Add support for idletime profiling
[fio.git] / eta.c
1 /*
2  * Status and ETA code
3  */
4 #include <unistd.h>
5 #include <fcntl.h>
6 #include <string.h>
7
8 #include "fio.h"
9
10 static char run_str[REAL_MAX_JOBS + 1];
11
12 /*
13  * Sets the status of the 'td' in the printed status map.
14  */
15 static void check_str_update(struct thread_data *td)
16 {
17         char c = run_str[td->thread_number - 1];
18
19         switch (td->runstate) {
20         case TD_REAPED:
21                 if (td->error)
22                         c = 'X';
23                 else if (td->sig)
24                         c = 'K';
25                 else
26                         c = '_';
27                 break;
28         case TD_EXITED:
29                 c = 'E';
30                 break;
31         case TD_RAMP:
32                 c = '/';
33                 break;
34         case TD_RUNNING:
35                 if (td_rw(td)) {
36                         if (td_random(td)) {
37                                 if (td->o.rwmix[DDIR_READ] == 100)
38                                         c = 'r';
39                                 else if (td->o.rwmix[DDIR_WRITE] == 100)
40                                         c = 'w';
41                                 else
42                                         c = 'm';
43                         } else {
44                                 if (td->o.rwmix[DDIR_READ] == 100)
45                                         c = 'R';
46                                 else if (td->o.rwmix[DDIR_WRITE] == 100)
47                                         c = 'W';
48                                 else
49                                         c = 'M';
50                         }
51                 } else if (td_read(td)) {
52                         if (td_random(td))
53                                 c = 'r';
54                         else
55                                 c = 'R';
56                 } else if (td_write(td)) {
57                         if (td_random(td))
58                                 c = 'w';
59                         else
60                                 c = 'W';
61                 } else {
62                         if (td_random(td))
63                                 c = 'd';
64                         else
65                                 c = 'D';
66                 }
67                 break;
68         case TD_PRE_READING:
69                 c = 'p';
70                 break;
71         case TD_VERIFYING:
72                 c = 'V';
73                 break;
74         case TD_FSYNCING:
75                 c = 'F';
76                 break;
77         case TD_CREATED:
78                 c = 'C';
79                 break;
80         case TD_INITIALIZED:
81         case TD_SETTING_UP:
82                 c = 'I';
83                 break;
84         case TD_NOT_CREATED:
85                 c = 'P';
86                 break;
87         default:
88                 log_err("state %d\n", td->runstate);
89         }
90
91         run_str[td->thread_number - 1] = c;
92 }
93
94 /*
95  * Convert seconds to a printable string.
96  */
97 static void eta_to_str(char *str, unsigned long eta_sec)
98 {
99         unsigned int d, h, m, s;
100         int disp_hour = 0;
101
102         s = eta_sec % 60;
103         eta_sec /= 60;
104         m = eta_sec % 60;
105         eta_sec /= 60;
106         h = eta_sec % 24;
107         eta_sec /= 24;
108         d = eta_sec;
109
110         if (d) {
111                 disp_hour = 1;
112                 str += sprintf(str, "%02ud:", d);
113         }
114
115         if (h || disp_hour)
116                 str += sprintf(str, "%02uh:", h);
117
118         str += sprintf(str, "%02um:", m);
119         str += sprintf(str, "%02us", s);
120 }
121
122 /*
123  * Best effort calculation of the estimated pending runtime of a job.
124  */
125 static int thread_eta(struct thread_data *td)
126 {
127         unsigned long long bytes_total, bytes_done;
128         unsigned long eta_sec = 0;
129         unsigned long elapsed;
130
131         elapsed = (mtime_since_now(&td->epoch) + 999) / 1000;
132
133         bytes_total = td->total_io_size;
134
135         if (td->o.fill_device && td->o.size  == -1ULL) {
136                 if (!td->fill_device_size || td->fill_device_size == -1ULL)
137                         return 0;
138
139                 bytes_total = td->fill_device_size;
140         }
141
142         /*
143          * if writing and verifying afterwards, bytes_total will be twice the
144          * size. In a mixed workload, verify phase will be the size of the
145          * first stage writes.
146          */
147         if (td->o.do_verify && td->o.verify && td_write(td)) {
148                 if (td_rw(td)) {
149                         unsigned int perc = 50;
150
151                         if (td->o.rwmix[DDIR_WRITE])
152                                 perc = td->o.rwmix[DDIR_WRITE];
153
154                         bytes_total += (bytes_total * perc) / 100;
155                 } else
156                         bytes_total <<= 1;
157         }
158
159         if (td->o.zone_size && td->o.zone_skip)
160                 bytes_total /= (td->o.zone_skip / td->o.zone_size);
161
162         if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) {
163                 double perc, perc_t;
164
165                 bytes_done = ddir_rw_sum(td->io_bytes);
166                 perc = (double) bytes_done / (double) bytes_total;
167                 if (perc > 1.0)
168                         perc = 1.0;
169
170                 if (td->o.time_based) {
171                         perc_t = (double) elapsed / (double) td->o.timeout;
172                         if (perc_t < perc)
173                                 perc = perc_t;
174                 }
175
176                 eta_sec = (unsigned long) (elapsed * (1.0 / perc)) - elapsed;
177
178                 if (td->o.timeout &&
179                     eta_sec > (td->o.timeout + done_secs - elapsed))
180                         eta_sec = td->o.timeout + done_secs - elapsed;
181         } else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED
182                         || td->runstate == TD_INITIALIZED
183                         || td->runstate == TD_RAMP
184                         || td->runstate == TD_PRE_READING) {
185                 int t_eta = 0, r_eta = 0;
186                 unsigned long long rate_bytes;
187
188                 /*
189                  * We can only guess - assume it'll run the full timeout
190                  * if given, otherwise assume it'll run at the specified rate.
191                  */
192                 if (td->o.timeout) {
193                         t_eta = td->o.timeout + td->o.start_delay +
194                                         td->o.ramp_time;
195
196                         if (in_ramp_time(td)) {
197                                 unsigned long ramp_left;
198
199                                 ramp_left = mtime_since_now(&td->epoch);
200                                 ramp_left = (ramp_left + 999) / 1000;
201                                 if (ramp_left <= t_eta)
202                                         t_eta -= ramp_left;
203                         }
204                 }
205                 rate_bytes = ddir_rw_sum(td->o.rate);
206                 if (rate_bytes) {
207                         r_eta = (bytes_total / 1024) / rate_bytes;
208                         r_eta += td->o.start_delay;
209                 }
210
211                 if (r_eta && t_eta)
212                         eta_sec = min(r_eta, t_eta);
213                 else if (r_eta)
214                         eta_sec = r_eta;
215                 else if (t_eta)
216                         eta_sec = t_eta;
217                 else
218                         eta_sec = 0;
219         } else {
220                 /*
221                  * thread is already done or waiting for fsync
222                  */
223                 eta_sec = 0;
224         }
225
226         return eta_sec;
227 }
228
229 static void calc_rate(int unified_rw_rep, unsigned long mtime,
230                       unsigned long long *io_bytes,
231                       unsigned long long *prev_io_bytes, unsigned int *rate)
232 {
233         int i;
234
235         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
236                 unsigned long long diff;
237
238                 diff = io_bytes[i] - prev_io_bytes[i];
239                 if (unified_rw_rep) {
240                         rate[i] = 0;
241                         rate[0] += ((1000 * diff) / mtime) / 1024;
242                 } else
243                         rate[i] = ((1000 * diff) / mtime) / 1024;
244
245                 prev_io_bytes[i] = io_bytes[i];
246         }
247 }
248
249 static void calc_iops(int unified_rw_rep, unsigned long mtime,
250                       unsigned long long *io_iops,
251                       unsigned long long *prev_io_iops, unsigned int *iops)
252 {
253         int i;
254
255         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
256                 unsigned long long diff;
257
258                 diff = io_iops[i] - prev_io_iops[i];
259                 if (unified_rw_rep) {
260                         iops[i] = 0;
261                         iops[0] += (diff * 1000) / mtime;
262                 } else
263                         iops[i] = (diff * 1000) / mtime;
264
265                 prev_io_iops[i] = io_iops[i];
266         }
267 }
268
269 /*
270  * Print status of the jobs we know about. This includes rate estimates,
271  * ETA, thread state, etc.
272  */
273 int calc_thread_status(struct jobs_eta *je, int force)
274 {
275         struct thread_data *td;
276         int i, unified_rw_rep;
277         unsigned long rate_time, disp_time, bw_avg_time, *eta_secs;
278         unsigned long long io_bytes[DDIR_RWDIR_CNT];
279         unsigned long long io_iops[DDIR_RWDIR_CNT];
280         struct timeval now;
281
282         static unsigned long long rate_io_bytes[DDIR_RWDIR_CNT];
283         static unsigned long long disp_io_bytes[DDIR_RWDIR_CNT];
284         static unsigned long long disp_io_iops[DDIR_RWDIR_CNT];
285         static struct timeval rate_prev_time, disp_prev_time;
286
287         if (!force) {
288                 if (output_format != FIO_OUTPUT_NORMAL)
289                         return 0;
290                 if (temp_stall_ts || eta_print == FIO_ETA_NEVER)
291                         return 0;
292
293                 if (!isatty(STDOUT_FILENO) && (eta_print != FIO_ETA_ALWAYS))
294                         return 0;
295         }
296
297         if (!ddir_rw_sum(rate_io_bytes))
298                 fill_start_time(&rate_prev_time);
299         if (!ddir_rw_sum(disp_io_bytes))
300                 fill_start_time(&disp_prev_time);
301
302         eta_secs = malloc(thread_number * sizeof(unsigned long));
303         memset(eta_secs, 0, thread_number * sizeof(unsigned long));
304
305         je->elapsed_sec = (mtime_since_genesis() + 999) / 1000;
306
307         io_bytes[DDIR_READ] = io_bytes[DDIR_WRITE] = io_bytes[DDIR_TRIM] = 0;
308         io_iops[DDIR_READ] = io_iops[DDIR_WRITE] = io_iops[DDIR_TRIM] = 0;
309         bw_avg_time = ULONG_MAX;
310         unified_rw_rep = 0;
311         for_each_td(td, i) {
312                 unified_rw_rep += td->o.unified_rw_rep;
313                 if (is_power_of_2(td->o.kb_base))
314                         je->is_pow2 = 1;
315                 if (td->o.bw_avg_time < bw_avg_time)
316                         bw_avg_time = td->o.bw_avg_time;
317                 if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING
318                     || td->runstate == TD_FSYNCING
319                     || td->runstate == TD_PRE_READING) {
320                         je->nr_running++;
321                         if (td_read(td)) {
322                                 je->t_rate += td->o.rate[DDIR_READ];
323                                 je->t_iops += td->o.rate_iops[DDIR_READ];
324                                 je->m_rate += td->o.ratemin[DDIR_READ];
325                                 je->m_iops += td->o.rate_iops_min[DDIR_READ];
326                         }
327                         if (td_write(td)) {
328                                 je->t_rate += td->o.rate[DDIR_WRITE];
329                                 je->t_iops += td->o.rate_iops[DDIR_WRITE];
330                                 je->m_rate += td->o.ratemin[DDIR_WRITE];
331                                 je->m_iops += td->o.rate_iops_min[DDIR_WRITE];
332                         }
333                         if (td_trim(td)) {
334                                 je->t_rate += td->o.rate[DDIR_TRIM];
335                                 je->t_iops += td->o.rate_iops[DDIR_TRIM];
336                                 je->m_rate += td->o.ratemin[DDIR_TRIM];
337                                 je->m_iops += td->o.rate_iops_min[DDIR_TRIM];
338                         }
339
340                         je->files_open += td->nr_open_files;
341                 } else if (td->runstate == TD_RAMP) {
342                         je->nr_running++;
343                         je->nr_ramp++;
344                 } else if (td->runstate == TD_SETTING_UP)
345                         je->nr_running++;
346                 else if (td->runstate < TD_RUNNING)
347                         je->nr_pending++;
348
349                 if (je->elapsed_sec >= 3)
350                         eta_secs[i] = thread_eta(td);
351                 else
352                         eta_secs[i] = INT_MAX;
353
354                 check_str_update(td);
355
356                 if (td->runstate > TD_RAMP) {
357                         int ddir;
358
359                         for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
360                                 if (unified_rw_rep) {
361                                         io_bytes[0] += td->io_bytes[ddir];
362                                         io_iops[0] += td->io_blocks[ddir];
363                                 } else {
364                                         io_bytes[ddir] += td->io_bytes[ddir];
365                                         io_iops[ddir] += td->io_blocks[ddir];
366                                 }
367                         }
368                 }
369         }
370
371         if (exitall_on_terminate)
372                 je->eta_sec = INT_MAX;
373         else
374                 je->eta_sec = 0;
375
376         for_each_td(td, i) {
377                 if (exitall_on_terminate) {
378                         if (eta_secs[i] < je->eta_sec)
379                                 je->eta_sec = eta_secs[i];
380                 } else {
381                         if (eta_secs[i] > je->eta_sec)
382                                 je->eta_sec = eta_secs[i];
383                 }
384         }
385
386         free(eta_secs);
387
388         fio_gettime(&now, NULL);
389         rate_time = mtime_since(&rate_prev_time, &now);
390
391         if (write_bw_log && rate_time > bw_avg_time && !in_ramp_time(td)) {
392                 calc_rate(unified_rw_rep, rate_time, io_bytes, rate_io_bytes,
393                                 je->rate);
394                 memcpy(&rate_prev_time, &now, sizeof(now));
395                 add_agg_sample(je->rate[DDIR_READ], DDIR_READ, 0);
396                 add_agg_sample(je->rate[DDIR_WRITE], DDIR_WRITE, 0);
397                 add_agg_sample(je->rate[DDIR_TRIM], DDIR_TRIM, 0);
398         }
399
400         disp_time = mtime_since(&disp_prev_time, &now);
401
402         /*
403          * Allow a little slack, the target is to print it every 1000 msecs
404          */
405         if (!force && disp_time < 900)
406                 return 0;
407
408         calc_rate(unified_rw_rep, disp_time, io_bytes, disp_io_bytes, je->rate);
409         calc_iops(unified_rw_rep, disp_time, io_iops, disp_io_iops, je->iops);
410
411         memcpy(&disp_prev_time, &now, sizeof(now));
412
413         if (!force && !je->nr_running && !je->nr_pending)
414                 return 0;
415
416         je->nr_threads = thread_number;
417         memcpy(je->run_str, run_str, thread_number * sizeof(char));
418
419         return 1;
420 }
421
422 void display_thread_status(struct jobs_eta *je)
423 {
424         static int linelen_last;
425         static int eta_good;
426         char output[REAL_MAX_JOBS + 512], *p = output;
427         char eta_str[128];
428         double perc = 0.0;
429
430         if (je->eta_sec != INT_MAX && je->elapsed_sec) {
431                 perc = (double) je->elapsed_sec / (double) (je->elapsed_sec + je->eta_sec);
432                 eta_to_str(eta_str, je->eta_sec);
433         }
434
435         p += sprintf(p, "Jobs: %d (f=%d)", je->nr_running, je->files_open);
436         if (je->m_rate || je->t_rate) {
437                 char *tr, *mr;
438
439                 mr = num2str(je->m_rate, 4, 0, je->is_pow2);
440                 tr = num2str(je->t_rate, 4, 0, je->is_pow2);
441                 p += sprintf(p, ", CR=%s/%s KB/s", tr, mr);
442                 free(tr);
443                 free(mr);
444         } else if (je->m_iops || je->t_iops)
445                 p += sprintf(p, ", CR=%d/%d IOPS", je->t_iops, je->m_iops);
446         if (je->eta_sec != INT_MAX && je->nr_running) {
447                 char perc_str[32];
448                 char *iops_str[DDIR_RWDIR_CNT];
449                 char *rate_str[DDIR_RWDIR_CNT];
450                 size_t left;
451                 int l;
452                 int ddir;
453
454                 if ((!je->eta_sec && !eta_good) || je->nr_ramp == je->nr_running)
455                         strcpy(perc_str, "-.-% done");
456                 else {
457                         eta_good = 1;
458                         perc *= 100.0;
459                         sprintf(perc_str, "%3.1f%% done", perc);
460                 }
461
462                 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
463                         rate_str[ddir] = num2str(je->rate[ddir], 5,
464                                                 1024, je->is_pow2);
465                         iops_str[ddir] = num2str(je->iops[ddir], 4, 1, 0);
466                 }
467
468                 left = sizeof(output) - (p - output) - 1;
469
470                 l = snprintf(p, left, ": [%s] [%s] [%s/%s/%s /s] [%s/%s/%s iops] [eta %s]",
471                                 je->run_str, perc_str, rate_str[DDIR_READ],
472                                 rate_str[DDIR_WRITE], rate_str[DDIR_TRIM],
473                                 iops_str[DDIR_READ], iops_str[DDIR_WRITE],
474                                 iops_str[DDIR_TRIM], eta_str);
475                 p += l;
476                 if (l >= 0 && l < linelen_last)
477                         p += sprintf(p, "%*s", linelen_last - l, "");
478                 linelen_last = l;
479
480                 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
481                         free(rate_str[ddir]);
482                         free(iops_str[ddir]);
483                 }
484         }
485         p += sprintf(p, "\r");
486
487         printf("%s", output);
488         fflush(stdout);
489 }
490
491 void print_thread_status(void)
492 {
493         struct jobs_eta *je;
494         size_t size;
495
496         if (!thread_number)
497                 return;
498
499         size = sizeof(*je) + thread_number * sizeof(char) + 1;
500         je = malloc(size);
501         memset(je, 0, size);
502
503         if (calc_thread_status(je, 0))
504                 display_thread_status(je);
505
506         free(je);
507 }
508
509 void print_status_init(int thr_number)
510 {
511         run_str[thr_number] = 'P';
512 }