Update documentation on zero_buffers / scramble_buffers
[fio.git] / fio.1
1 .TH fio 1 "October 2013" "User Manual"
3 fio \- flexible I/O tester
5 .B fio
6 [\fIoptions\fR] [\fIjobfile\fR]...
8 .B fio
9 is a tool that will spawn a number of threads or processes doing a
10 particular type of I/O action as specified by the user.
11 The typical use of fio is to write a job file matching the I/O load
12 one wants to simulate.
14 .TP
15 .BI \-\-debug \fR=\fPtype
16 Enable verbose tracing of various fio actions. May be `all' for all types
17 or individual types separated by a comma (eg \-\-debug=io,file). `help' will
18 list all available tracing options.
19 .TP
20 .BI \-\-output \fR=\fPfilename
21 Write output to \fIfilename\fR.
22 .TP
23 .BI \-\-runtime \fR=\fPruntime
24 Limit run time to \fIruntime\fR seconds.
25 .TP
26 .B \-\-latency\-log
27 Generate per-job latency logs.
28 .TP
29 .B \-\-bandwidth\-log
30 Generate per-job bandwidth logs.
31 .TP
32 .B \-\-minimal
33 Print statistics in a terse, semicolon-delimited format.
34 .TP
35 .B \-\-append-terse
36 Print statistics in selected mode AND terse, semicolon-delimited format.
37 .TP
38 .B \-\-version
39 Display version information and exit.
40 .TP
41 .BI \-\-terse\-version \fR=\fPversion
42 Set terse version output format (Current version 3, or older version 2).
43 .TP
44 .B \-\-help
45 Display usage information and exit.
46 .TP
47 .B \-\-cpuclock-test
48 Perform test and validation of internal CPU clock
49 .TP
50 .BI \-\-crctest[\fR=\fPtest]
51 Test the speed of the builtin checksumming functions. If no argument is given,
52 all of them are tested. Or a comma separated list can be passed, in which
53 case the given ones are tested.
54 .TP
55 .BI \-\-cmdhelp \fR=\fPcommand
56 Print help information for \fIcommand\fR.  May be `all' for all commands.
57 .TP
58 .BI \-\-enghelp \fR=\fPioengine[,command]
59 List all commands defined by \fIioengine\fR, or print help for \fIcommand\fR defined by \fIioengine\fR.
60 .TP
61 .BI \-\-showcmd \fR=\fPjobfile
62 Convert \fIjobfile\fR to a set of command-line options.
63 .TP
64 .BI \-\-eta \fR=\fPwhen
65 Specifies when real-time ETA estimate should be printed.  \fIwhen\fR may
66 be one of `always', `never' or `auto'.
67 .TP
68 .BI \-\-eta\-newline \fR=\fPtime
69 Force an ETA newline for every `time` period passed.
70 .TP
71 .BI \-\-status\-interval \fR=\fPtime
72 Report full output status every `time` period passed.
73 .TP
74 .BI \-\-readonly
75 Turn on safety read-only checks, preventing any attempted write.
76 .TP
77 .BI \-\-section \fR=\fPsec
78 Only run section \fIsec\fR from job file. Multiple of these options can be given, adding more sections to run.
79 .TP
80 .BI \-\-alloc\-size \fR=\fPkb
81 Set the internal smalloc pool size to \fIkb\fP kilobytes.
82 .TP
83 .BI \-\-warnings\-fatal
84 All fio parser warnings are fatal, causing fio to exit with an error.
85 .TP
86 .BI \-\-max\-jobs \fR=\fPnr
87 Set the maximum allowed number of jobs (threads/processes) to support.
88 .TP
89 .BI \-\-server \fR=\fPargs
90 Start a backend server, with \fIargs\fP specifying what to listen to. See client/server section.
91 .TP
92 .BI \-\-daemonize \fR=\fPpidfile
93 Background a fio server, writing the pid to the given pid file.
94 .TP
95 .BI \-\-client \fR=\fPhost
96 Instead of running the jobs locally, send and run them on the given host.
97 .TP
98 .BI \-\-idle\-prof \fR=\fPoption
99 Report cpu idleness on a system or percpu basis (\fIoption\fP=system,percpu) or run unit work calibration only (\fIoption\fP=calibrate).
101 Job files are in `ini' format. They consist of one or more
102 job definitions, which begin with a job name in square brackets and
103 extend to the next job name.  The job name can be any ASCII string
104 except `global', which has a special meaning.  Following the job name is
105 a sequence of zero or more parameters, one per line, that define the
106 behavior of the job.  Any line starting with a `;' or `#' character is
107 considered a comment and ignored.
108 .P
109 If \fIjobfile\fR is specified as `-', the job file will be read from
110 standard input.
111 .SS "Global Section"
112 The global section contains default parameters for jobs specified in the
113 job file.  A job is only affected by global sections residing above it,
114 and there may be any number of global sections.  Specific job definitions
115 may override any parameter set in global sections.
117 .SS Types
118 Some parameters may take arguments of a specific type.  The types used are:
119 .TP
120 .I str
121 String: a sequence of alphanumeric characters.
122 .TP
123 .I int
124 SI integer: a whole number, possibly containing a suffix denoting the base unit
125 of the value.  Accepted suffixes are `k', 'M', 'G', 'T', and 'P', denoting
126 kilo (1024), mega (1024^2), giga (1024^3), tera (1024^4), and peta (1024^5)
127 respectively. If prefixed with '0x', the value is assumed to be base 16
128 (hexadecimal). A suffix may include a trailing 'b', for instance 'kb' is
129 identical to 'k'. You can specify a base 10 value by using 'KiB', 'MiB','GiB',
130 etc. This is useful for disk drives where values are often given in base 10
131 values. Specifying '30GiB' will get you 30*1000^3 bytes.
132 When specifying times the default suffix meaning changes, still denoting the
133 base unit of the value, but accepted suffixes are 'D' (days), 'H' (hours), 'M'
134 (minutes), 'S' Seconds, 'ms' (or msec) milli seconds, 'us' (or 'usec') micro
135 seconds. Time values without a unit specify seconds.
136 The suffixes are not case sensitive.
137 .TP
138 .I bool
139 Boolean: a true or false value. `0' denotes false, `1' denotes true.
140 .TP
141 .I irange
142 Integer range: a range of integers specified in the format
143 \fIlower\fR:\fIupper\fR or \fIlower\fR\-\fIupper\fR. \fIlower\fR and
144 \fIupper\fR may contain a suffix as described above.  If an option allows two
145 sets of ranges, they are separated with a `,' or `/' character. For example:
146 `8\-8k/8M\-4G'.
147 .TP
148 .I float_list
149 List of floating numbers: A list of floating numbers, separated by
150 a ':' character.
151 .SS "Parameter List"
152 .TP
153 .BI name \fR=\fPstr
154 May be used to override the job name.  On the command line, this parameter
155 has the special purpose of signalling the start of a new job.
156 .TP
157 .BI description \fR=\fPstr
158 Human-readable description of the job. It is printed when the job is run, but
159 otherwise has no special purpose.
160 .TP
161 .BI directory \fR=\fPstr
162 Prefix filenames with this directory.  Used to place files in a location other
163 than `./'.
164 You can specify a number of directories by separating the names with a ':'
165 character. These directories will be assigned equally distributed to job clones
166 creates with \fInumjobs\fR as long as they are using generated filenames.
167 If specific \fIfilename(s)\fR are set fio will use the first listed directory,
168 and thereby matching the  \fIfilename\fR semantic which generates a file each
169 clone if not specified, but let all clones use the same if set. See
170 \fIfilename\fR for considerations regarding escaping certain characters on
171 some platforms.
172 .TP
173 .BI filename \fR=\fPstr
174 .B fio
175 normally makes up a file name based on the job name, thread number, and file
176 number. If you want to share files between threads in a job or several jobs,
177 specify a \fIfilename\fR for each of them to override the default.
178 If the I/O engine is file-based, you can specify
179 a number of files by separating the names with a `:' character. `\-' is a
180 reserved name, meaning stdin or stdout, depending on the read/write direction
181 set. On Windows, disk devices are accessed as \\.\PhysicalDrive0 for the first
182 device, \\.\PhysicalDrive1 for the second etc. Note: Windows and FreeBSD
183 prevent write access to areas of the disk containing in-use data
184 (e.g. filesystems). If the wanted filename does need to include a colon, then
185 escape that with a '\' character. For instance, if the filename is
186 "/dev/dsk/foo@3,0:c", then you would use filename="/dev/dsk/foo@3,0\:c".
187 .TP
188 .BI filename_format \fR=\fPstr
189 If sharing multiple files between jobs, it is usually necessary to have
190 fio generate the exact names that you want. By default, fio will name a file
191 based on the default file format specification of
192 \fBjobname.jobnumber.filenumber\fP. With this option, that can be
193 customized. Fio will recognize and replace the following keywords in this
194 string:
195 .RS
196 .RS
197 .TP
198 .B $jobname
199 The name of the worker thread or process.
200 .TP
201 .B $jobnum
202 The incremental number of the worker thread or process.
203 .TP
204 .B $filenum
205 The incremental number of the file for that worker thread or process.
206 .RE
207 .P
208 To have dependent jobs share a set of files, this option can be set to
209 have fio generate filenames that are shared between the two. For instance,
210 if \fBtestfiles.$filenum\fR is specified, file number 4 for any job will
211 be named \fBtestfiles.4\fR. The default of \fB$jobname.$jobnum.$filenum\fR
212 will be used if no other format specifier is given.
213 .RE
214 .P
215 .TP
216 .BI lockfile \fR=\fPstr
217 Fio defaults to not locking any files before it does IO to them. If a file or
218 file descriptor is shared, fio can serialize IO to that file to make the end
219 result consistent. This is usual for emulating real workloads that share files.
220 The lock modes are:
221 .RS
222 .RS
223 .TP
224 .B none
225 No locking. This is the default.
226 .TP
227 .B exclusive
228 Only one thread or process may do IO at the time, excluding all others.
229 .TP
230 .B readwrite
231 Read-write locking on the file. Many readers may access the file at the same
232 time, but writes get exclusive access.
233 .RE
234 .RE
235 .P
236 .BI opendir \fR=\fPstr
237 Recursively open any files below directory \fIstr\fR.
238 .TP
239 .BI readwrite \fR=\fPstr "\fR,\fP rw" \fR=\fPstr
240 Type of I/O pattern.  Accepted values are:
241 .RS
242 .RS
243 .TP
244 .B read
245 Sequential reads.
246 .TP
247 .B write
248 Sequential writes.
249 .TP
250 .B trim
251 Sequential trim (Linux block devices only).
252 .TP
253 .B randread
254 Random reads.
255 .TP
256 .B randwrite
257 Random writes.
258 .TP
259 .B randtrim
260 Random trim (Linux block devices only).
261 .TP
262 .B rw, readwrite
263 Mixed sequential reads and writes.
264 .TP
265 .B randrw 
266 Mixed random reads and writes.
267 .RE
268 .P
269 For mixed I/O, the default split is 50/50. For certain types of io the result
270 may still be skewed a bit, since the speed may be different. It is possible to
271 specify a number of IO's to do before getting a new offset, this is done by
272 appending a `:\fI<nr>\fR to the end of the string given. For a random read, it
273 would look like \fBrw=randread:8\fR for passing in an offset modifier with a
274 value of 8. If the postfix is used with a sequential IO pattern, then the value
275 specified will be added to the generated offset for each IO. For instance,
276 using \fBrw=write:4k\fR will skip 4k for every write. It turns sequential IO
277 into sequential IO with holes. See the \fBrw_sequencer\fR option.
278 .RE
279 .TP
280 .BI rw_sequencer \fR=\fPstr
281 If an offset modifier is given by appending a number to the \fBrw=<str>\fR line,
282 then this option controls how that number modifies the IO offset being
283 generated. Accepted values are:
284 .RS
285 .RS
286 .TP
287 .B sequential
288 Generate sequential offset
289 .TP
290 .B identical
291 Generate the same offset
292 .RE
293 .P
294 \fBsequential\fR is only useful for random IO, where fio would normally
295 generate a new random offset for every IO. If you append eg 8 to randread, you
296 would get a new random offset for every 8 IO's. The result would be a seek for
297 only every 8 IO's, instead of for every IO. Use \fBrw=randread:8\fR to specify
298 that. As sequential IO is already sequential, setting \fBsequential\fR for that
299 would not result in any differences.  \fBidentical\fR behaves in a similar
300 fashion, except it sends the same offset 8 number of times before generating a
301 new offset.
302 .RE
303 .P
304 .TP
305 .BI kb_base \fR=\fPint
306 The base unit for a kilobyte. The defacto base is 2^10, 1024.  Storage
307 manufacturers like to use 10^3 or 1000 as a base ten unit instead, for obvious
308 reasons. Allowed values are 1024 or 1000, with 1024 being the default.
309 .TP
310 .BI unified_rw_reporting \fR=\fPbool
311 Fio normally reports statistics on a per data direction basis, meaning that
312 read, write, and trim are accounted and reported separately. If this option is
313 set, the fio will sum the results and report them as "mixed" instead.
314 .TP
315 .BI randrepeat \fR=\fPbool
316 Seed the random number generator used for random I/O patterns in a predictable
317 way so the pattern is repeatable across runs.  Default: true.
318 .TP
319 .BI allrandrepeat \fR=\fPbool
320 Seed all random number generators in a predictable way so results are
321 repeatable across runs.  Default: false.
322 .TP
323 .BI randseed \fR=\fPint
324 Seed the random number generators based on this seed value, to be able to
325 control what sequence of output is being generated. If not set, the random
326 sequence depends on the \fBrandrepeat\fR setting.
327 .TP
328 .BI use_os_rand \fR=\fPbool
329 Fio can either use the random generator supplied by the OS to generator random
330 offsets, or it can use it's own internal generator (based on Tausworthe).
331 Default is to use the internal generator, which is often of better quality and
332 faster. Default: false.
333 .TP
334 .BI fallocate \fR=\fPstr
335 Whether pre-allocation is performed when laying down files. Accepted values
336 are:
337 .RS
338 .RS
339 .TP
340 .B none
341 Do not pre-allocate space.
342 .TP
343 .B posix
344 Pre-allocate via \fBposix_fallocate\fR\|(3).
345 .TP
346 .B keep
347 Pre-allocate via \fBfallocate\fR\|(2) with FALLOC_FL_KEEP_SIZE set.
348 .TP
349 .B 0
350 Backward-compatible alias for 'none'.
351 .TP
352 .B 1
353 Backward-compatible alias for 'posix'.
354 .RE
355 .P
356 May not be available on all supported platforms. 'keep' is only
357 available on Linux. If using ZFS on Solaris this must be set to 'none'
358 because ZFS doesn't support it. Default: 'posix'.
359 .RE
360 .TP
361 .BI fadvise_hint \fR=\fPbool
362 Use of \fBposix_fadvise\fR\|(2) to advise the kernel what I/O patterns
363 are likely to be issued. Default: true.
364 .TP
365 .BI size \fR=\fPint
366 Total size of I/O for this job.  \fBfio\fR will run until this many bytes have
367 been transferred, unless limited by other options (\fBruntime\fR, for instance).
368 Unless \fBnrfiles\fR and \fBfilesize\fR options are given, this amount will be
369 divided between the available files for the job. If not set, fio will use the
370 full size of the given files or devices. If the files do not exist, size
371 must be given. It is also possible to give size as a percentage between 1 and
372 100. If size=20% is given, fio will use 20% of the full size of the given files
373 or devices.
374 .TP
375 .BI fill_device \fR=\fPbool "\fR,\fB fill_fs" \fR=\fPbool
376 Sets size to something really large and waits for ENOSPC (no space left on
377 device) as the terminating condition. Only makes sense with sequential write.
378 For a read workload, the mount point will be filled first then IO started on
379 the result. This option doesn't make sense if operating on a raw device node,
380 since the size of that is already known by the file system. Additionally,
381 writing beyond end-of-device will not return ENOSPC there.
382 .TP
383 .BI filesize \fR=\fPirange
384 Individual file sizes. May be a range, in which case \fBfio\fR will select sizes
385 for files at random within the given range, limited to \fBsize\fR in total (if
386 that is given). If \fBfilesize\fR is not specified, each created file is the
387 same size.
388 .TP
389 .BI blocksize \fR=\fPint[,int] "\fR,\fB bs" \fR=\fPint[,int]
390 Block size for I/O units.  Default: 4k.  Values for reads, writes, and trims
391 can be specified separately in the format \fIread\fR,\fIwrite\fR,\fItrim\fR
392 either of which may be empty to leave that value at its default. If a trailing
393 comma isn't given, the remainder will inherit the last value set.
394 .TP
395 .BI blocksize_range \fR=\fPirange[,irange] "\fR,\fB bsrange" \fR=\fPirange[,irange]
396 Specify a range of I/O block sizes.  The issued I/O unit will always be a
397 multiple of the minimum size, unless \fBblocksize_unaligned\fR is set.  Applies
398 to both reads and writes if only one range is given, but can be specified
399 separately with a comma separating the values. Example: bsrange=1k-4k,2k-8k.
400 Also (see \fBblocksize\fR).
401 .TP
402 .BI bssplit \fR=\fPstr
403 This option allows even finer grained control of the block sizes issued,
404 not just even splits between them. With this option, you can weight various
405 block sizes for exact control of the issued IO for a job that has mixed
406 block sizes. The format of the option is bssplit=blocksize/percentage,
407 optionally adding as many definitions as needed separated by a colon.
408 Example: bssplit=4k/10:64k/50:32k/40 would issue 50% 64k blocks, 10% 4k
409 blocks and 40% 32k blocks. \fBbssplit\fR also supports giving separate
410 splits to reads and writes. The format is identical to what the
411 \fBbs\fR option accepts, the read and write parts are separated with a
412 comma.
413 .TP
414 .B blocksize_unaligned\fR,\fP bs_unaligned
415 If set, any size in \fBblocksize_range\fR may be used.  This typically won't
416 work with direct I/O, as that normally requires sector alignment.
417 .TP
418 .BI blockalign \fR=\fPint[,int] "\fR,\fB ba" \fR=\fPint[,int]
419 At what boundary to align random IO offsets. Defaults to the same as 'blocksize'
420 the minimum blocksize given.  Minimum alignment is typically 512b
421 for using direct IO, though it usually depends on the hardware block size.
422 This option is mutually exclusive with using a random map for files, so it
423 will turn off that option.
424 .TP
425 .BI bs_is_seq_rand \fR=\fPbool
426 If this option is set, fio will use the normal read,write blocksize settings as
427 sequential,random instead. Any random read or write will use the WRITE
428 blocksize settings, and any sequential read or write will use the READ
429 blocksize setting.
430 .TP
431 .B zero_buffers
432 Initialise buffers with all zeros. Default: fill buffers with random data.
433 The resulting IO buffers will not be completely zeroed, unless
434 \fPscramble_buffers\fR is also turned off.
435 .TP
436 .B refill_buffers
437 If this option is given, fio will refill the IO buffers on every submit. The
438 default is to only fill it at init time and reuse that data. Only makes sense
439 if zero_buffers isn't specified, naturally. If data verification is enabled,
440 refill_buffers is also automatically enabled.
441 .TP
442 .BI scramble_buffers \fR=\fPbool
443 If \fBrefill_buffers\fR is too costly and the target is using data
444 deduplication, then setting this option will slightly modify the IO buffer
445 contents to defeat normal de-dupe attempts. This is not enough to defeat
446 more clever block compression attempts, but it will stop naive dedupe
447 of blocks. Default: true.
448 .TP
449 .BI buffer_compress_percentage \fR=\fPint
450 If this is set, then fio will attempt to provide IO buffer content (on WRITEs)
451 that compress to the specified level. Fio does this by providing a mix of
452 random data and zeroes. Note that this is per block size unit, for file/disk
453 wide compression level that matches this setting, you'll also want to set
454 \fBrefill_buffers\fR.
455 .TP
456 .BI buffer_compress_chunk \fR=\fPint
457 See \fBbuffer_compress_percentage\fR. This setting allows fio to manage how
458 big the ranges of random data and zeroed data is. Without this set, fio will
459 provide \fBbuffer_compress_percentage\fR of blocksize random data, followed by
460 the remaining zeroed. With this set to some chunk size smaller than the block
461 size, fio can alternate random and zeroed data throughout the IO buffer.
462 .TP
463 .BI buffer_pattern \fR=\fPstr
464 If set, fio will fill the io buffers with this pattern. If not set, the contents
465 of io buffers is defined by the other options related to buffer contents. The
466 setting can be any pattern of bytes, and can be prefixed with 0x for hex
467 values.
468 .TP
469 .BI nrfiles \fR=\fPint
470 Number of files to use for this job.  Default: 1.
471 .TP
472 .BI openfiles \fR=\fPint
473 Number of files to keep open at the same time.  Default: \fBnrfiles\fR.
474 .TP
475 .BI file_service_type \fR=\fPstr
476 Defines how files to service are selected.  The following types are defined:
477 .RS
478 .RS
479 .TP
480 .B random
481 Choose a file at random.
482 .TP
483 .B roundrobin
484 Round robin over open files (default).
485 .TP
486 .B sequential
487 Do each file in the set sequentially.
488 .RE
489 .P
490 The number of I/Os to issue before switching a new file can be specified by
491 appending `:\fIint\fR' to the service type.
492 .RE
493 .TP
494 .BI ioengine \fR=\fPstr
495 Defines how the job issues I/O.  The following types are defined:
496 .RS
497 .RS
498 .TP
499 .B sync
500 Basic \fBread\fR\|(2) or \fBwrite\fR\|(2) I/O.  \fBfseek\fR\|(2) is used to
501 position the I/O location.
502 .TP
503 .B psync
504 Basic \fBpread\fR\|(2) or \fBpwrite\fR\|(2) I/O.
505 .TP
506 .B vsync
507 Basic \fBreadv\fR\|(2) or \fBwritev\fR\|(2) I/O. Will emulate queuing by
508 coalescing adjacent IOs into a single submission.
509 .TP
510 .B pvsync
511 Basic \fBpreadv\fR\|(2) or \fBpwritev\fR\|(2) I/O.
512 .TP
513 .B libaio
514 Linux native asynchronous I/O. This ioengine defines engine specific options.
515 .TP
516 .B posixaio
517 POSIX asynchronous I/O using \fBaio_read\fR\|(3) and \fBaio_write\fR\|(3).
518 .TP
519 .B solarisaio
520 Solaris native asynchronous I/O.
521 .TP
522 .B windowsaio
523 Windows native asynchronous I/O.
524 .TP
525 .B mmap
526 File is memory mapped with \fBmmap\fR\|(2) and data copied using
527 \fBmemcpy\fR\|(3).
528 .TP
529 .B splice
530 \fBsplice\fR\|(2) is used to transfer the data and \fBvmsplice\fR\|(2) to
531 transfer data from user-space to the kernel.
532 .TP
533 .B syslet-rw
534 Use the syslet system calls to make regular read/write asynchronous.
535 .TP
536 .B sg
537 SCSI generic sg v3 I/O. May be either synchronous using the SG_IO ioctl, or if
538 the target is an sg character device, we use \fBread\fR\|(2) and
539 \fBwrite\fR\|(2) for asynchronous I/O.
540 .TP
541 .B null
542 Doesn't transfer any data, just pretends to.  Mainly used to exercise \fBfio\fR
543 itself and for debugging and testing purposes.
544 .TP
545 .B net
546 Transfer over the network.  The protocol to be used can be defined with the
547 \fBprotocol\fR parameter.  Depending on the protocol, \fBfilename\fR,
548 \fBhostname\fR, \fBport\fR, or \fBlisten\fR must be specified.
549 This ioengine defines engine specific options.
550 .TP
551 .B netsplice
552 Like \fBnet\fR, but uses \fBsplice\fR\|(2) and \fBvmsplice\fR\|(2) to map data
553 and send/receive. This ioengine defines engine specific options.
554 .TP
555 .B cpuio
556 Doesn't transfer any data, but burns CPU cycles according to \fBcpuload\fR and
557 \fBcpucycles\fR parameters.
558 .TP
559 .B guasi
560 The GUASI I/O engine is the Generic Userspace Asynchronous Syscall Interface
561 approach to asynchronous I/O.
562 .br
563 See <http://www.xmailserver.org/guasi\-lib.html>.
564 .TP
565 .B rdma
566 The RDMA I/O engine supports both RDMA memory semantics (RDMA_WRITE/RDMA_READ)
567 and channel semantics (Send/Recv) for the InfiniBand, RoCE and iWARP protocols.
568 .TP
569 .B external
570 Loads an external I/O engine object file.  Append the engine filename as
571 `:\fIenginepath\fR'.
572 .TP
573 .B falloc
574    IO engine that does regular linux native fallocate call to simulate data
575 transfer as fio ioengine
576 .br
577   DDIR_READ  does fallocate(,mode = FALLOC_FL_KEEP_SIZE,)
578 .br
579   DIR_WRITE does fallocate(,mode = 0)
580 .br
582 .TP
583 .B e4defrag
584 IO engine that does regular EXT4_IOC_MOVE_EXT ioctls to simulate defragment activity
585 request to DDIR_WRITE event
586 .TP
587 .B rbd
588 IO engine supporting direct access to Ceph Rados Block Devices (RBD) via librbd 
589 without the need to use the kernel rbd driver. This ioengine defines engine specific 
590 options.
591 .RE
592 .P
593 .RE
594 .TP
595 .BI iodepth \fR=\fPint
596 Number of I/O units to keep in flight against the file. Note that increasing
597 iodepth beyond 1 will not affect synchronous ioengines (except for small
598 degress when verify_async is in use). Even async engines my impose OS
599 restrictions causing the desired depth not to be achieved.  This may happen on
600 Linux when using libaio and not setting \fBdirect\fR=1, since buffered IO is
601 not async on that OS. Keep an eye on the IO depth distribution in the
602 fio output to verify that the achieved depth is as expected. Default: 1.
603 .TP
604 .BI iodepth_batch \fR=\fPint
605 Number of I/Os to submit at once.  Default: \fBiodepth\fR.
606 .TP
607 .BI iodepth_batch_complete \fR=\fPint
608 This defines how many pieces of IO to retrieve at once. It defaults to 1 which
609  means that we'll ask for a minimum of 1 IO in the retrieval process from the
610 kernel. The IO retrieval will go on until we hit the limit set by
611 \fBiodepth_low\fR. If this variable is set to 0, then fio will always check for
612 completed events before queuing more IO. This helps reduce IO latency, at the
613 cost of more retrieval system calls.
614 .TP
615 .BI iodepth_low \fR=\fPint
616 Low watermark indicating when to start filling the queue again.  Default:
617 \fBiodepth\fR. 
618 .TP
619 .BI direct \fR=\fPbool
620 If true, use non-buffered I/O (usually O_DIRECT).  Default: false.
621 .TP
622 .BI atomic \fR=\fPbool
623 If value is true, attempt to use atomic direct IO. Atomic writes are guaranteed
624 to be stable once acknowledged by the operating system. Only Linux supports
625 O_ATOMIC right now.
626 .TP
627 .BI buffered \fR=\fPbool
628 If true, use buffered I/O.  This is the opposite of the \fBdirect\fR parameter.
629 Default: true.
630 .TP
631 .BI offset \fR=\fPint
632 Offset in the file to start I/O. Data before the offset will not be touched.
633 .TP
634 .BI offset_increment \fR=\fPint
635 If this is provided, then the real offset becomes the
636 offset + offset_increment * thread_number, where the thread number is a counter
637 that starts at 0 and is incremented for each job. This option is useful if
638 there are several jobs which are intended to operate on a file in parallel in
639 disjoint segments, with even spacing between the starting points.
640 .TP
641 .BI number_ios \fR=\fPint
642 Fio will normally perform IOs until it has exhausted the size of the region
643 set by \fBsize\fR, or if it exhaust the allocated time (or hits an error
644 condition). With this setting, the range/size can be set independently of
645 the number of IOs to perform. When fio reaches this number, it will exit
646 normally and report status.
647 .TP
648 .BI fsync \fR=\fPint
649 How many I/Os to perform before issuing an \fBfsync\fR\|(2) of dirty data.  If
650 0, don't sync.  Default: 0.
651 .TP
652 .BI fdatasync \fR=\fPint
653 Like \fBfsync\fR, but uses \fBfdatasync\fR\|(2) instead to only sync the
654 data parts of the file. Default: 0.
655 .TP
656 .BI write_barrier \fR=\fPint
657 Make every Nth write a barrier write.
658 .TP
659 .BI sync_file_range \fR=\fPstr:int
660 Use \fBsync_file_range\fR\|(2) for every \fRval\fP number of write operations. Fio will
661 track range of writes that have happened since the last \fBsync_file_range\fR\|(2) call.
662 \fRstr\fP can currently be one or more of:
663 .RS
664 .TP
665 .B wait_before
667 .TP
668 .B write
670 .TP
671 .B wait_after
673 .TP
674 .RE
675 .P
676 So if you do sync_file_range=wait_before,write:8, fio would use
678 Also see the \fBsync_file_range\fR\|(2) man page.  This option is Linux specific.
679 .TP
680 .BI overwrite \fR=\fPbool
681 If writing, setup the file first and do overwrites.  Default: false.
682 .TP
683 .BI end_fsync \fR=\fPbool
684 Sync file contents when a write stage has completed.  Default: false.
685 .TP
686 .BI fsync_on_close \fR=\fPbool
687 If true, sync file contents on close.  This differs from \fBend_fsync\fR in that
688 it will happen on every close, not just at the end of the job.  Default: false.
689 .TP
690 .BI rwmixread \fR=\fPint
691 Percentage of a mixed workload that should be reads. Default: 50.
692 .TP
693 .BI rwmixwrite \fR=\fPint
694 Percentage of a mixed workload that should be writes.  If \fBrwmixread\fR and
695 \fBrwmixwrite\fR are given and do not sum to 100%, the latter of the two
696 overrides the first. This may interfere with a given rate setting, if fio is
697 asked to limit reads or writes to a certain rate. If that is the case, then
698 the distribution may be skewed. Default: 50.
699 .TP
700 .BI random_distribution \fR=\fPstr:float
701 By default, fio will use a completely uniform random distribution when asked
702 to perform random IO. Sometimes it is useful to skew the distribution in
703 specific ways, ensuring that some parts of the data is more hot than others.
704 Fio includes the following distribution models:
705 .RS
706 .TP
707 .B random
708 Uniform random distribution
709 .TP
710 .B zipf
711 Zipf distribution
712 .TP
713 .B pareto
714 Pareto distribution
715 .TP
716 .RE
717 .P
718 When using a zipf or pareto distribution, an input value is also needed to
719 define the access pattern. For zipf, this is the zipf theta. For pareto,
720 it's the pareto power. Fio includes a test program, genzipf, that can be
721 used visualize what the given input values will yield in terms of hit rates.
722 If you wanted to use zipf with a theta of 1.2, you would use
723 random_distribution=zipf:1.2 as the option. If a non-uniform model is used,
724 fio will disable use of the random map.
725 .TP
726 .BI percentage_random \fR=\fPint
727 For a random workload, set how big a percentage should be random. This defaults
728 to 100%, in which case the workload is fully random. It can be set from
729 anywhere from 0 to 100.  Setting it to 0 would make the workload fully
730 sequential. It is possible to set different values for reads, writes, and
731 trim. To do so, simply use a comma separated list. See \fBblocksize\fR.
732 .TP
733 .B norandommap
734 Normally \fBfio\fR will cover every block of the file when doing random I/O. If
735 this parameter is given, a new offset will be chosen without looking at past
736 I/O history.  This parameter is mutually exclusive with \fBverify\fR.
737 .TP
738 .BI softrandommap \fR=\fPbool
739 See \fBnorandommap\fR. If fio runs with the random block map enabled and it
740 fails to allocate the map, if this option is set it will continue without a
741 random block map. As coverage will not be as complete as with random maps, this
742 option is disabled by default.
743 .TP
744 .BI random_generator \fR=\fPstr
745 Fio supports the following engines for generating IO offsets for random IO:
746 .RS
747 .TP
748 .B tausworthe
749 Strong 2^88 cycle random number generator
750 .TP
751 .B lfsr
752 Linear feedback shift register generator
753 .TP
754 .RE
755 .P
756 Tausworthe is a strong random number generator, but it requires tracking on the
757 side if we want to ensure that blocks are only read or written once. LFSR
758 guarantees that we never generate the same offset twice, and it's also less
759 computationally expensive. It's not a true random generator, however, though
760 for IO purposes it's typically good enough. LFSR only works with single block
761 sizes, not with workloads that use multiple block sizes. If used with such a
762 workload, fio may read or write some blocks multiple times.
763 .TP
764 .BI nice \fR=\fPint
765 Run job with given nice value.  See \fBnice\fR\|(2).
766 .TP
767 .BI prio \fR=\fPint
768 Set I/O priority value of this job between 0 (highest) and 7 (lowest).  See
769 \fBionice\fR\|(1).
770 .TP
771 .BI prioclass \fR=\fPint
772 Set I/O priority class.  See \fBionice\fR\|(1).
773 .TP
774 .BI thinktime \fR=\fPint
775 Stall job for given number of microseconds between issuing I/Os.
776 .TP
777 .BI thinktime_spin \fR=\fPint
778 Pretend to spend CPU time for given number of microseconds, sleeping the rest
779 of the time specified by \fBthinktime\fR.  Only valid if \fBthinktime\fR is set.
780 .TP
781 .BI thinktime_blocks \fR=\fPint
782 Only valid if thinktime is set - control how many blocks to issue, before
783 waiting \fBthinktime\fR microseconds. If not set, defaults to 1 which will
784 make fio wait \fBthinktime\fR microseconds after every block. This
785 effectively makes any queue depth setting redundant, since no more than 1 IO
786 will be queued before we have to complete it and do our thinktime. In other
787 words, this setting effectively caps the queue depth if the latter is larger.
788 Default: 1.
789 .TP
790 .BI rate \fR=\fPint
791 Cap bandwidth used by this job. The number is in bytes/sec, the normal postfix
792 rules apply. You can use \fBrate\fR=500k to limit reads and writes to 500k each,
793 or you can specify read and writes separately. Using \fBrate\fR=1m,500k would
794 limit reads to 1MB/sec and writes to 500KB/sec. Capping only reads or writes
795 can be done with \fBrate\fR=,500k or \fBrate\fR=500k,. The former will only
796 limit writes (to 500KB/sec), the latter will only limit reads.
797 .TP
798 .BI ratemin \fR=\fPint
799 Tell \fBfio\fR to do whatever it can to maintain at least the given bandwidth.
800 Failing to meet this requirement will cause the job to exit. The same format
801 as \fBrate\fR is used for read vs write separation.
802 .TP
803 .BI rate_iops \fR=\fPint
804 Cap the bandwidth to this number of IOPS. Basically the same as rate, just
805 specified independently of bandwidth. The same format as \fBrate\fR is used for
806 read vs write separation. If \fBblocksize\fR is a range, the smallest block
807 size is used as the metric.
808 .TP
809 .BI rate_iops_min \fR=\fPint
810 If this rate of I/O is not met, the job will exit. The same format as \fBrate\fR
811 is used for read vs write separation.
812 .TP
813 .BI ratecycle \fR=\fPint
814 Average bandwidth for \fBrate\fR and \fBratemin\fR over this number of
815 milliseconds.  Default: 1000ms.
816 .TP
817 .BI latency_target \fR=\fPint
818 If set, fio will attempt to find the max performance point that the given
819 workload will run at while maintaining a latency below this target. The
820 values is given in microseconds. See \fBlatency_window\fR and
821 \fBlatency_percentile\fR.
822 .TP
823 .BI latency_window \fR=\fPint
824 Used with \fBlatency_target\fR to specify the sample window that the job
825 is run at varying queue depths to test the performance. The value is given
826 in microseconds.
827 .TP
828 .BI latency_percentile \fR=\fPfloat
829 The percentage of IOs that must fall within the criteria specified by
830 \fBlatency_target\fR and \fBlatency_window\fR. If not set, this defaults
831 to 100.0, meaning that all IOs must be equal or below to the value set
832 by \fBlatency_target\fR.
833 .TP
834 .BI max_latency \fR=\fPint
835 If set, fio will exit the job if it exceeds this maximum latency. It will exit
836 with an ETIME error.
837 .TP
838 .BI cpumask \fR=\fPint
839 Set CPU affinity for this job. \fIint\fR is a bitmask of allowed CPUs the job
840 may run on.  See \fBsched_setaffinity\fR\|(2).
841 .TP
842 .BI cpus_allowed \fR=\fPstr
843 Same as \fBcpumask\fR, but allows a comma-delimited list of CPU numbers.
844 .TP
845 .BI cpus_allowed_policy \fR=\fPstr
846 Set the policy of how fio distributes the CPUs specified by \fBcpus_allowed\fR
847 or \fBcpumask\fR. Two policies are supported:
848 .RS
849 .RS
850 .TP
851 .B shared
852 All jobs will share the CPU set specified.
853 .TP
854 .B split
855 Each job will get a unique CPU from the CPU set.
856 .RE
857 .P
858 \fBshared\fR is the default behaviour, if the option isn't specified. If
859 \fBsplit\fR is specified, then fio will assign one cpu per job. If not enough
860 CPUs are given for the jobs listed, then fio will roundrobin the CPUs in
861 the set.
862 .RE
863 .P
864 .TP
865 .BI numa_cpu_nodes \fR=\fPstr
866 Set this job running on specified NUMA nodes' CPUs. The arguments allow
867 comma delimited list of cpu numbers, A-B ranges, or 'all'.
868 .TP
869 .BI numa_mem_policy \fR=\fPstr
870 Set this job's memory policy and corresponding NUMA nodes. Format of
871 the arguments:
872 .RS
873 .TP
874 .B <mode>[:<nodelist>]
875 .TP
876 .B mode
877 is one of the following memory policy:
878 .TP
879 .B default, prefer, bind, interleave, local
880 .TP
881 .RE
882 For \fBdefault\fR and \fBlocal\fR memory policy, no \fBnodelist\fR is
883 needed to be specified. For \fBprefer\fR, only one node is
884 allowed. For \fBbind\fR and \fBinterleave\fR, \fBnodelist\fR allows
885 comma delimited list of numbers, A-B ranges, or 'all'.
886 .TP
887 .BI startdelay \fR=\fPirange
888 Delay start of job for the specified number of seconds. Supports all time
889 suffixes to allow specification of hours, minutes, seconds and
890 milliseconds - seconds are the default if a unit is ommited.
891 Can be given as a range which causes each thread to choose randomly out of the
892 range.
893 .TP
894 .BI runtime \fR=\fPint
895 Terminate processing after the specified number of seconds.
896 .TP
897 .B time_based
898 If given, run for the specified \fBruntime\fR duration even if the files are
899 completely read or written. The same workload will be repeated as many times
900 as \fBruntime\fR allows.
901 .TP
902 .BI ramp_time \fR=\fPint
903 If set, fio will run the specified workload for this amount of time before
904 logging any performance numbers. Useful for letting performance settle before
905 logging results, thus minimizing the runtime required for stable results. Note
906 that the \fBramp_time\fR is considered lead in time for a job, thus it will
907 increase the total runtime if a special timeout or runtime is specified.
908 .TP
909 .BI invalidate \fR=\fPbool
910 Invalidate buffer-cache for the file prior to starting I/O.  Default: true.
911 .TP
912 .BI sync \fR=\fPbool
913 Use synchronous I/O for buffered writes.  For the majority of I/O engines,
914 this means using O_SYNC.  Default: false.
915 .TP
916 .BI iomem \fR=\fPstr "\fR,\fP mem" \fR=\fPstr
917 Allocation method for I/O unit buffer.  Allowed values are:
918 .RS
919 .RS
920 .TP
921 .B malloc
922 Allocate memory with \fBmalloc\fR\|(3).
923 .TP
924 .B shm
925 Use shared memory buffers allocated through \fBshmget\fR\|(2).
926 .TP
927 .B shmhuge
928 Same as \fBshm\fR, but use huge pages as backing.
929 .TP
930 .B mmap
931 Use \fBmmap\fR\|(2) for allocation.  Uses anonymous memory unless a filename
932 is given after the option in the format `:\fIfile\fR'.
933 .TP
934 .B mmaphuge
935 Same as \fBmmap\fR, but use huge files as backing.
936 .RE
937 .P
938 The amount of memory allocated is the maximum allowed \fBblocksize\fR for the
939 job multiplied by \fBiodepth\fR.  For \fBshmhuge\fR or \fBmmaphuge\fR to work,
940 the system must have free huge pages allocated.  \fBmmaphuge\fR also needs to
941 have hugetlbfs mounted, and \fIfile\fR must point there. At least on Linux,
942 huge pages must be manually allocated. See \fB/proc/sys/vm/nr_hugehages\fR
943 and the documentation for that. Normally you just need to echo an appropriate
944 number, eg echoing 8 will ensure that the OS has 8 huge pages ready for
945 use.
946 .RE
947 .TP
948 .BI iomem_align \fR=\fPint "\fR,\fP mem_align" \fR=\fPint
949 This indicates the memory alignment of the IO memory buffers. Note that the
950 given alignment is applied to the first IO unit buffer, if using \fBiodepth\fR
951 the alignment of the following buffers are given by the \fBbs\fR used. In
952 other words, if using a \fBbs\fR that is a multiple of the page sized in the
953 system, all buffers will be aligned to this value. If using a \fBbs\fR that
954 is not page aligned, the alignment of subsequent IO memory buffers is the
955 sum of the \fBiomem_align\fR and \fBbs\fR used.
956 .TP
957 .BI hugepage\-size \fR=\fPint
958 Defines the size of a huge page.  Must be at least equal to the system setting.
959 Should be a multiple of 1MB. Default: 4MB.
960 .TP
961 .B exitall
962 Terminate all jobs when one finishes.  Default: wait for each job to finish.
963 .TP
964 .BI bwavgtime \fR=\fPint
965 Average bandwidth calculations over the given time in milliseconds.  Default:
966 500ms.
967 .TP
968 .BI iopsavgtime \fR=\fPint
969 Average IOPS calculations over the given time in milliseconds.  Default:
970 500ms.
971 .TP
972 .BI create_serialize \fR=\fPbool
973 If true, serialize file creation for the jobs.  Default: true.
974 .TP
975 .BI create_fsync \fR=\fPbool
976 \fBfsync\fR\|(2) data file after creation.  Default: true.
977 .TP
978 .BI create_on_open \fR=\fPbool
979 If true, the files are not created until they are opened for IO by the job.
980 .TP
981 .BI create_only \fR=\fPbool
982 If true, fio will only run the setup phase of the job. If files need to be
983 laid out or updated on disk, only that will be done. The actual job contents
984 are not executed.
985 .TP
986 .BI pre_read \fR=\fPbool
987 If this is given, files will be pre-read into memory before starting the given
988 IO operation. This will also clear the \fR \fBinvalidate\fR flag, since it is
989 pointless to pre-read and then drop the cache. This will only work for IO
990 engines that are seekable, since they allow you to read the same data
991 multiple times. Thus it will not work on eg network or splice IO.
992 .TP
993 .BI unlink \fR=\fPbool
994 Unlink job files when done.  Default: false.
995 .TP
996 .BI loops \fR=\fPint
997 Specifies the number of iterations (runs of the same workload) of this job.
998 Default: 1.
999 .TP
1000 .BI verify_only \fR=\fPbool
1001 Do not perform the specified workload, only verify data still matches previous
1002 invocation of this workload. This option allows one to check data multiple
1003 times at a later date without overwriting it. This option makes sense only for
1004 workloads that write data, and does not support workloads with the
1005 \fBtime_based\fR option set.
1006 .TP
1007 .BI do_verify \fR=\fPbool
1008 Run the verify phase after a write phase.  Only valid if \fBverify\fR is set.
1009 Default: true.
1010 .TP
1011 .BI verify \fR=\fPstr
1012 Method of verifying file contents after each iteration of the job.  Allowed
1013 values are:
1014 .RS
1015 .RS
1016 .TP
1017 .B md5 crc16 crc32 crc32c crc32c-intel crc64 crc7 sha256 sha512 sha1 xxhash
1018 Store appropriate checksum in the header of each block. crc32c-intel is
1019 hardware accelerated SSE4.2 driven, falls back to regular crc32c if
1020 not supported by the system.
1021 .TP
1022 .B meta
1023 Write extra information about each I/O (timestamp, block number, etc.). The
1024 block number is verified. See \fBverify_pattern\fR as well.
1025 .TP
1026 .B null
1027 Pretend to verify.  Used for testing internals.
1028 .RE
1030 This option can be used for repeated burn-in tests of a system to make sure
1031 that the written data is also correctly read back. If the data direction given
1032 is a read or random read, fio will assume that it should verify a previously
1033 written file. If the data direction includes any form of write, the verify will
1034 be of the newly written data.
1035 .RE
1036 .TP
1037 .BI verifysort \fR=\fPbool
1038 If true, written verify blocks are sorted if \fBfio\fR deems it to be faster to
1039 read them back in a sorted manner.  Default: true.
1040 .TP
1041 .BI verifysort_nr \fR=\fPint
1042 Pre-load and sort verify blocks for a read workload.
1043 .TP
1044 .BI verify_offset \fR=\fPint
1045 Swap the verification header with data somewhere else in the block before
1046 writing.  It is swapped back before verifying.
1047 .TP
1048 .BI verify_interval \fR=\fPint
1049 Write the verification header for this number of bytes, which should divide
1050 \fBblocksize\fR.  Default: \fBblocksize\fR.
1051 .TP
1052 .BI verify_pattern \fR=\fPstr
1053 If set, fio will fill the io buffers with this pattern. Fio defaults to filling
1054 with totally random bytes, but sometimes it's interesting to fill with a known
1055 pattern for io verification purposes. Depending on the width of the pattern,
1056 fio will fill 1/2/3/4 bytes of the buffer at the time(it can be either a
1057 decimal or a hex number). The verify_pattern if larger than a 32-bit quantity
1058 has to be a hex number that starts with either "0x" or "0X". Use with
1059 \fBverify\fP=meta.
1060 .TP
1061 .BI verify_fatal \fR=\fPbool
1062 If true, exit the job on the first observed verification failure.  Default:
1063 false.
1064 .TP
1065 .BI verify_dump \fR=\fPbool
1066 If set, dump the contents of both the original data block and the data block we
1067 read off disk to files. This allows later analysis to inspect just what kind of
1068 data corruption occurred. Off by default.
1069 .TP
1070 .BI verify_async \fR=\fPint
1071 Fio will normally verify IO inline from the submitting thread. This option
1072 takes an integer describing how many async offload threads to create for IO
1073 verification instead, causing fio to offload the duty of verifying IO contents
1074 to one or more separate threads.  If using this offload option, even sync IO
1075 engines can benefit from using an \fBiodepth\fR setting higher than 1, as it
1076 allows them to have IO in flight while verifies are running.
1077 .TP
1078 .BI verify_async_cpus \fR=\fPstr
1079 Tell fio to set the given CPU affinity on the async IO verification threads.
1080 See \fBcpus_allowed\fP for the format used.
1081 .TP
1082 .BI verify_backlog \fR=\fPint
1083 Fio will normally verify the written contents of a job that utilizes verify
1084 once that job has completed. In other words, everything is written then
1085 everything is read back and verified. You may want to verify continually
1086 instead for a variety of reasons. Fio stores the meta data associated with an
1087 IO block in memory, so for large verify workloads, quite a bit of memory would
1088 be used up holding this meta data. If this option is enabled, fio will write
1089 only N blocks before verifying these blocks.
1090 .TP
1091 .BI verify_backlog_batch \fR=\fPint
1092 Control how many blocks fio will verify if verify_backlog is set. If not set,
1093 will default to the value of \fBverify_backlog\fR (meaning the entire queue is
1094 read back and verified).  If \fBverify_backlog_batch\fR is less than 
1095 \fBverify_backlog\fR then not all blocks will be verified,  if 
1096 \fBverify_backlog_batch\fR is larger than \fBverify_backlog\fR,  some blocks
1097 will be verified more than once.
1098 .TP
1099 .BI trim_percentage \fR=\fPint
1100 Number of verify blocks to discard/trim.
1101 .TP
1102 .BI trim_verify_zero \fR=\fPbool
1103 Verify that trim/discarded blocks are returned as zeroes.
1104 .TP
1105 .BI trim_backlog \fR=\fPint
1106 Trim after this number of blocks are written.
1107 .TP
1108 .BI trim_backlog_batch \fR=\fPint
1109 Trim this number of IO blocks.
1110 .TP
1111 .BI experimental_verify \fR=\fPbool
1112 Enable experimental verification.
1113 .TP
1114 .B stonewall "\fR,\fP wait_for_previous"
1115 Wait for preceding jobs in the job file to exit before starting this one.
1116 \fBstonewall\fR implies \fBnew_group\fR.
1117 .TP
1118 .B new_group
1119 Start a new reporting group.  If not given, all jobs in a file will be part
1120 of the same reporting group, unless separated by a stonewall.
1121 .TP
1122 .BI numjobs \fR=\fPint
1123 Number of clones (processes/threads performing the same workload) of this job.  
1124 Default: 1.
1125 .TP
1126 .B group_reporting
1127 If set, display per-group reports instead of per-job when \fBnumjobs\fR is
1128 specified.
1129 .TP
1130 .B thread
1131 Use threads created with \fBpthread_create\fR\|(3) instead of processes created
1132 with \fBfork\fR\|(2).
1133 .TP
1134 .BI zonesize \fR=\fPint
1135 Divide file into zones of the specified size in bytes.  See \fBzoneskip\fR.
1136 .TP
1137 .BI zonerange \fR=\fPint
1138 Give size of an IO zone.  See \fBzoneskip\fR.
1139 .TP
1140 .BI zoneskip \fR=\fPint
1141 Skip the specified number of bytes when \fBzonesize\fR bytes of data have been
1142 read.
1143 .TP
1144 .BI write_iolog \fR=\fPstr
1145 Write the issued I/O patterns to the specified file.  Specify a separate file
1146 for each job, otherwise the iologs will be interspersed and the file may be
1147 corrupt.
1148 .TP
1149 .BI read_iolog \fR=\fPstr
1150 Replay the I/O patterns contained in the specified file generated by
1151 \fBwrite_iolog\fR, or may be a \fBblktrace\fR binary file.
1152 .TP
1153 .BI replay_no_stall \fR=\fPint
1154 While replaying I/O patterns using \fBread_iolog\fR the default behavior
1155 attempts to respect timing information between I/Os.  Enabling
1156 \fBreplay_no_stall\fR causes I/Os to be replayed as fast as possible while
1157 still respecting ordering.
1158 .TP
1159 .BI replay_redirect \fR=\fPstr
1160 While replaying I/O patterns using \fBread_iolog\fR the default behavior
1161 is to replay the IOPS onto the major/minor device that each IOP was recorded
1162 from.  Setting \fBreplay_redirect\fR causes all IOPS to be replayed onto the
1163 single specified device regardless of the device it was recorded from.
1164 .TP
1165 .BI write_bw_log \fR=\fPstr
1166 If given, write a bandwidth log of the jobs in this job file. Can be used to
1167 store data of the bandwidth of the jobs in their lifetime. The included
1168 fio_generate_plots script uses gnuplot to turn these text files into nice
1169 graphs. See \fBwrite_lat_log\fR for behaviour of given filename. For this
1170 option, the postfix is _bw.log.
1171 .TP
1172 .BI write_lat_log \fR=\fPstr
1173 Same as \fBwrite_bw_log\fR, but writes I/O completion latencies.  If no
1174 filename is given with this option, the default filename of "jobname_type.log"
1175 is used. Even if the filename is given, fio will still append the type of log.
1176 .TP
1177 .BI write_iops_log \fR=\fPstr
1178 Same as \fBwrite_bw_log\fR, but writes IOPS. If no filename is given with this
1179 option, the default filename of "jobname_type.log" is used. Even if the
1180 filename is given, fio will still append the type of log.
1181 .TP
1182 .BI log_avg_msec \fR=\fPint
1183 By default, fio will log an entry in the iops, latency, or bw log for every
1184 IO that completes. When writing to the disk log, that can quickly grow to a
1185 very large size. Setting this option makes fio average the each log entry
1186 over the specified period of time, reducing the resolution of the log.
1187 Defaults to 0.
1188 .TP
1189 .BI disable_lat \fR=\fPbool
1190 Disable measurements of total latency numbers. Useful only for cutting
1191 back the number of calls to \fBgettimeofday\fR\|(2), as that does impact performance at
1192 really high IOPS rates.  Note that to really get rid of a large amount of these
1193 calls, this option must be used with disable_slat and disable_bw as well.
1194 .TP
1195 .BI disable_clat \fR=\fPbool
1196 Disable measurements of completion latency numbers. See \fBdisable_lat\fR.
1197 .TP
1198 .BI disable_slat \fR=\fPbool
1199 Disable measurements of submission latency numbers. See \fBdisable_lat\fR.
1200 .TP
1201 .BI disable_bw_measurement \fR=\fPbool
1202 Disable measurements of throughput/bandwidth numbers. See \fBdisable_lat\fR.
1203 .TP
1204 .BI lockmem \fR=\fPint
1205 Pin the specified amount of memory with \fBmlock\fR\|(2).  Can be used to
1206 simulate a smaller amount of memory. The amount specified is per worker.
1207 .TP
1208 .BI exec_prerun \fR=\fPstr
1209 Before running the job, execute the specified command with \fBsystem\fR\|(3).
1210 .RS
1211 Output is redirected in a file called \fBjobname.prerun.txt\fR
1212 .RE
1213 .TP
1214 .BI exec_postrun \fR=\fPstr
1215 Same as \fBexec_prerun\fR, but the command is executed after the job completes.
1216 .RS
1217 Output is redirected in a file called \fBjobname.postrun.txt\fR
1218 .RE
1219 .TP
1220 .BI ioscheduler \fR=\fPstr
1221 Attempt to switch the device hosting the file to the specified I/O scheduler.
1222 .TP
1223 .BI cpuload \fR=\fPint
1224 If the job is a CPU cycle-eater, attempt to use the specified percentage of
1225 CPU cycles.
1226 .TP
1227 .BI cpuchunks \fR=\fPint
1228 If the job is a CPU cycle-eater, split the load into cycles of the
1229 given time in milliseconds.
1230 .TP
1231 .BI disk_util \fR=\fPbool
1232 Generate disk utilization statistics if the platform supports it. Default: true.
1233 .TP
1234 .BI clocksource \fR=\fPstr
1235 Use the given clocksource as the base of timing. The supported options are:
1236 .RS
1237 .TP
1238 .B gettimeofday
1239 \fBgettimeofday\fR\|(2)
1240 .TP
1241 .B clock_gettime
1242 \fBclock_gettime\fR\|(2)
1243 .TP
1244 .B cpu
1245 Internal CPU clock source
1246 .TP
1247 .RE
1248 .P
1249 \fBcpu\fR is the preferred clocksource if it is reliable, as it is very fast
1250 (and fio is heavy on time calls). Fio will automatically use this clocksource
1251 if it's supported and considered reliable on the system it is running on,
1252 unless another clocksource is specifically set. For x86/x86-64 CPUs, this
1253 means supporting TSC Invariant.
1254 .TP
1255 .BI gtod_reduce \fR=\fPbool
1256 Enable all of the \fBgettimeofday\fR\|(2) reducing options (disable_clat, disable_slat,
1257 disable_bw) plus reduce precision of the timeout somewhat to really shrink the
1258 \fBgettimeofday\fR\|(2) call count. With this option enabled, we only do about 0.4% of
1259 the gtod() calls we would have done if all time keeping was enabled.
1260 .TP
1261 .BI gtod_cpu \fR=\fPint
1262 Sometimes it's cheaper to dedicate a single thread of execution to just getting
1263 the current time. Fio (and databases, for instance) are very intensive on
1264 \fBgettimeofday\fR\|(2) calls. With this option, you can set one CPU aside for doing
1265 nothing but logging current time to a shared memory location. Then the other
1266 threads/processes that run IO workloads need only copy that segment, instead of
1267 entering the kernel with a \fBgettimeofday\fR\|(2) call. The CPU set aside for doing
1268 these time calls will be excluded from other uses. Fio will manually clear it
1269 from the CPU mask of other jobs.
1270 .TP
1271 .BI ignore_error \fR=\fPstr
1272 Sometimes you want to ignore some errors during test in that case you can specify
1273 error list for each error type.
1274 .br
1276 .br
1277 errors for given error type is separated with ':'.
1278 Error may be symbol ('ENOSPC', 'ENOMEM') or an integer.
1279 .br
1280 Example: ignore_error=EAGAIN,ENOSPC:122 .
1281 .br     
1282 This option will ignore EAGAIN from READ, and ENOSPC and 122(EDQUOT) from WRITE. 
1283 .TP
1284 .BI error_dump \fR=\fPbool
1285 If set dump every error even if it is non fatal, true by default. If disabled
1286 only fatal error will be dumped
1287 .TP
1288 .BI profile \fR=\fPstr
1289 Select a specific builtin performance test.
1290 .TP
1291 .BI cgroup \fR=\fPstr
1292 Add job to this control group. If it doesn't exist, it will be created.
1293 The system must have a mounted cgroup blkio mount point for this to work. If
1294 your system doesn't have it mounted, you can do so with:
1296 # mount \-t cgroup \-o blkio none /cgroup
1297 .TP
1298 .BI cgroup_weight \fR=\fPint
1299 Set the weight of the cgroup to this value. See the documentation that comes
1300 with the kernel, allowed values are in the range of 100..1000.
1301 .TP
1302 .BI cgroup_nodelete \fR=\fPbool
1303 Normally fio will delete the cgroups it has created after the job completion.
1304 To override this behavior and to leave cgroups around after the job completion,
1305 set cgroup_nodelete=1. This can be useful if one wants to inspect various
1306 cgroup files after job completion. Default: false
1307 .TP
1308 .BI uid \fR=\fPint
1309 Instead of running as the invoking user, set the user ID to this value before
1310 the thread/process does any work.
1311 .TP
1312 .BI gid \fR=\fPint
1313 Set group ID, see \fBuid\fR.
1314 .TP
1315 .BI unit_base \fR=\fPint
1316 Base unit for reporting.  Allowed values are:
1317 .RS
1318 .TP
1319 .B 0
1320 Use auto-detection (default).
1321 .TP
1322 .B 8
1323 Byte based.
1324 .TP
1325 .B 1
1326 Bit based.
1327 .RE
1328 .P
1329 .TP
1330 .BI flow_id \fR=\fPint
1331 The ID of the flow. If not specified, it defaults to being a global flow. See
1332 \fBflow\fR.
1333 .TP
1334 .BI flow \fR=\fPint
1335 Weight in token-based flow control. If this value is used, then there is a
1336 \fBflow counter\fR which is used to regulate the proportion of activity between
1337 two or more jobs. fio attempts to keep this flow counter near zero. The
1338 \fBflow\fR parameter stands for how much should be added or subtracted to the
1339 flow counter on each iteration of the main I/O loop. That is, if one job has
1340 \fBflow=8\fR and another job has \fBflow=-1\fR, then there will be a roughly
1341 1:8 ratio in how much one runs vs the other.
1342 .TP
1343 .BI flow_watermark \fR=\fPint
1344 The maximum value that the absolute value of the flow counter is allowed to
1345 reach before the job must wait for a lower value of the counter.
1346 .TP
1347 .BI flow_sleep \fR=\fPint
1348 The period of time, in microseconds, to wait after the flow watermark has been
1349 exceeded before retrying operations
1350 .TP
1351 .BI clat_percentiles \fR=\fPbool
1352 Enable the reporting of percentiles of completion latencies.
1353 .TP
1354 .BI percentile_list \fR=\fPfloat_list
1355 Overwrite the default list of percentiles for completion
1356 latencies. Each number is a floating number in the range (0,100], and
1357 the maximum length of the list is 20. Use ':' to separate the
1358 numbers. For example, \-\-percentile_list=99.5:99.9 will cause fio to
1359 report the values of completion latency below which 99.5% and 99.9% of
1360 the observed latencies fell, respectively.
1361 .SS "Ioengine Parameters List"
1362 Some parameters are only valid when a specific ioengine is in use. These are
1363 used identically to normal parameters, with the caveat that when used on the
1364 command line, the must come after the ioengine that defines them is selected.
1365 .TP
1366 .BI (cpu)cpuload \fR=\fPint
1367 Attempt to use the specified percentage of CPU cycles.
1368 .TP
1369 .BI (cpu)cpuchunks \fR=\fPint
1370 Split the load into cycles of the given time. In microseconds.
1371 .TP
1372 .BI (libaio)userspace_reap
1373 Normally, with the libaio engine in use, fio will use
1374 the io_getevents system call to reap newly returned events.
1375 With this flag turned on, the AIO ring will be read directly
1376 from user-space to reap events. The reaping mode is only
1377 enabled when polling for a minimum of 0 events (eg when
1378 iodepth_batch_complete=0).
1379 .TP
1380 .BI (net,netsplice)hostname \fR=\fPstr
1381 The host name or IP address to use for TCP or UDP based IO.
1382 If the job is a TCP listener or UDP reader, the hostname is not
1383 used and must be omitted unless it is a valid UDP multicast address.
1384 .TP
1385 .BI (net,netsplice)port \fR=\fPint
1386 The TCP or UDP port to bind to or connect to.
1387 .TP
1388 .BI (net,netsplice)interface \fR=\fPstr
1389 The IP address of the network interface used to send or receive UDP multicast
1390 packets.
1391 .TP
1392 .BI (net,netsplice)ttl \fR=\fPint
1393 Time-to-live value for outgoing UDP multicast packets. Default: 1
1394 .TP
1395 .BI (net,netsplice)nodelay \fR=\fPbool
1396 Set TCP_NODELAY on TCP connections.
1397 .TP
1398 .BI (net,netsplice)protocol \fR=\fPstr "\fR,\fP proto" \fR=\fPstr
1399 The network protocol to use. Accepted values are:
1400 .RS
1401 .RS
1402 .TP
1403 .B tcp
1404 Transmission control protocol
1405 .TP
1406 .B tcpv6
1407 Transmission control protocol V6
1408 .TP
1409 .B udp
1410 User datagram protocol
1411 .TP
1412 .B udpv6
1413 User datagram protocol V6
1414 .TP
1415 .B unix
1416 UNIX domain socket
1417 .RE
1418 .P
1419 When the protocol is TCP or UDP, the port must also be given,
1420 as well as the hostname if the job is a TCP listener or UDP
1421 reader. For unix sockets, the normal filename option should be
1422 used and the port is invalid.
1423 .RE
1424 .TP
1425 .BI (net,netsplice)listen
1426 For TCP network connections, tell fio to listen for incoming
1427 connections rather than initiating an outgoing connection. The
1428 hostname must be omitted if this option is used.
1429 .TP
1430 .BI (net, pingpong) \fR=\fPbool
1431 Normally a network writer will just continue writing data, and a network reader
1432 will just consume packages. If pingpong=1 is set, a writer will send its normal
1433 payload to the reader, then wait for the reader to send the same payload back.
1434 This allows fio to measure network latencies. The submission and completion
1435 latencies then measure local time spent sending or receiving, and the
1436 completion latency measures how long it took for the other end to receive and
1437 send back. For UDP multicast traffic pingpong=1 should only be set for a single
1438 reader when multiple readers are listening to the same address.
1439 .TP
1440 .BI (e4defrag,donorname) \fR=\fPstr
1441 File will be used as a block donor (swap extents between files)
1442 .TP
1443 .BI (e4defrag,inplace) \fR=\fPint
1444 Configure donor file block allocation strategy          
1445 .RS
1446 .BI 0(default) :
1447 Preallocate donor's file on init
1448 .TP
1449 .BI 1:
1450 allocate space immediately inside defragment event, and free right after event
1451 .RE
1452 .TP
1453 .BI (rbd)rbdname \fR=\fPstr
1454 Specifies the name of the RBD.
1455 .TP
1456 .BI (rbd)pool \fR=\fPstr
1457 Specifies the name of the Ceph pool containing the RBD.
1458 .TP
1459 .BI (rbd)clientname \fR=\fPstr
1460 Specifies the username (without the 'client.' prefix) used to access the Ceph cluster.
1462 While running, \fBfio\fR will display the status of the created jobs.  For
1463 example:
1464 .RS
1465 .P
1466 Threads: 1: [_r] [24.8% done] [ 13509/  8334 kb/s] [eta 00h:01m:31s]
1467 .RE
1468 .P
1469 The characters in the first set of brackets denote the current status of each
1470 threads.  The possible values are:
1471 .P
1472 .PD 0
1473 .RS
1474 .TP
1475 .B P
1476 Setup but not started.
1477 .TP
1478 .B C
1479 Thread created.
1480 .TP
1481 .B I
1482 Initialized, waiting.
1483 .TP
1484 .B R
1485 Running, doing sequential reads.
1486 .TP
1487 .B r
1488 Running, doing random reads.
1489 .TP
1490 .B W
1491 Running, doing sequential writes.
1492 .TP
1493 .B w
1494 Running, doing random writes.
1495 .TP
1496 .B M
1497 Running, doing mixed sequential reads/writes.
1498 .TP
1499 .B m
1500 Running, doing mixed random reads/writes.
1501 .TP
1502 .B F
1503 Running, currently waiting for \fBfsync\fR\|(2).
1504 .TP
1505 .B V
1506 Running, verifying written data.
1507 .TP
1508 .B E
1509 Exited, not reaped by main thread.
1510 .TP
1511 .B \-
1512 Exited, thread reaped.
1513 .RE
1514 .PD
1515 .P
1516 The second set of brackets shows the estimated completion percentage of
1517 the current group.  The third set shows the read and write I/O rate,
1518 respectively. Finally, the estimated run time of the job is displayed.
1519 .P
1520 When \fBfio\fR completes (or is interrupted by Ctrl-C), it will show data
1521 for each thread, each group of threads, and each disk, in that order.
1522 .P
1523 Per-thread statistics first show the threads client number, group-id, and
1524 error code.  The remaining figures are as follows:
1525 .RS
1526 .TP
1527 .B io
1528 Number of megabytes of I/O performed.
1529 .TP
1530 .B bw
1531 Average data rate (bandwidth).
1532 .TP
1533 .B runt
1534 Threads run time.
1535 .TP
1536 .B slat
1537 Submission latency minimum, maximum, average and standard deviation. This is
1538 the time it took to submit the I/O.
1539 .TP
1540 .B clat
1541 Completion latency minimum, maximum, average and standard deviation.  This
1542 is the time between submission and completion.
1543 .TP
1544 .B bw
1545 Bandwidth minimum, maximum, percentage of aggregate bandwidth received, average
1546 and standard deviation.
1547 .TP
1548 .B cpu
1549 CPU usage statistics. Includes user and system time, number of context switches
1550 this thread went through and number of major and minor page faults.
1551 .TP
1552 .B IO depths
1553 Distribution of I/O depths.  Each depth includes everything less than (or equal)
1554 to it, but greater than the previous depth.
1555 .TP
1556 .B IO issued
1557 Number of read/write requests issued, and number of short read/write requests.
1558 .TP
1559 .B IO latencies
1560 Distribution of I/O completion latencies.  The numbers follow the same pattern
1561 as \fBIO depths\fR.
1562 .RE
1563 .P
1564 The group statistics show:
1565 .PD 0
1566 .RS
1567 .TP
1568 .B io
1569 Number of megabytes I/O performed.
1570 .TP
1571 .B aggrb
1572 Aggregate bandwidth of threads in the group.
1573 .TP
1574 .B minb
1575 Minimum average bandwidth a thread saw.
1576 .TP
1577 .B maxb
1578 Maximum average bandwidth a thread saw.
1579 .TP
1580 .B mint
1581 Shortest runtime of threads in the group.
1582 .TP
1583 .B maxt
1584 Longest runtime of threads in the group.
1585 .RE
1586 .PD
1587 .P
1588 Finally, disk statistics are printed with reads first:
1589 .PD 0
1590 .RS
1591 .TP
1592 .B ios
1593 Number of I/Os performed by all groups.
1594 .TP
1595 .B merge
1596 Number of merges in the I/O scheduler.
1597 .TP
1598 .B ticks
1599 Number of ticks we kept the disk busy.
1600 .TP
1601 .B io_queue
1602 Total time spent in the disk queue.
1603 .TP
1604 .B util
1605 Disk utilization.
1606 .RE
1607 .PD
1608 .P
1609 It is also possible to get fio to dump the current output while it is
1610 running, without terminating the job. To do that, send fio the \fBUSR1\fR
1611 signal.
1613 If the \fB\-\-minimal\fR / \fB\-\-append-terse\fR options are given, the
1614 results will be printed/appended in a semicolon-delimited format suitable for
1615 scripted use.
1616 A job description (if provided) follows on a new line.  Note that the first
1617 number in the line is the version number. If the output has to be changed
1618 for some reason, this number will be incremented by 1 to signify that
1619 change.  The fields are:
1620 .P
1621 .RS
1622 .B terse version, fio version, jobname, groupid, error
1623 .P
1624 Read status:
1625 .RS
1626 .B Total I/O \fR(KB)\fP, bandwidth \fR(KB/s)\fP, IOPS, runtime \fR(ms)\fP
1627 .P
1628 Submission latency:
1629 .RS
1630 .B min, max, mean, standard deviation
1631 .RE
1632 Completion latency:
1633 .RS
1634 .B min, max, mean, standard deviation
1635 .RE
1636 Completion latency percentiles (20 fields):
1637 .RS
1638 .B Xth percentile=usec
1639 .RE
1640 Total latency:
1641 .RS
1642 .B min, max, mean, standard deviation
1643 .RE
1644 Bandwidth:
1645 .RS
1646 .B min, max, aggregate percentage of total, mean, standard deviation
1647 .RE
1648 .RE
1649 .P
1650 Write status:
1651 .RS
1652 .B Total I/O \fR(KB)\fP, bandwidth \fR(KB/s)\fP, IOPS, runtime \fR(ms)\fP
1653 .P
1654 Submission latency:
1655 .RS
1656 .B min, max, mean, standard deviation
1657 .RE
1658 Completion latency:
1659 .RS
1660 .B min, max, mean, standard deviation
1661 .RE
1662 Completion latency percentiles (20 fields):
1663 .RS
1664 .B Xth percentile=usec
1665 .RE
1666 Total latency:
1667 .RS
1668 .B min, max, mean, standard deviation
1669 .RE
1670 Bandwidth:
1671 .RS
1672 .B min, max, aggregate percentage of total, mean, standard deviation
1673 .RE
1674 .RE
1675 .P
1676 CPU usage:
1677 .RS
1678 .B user, system, context switches, major page faults, minor page faults
1679 .RE
1680 .P
1681 IO depth distribution:
1682 .RS
1683 .B <=1, 2, 4, 8, 16, 32, >=64
1684 .RE
1685 .P
1686 IO latency distribution:
1687 .RS
1688 Microseconds:
1689 .RS
1690 .B <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000
1691 .RE
1692 Milliseconds:
1693 .RS
1694 .B <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000, 2000, >=2000
1695 .RE
1696 .RE
1697 .P
1698 Disk utilization (1 for each disk used):
1699 .RS
1700 .B name, read ios, write ios, read merges, write merges, read ticks, write ticks, read in-queue time, write in-queue time, disk utilization percentage
1701 .RE
1702 .P
1703 Error Info (dependent on continue_on_error, default off):
1704 .RS
1705 .B total # errors, first error code 
1706 .RE
1707 .P
1708 .B text description (if provided in config - appears on newline)
1709 .RE
1711 Normally you would run fio as a stand-alone application on the machine
1712 where the IO workload should be generated. However, it is also possible to
1713 run the frontend and backend of fio separately. This makes it possible to
1714 have a fio server running on the machine(s) where the IO workload should
1715 be running, while controlling it from another machine.
1717 To start the server, you would do:
1719 \fBfio \-\-server=args\fR
1721 on that machine, where args defines what fio listens to. The arguments
1722 are of the form 'type:hostname or IP:port'. 'type' is either 'ip' (or ip4)
1723 for TCP/IP v4, 'ip6' for TCP/IP v6, or 'sock' for a local unix domain
1724 socket. 'hostname' is either a hostname or IP address, and 'port' is the port to
1725 listen to (only valid for TCP/IP, not a local socket). Some examples:
1727 1) fio \-\-server
1729    Start a fio server, listening on all interfaces on the default port (8765).
1731 2) fio \-\-server=ip:hostname,4444
1733    Start a fio server, listening on IP belonging to hostname and on port 4444.
1735 3) fio \-\-server=ip6:::1,4444
1737    Start a fio server, listening on IPv6 localhost ::1 and on port 4444.
1739 4) fio \-\-server=,4444
1741    Start a fio server, listening on all interfaces on port 4444.
1743 5) fio \-\-server=
1745    Start a fio server, listening on IP on the default port.
1747 6) fio \-\-server=sock:/tmp/fio.sock
1749    Start a fio server, listening on the local socket /tmp/fio.sock.
1751 When a server is running, you can connect to it from a client. The client
1752 is run with:
1754 fio \-\-local-args \-\-client=server \-\-remote-args <job file(s)>
1756 where \-\-local-args are arguments that are local to the client where it is
1757 running, 'server' is the connect string, and \-\-remote-args and <job file(s)>
1758 are sent to the server. The 'server' string follows the same format as it
1759 does on the server side, to allow IP/hostname/socket and port strings.
1760 You can connect to multiple clients as well, to do that you could run:
1762 fio \-\-client=server2 \-\-client=server2 <job file(s)>
1765 .B fio
1766 was written by Jens Axboe <jens.axboe@oracle.com>,
1767 now Jens Axboe <jaxboe@fusionio.com>.
1768 .br
1769 This man page was written by Aaron Carroll <aaronc@cse.unsw.edu.au> based
1770 on documentation by Jens Axboe.
1772 Report bugs to the \fBfio\fR mailing list <fio@vger.kernel.org>.
1773 See \fBREADME\fR.
1774 .SH "SEE ALSO"
1775 For further documentation see \fBHOWTO\fR and \fBREADME\fR.
1776 .br
1777 Sample jobfiles are available in the \fBexamples\fR directory.