100 .TP
1101 .BI uid \fR=\fPint
1102 Instead of running as the invoking user, set the user ID to this value before
1103 the thread/process does any work.
1104 .TP
1105 .BI gid \fR=\fPint
1106 Set group ID, see \fBuid\fR.
1107 .TP
1108 .BI flow_id \fR=\fPint
1109 The ID of the flow. If not specified, it defaults to being a global flow. See
1110 \fBflow\fR.
1111 .TP
1112 .BI flow \fR=\fPint
1113 Weight in token-based flow control. If this value is used, then there is a
1114 \fBflow counter\fR which is used to regulate the proportion of activity between
1115 two or more jobs. fio attempts to keep this flow counter near zero. The
1116 \fBflow\fR parameter stands for how much should be added or subtracted to the
1117 flow counter on each iteration of the main I/O loop. That is, if one job has
1118 \fBflow=8\fR and another job has \fBflow=-1\fR, then there will be a roughly
1119 1:8 ratio in how much one runs vs the other.
1120 .TP
1121 .BI flow_watermark \fR=\fPint
1122 The maximum value that the absolute value of the flow counter is allowed to
1123 reach before the job must wait for a lower value of the counter.
1124 .TP
1125 .BI flow_sleep \fR=\fPint
1126 The period of time, in microseconds, to wait after the flow watermark has been
1127 exceeded before retrying operations
1128 .TP
1129 .BI clat_percentiles \fR=\fPbool
1130 Enable the reporting of percentiles of completion latencies.
1131 .TP
1132 .BI percentile_list \fR=\fPfloat_list
1133 Overwrite the default list of percentiles for completion
1134 latencies. Each number is a floating number in the range (0,100], and
1135 the maximum length of the list is 20. Use ':' to separate the
1136 numbers. For example, \-\-percentile_list=99.5:99.9 will cause fio to
1137 report the values of completion latency below which 99.5% and 99.9% of
1138 the observed latencies fell, respectively.
1139 .SS "Ioengine Parameters List"
1140 Some parameters are only valid when a specific ioengine is in use. These are
1141 used identically to normal parameters, with the caveat that when used on the
1142 command line, the must come after the ioengine that defines them is selected.
1143 .TP
1144 .BI (libaio)userspace_reap
1145 Normally, with the libaio engine in use, fio will use
1146 the io_getevents system call to reap newly returned events.
1147 With this flag turned on, the AIO ring will be read directly
1148 from user-space to reap events. The reaping mode is only
1149 enabled when polling for a minimum of 0 events (eg when
1150 iodepth_batch_complete=0).
1151 .TP
1152 .BI (net,netsplice)hostname \fR=\fPstr
1153 The host name or IP address to use for TCP or UDP based IO.
1154 If the job is a TCP listener or UDP reader, the hostname is not
1155 used and must be omitted.
1156 .TP
1157 .BI (net,netsplice)port \fR=\fPint
1158 The TCP or UDP port to bind to or connect to.
1159 .TP
1160 .BI (net,netsplice)protocol \fR=\fPstr "\fR,\fP proto" \fR=\fPstr
1161 The network protocol to use. Accepted values are:
1162 .RS
1163 .RS
1164 .TP
1165 .B tcp
1166 Transmission control protocol
1167 .TP
1168 .B udp
1169 User datagram protocol
1170 .TP
1171 .B unix
1172 UNIX domain socket
1173 .RE
1174 .P
1175 When the protocol is TCP or UDP, the port must also be given,
1176 as well as the hostname if the job is a TCP listener or UDP
1177 reader. For unix sockets, the normal filename option should be
1178 used and the port is invalid.
1179 .RE
1180 .TP
1181 .BI (net,netsplice)listen
1182 For TCP network connections, tell fio to listen for incoming
1183 connections rather than initiating an outgoing connection. The
1184 hostname must be omitted if this option is used.
1185 .TP
1186 .BI (net, pingpong) \fR=\fPbool
1187 Normal a network writer will just continue writing data, and a network reader
1188 will just consume packages. If pingpong=1 is set, a writer will send its normal
1189 payload to the reader, then wait for the reader to send the same payload back.
1190 This allows fio to measure network latencies. The submission and completion
1191 latencies then measure local time spent sending or receiving, and the
1192 completion latency measures how long it took for the other end to receive and
1193 send back.
1194 .TP
1195 .BI (e4defrag,donorname) \fR=\fPstr
1196 File will be used as a block donor (swap extents between files)
1197 .TP
1198 .BI (e4defrag,inplace) \fR=\fPint
1199 Configure donor file block allocation strategy          
1200 .RS
1201 .BI 0(default) :
1202 Preallocate donor's file on init
1203 .TP
1204 .BI 1:
1205 allocate space immidietly inside defragment event, and free right after event
1206 .RE
1207 .TP
1208 .SH OUTPUT
1209 While running, \fBfio\fR will display the status of the created jobs.  For
1210 example:
1211 .RS
1212 .P
1213 Threads: 1: [_r] [24.8% done] [ 13509/  8334 kb/s] [eta 00h:01m:31s]
1214 .RE
1215 .P
1216 The characters in the first set of brackets denote the current status of each
1217 threads.  The possible values are:
1218 .P
1219 .PD 0
1220 .RS
1221 .TP
1222 .B P
1223 Setup but not started.
1224 .TP
1225 .B C
1226 Thread created.
1227 .TP
1228 .B I
1229 Initialized, waiting.
1230 .TP
1231 .B R
1232 Running, doing sequential reads.
1233 .TP
1234 .B r
1235 Running, doing random reads.
1236 .TP
1237 .B W
1238 Running, doing sequential writes.
1239 .TP
1240 .B w
1241 Running, doing random writes.
1242 .TP
1243 .B M
1244 Running, doing mixed sequential reads/writes.
1245 .TP
1246 .B m
1247 Running, doing mixed random reads/writes.
1248 .TP
1249 .B F
1250 Running, currently waiting for \fBfsync\fR\|(2).
1251 .TP
1252 .B V
1253 Running, verifying written data.
1254 .TP
1255 .B E
1256 Exited, not reaped by main thread.
1257 .TP
1258 .B \-
1259 Exited, thread reaped.
1260 .RE
1261 .PD
1262 .P
1263 The second set of brackets shows the estimated completion percentage of
1264 the current group.  The third set shows the read and write I/O rate,
1265 respectively. Finally, the estimated run time of the job is displayed.
1266 .P
1267 When \fBfio\fR completes (or is interrupted by Ctrl-C), it will show data
1268 for each thread, each group of threads, and each disk, in that order.
1269 .P
1270 Per-thread statistics first show the threads client number, group-id, and
1271 error code.  The remaining figures are as follows:
1272 .RS
1273 .TP
1274 .B io
1275 Number of megabytes of I/O performed.
1276 .TP
1277 .B bw
1278 Average data rate (bandwidth).
1279 .TP
1280 .B runt
1281 Threads run time.
1282 .TP
1283 .B slat
1284 Submission latency minimum, maximum, average and standard deviation. This is
1285 the time it took to submit the I/O.
1286 .TP
1287 .B clat
1288 Completion latency minimum, maximum, average and standard deviation.  This
1289 is the time between submission and completion.
1290 .TP
1291 .B bw
1292 Bandwidth minimum, maximum, percentage of aggregate bandwidth received, average
1293 and standard deviation.
1294 .TP
1295 .B cpu
1296 CPU usage statistics. Includes user and system time, number of context switches
1297 this thread went through and number of major and minor page faults.
1298 .TP
1299 .B IO depths
1300 Distribution of I/O depths.  Each depth includes everything less than (or equal)
1301 to it, but greater than the previous depth.
1302 .TP
1303 .B IO issued
1304 Number of read/write requests issued, and number of short read/write requests.
1305 .TP
1306 .B IO latencies
1307 Distribution of I/O completion latencies.  The numbers follow the same pattern
1308 as \fBIO depths\fR.
1309 .RE
1310 .P
1311 The group statistics show:
1312 .PD 0
1313 .RS
1314 .TP
1315 .B io
1316 Number of megabytes I/O performed.
1317 .TP
1318 .B aggrb
1319 Aggregate bandwidth of threads in the group.
1320 .TP
1321 .B minb
1322 Minimum average bandwidth a thread saw.
1323 .TP
1324 .B maxb
1325 Maximum average bandwidth a thread saw.
1326 .TP
1327 .B mint
1328 Shortest runtime of threads in the group.
1329 .TP
1330 .B maxt
1331 Longest runtime of threads in the group.
1332 .RE
1333 .PD
1334 .P
1335 Finally, disk statistics are printed with reads first:
1336 .PD 0
1337 .RS
1338 .TP
1339 .B ios
1340 Number of I/Os performed by all groups.
1341 .TP
1342 .B merge
1343 Number of merges in the I/O scheduler.
1344 .TP
1345 .B ticks
1346 Number of ticks we kept the disk busy.
1347 .TP
1348 .B io_queue
1349 Total time spent in the disk queue.
1350 .TP
1351 .B util
1352 Disk utilization.
1353 .RE
1354 .PD
1355 .P
1356 It is also possible to get fio to dump the current output while it is
1357 running, without terminating the job. To do that, send fio the \fBUSR1\fR
1358 signal.
1359 .SH TERSE OUTPUT
1360 If the \fB\-\-minimal\fR option is given, the results will be printed in a
1361 semicolon-delimited format suitable for scripted use - a job description
1362 (if provided) follows on a new line.  Note that the first
1363 number in the line is the version number. If the output has to be changed
1364 for some reason, this number will be incremented by 1 to signify that
1365 change.  The fields are:
1366 .P
1367 .RS
1368 .B terse version, fio version, jobname, groupid, error
1369 .P
1370 Read status:
1371 .RS
1372 .B Total I/O \fR(KB)\fP, bandwidth \fR(KB/s)\fP, IOPS, runtime \fR(ms)\fP
1373 .P
1374 Submission latency:
1375 .RS
1376 .B min, max, mean, standard deviation
1377 .RE
1378 Completion latency:
1379 .RS
1380 .B min, max, mean, standard deviation
1381 .RE
1382 Completion latency percentiles (20 fields):
1383 .RS
1384 .B Xth percentile=usec
1385 .RE
1386 Total latency:
1387 .RS
1388 .B min, max, mean, standard deviation
1389 .RE
1390 Bandwidth:
1391 .RS
1392 .B min, max, aggregate percentage of total, mean, standard deviation
1393 .RE
1394 .RE
1395 .P
1396 Write status:
1397 .RS
1398 .B Total I/O \fR(KB)\fP, bandwidth \fR(KB/s)\fP, IOPS, runtime \fR(ms)\fP
1399 .P
1400 Submission latency:
1401 .RS
1402 .B min, max, mean, standard deviation
1403 .RE
1404 Completion latency:
1405 .RS
1406 .B min, max, mean, standard deviation
1407 .RE
1408 Completion latency percentiles (20 fields):
1409 .RS
1410 .B Xth percentile=usec
1411 .RE
1412 Total latency:
1413 .RS
1414 .B min, max, mean, standard deviation
1415 .RE
1416 Bandwidth:
1417 .RS
1418 .B min, max, aggregate percentage of total, mean, standard deviation
1419 .RE
1420 .RE
1421 .P
1422 CPU usage:
1423 .RS
1424 .B user, system, context switches, major page faults, minor page faults
1425 .RE
1426 .P
1427 IO depth distribution:
1428 .RS
1429 .B <=1, 2, 4, 8, 16, 32, >=64
1430 .RE
1431 .P
1432 IO latency distribution:
1433 .RS
1434 Microseconds:
1435 .RS
1436 .B <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000
1437 .RE
1438 Milliseconds:
1439 .RS
1440 .B <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000, 2000, >=2000
1441 .RE
1442 .RE
1443 .P
1444 Disk utilization (1 for each disk used):
1445 .RS
1446 .B name, read ios, write ios, read merges, write merges, read ticks, write ticks, read in-queue time, write in-queue time, disk utilization percentage
1447 .RE
1448 .P
1449 Error Info (dependent on continue_on_error, default off):
1450 .RS
1451 .B total # errors, first error code 
1452 .RE
1453 .P
1454 .B text description (if provided in config - appears on newline)
1455 .RE
1456 .SH CLIENT / SERVER
1457 Normally you would run fio as a stand-alone application on the machine
1458 where the IO workload should be generated. However, it is also possible to
1459 run the frontend and backend of fio separately. This makes it possible to
1460 have a fio server running on the machine(s) where the IO workload should
1461 be running, while controlling it from another machine.
1462
1463 To start the server, you would do:
1464
1465 \fBfio \-\-server=args\fR
1466
1467 on that machine, where args defines what fio listens to. The arguments
1468 are of the form 'type:hostname or IP:port'. 'type' is either 'ip' (or ip4)
1469 for TCP/IP v4, 'ip6' for TCP/IP v6, or 'sock' for a local unix domain
1470 socket. 'hostname' is either a hostname or IP address, and 'port' is the port to
1471 listen to (only valid for TCP/IP, not a local socket). Some examples:
1472
1473 1) fio \-\-server
1474
1475    Start a fio server, listening on all interfaces on the default port (8765).
1476
1477 2) fio \-\-server=ip:hostname,4444
1478
1479    Start a fio server, listening on IP belonging to hostname and on port 4444.
1480
1481 3) fio \-\-server=ip6:::1,4444
1482
1483    Start a fio server, listening on IPv6 localhost ::1 and on port 4444.
1484
1485 4) fio \-\-server=,4444
1486
1487    Start a fio server, listening on all interfaces on port 4444.
1488
1489 5) fio \-\-server=1.2.3.4
1490
1491    Start a fio server, listening on IP 1.2.3.4 on the default port.
1492
1493 6) fio \-\-server=sock:/tmp/fio.sock
1494
1495    Start a fio server, listening on the local socket /tmp/fio.sock.
1496
1497 When a server is running, you can connect to it from a client. The client
1498 is run with:
1499
1500 fio \-\-local-args \-\-client=server \-\-remote-args <job file(s)>
1501
1502 where \-\-local-args are arguments that are local to the client where it is
1503 running, 'server' is the connect string, and \-\-remote-args and <job file(s)>
1504 are sent to the server. The 'server' string follows the same format as it
1505 does on the server side, to allow IP/hostname/socket and port strings.
1506 You can connect to multiple clients as well, to do that you could run:
1507
1508 fio \-\-client=server2 \-\-client=server2 <job file(s)>
1509 .SH AUTHORS
1510
1511 .B fio
1512 was written by Jens Axboe <jens.axboe@oracle.com>,
1513 now Jens Axboe <jaxboe@fusionio.com>.
1514 .br
1515 This man page was written by Aaron Carroll <aaronc@cse.unsw.edu.au> based
1516 on documentation by Jens Axboe.
1517 .SH "REPORTING BUGS"
1518 Report bugs to the \fBfio\fR mailing list <fio@vger.kernel.org>.
1519 See \fBREADME\fR.
1520 .SH "SEE ALSO"
1521 For further documentation see \fBHOWTO\fR and \fBREADME\fR.
1522 .br
1523 Sample jobfiles are available in the \fBexamples\fR directory.
1524