Fix issue with td->mutex being used-after-free
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38
39 #include "fio.h"
40 #ifndef FIO_NO_HAVE_SHM_H
41 #include <sys/shm.h>
42 #endif
43 #include "hash.h"
44 #include "smalloc.h"
45 #include "verify.h"
46 #include "trim.h"
47 #include "diskutil.h"
48 #include "cgroup.h"
49 #include "profile.h"
50 #include "lib/rand.h"
51 #include "memalign.h"
52 #include "server.h"
53 #include "lib/getrusage.h"
54 #include "idletime.h"
55
56 static pthread_t disk_util_thread;
57 static struct fio_mutex *disk_thread_mutex;
58 static struct fio_mutex *startup_mutex;
59 static struct fio_mutex *writeout_mutex;
60 static struct flist_head *cgroup_list;
61 static char *cgroup_mnt;
62 static int exit_value;
63 static volatile int fio_abort;
64 static unsigned int nr_process = 0;
65 static unsigned int nr_thread = 0;
66
67 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69 int groupid = 0;
70 unsigned int thread_number = 0;
71 unsigned int stat_number = 0;
72 int shm_id = 0;
73 int temp_stall_ts;
74 unsigned long done_secs = 0;
75 volatile int disk_util_exit = 0;
76
77 #define PAGE_ALIGN(buf) \
78         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80 #define JOB_START_TIMEOUT       (5 * 1000)
81
82 static void sig_int(int sig)
83 {
84         if (threads) {
85                 if (is_backend)
86                         fio_server_got_signal(sig);
87                 else {
88                         log_info("\nfio: terminating on signal %d\n", sig);
89                         fflush(stdout);
90                         exit_value = 128;
91                 }
92
93                 fio_terminate_threads(TERMINATE_ALL);
94         }
95 }
96
97 static void sig_show_status(int sig)
98 {
99         show_running_run_stats();
100 }
101
102 static void set_sig_handlers(void)
103 {
104         struct sigaction act;
105
106         memset(&act, 0, sizeof(act));
107         act.sa_handler = sig_int;
108         act.sa_flags = SA_RESTART;
109         sigaction(SIGINT, &act, NULL);
110
111         memset(&act, 0, sizeof(act));
112         act.sa_handler = sig_int;
113         act.sa_flags = SA_RESTART;
114         sigaction(SIGTERM, &act, NULL);
115
116 /* Windows uses SIGBREAK as a quit signal from other applications */
117 #ifdef WIN32
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_int;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGBREAK, &act, NULL);
122 #endif
123
124         memset(&act, 0, sizeof(act));
125         act.sa_handler = sig_show_status;
126         act.sa_flags = SA_RESTART;
127         sigaction(SIGUSR1, &act, NULL);
128
129         if (is_backend) {
130                 memset(&act, 0, sizeof(act));
131                 act.sa_handler = sig_int;
132                 act.sa_flags = SA_RESTART;
133                 sigaction(SIGPIPE, &act, NULL);
134         }
135 }
136
137 /*
138  * Check if we are above the minimum rate given.
139  */
140 static int __check_min_rate(struct thread_data *td, struct timeval *now,
141                             enum fio_ddir ddir)
142 {
143         unsigned long long bytes = 0;
144         unsigned long iops = 0;
145         unsigned long spent;
146         unsigned long rate;
147         unsigned int ratemin = 0;
148         unsigned int rate_iops = 0;
149         unsigned int rate_iops_min = 0;
150
151         assert(ddir_rw(ddir));
152
153         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154                 return 0;
155
156         /*
157          * allow a 2 second settle period in the beginning
158          */
159         if (mtime_since(&td->start, now) < 2000)
160                 return 0;
161
162         iops += td->this_io_blocks[ddir];
163         bytes += td->this_io_bytes[ddir];
164         ratemin += td->o.ratemin[ddir];
165         rate_iops += td->o.rate_iops[ddir];
166         rate_iops_min += td->o.rate_iops_min[ddir];
167
168         /*
169          * if rate blocks is set, sample is running
170          */
171         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172                 spent = mtime_since(&td->lastrate[ddir], now);
173                 if (spent < td->o.ratecycle)
174                         return 0;
175
176                 if (td->o.rate[ddir]) {
177                         /*
178                          * check bandwidth specified rate
179                          */
180                         if (bytes < td->rate_bytes[ddir]) {
181                                 log_err("%s: min rate %u not met\n", td->o.name,
182                                                                 ratemin);
183                                 return 1;
184                         } else {
185                                 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186                                 if (rate < ratemin ||
187                                     bytes < td->rate_bytes[ddir]) {
188                                         log_err("%s: min rate %u not met, got"
189                                                 " %luKB/sec\n", td->o.name,
190                                                         ratemin, rate);
191                                         return 1;
192                                 }
193                         }
194                 } else {
195                         /*
196                          * checks iops specified rate
197                          */
198                         if (iops < rate_iops) {
199                                 log_err("%s: min iops rate %u not met\n",
200                                                 td->o.name, rate_iops);
201                                 return 1;
202                         } else {
203                                 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204                                 if (rate < rate_iops_min ||
205                                     iops < td->rate_blocks[ddir]) {
206                                         log_err("%s: min iops rate %u not met,"
207                                                 " got %lu\n", td->o.name,
208                                                         rate_iops_min, rate);
209                                 }
210                         }
211                 }
212         }
213
214         td->rate_bytes[ddir] = bytes;
215         td->rate_blocks[ddir] = iops;
216         memcpy(&td->lastrate[ddir], now, sizeof(*now));
217         return 0;
218 }
219
220 static int check_min_rate(struct thread_data *td, struct timeval *now,
221                           uint64_t *bytes_done)
222 {
223         int ret = 0;
224
225         if (bytes_done[DDIR_READ])
226                 ret |= __check_min_rate(td, now, DDIR_READ);
227         if (bytes_done[DDIR_WRITE])
228                 ret |= __check_min_rate(td, now, DDIR_WRITE);
229         if (bytes_done[DDIR_TRIM])
230                 ret |= __check_min_rate(td, now, DDIR_TRIM);
231
232         return ret;
233 }
234
235 /*
236  * When job exits, we can cancel the in-flight IO if we are using async
237  * io. Attempt to do so.
238  */
239 static void cleanup_pending_aio(struct thread_data *td)
240 {
241         int r;
242
243         /*
244          * get immediately available events, if any
245          */
246         r = io_u_queued_complete(td, 0, NULL);
247         if (r < 0)
248                 return;
249
250         /*
251          * now cancel remaining active events
252          */
253         if (td->io_ops->cancel) {
254                 struct io_u *io_u;
255                 int i;
256
257                 io_u_qiter(&td->io_u_all, io_u, i) {
258                         if (io_u->flags & IO_U_F_FLIGHT) {
259                                 r = td->io_ops->cancel(td, io_u);
260                                 if (!r)
261                                         put_io_u(td, io_u);
262                         }
263                 }
264         }
265
266         if (td->cur_depth)
267                 r = io_u_queued_complete(td, td->cur_depth, NULL);
268 }
269
270 /*
271  * Helper to handle the final sync of a file. Works just like the normal
272  * io path, just does everything sync.
273  */
274 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
275 {
276         struct io_u *io_u = __get_io_u(td);
277         int ret;
278
279         if (!io_u)
280                 return 1;
281
282         io_u->ddir = DDIR_SYNC;
283         io_u->file = f;
284
285         if (td_io_prep(td, io_u)) {
286                 put_io_u(td, io_u);
287                 return 1;
288         }
289
290 requeue:
291         ret = td_io_queue(td, io_u);
292         if (ret < 0) {
293                 td_verror(td, io_u->error, "td_io_queue");
294                 put_io_u(td, io_u);
295                 return 1;
296         } else if (ret == FIO_Q_QUEUED) {
297                 if (io_u_queued_complete(td, 1, NULL) < 0)
298                         return 1;
299         } else if (ret == FIO_Q_COMPLETED) {
300                 if (io_u->error) {
301                         td_verror(td, io_u->error, "td_io_queue");
302                         return 1;
303                 }
304
305                 if (io_u_sync_complete(td, io_u, NULL) < 0)
306                         return 1;
307         } else if (ret == FIO_Q_BUSY) {
308                 if (td_io_commit(td))
309                         return 1;
310                 goto requeue;
311         }
312
313         return 0;
314 }
315
316 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
317 {
318         int ret;
319
320         if (fio_file_open(f))
321                 return fio_io_sync(td, f);
322
323         if (td_io_open_file(td, f))
324                 return 1;
325
326         ret = fio_io_sync(td, f);
327         td_io_close_file(td, f);
328         return ret;
329 }
330
331 static inline void __update_tv_cache(struct thread_data *td)
332 {
333         fio_gettime(&td->tv_cache, NULL);
334 }
335
336 static inline void update_tv_cache(struct thread_data *td)
337 {
338         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
339                 __update_tv_cache(td);
340 }
341
342 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
343 {
344         if (in_ramp_time(td))
345                 return 0;
346         if (!td->o.timeout)
347                 return 0;
348         if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
349                 return 1;
350
351         return 0;
352 }
353
354 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
355                                int *retptr)
356 {
357         int ret = *retptr;
358
359         if (ret < 0 || td->error) {
360                 int err = td->error;
361                 enum error_type_bit eb;
362
363                 if (ret < 0)
364                         err = -ret;
365
366                 eb = td_error_type(ddir, err);
367                 if (!(td->o.continue_on_error & (1 << eb)))
368                         return 1;
369
370                 if (td_non_fatal_error(td, eb, err)) {
371                         /*
372                          * Continue with the I/Os in case of
373                          * a non fatal error.
374                          */
375                         update_error_count(td, err);
376                         td_clear_error(td);
377                         *retptr = 0;
378                         return 0;
379                 } else if (td->o.fill_device && err == ENOSPC) {
380                         /*
381                          * We expect to hit this error if
382                          * fill_device option is set.
383                          */
384                         td_clear_error(td);
385                         td->terminate = 1;
386                         return 1;
387                 } else {
388                         /*
389                          * Stop the I/O in case of a fatal
390                          * error.
391                          */
392                         update_error_count(td, err);
393                         return 1;
394                 }
395         }
396
397         return 0;
398 }
399
400 static void check_update_rusage(struct thread_data *td)
401 {
402         if (td->update_rusage) {
403                 td->update_rusage = 0;
404                 update_rusage_stat(td);
405                 fio_mutex_up(td->rusage_sem);
406         }
407 }
408
409 /*
410  * The main verify engine. Runs over the writes we previously submitted,
411  * reads the blocks back in, and checks the crc/md5 of the data.
412  */
413 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
414 {
415         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
416         struct fio_file *f;
417         struct io_u *io_u;
418         int ret, min_events;
419         unsigned int i;
420
421         dprint(FD_VERIFY, "starting loop\n");
422
423         /*
424          * sync io first and invalidate cache, to make sure we really
425          * read from disk.
426          */
427         for_each_file(td, f, i) {
428                 if (!fio_file_open(f))
429                         continue;
430                 if (fio_io_sync(td, f))
431                         break;
432                 if (file_invalidate_cache(td, f))
433                         break;
434         }
435
436         check_update_rusage(td);
437
438         if (td->error)
439                 return;
440
441         td_set_runstate(td, TD_VERIFYING);
442
443         io_u = NULL;
444         while (!td->terminate) {
445                 enum fio_ddir ddir;
446                 int ret2, full;
447
448                 update_tv_cache(td);
449                 check_update_rusage(td);
450
451                 if (runtime_exceeded(td, &td->tv_cache)) {
452                         __update_tv_cache(td);
453                         if (runtime_exceeded(td, &td->tv_cache)) {
454                                 td->terminate = 1;
455                                 break;
456                         }
457                 }
458
459                 if (flow_threshold_exceeded(td))
460                         continue;
461
462                 if (!td->o.experimental_verify) {
463                         io_u = __get_io_u(td);
464                         if (!io_u)
465                                 break;
466
467                         if (get_next_verify(td, io_u)) {
468                                 put_io_u(td, io_u);
469                                 break;
470                         }
471
472                         if (td_io_prep(td, io_u)) {
473                                 put_io_u(td, io_u);
474                                 break;
475                         }
476                 } else {
477                         if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
478                                 break;
479
480                         while ((io_u = get_io_u(td)) != NULL) {
481                                 /*
482                                  * We are only interested in the places where
483                                  * we wrote or trimmed IOs. Turn those into
484                                  * reads for verification purposes.
485                                  */
486                                 if (io_u->ddir == DDIR_READ) {
487                                         /*
488                                          * Pretend we issued it for rwmix
489                                          * accounting
490                                          */
491                                         td->io_issues[DDIR_READ]++;
492                                         put_io_u(td, io_u);
493                                         continue;
494                                 } else if (io_u->ddir == DDIR_TRIM) {
495                                         io_u->ddir = DDIR_READ;
496                                         io_u->flags |= IO_U_F_TRIMMED;
497                                         break;
498                                 } else if (io_u->ddir == DDIR_WRITE) {
499                                         io_u->ddir = DDIR_READ;
500                                         break;
501                                 } else {
502                                         put_io_u(td, io_u);
503                                         continue;
504                                 }
505                         }
506
507                         if (!io_u)
508                                 break;
509                 }
510
511                 if (td->o.verify_async)
512                         io_u->end_io = verify_io_u_async;
513                 else
514                         io_u->end_io = verify_io_u;
515
516                 ddir = io_u->ddir;
517
518                 ret = td_io_queue(td, io_u);
519                 switch (ret) {
520                 case FIO_Q_COMPLETED:
521                         if (io_u->error) {
522                                 ret = -io_u->error;
523                                 clear_io_u(td, io_u);
524                         } else if (io_u->resid) {
525                                 int bytes = io_u->xfer_buflen - io_u->resid;
526
527                                 /*
528                                  * zero read, fail
529                                  */
530                                 if (!bytes) {
531                                         td_verror(td, EIO, "full resid");
532                                         put_io_u(td, io_u);
533                                         break;
534                                 }
535
536                                 io_u->xfer_buflen = io_u->resid;
537                                 io_u->xfer_buf += bytes;
538                                 io_u->offset += bytes;
539
540                                 if (ddir_rw(io_u->ddir))
541                                         td->ts.short_io_u[io_u->ddir]++;
542
543                                 f = io_u->file;
544                                 if (io_u->offset == f->real_file_size)
545                                         goto sync_done;
546
547                                 requeue_io_u(td, &io_u);
548                         } else {
549 sync_done:
550                                 ret = io_u_sync_complete(td, io_u, bytes_done);
551                                 if (ret < 0)
552                                         break;
553                         }
554                         continue;
555                 case FIO_Q_QUEUED:
556                         break;
557                 case FIO_Q_BUSY:
558                         requeue_io_u(td, &io_u);
559                         ret2 = td_io_commit(td);
560                         if (ret2 < 0)
561                                 ret = ret2;
562                         break;
563                 default:
564                         assert(ret < 0);
565                         td_verror(td, -ret, "td_io_queue");
566                         break;
567                 }
568
569                 if (break_on_this_error(td, ddir, &ret))
570                         break;
571
572                 /*
573                  * if we can queue more, do so. but check if there are
574                  * completed io_u's first. Note that we can get BUSY even
575                  * without IO queued, if the system is resource starved.
576                  */
577                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
578                 if (full || !td->o.iodepth_batch_complete) {
579                         min_events = min(td->o.iodepth_batch_complete,
580                                          td->cur_depth);
581                         /*
582                          * if the queue is full, we MUST reap at least 1 event
583                          */
584                         if (full && !min_events)
585                                 min_events = 1;
586
587                         do {
588                                 /*
589                                  * Reap required number of io units, if any,
590                                  * and do the verification on them through
591                                  * the callback handler
592                                  */
593                                 if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
594                                         ret = -1;
595                                         break;
596                                 }
597                         } while (full && (td->cur_depth > td->o.iodepth_low));
598                 }
599                 if (ret < 0)
600                         break;
601         }
602
603         check_update_rusage(td);
604
605         if (!td->error) {
606                 min_events = td->cur_depth;
607
608                 if (min_events)
609                         ret = io_u_queued_complete(td, min_events, NULL);
610         } else
611                 cleanup_pending_aio(td);
612
613         td_set_runstate(td, TD_RUNNING);
614
615         dprint(FD_VERIFY, "exiting loop\n");
616 }
617
618 static int io_bytes_exceeded(struct thread_data *td)
619 {
620         unsigned long long bytes;
621
622         if (td_rw(td))
623                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
624         else if (td_write(td))
625                 bytes = td->this_io_bytes[DDIR_WRITE];
626         else if (td_read(td))
627                 bytes = td->this_io_bytes[DDIR_READ];
628         else
629                 bytes = td->this_io_bytes[DDIR_TRIM];
630
631         return bytes >= td->o.size;
632 }
633
634 /*
635  * Main IO worker function. It retrieves io_u's to process and queues
636  * and reaps them, checking for rate and errors along the way.
637  *
638  * Returns number of bytes written and trimmed.
639  */
640 static uint64_t do_io(struct thread_data *td)
641 {
642         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
643         unsigned int i;
644         int ret = 0;
645         uint64_t total_bytes, bytes_issued = 0;
646
647         if (in_ramp_time(td))
648                 td_set_runstate(td, TD_RAMP);
649         else
650                 td_set_runstate(td, TD_RUNNING);
651
652         lat_target_init(td);
653
654         /*
655          * If verify_backlog is enabled, we'll run the verify in this
656          * handler as well. For that case, we may need up to twice the
657          * amount of bytes.
658          */
659         total_bytes = td->o.size;
660         if (td->o.verify != VERIFY_NONE &&
661            (td_write(td) && td->o.verify_backlog))
662                 total_bytes += td->o.size;
663
664         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
665                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
666                 td->o.time_based) {
667                 struct timeval comp_time;
668                 int min_evts = 0;
669                 struct io_u *io_u;
670                 int ret2, full;
671                 enum fio_ddir ddir;
672
673                 check_update_rusage(td);
674
675                 if (td->terminate || td->done)
676                         break;
677
678                 update_tv_cache(td);
679
680                 if (runtime_exceeded(td, &td->tv_cache)) {
681                         __update_tv_cache(td);
682                         if (runtime_exceeded(td, &td->tv_cache)) {
683                                 td->terminate = 1;
684                                 break;
685                         }
686                 }
687
688                 if (flow_threshold_exceeded(td))
689                         continue;
690
691                 if (bytes_issued >= total_bytes)
692                         break;
693
694                 io_u = get_io_u(td);
695                 if (!io_u) {
696                         if (td->o.latency_target)
697                                 goto reap;
698                         break;
699                 }
700
701                 ddir = io_u->ddir;
702
703                 /*
704                  * Add verification end_io handler if:
705                  *      - Asked to verify (!td_rw(td))
706                  *      - Or the io_u is from our verify list (mixed write/ver)
707                  */
708                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
709                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
710
711                         if (!td->o.verify_pattern_bytes) {
712                                 io_u->rand_seed = __rand(&td->__verify_state);
713                                 if (sizeof(int) != sizeof(long *))
714                                         io_u->rand_seed *= __rand(&td->__verify_state);
715                         }
716
717                         if (td->o.verify_async)
718                                 io_u->end_io = verify_io_u_async;
719                         else
720                                 io_u->end_io = verify_io_u;
721                         td_set_runstate(td, TD_VERIFYING);
722                 } else if (in_ramp_time(td))
723                         td_set_runstate(td, TD_RAMP);
724                 else
725                         td_set_runstate(td, TD_RUNNING);
726
727                 /*
728                  * Always log IO before it's issued, so we know the specific
729                  * order of it. The logged unit will track when the IO has
730                  * completed.
731                  */
732                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
733                     td->o.do_verify &&
734                     td->o.verify != VERIFY_NONE &&
735                     !td->o.experimental_verify)
736                         log_io_piece(td, io_u);
737
738                 ret = td_io_queue(td, io_u);
739                 switch (ret) {
740                 case FIO_Q_COMPLETED:
741                         if (io_u->error) {
742                                 ret = -io_u->error;
743                                 clear_io_u(td, io_u);
744                         } else if (io_u->resid) {
745                                 int bytes = io_u->xfer_buflen - io_u->resid;
746                                 struct fio_file *f = io_u->file;
747
748                                 bytes_issued += bytes;
749                                 /*
750                                  * zero read, fail
751                                  */
752                                 if (!bytes) {
753                                         td_verror(td, EIO, "full resid");
754                                         put_io_u(td, io_u);
755                                         break;
756                                 }
757
758                                 io_u->xfer_buflen = io_u->resid;
759                                 io_u->xfer_buf += bytes;
760                                 io_u->offset += bytes;
761
762                                 if (ddir_rw(io_u->ddir))
763                                         td->ts.short_io_u[io_u->ddir]++;
764
765                                 if (io_u->offset == f->real_file_size)
766                                         goto sync_done;
767
768                                 requeue_io_u(td, &io_u);
769                         } else {
770 sync_done:
771                                 if (__should_check_rate(td, DDIR_READ) ||
772                                     __should_check_rate(td, DDIR_WRITE) ||
773                                     __should_check_rate(td, DDIR_TRIM))
774                                         fio_gettime(&comp_time, NULL);
775
776                                 ret = io_u_sync_complete(td, io_u, bytes_done);
777                                 if (ret < 0)
778                                         break;
779                                 bytes_issued += io_u->xfer_buflen;
780                         }
781                         break;
782                 case FIO_Q_QUEUED:
783                         /*
784                          * if the engine doesn't have a commit hook,
785                          * the io_u is really queued. if it does have such
786                          * a hook, it has to call io_u_queued() itself.
787                          */
788                         if (td->io_ops->commit == NULL)
789                                 io_u_queued(td, io_u);
790                         bytes_issued += io_u->xfer_buflen;
791                         break;
792                 case FIO_Q_BUSY:
793                         requeue_io_u(td, &io_u);
794                         ret2 = td_io_commit(td);
795                         if (ret2 < 0)
796                                 ret = ret2;
797                         break;
798                 default:
799                         assert(ret < 0);
800                         put_io_u(td, io_u);
801                         break;
802                 }
803
804                 if (break_on_this_error(td, ddir, &ret))
805                         break;
806
807                 /*
808                  * See if we need to complete some commands. Note that we
809                  * can get BUSY even without IO queued, if the system is
810                  * resource starved.
811                  */
812 reap:
813                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
814                 if (full || !td->o.iodepth_batch_complete) {
815                         min_evts = min(td->o.iodepth_batch_complete,
816                                         td->cur_depth);
817                         /*
818                          * if the queue is full, we MUST reap at least 1 event
819                          */
820                         if (full && !min_evts)
821                                 min_evts = 1;
822
823                         if (__should_check_rate(td, DDIR_READ) ||
824                             __should_check_rate(td, DDIR_WRITE) ||
825                             __should_check_rate(td, DDIR_TRIM))
826                                 fio_gettime(&comp_time, NULL);
827
828                         do {
829                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
830                                 if (ret < 0)
831                                         break;
832
833                         } while (full && (td->cur_depth > td->o.iodepth_low));
834                 }
835
836                 if (ret < 0)
837                         break;
838                 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
839                         continue;
840
841                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
842                         if (check_min_rate(td, &comp_time, bytes_done)) {
843                                 if (exitall_on_terminate)
844                                         fio_terminate_threads(td->groupid);
845                                 td_verror(td, EIO, "check_min_rate");
846                                 break;
847                         }
848                 }
849                 if (!in_ramp_time(td) && td->o.latency_target)
850                         lat_target_check(td);
851
852                 if (td->o.thinktime) {
853                         unsigned long long b;
854
855                         b = ddir_rw_sum(td->io_blocks);
856                         if (!(b % td->o.thinktime_blocks)) {
857                                 int left;
858
859                                 io_u_quiesce(td);
860
861                                 if (td->o.thinktime_spin)
862                                         usec_spin(td->o.thinktime_spin);
863
864                                 left = td->o.thinktime - td->o.thinktime_spin;
865                                 if (left)
866                                         usec_sleep(td, left);
867                         }
868                 }
869         }
870
871         check_update_rusage(td);
872
873         if (td->trim_entries)
874                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
875
876         if (td->o.fill_device && td->error == ENOSPC) {
877                 td->error = 0;
878                 td->terminate = 1;
879         }
880         if (!td->error) {
881                 struct fio_file *f;
882
883                 i = td->cur_depth;
884                 if (i) {
885                         ret = io_u_queued_complete(td, i, bytes_done);
886                         if (td->o.fill_device && td->error == ENOSPC)
887                                 td->error = 0;
888                 }
889
890                 if (should_fsync(td) && td->o.end_fsync) {
891                         td_set_runstate(td, TD_FSYNCING);
892
893                         for_each_file(td, f, i) {
894                                 if (!fio_file_fsync(td, f))
895                                         continue;
896
897                                 log_err("fio: end_fsync failed for file %s\n",
898                                                                 f->file_name);
899                         }
900                 }
901         } else
902                 cleanup_pending_aio(td);
903
904         /*
905          * stop job if we failed doing any IO
906          */
907         if (!ddir_rw_sum(td->this_io_bytes))
908                 td->done = 1;
909
910         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
911 }
912
913 static void cleanup_io_u(struct thread_data *td)
914 {
915         struct io_u *io_u;
916
917         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
918
919                 if (td->io_ops->io_u_free)
920                         td->io_ops->io_u_free(td, io_u);
921
922                 fio_memfree(io_u, sizeof(*io_u));
923         }
924
925         free_io_mem(td);
926
927         io_u_rexit(&td->io_u_requeues);
928         io_u_qexit(&td->io_u_freelist);
929         io_u_qexit(&td->io_u_all);
930 }
931
932 static int init_io_u(struct thread_data *td)
933 {
934         struct io_u *io_u;
935         unsigned int max_bs, min_write;
936         int cl_align, i, max_units;
937         int data_xfer = 1, err;
938         char *p;
939
940         max_units = td->o.iodepth;
941         max_bs = td_max_bs(td);
942         min_write = td->o.min_bs[DDIR_WRITE];
943         td->orig_buffer_size = (unsigned long long) max_bs
944                                         * (unsigned long long) max_units;
945
946         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
947                 data_xfer = 0;
948
949         err = 0;
950         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
951         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
952         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
953
954         if (err) {
955                 log_err("fio: failed setting up IO queues\n");
956                 return 1;
957         }
958
959         /*
960          * if we may later need to do address alignment, then add any
961          * possible adjustment here so that we don't cause a buffer
962          * overflow later. this adjustment may be too much if we get
963          * lucky and the allocator gives us an aligned address.
964          */
965         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
966             (td->io_ops->flags & FIO_RAWIO))
967                 td->orig_buffer_size += page_mask + td->o.mem_align;
968
969         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
970                 unsigned long bs;
971
972                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
973                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
974         }
975
976         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
977                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
978                 return 1;
979         }
980
981         if (data_xfer && allocate_io_mem(td))
982                 return 1;
983
984         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
985             (td->io_ops->flags & FIO_RAWIO))
986                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
987         else
988                 p = td->orig_buffer;
989
990         cl_align = os_cache_line_size();
991
992         for (i = 0; i < max_units; i++) {
993                 void *ptr;
994
995                 if (td->terminate)
996                         return 1;
997
998                 ptr = fio_memalign(cl_align, sizeof(*io_u));
999                 if (!ptr) {
1000                         log_err("fio: unable to allocate aligned memory\n");
1001                         break;
1002                 }
1003
1004                 io_u = ptr;
1005                 memset(io_u, 0, sizeof(*io_u));
1006                 INIT_FLIST_HEAD(&io_u->verify_list);
1007                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1008
1009                 if (data_xfer) {
1010                         io_u->buf = p;
1011                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1012
1013                         if (td_write(td))
1014                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1015                         if (td_write(td) && td->o.verify_pattern_bytes) {
1016                                 /*
1017                                  * Fill the buffer with the pattern if we are
1018                                  * going to be doing writes.
1019                                  */
1020                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1021                         }
1022                 }
1023
1024                 io_u->index = i;
1025                 io_u->flags = IO_U_F_FREE;
1026                 io_u_qpush(&td->io_u_freelist, io_u);
1027
1028                 /*
1029                  * io_u never leaves this stack, used for iteration of all
1030                  * io_u buffers.
1031                  */
1032                 io_u_qpush(&td->io_u_all, io_u);
1033
1034                 if (td->io_ops->io_u_init) {
1035                         int ret = td->io_ops->io_u_init(td, io_u);
1036
1037                         if (ret) {
1038                                 log_err("fio: failed to init engine data: %d\n", ret);
1039                                 return 1;
1040                         }
1041                 }
1042
1043                 p += max_bs;
1044         }
1045
1046         return 0;
1047 }
1048
1049 static int switch_ioscheduler(struct thread_data *td)
1050 {
1051         char tmp[256], tmp2[128];
1052         FILE *f;
1053         int ret;
1054
1055         if (td->io_ops->flags & FIO_DISKLESSIO)
1056                 return 0;
1057
1058         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1059
1060         f = fopen(tmp, "r+");
1061         if (!f) {
1062                 if (errno == ENOENT) {
1063                         log_err("fio: os or kernel doesn't support IO scheduler"
1064                                 " switching\n");
1065                         return 0;
1066                 }
1067                 td_verror(td, errno, "fopen iosched");
1068                 return 1;
1069         }
1070
1071         /*
1072          * Set io scheduler.
1073          */
1074         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1075         if (ferror(f) || ret != 1) {
1076                 td_verror(td, errno, "fwrite");
1077                 fclose(f);
1078                 return 1;
1079         }
1080
1081         rewind(f);
1082
1083         /*
1084          * Read back and check that the selected scheduler is now the default.
1085          */
1086         ret = fread(tmp, 1, sizeof(tmp), f);
1087         if (ferror(f) || ret < 0) {
1088                 td_verror(td, errno, "fread");
1089                 fclose(f);
1090                 return 1;
1091         }
1092
1093         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1094         if (!strstr(tmp, tmp2)) {
1095                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1096                 td_verror(td, EINVAL, "iosched_switch");
1097                 fclose(f);
1098                 return 1;
1099         }
1100
1101         fclose(f);
1102         return 0;
1103 }
1104
1105 static int keep_running(struct thread_data *td)
1106 {
1107         if (td->done)
1108                 return 0;
1109         if (td->o.time_based)
1110                 return 1;
1111         if (td->o.loops) {
1112                 td->o.loops--;
1113                 return 1;
1114         }
1115
1116         if (td->o.size != -1ULL && ddir_rw_sum(td->io_bytes) < td->o.size) {
1117                 uint64_t diff;
1118
1119                 /*
1120                  * If the difference is less than the minimum IO size, we
1121                  * are done.
1122                  */
1123                 diff = td->o.size - ddir_rw_sum(td->io_bytes);
1124                 if (diff < td_max_bs(td))
1125                         return 0;
1126
1127                 return 1;
1128         }
1129
1130         return 0;
1131 }
1132
1133 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1134 {
1135         int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1136         char *str;
1137
1138         str = malloc(newlen);
1139         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1140
1141         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1142         ret = system(str);
1143         if (ret == -1)
1144                 log_err("fio: exec of cmd <%s> failed\n", str);
1145
1146         free(str);
1147         return ret;
1148 }
1149
1150 /*
1151  * Dry run to compute correct state of numberio for verification.
1152  */
1153 static uint64_t do_dry_run(struct thread_data *td)
1154 {
1155         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1156
1157         td_set_runstate(td, TD_RUNNING);
1158
1159         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1160                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1161                 struct io_u *io_u;
1162                 int ret;
1163
1164                 if (td->terminate || td->done)
1165                         break;
1166
1167                 io_u = get_io_u(td);
1168                 if (!io_u)
1169                         break;
1170
1171                 io_u->flags |= IO_U_F_FLIGHT;
1172                 io_u->error = 0;
1173                 io_u->resid = 0;
1174                 if (ddir_rw(acct_ddir(io_u)))
1175                         td->io_issues[acct_ddir(io_u)]++;
1176                 if (ddir_rw(io_u->ddir)) {
1177                         io_u_mark_depth(td, 1);
1178                         td->ts.total_io_u[io_u->ddir]++;
1179                 }
1180
1181                 ret = io_u_sync_complete(td, io_u, bytes_done);
1182                 (void) ret;
1183         }
1184
1185         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1186 }
1187
1188 /*
1189  * Entry point for the thread based jobs. The process based jobs end up
1190  * here as well, after a little setup.
1191  */
1192 static void *thread_main(void *data)
1193 {
1194         unsigned long long elapsed;
1195         struct thread_data *td = data;
1196         struct thread_options *o = &td->o;
1197         pthread_condattr_t attr;
1198         int clear_state;
1199         int ret;
1200
1201         if (!o->use_thread) {
1202                 setsid();
1203                 td->pid = getpid();
1204         } else
1205                 td->pid = gettid();
1206
1207         /*
1208          * fio_time_init() may not have been called yet if running as a server
1209          */
1210         fio_time_init();
1211
1212         fio_local_clock_init(o->use_thread);
1213
1214         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1215
1216         if (is_backend)
1217                 fio_server_send_start(td);
1218
1219         INIT_FLIST_HEAD(&td->io_log_list);
1220         INIT_FLIST_HEAD(&td->io_hist_list);
1221         INIT_FLIST_HEAD(&td->verify_list);
1222         INIT_FLIST_HEAD(&td->trim_list);
1223         INIT_FLIST_HEAD(&td->next_rand_list);
1224         pthread_mutex_init(&td->io_u_lock, NULL);
1225         td->io_hist_tree = RB_ROOT;
1226
1227         pthread_condattr_init(&attr);
1228         pthread_cond_init(&td->verify_cond, &attr);
1229         pthread_cond_init(&td->free_cond, &attr);
1230
1231         td_set_runstate(td, TD_INITIALIZED);
1232         dprint(FD_MUTEX, "up startup_mutex\n");
1233         fio_mutex_up(startup_mutex);
1234         dprint(FD_MUTEX, "wait on td->mutex\n");
1235         fio_mutex_down(td->mutex);
1236         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1237
1238         /*
1239          * A new gid requires privilege, so we need to do this before setting
1240          * the uid.
1241          */
1242         if (o->gid != -1U && setgid(o->gid)) {
1243                 td_verror(td, errno, "setgid");
1244                 goto err;
1245         }
1246         if (o->uid != -1U && setuid(o->uid)) {
1247                 td_verror(td, errno, "setuid");
1248                 goto err;
1249         }
1250
1251         /*
1252          * If we have a gettimeofday() thread, make sure we exclude that
1253          * thread from this job
1254          */
1255         if (o->gtod_cpu)
1256                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1257
1258         /*
1259          * Set affinity first, in case it has an impact on the memory
1260          * allocations.
1261          */
1262         if (o->cpumask_set) {
1263                 ret = fio_setaffinity(td->pid, o->cpumask);
1264                 if (ret == -1) {
1265                         td_verror(td, errno, "cpu_set_affinity");
1266                         goto err;
1267                 }
1268         }
1269
1270 #ifdef CONFIG_LIBNUMA
1271         /* numa node setup */
1272         if (o->numa_cpumask_set || o->numa_memmask_set) {
1273                 int ret;
1274
1275                 if (numa_available() < 0) {
1276                         td_verror(td, errno, "Does not support NUMA API\n");
1277                         goto err;
1278                 }
1279
1280                 if (o->numa_cpumask_set) {
1281                         ret = numa_run_on_node_mask(o->numa_cpunodesmask);
1282                         if (ret == -1) {
1283                                 td_verror(td, errno, \
1284                                         "numa_run_on_node_mask failed\n");
1285                                 goto err;
1286                         }
1287                 }
1288
1289                 if (o->numa_memmask_set) {
1290
1291                         switch (o->numa_mem_mode) {
1292                         case MPOL_INTERLEAVE:
1293                                 numa_set_interleave_mask(o->numa_memnodesmask);
1294                                 break;
1295                         case MPOL_BIND:
1296                                 numa_set_membind(o->numa_memnodesmask);
1297                                 break;
1298                         case MPOL_LOCAL:
1299                                 numa_set_localalloc();
1300                                 break;
1301                         case MPOL_PREFERRED:
1302                                 numa_set_preferred(o->numa_mem_prefer_node);
1303                                 break;
1304                         case MPOL_DEFAULT:
1305                         default:
1306                                 break;
1307                         }
1308
1309                 }
1310         }
1311 #endif
1312
1313         if (fio_pin_memory(td))
1314                 goto err;
1315
1316         /*
1317          * May alter parameters that init_io_u() will use, so we need to
1318          * do this first.
1319          */
1320         if (init_iolog(td))
1321                 goto err;
1322
1323         if (init_io_u(td))
1324                 goto err;
1325
1326         if (o->verify_async && verify_async_init(td))
1327                 goto err;
1328
1329         if (o->ioprio) {
1330                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1331                 if (ret == -1) {
1332                         td_verror(td, errno, "ioprio_set");
1333                         goto err;
1334                 }
1335         }
1336
1337         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1338                 goto err;
1339
1340         errno = 0;
1341         if (nice(o->nice) == -1 && errno != 0) {
1342                 td_verror(td, errno, "nice");
1343                 goto err;
1344         }
1345
1346         if (o->ioscheduler && switch_ioscheduler(td))
1347                 goto err;
1348
1349         if (!o->create_serialize && setup_files(td))
1350                 goto err;
1351
1352         if (td_io_init(td))
1353                 goto err;
1354
1355         if (init_random_map(td))
1356                 goto err;
1357
1358         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1359                 goto err;
1360
1361         if (o->pre_read) {
1362                 if (pre_read_files(td) < 0)
1363                         goto err;
1364         }
1365
1366         fio_verify_init(td);
1367
1368         fio_gettime(&td->epoch, NULL);
1369         fio_getrusage(&td->ru_start);
1370         clear_state = 0;
1371         while (keep_running(td)) {
1372                 uint64_t verify_bytes;
1373
1374                 fio_gettime(&td->start, NULL);
1375                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1376                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1377                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1378
1379                 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1380                                 o->ratemin[DDIR_TRIM]) {
1381                         memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1382                                                 sizeof(td->bw_sample_time));
1383                         memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1384                                                 sizeof(td->bw_sample_time));
1385                         memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1386                                                 sizeof(td->bw_sample_time));
1387                 }
1388
1389                 if (clear_state)
1390                         clear_io_state(td);
1391
1392                 prune_io_piece_log(td);
1393
1394                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1395                         verify_bytes = do_dry_run(td);
1396                 else
1397                         verify_bytes = do_io(td);
1398
1399                 clear_state = 1;
1400
1401                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1402                         elapsed = utime_since_now(&td->start);
1403                         td->ts.runtime[DDIR_READ] += elapsed;
1404                 }
1405                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1406                         elapsed = utime_since_now(&td->start);
1407                         td->ts.runtime[DDIR_WRITE] += elapsed;
1408                 }
1409                 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1410                         elapsed = utime_since_now(&td->start);
1411                         td->ts.runtime[DDIR_TRIM] += elapsed;
1412                 }
1413
1414                 if (td->error || td->terminate)
1415                         break;
1416
1417                 if (!o->do_verify ||
1418                     o->verify == VERIFY_NONE ||
1419                     (td->io_ops->flags & FIO_UNIDIR))
1420                         continue;
1421
1422                 clear_io_state(td);
1423
1424                 fio_gettime(&td->start, NULL);
1425
1426                 do_verify(td, verify_bytes);
1427
1428                 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1429
1430                 if (td->error || td->terminate)
1431                         break;
1432         }
1433
1434         update_rusage_stat(td);
1435         td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1436         td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1437         td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1438         td->ts.total_run_time = mtime_since_now(&td->epoch);
1439         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1440         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1441         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1442
1443         fio_unpin_memory(td);
1444
1445         fio_mutex_down(writeout_mutex);
1446         if (td->bw_log) {
1447                 if (o->bw_log_file) {
1448                         finish_log_named(td, td->bw_log,
1449                                                 o->bw_log_file, "bw");
1450                 } else
1451                         finish_log(td, td->bw_log, "bw");
1452         }
1453         if (td->lat_log) {
1454                 if (o->lat_log_file) {
1455                         finish_log_named(td, td->lat_log,
1456                                                 o->lat_log_file, "lat");
1457                 } else
1458                         finish_log(td, td->lat_log, "lat");
1459         }
1460         if (td->slat_log) {
1461                 if (o->lat_log_file) {
1462                         finish_log_named(td, td->slat_log,
1463                                                 o->lat_log_file, "slat");
1464                 } else
1465                         finish_log(td, td->slat_log, "slat");
1466         }
1467         if (td->clat_log) {
1468                 if (o->lat_log_file) {
1469                         finish_log_named(td, td->clat_log,
1470                                                 o->lat_log_file, "clat");
1471                 } else
1472                         finish_log(td, td->clat_log, "clat");
1473         }
1474         if (td->iops_log) {
1475                 if (o->iops_log_file) {
1476                         finish_log_named(td, td->iops_log,
1477                                                 o->iops_log_file, "iops");
1478                 } else
1479                         finish_log(td, td->iops_log, "iops");
1480         }
1481
1482         fio_mutex_up(writeout_mutex);
1483         if (o->exec_postrun)
1484                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1485
1486         if (exitall_on_terminate)
1487                 fio_terminate_threads(td->groupid);
1488
1489 err:
1490         if (td->error)
1491                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1492                                                         td->verror);
1493
1494         if (o->verify_async)
1495                 verify_async_exit(td);
1496
1497         close_and_free_files(td);
1498         cleanup_io_u(td);
1499         close_ioengine(td);
1500         cgroup_shutdown(td, &cgroup_mnt);
1501
1502         if (o->cpumask_set) {
1503                 int ret = fio_cpuset_exit(&o->cpumask);
1504
1505                 td_verror(td, ret, "fio_cpuset_exit");
1506         }
1507
1508         /*
1509          * do this very late, it will log file closing as well
1510          */
1511         if (o->write_iolog_file)
1512                 write_iolog_close(td);
1513
1514         fio_mutex_remove(td->rusage_sem);
1515         td->rusage_sem = NULL;
1516
1517         fio_mutex_remove(td->mutex);
1518         td->mutex = NULL;
1519
1520         td_set_runstate(td, TD_EXITED);
1521         return (void *) (uintptr_t) td->error;
1522 }
1523
1524
1525 /*
1526  * We cannot pass the td data into a forked process, so attach the td and
1527  * pass it to the thread worker.
1528  */
1529 static int fork_main(int shmid, int offset)
1530 {
1531         struct thread_data *td;
1532         void *data, *ret;
1533
1534 #ifndef __hpux
1535         data = shmat(shmid, NULL, 0);
1536         if (data == (void *) -1) {
1537                 int __err = errno;
1538
1539                 perror("shmat");
1540                 return __err;
1541         }
1542 #else
1543         /*
1544          * HP-UX inherits shm mappings?
1545          */
1546         data = threads;
1547 #endif
1548
1549         td = data + offset * sizeof(struct thread_data);
1550         ret = thread_main(td);
1551         shmdt(data);
1552         return (int) (uintptr_t) ret;
1553 }
1554
1555 /*
1556  * Run over the job map and reap the threads that have exited, if any.
1557  */
1558 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1559                          unsigned int *m_rate)
1560 {
1561         struct thread_data *td;
1562         unsigned int cputhreads, realthreads, pending;
1563         int i, status, ret;
1564
1565         /*
1566          * reap exited threads (TD_EXITED -> TD_REAPED)
1567          */
1568         realthreads = pending = cputhreads = 0;
1569         for_each_td(td, i) {
1570                 int flags = 0;
1571
1572                 /*
1573                  * ->io_ops is NULL for a thread that has closed its
1574                  * io engine
1575                  */
1576                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1577                         cputhreads++;
1578                 else
1579                         realthreads++;
1580
1581                 if (!td->pid) {
1582                         pending++;
1583                         continue;
1584                 }
1585                 if (td->runstate == TD_REAPED)
1586                         continue;
1587                 if (td->o.use_thread) {
1588                         if (td->runstate == TD_EXITED) {
1589                                 td_set_runstate(td, TD_REAPED);
1590                                 goto reaped;
1591                         }
1592                         continue;
1593                 }
1594
1595                 flags = WNOHANG;
1596                 if (td->runstate == TD_EXITED)
1597                         flags = 0;
1598
1599                 /*
1600                  * check if someone quit or got killed in an unusual way
1601                  */
1602                 ret = waitpid(td->pid, &status, flags);
1603                 if (ret < 0) {
1604                         if (errno == ECHILD) {
1605                                 log_err("fio: pid=%d disappeared %d\n",
1606                                                 (int) td->pid, td->runstate);
1607                                 td->sig = ECHILD;
1608                                 td_set_runstate(td, TD_REAPED);
1609                                 goto reaped;
1610                         }
1611                         perror("waitpid");
1612                 } else if (ret == td->pid) {
1613                         if (WIFSIGNALED(status)) {
1614                                 int sig = WTERMSIG(status);
1615
1616                                 if (sig != SIGTERM && sig != SIGUSR2)
1617                                         log_err("fio: pid=%d, got signal=%d\n",
1618                                                         (int) td->pid, sig);
1619                                 td->sig = sig;
1620                                 td_set_runstate(td, TD_REAPED);
1621                                 goto reaped;
1622                         }
1623                         if (WIFEXITED(status)) {
1624                                 if (WEXITSTATUS(status) && !td->error)
1625                                         td->error = WEXITSTATUS(status);
1626
1627                                 td_set_runstate(td, TD_REAPED);
1628                                 goto reaped;
1629                         }
1630                 }
1631
1632                 /*
1633                  * thread is not dead, continue
1634                  */
1635                 pending++;
1636                 continue;
1637 reaped:
1638                 (*nr_running)--;
1639                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1640                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1641                 if (!td->pid)
1642                         pending--;
1643
1644                 if (td->error)
1645                         exit_value++;
1646
1647                 done_secs += mtime_since_now(&td->epoch) / 1000;
1648                 profile_td_exit(td);
1649         }
1650
1651         if (*nr_running == cputhreads && !pending && realthreads)
1652                 fio_terminate_threads(TERMINATE_ALL);
1653 }
1654
1655 static void do_usleep(unsigned int usecs)
1656 {
1657         check_for_running_stats();
1658         usleep(usecs);
1659 }
1660
1661 /*
1662  * Main function for kicking off and reaping jobs, as needed.
1663  */
1664 static void run_threads(void)
1665 {
1666         struct thread_data *td;
1667         unsigned long spent;
1668         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1669
1670         if (fio_gtod_offload && fio_start_gtod_thread())
1671                 return;
1672
1673         fio_idle_prof_init();
1674
1675         set_sig_handlers();
1676
1677         nr_thread = nr_process = 0;
1678         for_each_td(td, i) {
1679                 if (td->o.use_thread)
1680                         nr_thread++;
1681                 else
1682                         nr_process++;
1683         }
1684
1685         if (output_format == FIO_OUTPUT_NORMAL) {
1686                 log_info("Starting ");
1687                 if (nr_thread)
1688                         log_info("%d thread%s", nr_thread,
1689                                                 nr_thread > 1 ? "s" : "");
1690                 if (nr_process) {
1691                         if (nr_thread)
1692                                 log_info(" and ");
1693                         log_info("%d process%s", nr_process,
1694                                                 nr_process > 1 ? "es" : "");
1695                 }
1696                 log_info("\n");
1697                 fflush(stdout);
1698         }
1699
1700         todo = thread_number;
1701         nr_running = 0;
1702         nr_started = 0;
1703         m_rate = t_rate = 0;
1704
1705         for_each_td(td, i) {
1706                 print_status_init(td->thread_number - 1);
1707
1708                 if (!td->o.create_serialize)
1709                         continue;
1710
1711                 /*
1712                  * do file setup here so it happens sequentially,
1713                  * we don't want X number of threads getting their
1714                  * client data interspersed on disk
1715                  */
1716                 if (setup_files(td)) {
1717                         exit_value++;
1718                         if (td->error)
1719                                 log_err("fio: pid=%d, err=%d/%s\n",
1720                                         (int) td->pid, td->error, td->verror);
1721                         td_set_runstate(td, TD_REAPED);
1722                         todo--;
1723                 } else {
1724                         struct fio_file *f;
1725                         unsigned int j;
1726
1727                         /*
1728                          * for sharing to work, each job must always open
1729                          * its own files. so close them, if we opened them
1730                          * for creation
1731                          */
1732                         for_each_file(td, f, j) {
1733                                 if (fio_file_open(f))
1734                                         td_io_close_file(td, f);
1735                         }
1736                 }
1737         }
1738
1739         /* start idle threads before io threads start to run */
1740         fio_idle_prof_start();
1741
1742         set_genesis_time();
1743
1744         while (todo) {
1745                 struct thread_data *map[REAL_MAX_JOBS];
1746                 struct timeval this_start;
1747                 int this_jobs = 0, left;
1748
1749                 /*
1750                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1751                  */
1752                 for_each_td(td, i) {
1753                         if (td->runstate != TD_NOT_CREATED)
1754                                 continue;
1755
1756                         /*
1757                          * never got a chance to start, killed by other
1758                          * thread for some reason
1759                          */
1760                         if (td->terminate) {
1761                                 todo--;
1762                                 continue;
1763                         }
1764
1765                         if (td->o.start_delay) {
1766                                 spent = mtime_since_genesis();
1767
1768                                 if (td->o.start_delay * 1000 > spent)
1769                                         continue;
1770                         }
1771
1772                         if (td->o.stonewall && (nr_started || nr_running)) {
1773                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1774                                                         td->o.name);
1775                                 break;
1776                         }
1777
1778                         init_disk_util(td);
1779
1780                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1781                         td->update_rusage = 0;
1782
1783                         /*
1784                          * Set state to created. Thread will transition
1785                          * to TD_INITIALIZED when it's done setting up.
1786                          */
1787                         td_set_runstate(td, TD_CREATED);
1788                         map[this_jobs++] = td;
1789                         nr_started++;
1790
1791                         if (td->o.use_thread) {
1792                                 int ret;
1793
1794                                 dprint(FD_PROCESS, "will pthread_create\n");
1795                                 ret = pthread_create(&td->thread, NULL,
1796                                                         thread_main, td);
1797                                 if (ret) {
1798                                         log_err("pthread_create: %s\n",
1799                                                         strerror(ret));
1800                                         nr_started--;
1801                                         break;
1802                                 }
1803                                 ret = pthread_detach(td->thread);
1804                                 if (ret)
1805                                         log_err("pthread_detach: %s",
1806                                                         strerror(ret));
1807                         } else {
1808                                 pid_t pid;
1809                                 dprint(FD_PROCESS, "will fork\n");
1810                                 pid = fork();
1811                                 if (!pid) {
1812                                         int ret = fork_main(shm_id, i);
1813
1814                                         _exit(ret);
1815                                 } else if (i == fio_debug_jobno)
1816                                         *fio_debug_jobp = pid;
1817                         }
1818                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1819                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
1820                                 log_err("fio: job startup hung? exiting.\n");
1821                                 fio_terminate_threads(TERMINATE_ALL);
1822                                 fio_abort = 1;
1823                                 nr_started--;
1824                                 break;
1825                         }
1826                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1827                 }
1828
1829                 /*
1830                  * Wait for the started threads to transition to
1831                  * TD_INITIALIZED.
1832                  */
1833                 fio_gettime(&this_start, NULL);
1834                 left = this_jobs;
1835                 while (left && !fio_abort) {
1836                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1837                                 break;
1838
1839                         do_usleep(100000);
1840
1841                         for (i = 0; i < this_jobs; i++) {
1842                                 td = map[i];
1843                                 if (!td)
1844                                         continue;
1845                                 if (td->runstate == TD_INITIALIZED) {
1846                                         map[i] = NULL;
1847                                         left--;
1848                                 } else if (td->runstate >= TD_EXITED) {
1849                                         map[i] = NULL;
1850                                         left--;
1851                                         todo--;
1852                                         nr_running++; /* work-around... */
1853                                 }
1854                         }
1855                 }
1856
1857                 if (left) {
1858                         log_err("fio: %d job%s failed to start\n", left,
1859                                         left > 1 ? "s" : "");
1860                         for (i = 0; i < this_jobs; i++) {
1861                                 td = map[i];
1862                                 if (!td)
1863                                         continue;
1864                                 kill(td->pid, SIGTERM);
1865                         }
1866                         break;
1867                 }
1868
1869                 /*
1870                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1871                  */
1872                 for_each_td(td, i) {
1873                         if (td->runstate != TD_INITIALIZED)
1874                                 continue;
1875
1876                         if (in_ramp_time(td))
1877                                 td_set_runstate(td, TD_RAMP);
1878                         else
1879                                 td_set_runstate(td, TD_RUNNING);
1880                         nr_running++;
1881                         nr_started--;
1882                         m_rate += ddir_rw_sum(td->o.ratemin);
1883                         t_rate += ddir_rw_sum(td->o.rate);
1884                         todo--;
1885                         fio_mutex_up(td->mutex);
1886                 }
1887
1888                 reap_threads(&nr_running, &t_rate, &m_rate);
1889
1890                 if (todo)
1891                         do_usleep(100000);
1892         }
1893
1894         while (nr_running) {
1895                 reap_threads(&nr_running, &t_rate, &m_rate);
1896                 do_usleep(10000);
1897         }
1898
1899         fio_idle_prof_stop();
1900
1901         update_io_ticks();
1902 }
1903
1904 void wait_for_disk_thread_exit(void)
1905 {
1906         fio_mutex_down(disk_thread_mutex);
1907 }
1908
1909 static void free_disk_util(void)
1910 {
1911         disk_util_start_exit();
1912         wait_for_disk_thread_exit();
1913         disk_util_prune_entries();
1914 }
1915
1916 static void *disk_thread_main(void *data)
1917 {
1918         int ret = 0;
1919
1920         fio_mutex_up(startup_mutex);
1921
1922         while (threads && !ret) {
1923                 usleep(DISK_UTIL_MSEC * 1000);
1924                 if (!threads)
1925                         break;
1926                 ret = update_io_ticks();
1927
1928                 if (!is_backend)
1929                         print_thread_status();
1930         }
1931
1932         fio_mutex_up(disk_thread_mutex);
1933         return NULL;
1934 }
1935
1936 static int create_disk_util_thread(void)
1937 {
1938         int ret;
1939
1940         setup_disk_util();
1941
1942         disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1943
1944         ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1945         if (ret) {
1946                 fio_mutex_remove(disk_thread_mutex);
1947                 log_err("Can't create disk util thread: %s\n", strerror(ret));
1948                 return 1;
1949         }
1950
1951         ret = pthread_detach(disk_util_thread);
1952         if (ret) {
1953                 fio_mutex_remove(disk_thread_mutex);
1954                 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1955                 return 1;
1956         }
1957
1958         dprint(FD_MUTEX, "wait on startup_mutex\n");
1959         fio_mutex_down(startup_mutex);
1960         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1961         return 0;
1962 }
1963
1964 int fio_backend(void)
1965 {
1966         struct thread_data *td;
1967         int i;
1968
1969         if (exec_profile) {
1970                 if (load_profile(exec_profile))
1971                         return 1;
1972                 free(exec_profile);
1973                 exec_profile = NULL;
1974         }
1975         if (!thread_number)
1976                 return 0;
1977
1978         if (write_bw_log) {
1979                 setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
1980                 setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
1981                 setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
1982         }
1983
1984         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1985         if (startup_mutex == NULL)
1986                 return 1;
1987         writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
1988         if (writeout_mutex == NULL)
1989                 return 1;
1990
1991         set_genesis_time();
1992         stat_init();
1993         create_disk_util_thread();
1994
1995         cgroup_list = smalloc(sizeof(*cgroup_list));
1996         INIT_FLIST_HEAD(cgroup_list);
1997
1998         run_threads();
1999
2000         if (!fio_abort) {
2001                 show_run_stats();
2002                 if (write_bw_log) {
2003                         __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
2004                         __finish_log(agg_io_log[DDIR_WRITE],
2005                                         "agg-write_bw.log");
2006                         __finish_log(agg_io_log[DDIR_TRIM],
2007                                         "agg-write_bw.log");
2008                 }
2009         }
2010
2011         for_each_td(td, i)
2012                 fio_options_free(td);
2013
2014         free_disk_util();
2015         cgroup_kill(cgroup_list);
2016         sfree(cgroup_list);
2017         sfree(cgroup_mnt);
2018
2019         fio_mutex_remove(startup_mutex);
2020         fio_mutex_remove(writeout_mutex);
2021         fio_mutex_remove(disk_thread_mutex);
2022         stat_exit();
2023         return exit_value;
2024 }