iolog: fix bug with ret != Z_STREAM_END
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "workqueue.h"
58 #include "lib/mountcheck.h"
59 #include "rate-submit.h"
60 #include "helper_thread.h"
61
62 static struct fio_mutex *startup_mutex;
63 static struct flist_head *cgroup_list;
64 static char *cgroup_mnt;
65 static int exit_value;
66 static volatile int fio_abort;
67 static unsigned int nr_process = 0;
68 static unsigned int nr_thread = 0;
69
70 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72 int groupid = 0;
73 unsigned int thread_number = 0;
74 unsigned int stat_number = 0;
75 int shm_id = 0;
76 int temp_stall_ts;
77 unsigned long done_secs = 0;
78
79 #define PAGE_ALIGN(buf) \
80         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
81
82 #define JOB_START_TIMEOUT       (5 * 1000)
83
84 static void sig_int(int sig)
85 {
86         if (threads) {
87                 if (is_backend)
88                         fio_server_got_signal(sig);
89                 else {
90                         log_info("\nfio: terminating on signal %d\n", sig);
91                         log_info_flush();
92                         exit_value = 128;
93                 }
94
95                 fio_terminate_threads(TERMINATE_ALL);
96         }
97 }
98
99 void sig_show_status(int sig)
100 {
101         show_running_run_stats();
102 }
103
104 static void set_sig_handlers(void)
105 {
106         struct sigaction act;
107
108         memset(&act, 0, sizeof(act));
109         act.sa_handler = sig_int;
110         act.sa_flags = SA_RESTART;
111         sigaction(SIGINT, &act, NULL);
112
113         memset(&act, 0, sizeof(act));
114         act.sa_handler = sig_int;
115         act.sa_flags = SA_RESTART;
116         sigaction(SIGTERM, &act, NULL);
117
118 /* Windows uses SIGBREAK as a quit signal from other applications */
119 #ifdef WIN32
120         memset(&act, 0, sizeof(act));
121         act.sa_handler = sig_int;
122         act.sa_flags = SA_RESTART;
123         sigaction(SIGBREAK, &act, NULL);
124 #endif
125
126         memset(&act, 0, sizeof(act));
127         act.sa_handler = sig_show_status;
128         act.sa_flags = SA_RESTART;
129         sigaction(SIGUSR1, &act, NULL);
130
131         if (is_backend) {
132                 memset(&act, 0, sizeof(act));
133                 act.sa_handler = sig_int;
134                 act.sa_flags = SA_RESTART;
135                 sigaction(SIGPIPE, &act, NULL);
136         }
137 }
138
139 /*
140  * Check if we are above the minimum rate given.
141  */
142 static bool __check_min_rate(struct thread_data *td, struct timeval *now,
143                              enum fio_ddir ddir)
144 {
145         unsigned long long bytes = 0;
146         unsigned long iops = 0;
147         unsigned long spent;
148         unsigned long rate;
149         unsigned int ratemin = 0;
150         unsigned int rate_iops = 0;
151         unsigned int rate_iops_min = 0;
152
153         assert(ddir_rw(ddir));
154
155         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
156                 return false;
157
158         /*
159          * allow a 2 second settle period in the beginning
160          */
161         if (mtime_since(&td->start, now) < 2000)
162                 return false;
163
164         iops += td->this_io_blocks[ddir];
165         bytes += td->this_io_bytes[ddir];
166         ratemin += td->o.ratemin[ddir];
167         rate_iops += td->o.rate_iops[ddir];
168         rate_iops_min += td->o.rate_iops_min[ddir];
169
170         /*
171          * if rate blocks is set, sample is running
172          */
173         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
174                 spent = mtime_since(&td->lastrate[ddir], now);
175                 if (spent < td->o.ratecycle)
176                         return false;
177
178                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
179                         /*
180                          * check bandwidth specified rate
181                          */
182                         if (bytes < td->rate_bytes[ddir]) {
183                                 log_err("%s: min rate %u not met\n", td->o.name,
184                                                                 ratemin);
185                                 return true;
186                         } else {
187                                 if (spent)
188                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
189                                 else
190                                         rate = 0;
191
192                                 if (rate < ratemin ||
193                                     bytes < td->rate_bytes[ddir]) {
194                                         log_err("%s: min rate %u not met, got"
195                                                 " %luKB/sec\n", td->o.name,
196                                                         ratemin, rate);
197                                         return true;
198                                 }
199                         }
200                 } else {
201                         /*
202                          * checks iops specified rate
203                          */
204                         if (iops < rate_iops) {
205                                 log_err("%s: min iops rate %u not met\n",
206                                                 td->o.name, rate_iops);
207                                 return true;
208                         } else {
209                                 if (spent)
210                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
211                                 else
212                                         rate = 0;
213
214                                 if (rate < rate_iops_min ||
215                                     iops < td->rate_blocks[ddir]) {
216                                         log_err("%s: min iops rate %u not met,"
217                                                 " got %lu\n", td->o.name,
218                                                         rate_iops_min, rate);
219                                         return true;
220                                 }
221                         }
222                 }
223         }
224
225         td->rate_bytes[ddir] = bytes;
226         td->rate_blocks[ddir] = iops;
227         memcpy(&td->lastrate[ddir], now, sizeof(*now));
228         return false;
229 }
230
231 static bool check_min_rate(struct thread_data *td, struct timeval *now)
232 {
233         bool ret = false;
234
235         if (td->bytes_done[DDIR_READ])
236                 ret |= __check_min_rate(td, now, DDIR_READ);
237         if (td->bytes_done[DDIR_WRITE])
238                 ret |= __check_min_rate(td, now, DDIR_WRITE);
239         if (td->bytes_done[DDIR_TRIM])
240                 ret |= __check_min_rate(td, now, DDIR_TRIM);
241
242         return ret;
243 }
244
245 /*
246  * When job exits, we can cancel the in-flight IO if we are using async
247  * io. Attempt to do so.
248  */
249 static void cleanup_pending_aio(struct thread_data *td)
250 {
251         int r;
252
253         /*
254          * get immediately available events, if any
255          */
256         r = io_u_queued_complete(td, 0);
257         if (r < 0)
258                 return;
259
260         /*
261          * now cancel remaining active events
262          */
263         if (td->io_ops->cancel) {
264                 struct io_u *io_u;
265                 int i;
266
267                 io_u_qiter(&td->io_u_all, io_u, i) {
268                         if (io_u->flags & IO_U_F_FLIGHT) {
269                                 r = td->io_ops->cancel(td, io_u);
270                                 if (!r)
271                                         put_io_u(td, io_u);
272                         }
273                 }
274         }
275
276         if (td->cur_depth)
277                 r = io_u_queued_complete(td, td->cur_depth);
278 }
279
280 /*
281  * Helper to handle the final sync of a file. Works just like the normal
282  * io path, just does everything sync.
283  */
284 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
285 {
286         struct io_u *io_u = __get_io_u(td);
287         int ret;
288
289         if (!io_u)
290                 return true;
291
292         io_u->ddir = DDIR_SYNC;
293         io_u->file = f;
294
295         if (td_io_prep(td, io_u)) {
296                 put_io_u(td, io_u);
297                 return true;
298         }
299
300 requeue:
301         ret = td_io_queue(td, io_u);
302         if (ret < 0) {
303                 td_verror(td, io_u->error, "td_io_queue");
304                 put_io_u(td, io_u);
305                 return true;
306         } else if (ret == FIO_Q_QUEUED) {
307                 if (td_io_commit(td))
308                         return true;
309                 if (io_u_queued_complete(td, 1) < 0)
310                         return true;
311         } else if (ret == FIO_Q_COMPLETED) {
312                 if (io_u->error) {
313                         td_verror(td, io_u->error, "td_io_queue");
314                         return true;
315                 }
316
317                 if (io_u_sync_complete(td, io_u) < 0)
318                         return true;
319         } else if (ret == FIO_Q_BUSY) {
320                 if (td_io_commit(td))
321                         return true;
322                 goto requeue;
323         }
324
325         return false;
326 }
327
328 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329 {
330         int ret;
331
332         if (fio_file_open(f))
333                 return fio_io_sync(td, f);
334
335         if (td_io_open_file(td, f))
336                 return 1;
337
338         ret = fio_io_sync(td, f);
339         td_io_close_file(td, f);
340         return ret;
341 }
342
343 static inline void __update_tv_cache(struct thread_data *td)
344 {
345         fio_gettime(&td->tv_cache, NULL);
346 }
347
348 static inline void update_tv_cache(struct thread_data *td)
349 {
350         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351                 __update_tv_cache(td);
352 }
353
354 static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
355 {
356         if (in_ramp_time(td))
357                 return false;
358         if (!td->o.timeout)
359                 return false;
360         if (utime_since(&td->epoch, t) >= td->o.timeout)
361                 return true;
362
363         return false;
364 }
365
366 /*
367  * We need to update the runtime consistently in ms, but keep a running
368  * tally of the current elapsed time in microseconds for sub millisecond
369  * updates.
370  */
371 static inline void update_runtime(struct thread_data *td,
372                                   unsigned long long *elapsed_us,
373                                   const enum fio_ddir ddir)
374 {
375         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
376                 return;
377
378         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
379         elapsed_us[ddir] += utime_since_now(&td->start);
380         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
381 }
382
383 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
384                                 int *retptr)
385 {
386         int ret = *retptr;
387
388         if (ret < 0 || td->error) {
389                 int err = td->error;
390                 enum error_type_bit eb;
391
392                 if (ret < 0)
393                         err = -ret;
394
395                 eb = td_error_type(ddir, err);
396                 if (!(td->o.continue_on_error & (1 << eb)))
397                         return true;
398
399                 if (td_non_fatal_error(td, eb, err)) {
400                         /*
401                          * Continue with the I/Os in case of
402                          * a non fatal error.
403                          */
404                         update_error_count(td, err);
405                         td_clear_error(td);
406                         *retptr = 0;
407                         return false;
408                 } else if (td->o.fill_device && err == ENOSPC) {
409                         /*
410                          * We expect to hit this error if
411                          * fill_device option is set.
412                          */
413                         td_clear_error(td);
414                         fio_mark_td_terminate(td);
415                         return true;
416                 } else {
417                         /*
418                          * Stop the I/O in case of a fatal
419                          * error.
420                          */
421                         update_error_count(td, err);
422                         return true;
423                 }
424         }
425
426         return false;
427 }
428
429 static void check_update_rusage(struct thread_data *td)
430 {
431         if (td->update_rusage) {
432                 td->update_rusage = 0;
433                 update_rusage_stat(td);
434                 fio_mutex_up(td->rusage_sem);
435         }
436 }
437
438 static int wait_for_completions(struct thread_data *td, struct timeval *time)
439 {
440         const int full = queue_full(td);
441         int min_evts = 0;
442         int ret;
443
444         /*
445          * if the queue is full, we MUST reap at least 1 event
446          */
447         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
448         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
449                 min_evts = 1;
450
451         if (time && (__should_check_rate(td, DDIR_READ) ||
452             __should_check_rate(td, DDIR_WRITE) ||
453             __should_check_rate(td, DDIR_TRIM)))
454                 fio_gettime(time, NULL);
455
456         do {
457                 ret = io_u_queued_complete(td, min_evts);
458                 if (ret < 0)
459                         break;
460         } while (full && (td->cur_depth > td->o.iodepth_low));
461
462         return ret;
463 }
464
465 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
466                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
467                    struct timeval *comp_time)
468 {
469         int ret2;
470
471         switch (*ret) {
472         case FIO_Q_COMPLETED:
473                 if (io_u->error) {
474                         *ret = -io_u->error;
475                         clear_io_u(td, io_u);
476                 } else if (io_u->resid) {
477                         int bytes = io_u->xfer_buflen - io_u->resid;
478                         struct fio_file *f = io_u->file;
479
480                         if (bytes_issued)
481                                 *bytes_issued += bytes;
482
483                         if (!from_verify)
484                                 trim_io_piece(td, io_u);
485
486                         /*
487                          * zero read, fail
488                          */
489                         if (!bytes) {
490                                 if (!from_verify)
491                                         unlog_io_piece(td, io_u);
492                                 td_verror(td, EIO, "full resid");
493                                 put_io_u(td, io_u);
494                                 break;
495                         }
496
497                         io_u->xfer_buflen = io_u->resid;
498                         io_u->xfer_buf += bytes;
499                         io_u->offset += bytes;
500
501                         if (ddir_rw(io_u->ddir))
502                                 td->ts.short_io_u[io_u->ddir]++;
503
504                         f = io_u->file;
505                         if (io_u->offset == f->real_file_size)
506                                 goto sync_done;
507
508                         requeue_io_u(td, &io_u);
509                 } else {
510 sync_done:
511                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
512                             __should_check_rate(td, DDIR_WRITE) ||
513                             __should_check_rate(td, DDIR_TRIM)))
514                                 fio_gettime(comp_time, NULL);
515
516                         *ret = io_u_sync_complete(td, io_u);
517                         if (*ret < 0)
518                                 break;
519                 }
520
521                 /*
522                  * when doing I/O (not when verifying),
523                  * check for any errors that are to be ignored
524                  */
525                 if (!from_verify)
526                         break;
527
528                 return 0;
529         case FIO_Q_QUEUED:
530                 /*
531                  * if the engine doesn't have a commit hook,
532                  * the io_u is really queued. if it does have such
533                  * a hook, it has to call io_u_queued() itself.
534                  */
535                 if (td->io_ops->commit == NULL)
536                         io_u_queued(td, io_u);
537                 if (bytes_issued)
538                         *bytes_issued += io_u->xfer_buflen;
539                 break;
540         case FIO_Q_BUSY:
541                 if (!from_verify)
542                         unlog_io_piece(td, io_u);
543                 requeue_io_u(td, &io_u);
544                 ret2 = td_io_commit(td);
545                 if (ret2 < 0)
546                         *ret = ret2;
547                 break;
548         default:
549                 assert(*ret < 0);
550                 td_verror(td, -(*ret), "td_io_queue");
551                 break;
552         }
553
554         if (break_on_this_error(td, ddir, ret))
555                 return 1;
556
557         return 0;
558 }
559
560 static inline bool io_in_polling(struct thread_data *td)
561 {
562         return !td->o.iodepth_batch_complete_min &&
563                    !td->o.iodepth_batch_complete_max;
564 }
565
566 /*
567  * The main verify engine. Runs over the writes we previously submitted,
568  * reads the blocks back in, and checks the crc/md5 of the data.
569  */
570 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
571 {
572         struct fio_file *f;
573         struct io_u *io_u;
574         int ret, min_events;
575         unsigned int i;
576
577         dprint(FD_VERIFY, "starting loop\n");
578
579         /*
580          * sync io first and invalidate cache, to make sure we really
581          * read from disk.
582          */
583         for_each_file(td, f, i) {
584                 if (!fio_file_open(f))
585                         continue;
586                 if (fio_io_sync(td, f))
587                         break;
588                 if (file_invalidate_cache(td, f))
589                         break;
590         }
591
592         check_update_rusage(td);
593
594         if (td->error)
595                 return;
596
597         td_set_runstate(td, TD_VERIFYING);
598
599         io_u = NULL;
600         while (!td->terminate) {
601                 enum fio_ddir ddir;
602                 int full;
603
604                 update_tv_cache(td);
605                 check_update_rusage(td);
606
607                 if (runtime_exceeded(td, &td->tv_cache)) {
608                         __update_tv_cache(td);
609                         if (runtime_exceeded(td, &td->tv_cache)) {
610                                 fio_mark_td_terminate(td);
611                                 break;
612                         }
613                 }
614
615                 if (flow_threshold_exceeded(td))
616                         continue;
617
618                 if (!td->o.experimental_verify) {
619                         io_u = __get_io_u(td);
620                         if (!io_u)
621                                 break;
622
623                         if (get_next_verify(td, io_u)) {
624                                 put_io_u(td, io_u);
625                                 break;
626                         }
627
628                         if (td_io_prep(td, io_u)) {
629                                 put_io_u(td, io_u);
630                                 break;
631                         }
632                 } else {
633                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
634                                 break;
635
636                         while ((io_u = get_io_u(td)) != NULL) {
637                                 if (IS_ERR(io_u)) {
638                                         io_u = NULL;
639                                         ret = FIO_Q_BUSY;
640                                         goto reap;
641                                 }
642
643                                 /*
644                                  * We are only interested in the places where
645                                  * we wrote or trimmed IOs. Turn those into
646                                  * reads for verification purposes.
647                                  */
648                                 if (io_u->ddir == DDIR_READ) {
649                                         /*
650                                          * Pretend we issued it for rwmix
651                                          * accounting
652                                          */
653                                         td->io_issues[DDIR_READ]++;
654                                         put_io_u(td, io_u);
655                                         continue;
656                                 } else if (io_u->ddir == DDIR_TRIM) {
657                                         io_u->ddir = DDIR_READ;
658                                         io_u_set(io_u, IO_U_F_TRIMMED);
659                                         break;
660                                 } else if (io_u->ddir == DDIR_WRITE) {
661                                         io_u->ddir = DDIR_READ;
662                                         break;
663                                 } else {
664                                         put_io_u(td, io_u);
665                                         continue;
666                                 }
667                         }
668
669                         if (!io_u)
670                                 break;
671                 }
672
673                 if (verify_state_should_stop(td, io_u)) {
674                         put_io_u(td, io_u);
675                         break;
676                 }
677
678                 if (td->o.verify_async)
679                         io_u->end_io = verify_io_u_async;
680                 else
681                         io_u->end_io = verify_io_u;
682
683                 ddir = io_u->ddir;
684                 if (!td->o.disable_slat)
685                         fio_gettime(&io_u->start_time, NULL);
686
687                 ret = td_io_queue(td, io_u);
688
689                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
690                         break;
691
692                 /*
693                  * if we can queue more, do so. but check if there are
694                  * completed io_u's first. Note that we can get BUSY even
695                  * without IO queued, if the system is resource starved.
696                  */
697 reap:
698                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
699                 if (full || io_in_polling(td))
700                         ret = wait_for_completions(td, NULL);
701
702                 if (ret < 0)
703                         break;
704         }
705
706         check_update_rusage(td);
707
708         if (!td->error) {
709                 min_events = td->cur_depth;
710
711                 if (min_events)
712                         ret = io_u_queued_complete(td, min_events);
713         } else
714                 cleanup_pending_aio(td);
715
716         td_set_runstate(td, TD_RUNNING);
717
718         dprint(FD_VERIFY, "exiting loop\n");
719 }
720
721 static bool exceeds_number_ios(struct thread_data *td)
722 {
723         unsigned long long number_ios;
724
725         if (!td->o.number_ios)
726                 return false;
727
728         number_ios = ddir_rw_sum(td->io_blocks);
729         number_ios += td->io_u_queued + td->io_u_in_flight;
730
731         return number_ios >= (td->o.number_ios * td->loops);
732 }
733
734 static bool io_issue_bytes_exceeded(struct thread_data *td)
735 {
736         unsigned long long bytes, limit;
737
738         if (td_rw(td))
739                 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
740         else if (td_write(td))
741                 bytes = td->io_issue_bytes[DDIR_WRITE];
742         else if (td_read(td))
743                 bytes = td->io_issue_bytes[DDIR_READ];
744         else
745                 bytes = td->io_issue_bytes[DDIR_TRIM];
746
747         if (td->o.io_limit)
748                 limit = td->o.io_limit;
749         else
750                 limit = td->o.size;
751
752         limit *= td->loops;
753         return bytes >= limit || exceeds_number_ios(td);
754 }
755
756 static bool io_complete_bytes_exceeded(struct thread_data *td)
757 {
758         unsigned long long bytes, limit;
759
760         if (td_rw(td))
761                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
762         else if (td_write(td))
763                 bytes = td->this_io_bytes[DDIR_WRITE];
764         else if (td_read(td))
765                 bytes = td->this_io_bytes[DDIR_READ];
766         else
767                 bytes = td->this_io_bytes[DDIR_TRIM];
768
769         if (td->o.io_limit)
770                 limit = td->o.io_limit;
771         else
772                 limit = td->o.size;
773
774         limit *= td->loops;
775         return bytes >= limit || exceeds_number_ios(td);
776 }
777
778 /*
779  * used to calculate the next io time for rate control
780  *
781  */
782 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
783 {
784         uint64_t secs, remainder, bps, bytes, iops;
785
786         assert(!(td->flags & TD_F_CHILD));
787         bytes = td->rate_io_issue_bytes[ddir];
788         bps = td->rate_bps[ddir];
789
790         if (td->o.rate_process == RATE_PROCESS_POISSON) {
791                 uint64_t val;
792                 iops = bps / td->o.bs[ddir];
793                 val = (int64_t) (1000000 / iops) *
794                                 -logf(__rand_0_1(&td->poisson_state));
795                 if (val) {
796                         dprint(FD_RATE, "poisson rate iops=%llu\n",
797                                         (unsigned long long) 1000000 / val);
798                 }
799                 td->last_usec += val;
800                 return td->last_usec;
801         } else if (bps) {
802                 secs = bytes / bps;
803                 remainder = bytes % bps;
804                 return remainder * 1000000 / bps + secs * 1000000;
805         }
806
807         return 0;
808 }
809
810 /*
811  * Main IO worker function. It retrieves io_u's to process and queues
812  * and reaps them, checking for rate and errors along the way.
813  *
814  * Returns number of bytes written and trimmed.
815  */
816 static void do_io(struct thread_data *td, uint64_t *bytes_done)
817 {
818         unsigned int i;
819         int ret = 0;
820         uint64_t total_bytes, bytes_issued = 0;
821
822         for (i = 0; i < DDIR_RWDIR_CNT; i++)
823                 bytes_done[i] = td->bytes_done[i];
824
825         if (in_ramp_time(td))
826                 td_set_runstate(td, TD_RAMP);
827         else
828                 td_set_runstate(td, TD_RUNNING);
829
830         lat_target_init(td);
831
832         total_bytes = td->o.size;
833         /*
834         * Allow random overwrite workloads to write up to io_limit
835         * before starting verification phase as 'size' doesn't apply.
836         */
837         if (td_write(td) && td_random(td) && td->o.norandommap)
838                 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
839         /*
840          * If verify_backlog is enabled, we'll run the verify in this
841          * handler as well. For that case, we may need up to twice the
842          * amount of bytes.
843          */
844         if (td->o.verify != VERIFY_NONE &&
845            (td_write(td) && td->o.verify_backlog))
846                 total_bytes += td->o.size;
847
848         /* In trimwrite mode, each byte is trimmed and then written, so
849          * allow total_bytes to be twice as big */
850         if (td_trimwrite(td))
851                 total_bytes += td->total_io_size;
852
853         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
854                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
855                 td->o.time_based) {
856                 struct timeval comp_time;
857                 struct io_u *io_u;
858                 int full;
859                 enum fio_ddir ddir;
860
861                 check_update_rusage(td);
862
863                 if (td->terminate || td->done)
864                         break;
865
866                 update_tv_cache(td);
867
868                 if (runtime_exceeded(td, &td->tv_cache)) {
869                         __update_tv_cache(td);
870                         if (runtime_exceeded(td, &td->tv_cache)) {
871                                 fio_mark_td_terminate(td);
872                                 break;
873                         }
874                 }
875
876                 if (flow_threshold_exceeded(td))
877                         continue;
878
879                 /*
880                  * Break if we exceeded the bytes. The exception is time
881                  * based runs, but we still need to break out of the loop
882                  * for those to run verification, if enabled.
883                  */
884                 if (bytes_issued >= total_bytes &&
885                     (!td->o.time_based ||
886                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
887                         break;
888
889                 io_u = get_io_u(td);
890                 if (IS_ERR_OR_NULL(io_u)) {
891                         int err = PTR_ERR(io_u);
892
893                         io_u = NULL;
894                         if (err == -EBUSY) {
895                                 ret = FIO_Q_BUSY;
896                                 goto reap;
897                         }
898                         if (td->o.latency_target)
899                                 goto reap;
900                         break;
901                 }
902
903                 ddir = io_u->ddir;
904
905                 /*
906                  * Add verification end_io handler if:
907                  *      - Asked to verify (!td_rw(td))
908                  *      - Or the io_u is from our verify list (mixed write/ver)
909                  */
910                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
911                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
912
913                         if (!td->o.verify_pattern_bytes) {
914                                 io_u->rand_seed = __rand(&td->verify_state);
915                                 if (sizeof(int) != sizeof(long *))
916                                         io_u->rand_seed *= __rand(&td->verify_state);
917                         }
918
919                         if (verify_state_should_stop(td, io_u)) {
920                                 put_io_u(td, io_u);
921                                 break;
922                         }
923
924                         if (td->o.verify_async)
925                                 io_u->end_io = verify_io_u_async;
926                         else
927                                 io_u->end_io = verify_io_u;
928                         td_set_runstate(td, TD_VERIFYING);
929                 } else if (in_ramp_time(td))
930                         td_set_runstate(td, TD_RAMP);
931                 else
932                         td_set_runstate(td, TD_RUNNING);
933
934                 /*
935                  * Always log IO before it's issued, so we know the specific
936                  * order of it. The logged unit will track when the IO has
937                  * completed.
938                  */
939                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
940                     td->o.do_verify &&
941                     td->o.verify != VERIFY_NONE &&
942                     !td->o.experimental_verify)
943                         log_io_piece(td, io_u);
944
945                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
946                         const unsigned long blen = io_u->xfer_buflen;
947                         const enum fio_ddir ddir = acct_ddir(io_u);
948
949                         if (td->error)
950                                 break;
951
952                         workqueue_enqueue(&td->io_wq, &io_u->work);
953                         ret = FIO_Q_QUEUED;
954
955                         if (ddir_rw(ddir)) {
956                                 td->io_issues[ddir]++;
957                                 td->io_issue_bytes[ddir] += blen;
958                                 td->rate_io_issue_bytes[ddir] += blen;
959                         }
960
961                         if (should_check_rate(td))
962                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
963
964                 } else {
965                         ret = td_io_queue(td, io_u);
966
967                         if (should_check_rate(td))
968                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
969
970                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
971                                 break;
972
973                         /*
974                          * See if we need to complete some commands. Note that
975                          * we can get BUSY even without IO queued, if the
976                          * system is resource starved.
977                          */
978 reap:
979                         full = queue_full(td) ||
980                                 (ret == FIO_Q_BUSY && td->cur_depth);
981                         if (full || io_in_polling(td))
982                                 ret = wait_for_completions(td, &comp_time);
983                 }
984                 if (ret < 0)
985                         break;
986                 if (!ddir_rw_sum(td->bytes_done) &&
987                     !(td->io_ops->flags & FIO_NOIO))
988                         continue;
989
990                 if (!in_ramp_time(td) && should_check_rate(td)) {
991                         if (check_min_rate(td, &comp_time)) {
992                                 if (exitall_on_terminate || td->o.exitall_error)
993                                         fio_terminate_threads(td->groupid);
994                                 td_verror(td, EIO, "check_min_rate");
995                                 break;
996                         }
997                 }
998                 if (!in_ramp_time(td) && td->o.latency_target)
999                         lat_target_check(td);
1000
1001                 if (td->o.thinktime) {
1002                         unsigned long long b;
1003
1004                         b = ddir_rw_sum(td->io_blocks);
1005                         if (!(b % td->o.thinktime_blocks)) {
1006                                 int left;
1007
1008                                 io_u_quiesce(td);
1009
1010                                 if (td->o.thinktime_spin)
1011                                         usec_spin(td->o.thinktime_spin);
1012
1013                                 left = td->o.thinktime - td->o.thinktime_spin;
1014                                 if (left)
1015                                         usec_sleep(td, left);
1016                         }
1017                 }
1018         }
1019
1020         check_update_rusage(td);
1021
1022         if (td->trim_entries)
1023                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1024
1025         if (td->o.fill_device && td->error == ENOSPC) {
1026                 td->error = 0;
1027                 fio_mark_td_terminate(td);
1028         }
1029         if (!td->error) {
1030                 struct fio_file *f;
1031
1032                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1033                         workqueue_flush(&td->io_wq);
1034                         i = 0;
1035                 } else
1036                         i = td->cur_depth;
1037
1038                 if (i) {
1039                         ret = io_u_queued_complete(td, i);
1040                         if (td->o.fill_device && td->error == ENOSPC)
1041                                 td->error = 0;
1042                 }
1043
1044                 if (should_fsync(td) && td->o.end_fsync) {
1045                         td_set_runstate(td, TD_FSYNCING);
1046
1047                         for_each_file(td, f, i) {
1048                                 if (!fio_file_fsync(td, f))
1049                                         continue;
1050
1051                                 log_err("fio: end_fsync failed for file %s\n",
1052                                                                 f->file_name);
1053                         }
1054                 }
1055         } else
1056                 cleanup_pending_aio(td);
1057
1058         /*
1059          * stop job if we failed doing any IO
1060          */
1061         if (!ddir_rw_sum(td->this_io_bytes))
1062                 td->done = 1;
1063
1064         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1065                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1066 }
1067
1068 static void free_file_completion_logging(struct thread_data *td)
1069 {
1070         struct fio_file *f;
1071         unsigned int i;
1072
1073         for_each_file(td, f, i) {
1074                 if (!f->last_write_comp)
1075                         break;
1076                 sfree(f->last_write_comp);
1077         }
1078 }
1079
1080 static int init_file_completion_logging(struct thread_data *td,
1081                                         unsigned int depth)
1082 {
1083         struct fio_file *f;
1084         unsigned int i;
1085
1086         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1087                 return 0;
1088
1089         for_each_file(td, f, i) {
1090                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1091                 if (!f->last_write_comp)
1092                         goto cleanup;
1093         }
1094
1095         return 0;
1096
1097 cleanup:
1098         free_file_completion_logging(td);
1099         log_err("fio: failed to alloc write comp data\n");
1100         return 1;
1101 }
1102
1103 static void cleanup_io_u(struct thread_data *td)
1104 {
1105         struct io_u *io_u;
1106
1107         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1108
1109                 if (td->io_ops->io_u_free)
1110                         td->io_ops->io_u_free(td, io_u);
1111
1112                 fio_memfree(io_u, sizeof(*io_u));
1113         }
1114
1115         free_io_mem(td);
1116
1117         io_u_rexit(&td->io_u_requeues);
1118         io_u_qexit(&td->io_u_freelist);
1119         io_u_qexit(&td->io_u_all);
1120
1121         free_file_completion_logging(td);
1122 }
1123
1124 static int init_io_u(struct thread_data *td)
1125 {
1126         struct io_u *io_u;
1127         unsigned int max_bs, min_write;
1128         int cl_align, i, max_units;
1129         int data_xfer = 1, err;
1130         char *p;
1131
1132         max_units = td->o.iodepth;
1133         max_bs = td_max_bs(td);
1134         min_write = td->o.min_bs[DDIR_WRITE];
1135         td->orig_buffer_size = (unsigned long long) max_bs
1136                                         * (unsigned long long) max_units;
1137
1138         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1139                 data_xfer = 0;
1140
1141         err = 0;
1142         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1143         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1144         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1145
1146         if (err) {
1147                 log_err("fio: failed setting up IO queues\n");
1148                 return 1;
1149         }
1150
1151         /*
1152          * if we may later need to do address alignment, then add any
1153          * possible adjustment here so that we don't cause a buffer
1154          * overflow later. this adjustment may be too much if we get
1155          * lucky and the allocator gives us an aligned address.
1156          */
1157         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1158             (td->io_ops->flags & FIO_RAWIO))
1159                 td->orig_buffer_size += page_mask + td->o.mem_align;
1160
1161         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1162                 unsigned long bs;
1163
1164                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1165                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1166         }
1167
1168         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1169                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1170                 return 1;
1171         }
1172
1173         if (data_xfer && allocate_io_mem(td))
1174                 return 1;
1175
1176         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1177             (td->io_ops->flags & FIO_RAWIO))
1178                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1179         else
1180                 p = td->orig_buffer;
1181
1182         cl_align = os_cache_line_size();
1183
1184         for (i = 0; i < max_units; i++) {
1185                 void *ptr;
1186
1187                 if (td->terminate)
1188                         return 1;
1189
1190                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1191                 if (!ptr) {
1192                         log_err("fio: unable to allocate aligned memory\n");
1193                         break;
1194                 }
1195
1196                 io_u = ptr;
1197                 memset(io_u, 0, sizeof(*io_u));
1198                 INIT_FLIST_HEAD(&io_u->verify_list);
1199                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1200
1201                 if (data_xfer) {
1202                         io_u->buf = p;
1203                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1204
1205                         if (td_write(td))
1206                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1207                         if (td_write(td) && td->o.verify_pattern_bytes) {
1208                                 /*
1209                                  * Fill the buffer with the pattern if we are
1210                                  * going to be doing writes.
1211                                  */
1212                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1213                         }
1214                 }
1215
1216                 io_u->index = i;
1217                 io_u->flags = IO_U_F_FREE;
1218                 io_u_qpush(&td->io_u_freelist, io_u);
1219
1220                 /*
1221                  * io_u never leaves this stack, used for iteration of all
1222                  * io_u buffers.
1223                  */
1224                 io_u_qpush(&td->io_u_all, io_u);
1225
1226                 if (td->io_ops->io_u_init) {
1227                         int ret = td->io_ops->io_u_init(td, io_u);
1228
1229                         if (ret) {
1230                                 log_err("fio: failed to init engine data: %d\n", ret);
1231                                 return 1;
1232                         }
1233                 }
1234
1235                 p += max_bs;
1236         }
1237
1238         if (init_file_completion_logging(td, max_units))
1239                 return 1;
1240
1241         return 0;
1242 }
1243
1244 static int switch_ioscheduler(struct thread_data *td)
1245 {
1246         char tmp[256], tmp2[128];
1247         FILE *f;
1248         int ret;
1249
1250         if (td->io_ops->flags & FIO_DISKLESSIO)
1251                 return 0;
1252
1253         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1254
1255         f = fopen(tmp, "r+");
1256         if (!f) {
1257                 if (errno == ENOENT) {
1258                         log_err("fio: os or kernel doesn't support IO scheduler"
1259                                 " switching\n");
1260                         return 0;
1261                 }
1262                 td_verror(td, errno, "fopen iosched");
1263                 return 1;
1264         }
1265
1266         /*
1267          * Set io scheduler.
1268          */
1269         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1270         if (ferror(f) || ret != 1) {
1271                 td_verror(td, errno, "fwrite");
1272                 fclose(f);
1273                 return 1;
1274         }
1275
1276         rewind(f);
1277
1278         /*
1279          * Read back and check that the selected scheduler is now the default.
1280          */
1281         memset(tmp, 0, sizeof(tmp));
1282         ret = fread(tmp, sizeof(tmp), 1, f);
1283         if (ferror(f) || ret < 0) {
1284                 td_verror(td, errno, "fread");
1285                 fclose(f);
1286                 return 1;
1287         }
1288         /*
1289          * either a list of io schedulers or "none\n" is expected.
1290          */
1291         tmp[strlen(tmp) - 1] = '\0';
1292
1293
1294         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1295         if (!strstr(tmp, tmp2)) {
1296                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1297                 td_verror(td, EINVAL, "iosched_switch");
1298                 fclose(f);
1299                 return 1;
1300         }
1301
1302         fclose(f);
1303         return 0;
1304 }
1305
1306 static bool keep_running(struct thread_data *td)
1307 {
1308         unsigned long long limit;
1309
1310         if (td->done)
1311                 return false;
1312         if (td->o.time_based)
1313                 return true;
1314         if (td->o.loops) {
1315                 td->o.loops--;
1316                 return true;
1317         }
1318         if (exceeds_number_ios(td))
1319                 return false;
1320
1321         if (td->o.io_limit)
1322                 limit = td->o.io_limit;
1323         else
1324                 limit = td->o.size;
1325
1326         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1327                 uint64_t diff;
1328
1329                 /*
1330                  * If the difference is less than the minimum IO size, we
1331                  * are done.
1332                  */
1333                 diff = limit - ddir_rw_sum(td->io_bytes);
1334                 if (diff < td_max_bs(td))
1335                         return false;
1336
1337                 if (fio_files_done(td) && !td->o.io_limit)
1338                         return false;
1339
1340                 return true;
1341         }
1342
1343         return false;
1344 }
1345
1346 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1347 {
1348         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1349         int ret;
1350         char *str;
1351
1352         str = malloc(newlen);
1353         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1354
1355         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1356         ret = system(str);
1357         if (ret == -1)
1358                 log_err("fio: exec of cmd <%s> failed\n", str);
1359
1360         free(str);
1361         return ret;
1362 }
1363
1364 /*
1365  * Dry run to compute correct state of numberio for verification.
1366  */
1367 static uint64_t do_dry_run(struct thread_data *td)
1368 {
1369         td_set_runstate(td, TD_RUNNING);
1370
1371         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1372                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1373                 struct io_u *io_u;
1374                 int ret;
1375
1376                 if (td->terminate || td->done)
1377                         break;
1378
1379                 io_u = get_io_u(td);
1380                 if (!io_u)
1381                         break;
1382
1383                 io_u_set(io_u, IO_U_F_FLIGHT);
1384                 io_u->error = 0;
1385                 io_u->resid = 0;
1386                 if (ddir_rw(acct_ddir(io_u)))
1387                         td->io_issues[acct_ddir(io_u)]++;
1388                 if (ddir_rw(io_u->ddir)) {
1389                         io_u_mark_depth(td, 1);
1390                         td->ts.total_io_u[io_u->ddir]++;
1391                 }
1392
1393                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1394                     td->o.do_verify &&
1395                     td->o.verify != VERIFY_NONE &&
1396                     !td->o.experimental_verify)
1397                         log_io_piece(td, io_u);
1398
1399                 ret = io_u_sync_complete(td, io_u);
1400                 (void) ret;
1401         }
1402
1403         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1404 }
1405
1406 struct fork_data {
1407         struct thread_data *td;
1408         struct sk_out *sk_out;
1409 };
1410
1411 /*
1412  * Entry point for the thread based jobs. The process based jobs end up
1413  * here as well, after a little setup.
1414  */
1415 static void *thread_main(void *data)
1416 {
1417         struct fork_data *fd = data;
1418         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1419         struct thread_data *td = fd->td;
1420         struct thread_options *o = &td->o;
1421         struct sk_out *sk_out = fd->sk_out;
1422         pthread_condattr_t attr;
1423         int clear_state;
1424         int ret;
1425
1426         sk_out_assign(sk_out);
1427         free(fd);
1428
1429         if (!o->use_thread) {
1430                 setsid();
1431                 td->pid = getpid();
1432         } else
1433                 td->pid = gettid();
1434
1435         fio_local_clock_init(o->use_thread);
1436
1437         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1438
1439         if (is_backend)
1440                 fio_server_send_start(td);
1441
1442         INIT_FLIST_HEAD(&td->io_log_list);
1443         INIT_FLIST_HEAD(&td->io_hist_list);
1444         INIT_FLIST_HEAD(&td->verify_list);
1445         INIT_FLIST_HEAD(&td->trim_list);
1446         INIT_FLIST_HEAD(&td->next_rand_list);
1447         pthread_mutex_init(&td->io_u_lock, NULL);
1448         td->io_hist_tree = RB_ROOT;
1449
1450         pthread_condattr_init(&attr);
1451         pthread_cond_init(&td->verify_cond, &attr);
1452         pthread_cond_init(&td->free_cond, &attr);
1453
1454         td_set_runstate(td, TD_INITIALIZED);
1455         dprint(FD_MUTEX, "up startup_mutex\n");
1456         fio_mutex_up(startup_mutex);
1457         dprint(FD_MUTEX, "wait on td->mutex\n");
1458         fio_mutex_down(td->mutex);
1459         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1460
1461         /*
1462          * A new gid requires privilege, so we need to do this before setting
1463          * the uid.
1464          */
1465         if (o->gid != -1U && setgid(o->gid)) {
1466                 td_verror(td, errno, "setgid");
1467                 goto err;
1468         }
1469         if (o->uid != -1U && setuid(o->uid)) {
1470                 td_verror(td, errno, "setuid");
1471                 goto err;
1472         }
1473
1474         /*
1475          * Do this early, we don't want the compress threads to be limited
1476          * to the same CPUs as the IO workers. So do this before we set
1477          * any potential CPU affinity
1478          */
1479         if (iolog_compress_init(td, sk_out))
1480                 goto err;
1481
1482         /*
1483          * If we have a gettimeofday() thread, make sure we exclude that
1484          * thread from this job
1485          */
1486         if (o->gtod_cpu)
1487                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1488
1489         /*
1490          * Set affinity first, in case it has an impact on the memory
1491          * allocations.
1492          */
1493         if (fio_option_is_set(o, cpumask)) {
1494                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1495                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1496                         if (!ret) {
1497                                 log_err("fio: no CPUs set\n");
1498                                 log_err("fio: Try increasing number of available CPUs\n");
1499                                 td_verror(td, EINVAL, "cpus_split");
1500                                 goto err;
1501                         }
1502                 }
1503                 ret = fio_setaffinity(td->pid, o->cpumask);
1504                 if (ret == -1) {
1505                         td_verror(td, errno, "cpu_set_affinity");
1506                         goto err;
1507                 }
1508         }
1509
1510 #ifdef CONFIG_LIBNUMA
1511         /* numa node setup */
1512         if (fio_option_is_set(o, numa_cpunodes) ||
1513             fio_option_is_set(o, numa_memnodes)) {
1514                 struct bitmask *mask;
1515
1516                 if (numa_available() < 0) {
1517                         td_verror(td, errno, "Does not support NUMA API\n");
1518                         goto err;
1519                 }
1520
1521                 if (fio_option_is_set(o, numa_cpunodes)) {
1522                         mask = numa_parse_nodestring(o->numa_cpunodes);
1523                         ret = numa_run_on_node_mask(mask);
1524                         numa_free_nodemask(mask);
1525                         if (ret == -1) {
1526                                 td_verror(td, errno, \
1527                                         "numa_run_on_node_mask failed\n");
1528                                 goto err;
1529                         }
1530                 }
1531
1532                 if (fio_option_is_set(o, numa_memnodes)) {
1533                         mask = NULL;
1534                         if (o->numa_memnodes)
1535                                 mask = numa_parse_nodestring(o->numa_memnodes);
1536
1537                         switch (o->numa_mem_mode) {
1538                         case MPOL_INTERLEAVE:
1539                                 numa_set_interleave_mask(mask);
1540                                 break;
1541                         case MPOL_BIND:
1542                                 numa_set_membind(mask);
1543                                 break;
1544                         case MPOL_LOCAL:
1545                                 numa_set_localalloc();
1546                                 break;
1547                         case MPOL_PREFERRED:
1548                                 numa_set_preferred(o->numa_mem_prefer_node);
1549                                 break;
1550                         case MPOL_DEFAULT:
1551                         default:
1552                                 break;
1553                         }
1554
1555                         if (mask)
1556                                 numa_free_nodemask(mask);
1557
1558                 }
1559         }
1560 #endif
1561
1562         if (fio_pin_memory(td))
1563                 goto err;
1564
1565         /*
1566          * May alter parameters that init_io_u() will use, so we need to
1567          * do this first.
1568          */
1569         if (init_iolog(td))
1570                 goto err;
1571
1572         if (init_io_u(td))
1573                 goto err;
1574
1575         if (o->verify_async && verify_async_init(td))
1576                 goto err;
1577
1578         if (fio_option_is_set(o, ioprio) ||
1579             fio_option_is_set(o, ioprio_class)) {
1580                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1581                 if (ret == -1) {
1582                         td_verror(td, errno, "ioprio_set");
1583                         goto err;
1584                 }
1585         }
1586
1587         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1588                 goto err;
1589
1590         errno = 0;
1591         if (nice(o->nice) == -1 && errno != 0) {
1592                 td_verror(td, errno, "nice");
1593                 goto err;
1594         }
1595
1596         if (o->ioscheduler && switch_ioscheduler(td))
1597                 goto err;
1598
1599         if (!o->create_serialize && setup_files(td))
1600                 goto err;
1601
1602         if (td_io_init(td))
1603                 goto err;
1604
1605         if (init_random_map(td))
1606                 goto err;
1607
1608         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1609                 goto err;
1610
1611         if (o->pre_read) {
1612                 if (pre_read_files(td) < 0)
1613                         goto err;
1614         }
1615
1616         fio_verify_init(td);
1617
1618         if (rate_submit_init(td, sk_out))
1619                 goto err;
1620
1621         fio_gettime(&td->epoch, NULL);
1622         fio_getrusage(&td->ru_start);
1623         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1624         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1625
1626         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1627                         o->ratemin[DDIR_TRIM]) {
1628                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1629                                         sizeof(td->bw_sample_time));
1630                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1631                                         sizeof(td->bw_sample_time));
1632                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1633                                         sizeof(td->bw_sample_time));
1634         }
1635
1636         clear_state = 0;
1637         while (keep_running(td)) {
1638                 uint64_t verify_bytes;
1639
1640                 fio_gettime(&td->start, NULL);
1641                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1642
1643                 if (clear_state)
1644                         clear_io_state(td, 0);
1645
1646                 prune_io_piece_log(td);
1647
1648                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1649                         verify_bytes = do_dry_run(td);
1650                 else {
1651                         uint64_t bytes_done[DDIR_RWDIR_CNT];
1652
1653                         do_io(td, bytes_done);
1654
1655                         if (!ddir_rw_sum(bytes_done)) {
1656                                 fio_mark_td_terminate(td);
1657                                 verify_bytes = 0;
1658                         } else {
1659                                 verify_bytes = bytes_done[DDIR_WRITE] +
1660                                                 bytes_done[DDIR_TRIM];
1661                         }
1662                 }
1663
1664                 clear_state = 1;
1665
1666                 /*
1667                  * Make sure we've successfully updated the rusage stats
1668                  * before waiting on the stat mutex. Otherwise we could have
1669                  * the stat thread holding stat mutex and waiting for
1670                  * the rusage_sem, which would never get upped because
1671                  * this thread is waiting for the stat mutex.
1672                  */
1673                 check_update_rusage(td);
1674
1675                 fio_mutex_down(stat_mutex);
1676                 if (td_read(td) && td->io_bytes[DDIR_READ])
1677                         update_runtime(td, elapsed_us, DDIR_READ);
1678                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1679                         update_runtime(td, elapsed_us, DDIR_WRITE);
1680                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1681                         update_runtime(td, elapsed_us, DDIR_TRIM);
1682                 fio_gettime(&td->start, NULL);
1683                 fio_mutex_up(stat_mutex);
1684
1685                 if (td->error || td->terminate)
1686                         break;
1687
1688                 if (!o->do_verify ||
1689                     o->verify == VERIFY_NONE ||
1690                     (td->io_ops->flags & FIO_UNIDIR))
1691                         continue;
1692
1693                 clear_io_state(td, 0);
1694
1695                 fio_gettime(&td->start, NULL);
1696
1697                 do_verify(td, verify_bytes);
1698
1699                 /*
1700                  * See comment further up for why this is done here.
1701                  */
1702                 check_update_rusage(td);
1703
1704                 fio_mutex_down(stat_mutex);
1705                 update_runtime(td, elapsed_us, DDIR_READ);
1706                 fio_gettime(&td->start, NULL);
1707                 fio_mutex_up(stat_mutex);
1708
1709                 if (td->error || td->terminate)
1710                         break;
1711         }
1712
1713         td_set_runstate(td, TD_FINISHING);
1714
1715         update_rusage_stat(td);
1716         td->ts.total_run_time = mtime_since_now(&td->epoch);
1717         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1718         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1719         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1720
1721         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1722             (td->o.verify != VERIFY_NONE && td_write(td)))
1723                 verify_save_state(td->thread_number);
1724
1725         fio_unpin_memory(td);
1726
1727         td_writeout_logs(td, true);
1728
1729         iolog_compress_exit(td);
1730         rate_submit_exit(td);
1731
1732         if (o->exec_postrun)
1733                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1734
1735         if (exitall_on_terminate || (o->exitall_error && td->error))
1736                 fio_terminate_threads(td->groupid);
1737
1738 err:
1739         if (td->error)
1740                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1741                                                         td->verror);
1742
1743         if (o->verify_async)
1744                 verify_async_exit(td);
1745
1746         close_and_free_files(td);
1747         cleanup_io_u(td);
1748         close_ioengine(td);
1749         cgroup_shutdown(td, &cgroup_mnt);
1750         verify_free_state(td);
1751
1752         if (td->zone_state_index) {
1753                 int i;
1754
1755                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1756                         free(td->zone_state_index[i]);
1757                 free(td->zone_state_index);
1758                 td->zone_state_index = NULL;
1759         }
1760
1761         if (fio_option_is_set(o, cpumask)) {
1762                 ret = fio_cpuset_exit(&o->cpumask);
1763                 if (ret)
1764                         td_verror(td, ret, "fio_cpuset_exit");
1765         }
1766
1767         /*
1768          * do this very late, it will log file closing as well
1769          */
1770         if (o->write_iolog_file)
1771                 write_iolog_close(td);
1772
1773         fio_mutex_remove(td->mutex);
1774         td->mutex = NULL;
1775
1776         td_set_runstate(td, TD_EXITED);
1777
1778         /*
1779          * Do this last after setting our runstate to exited, so we
1780          * know that the stat thread is signaled.
1781          */
1782         check_update_rusage(td);
1783
1784         sk_out_drop();
1785         return (void *) (uintptr_t) td->error;
1786 }
1787
1788
1789 /*
1790  * We cannot pass the td data into a forked process, so attach the td and
1791  * pass it to the thread worker.
1792  */
1793 static int fork_main(struct sk_out *sk_out, int shmid, int offset)
1794 {
1795         struct fork_data *fd;
1796         void *data, *ret;
1797
1798 #if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1799         data = shmat(shmid, NULL, 0);
1800         if (data == (void *) -1) {
1801                 int __err = errno;
1802
1803                 perror("shmat");
1804                 return __err;
1805         }
1806 #else
1807         /*
1808          * HP-UX inherits shm mappings?
1809          */
1810         data = threads;
1811 #endif
1812
1813         fd = calloc(1, sizeof(*fd));
1814         fd->td = data + offset * sizeof(struct thread_data);
1815         fd->sk_out = sk_out;
1816         ret = thread_main(fd);
1817         shmdt(data);
1818         return (int) (uintptr_t) ret;
1819 }
1820
1821 static void dump_td_info(struct thread_data *td)
1822 {
1823         log_err("fio: job '%s' (state=%d) hasn't exited in %lu seconds, it "
1824                 "appears to be stuck. Doing forceful exit of this job.\n",
1825                         td->o.name, td->runstate,
1826                         (unsigned long) time_since_now(&td->terminate_time));
1827 }
1828
1829 /*
1830  * Run over the job map and reap the threads that have exited, if any.
1831  */
1832 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1833                          unsigned int *m_rate)
1834 {
1835         struct thread_data *td;
1836         unsigned int cputhreads, realthreads, pending;
1837         int i, status, ret;
1838
1839         /*
1840          * reap exited threads (TD_EXITED -> TD_REAPED)
1841          */
1842         realthreads = pending = cputhreads = 0;
1843         for_each_td(td, i) {
1844                 int flags = 0;
1845
1846                 /*
1847                  * ->io_ops is NULL for a thread that has closed its
1848                  * io engine
1849                  */
1850                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1851                         cputhreads++;
1852                 else
1853                         realthreads++;
1854
1855                 if (!td->pid) {
1856                         pending++;
1857                         continue;
1858                 }
1859                 if (td->runstate == TD_REAPED)
1860                         continue;
1861                 if (td->o.use_thread) {
1862                         if (td->runstate == TD_EXITED) {
1863                                 td_set_runstate(td, TD_REAPED);
1864                                 goto reaped;
1865                         }
1866                         continue;
1867                 }
1868
1869                 flags = WNOHANG;
1870                 if (td->runstate == TD_EXITED)
1871                         flags = 0;
1872
1873                 /*
1874                  * check if someone quit or got killed in an unusual way
1875                  */
1876                 ret = waitpid(td->pid, &status, flags);
1877                 if (ret < 0) {
1878                         if (errno == ECHILD) {
1879                                 log_err("fio: pid=%d disappeared %d\n",
1880                                                 (int) td->pid, td->runstate);
1881                                 td->sig = ECHILD;
1882                                 td_set_runstate(td, TD_REAPED);
1883                                 goto reaped;
1884                         }
1885                         perror("waitpid");
1886                 } else if (ret == td->pid) {
1887                         if (WIFSIGNALED(status)) {
1888                                 int sig = WTERMSIG(status);
1889
1890                                 if (sig != SIGTERM && sig != SIGUSR2)
1891                                         log_err("fio: pid=%d, got signal=%d\n",
1892                                                         (int) td->pid, sig);
1893                                 td->sig = sig;
1894                                 td_set_runstate(td, TD_REAPED);
1895                                 goto reaped;
1896                         }
1897                         if (WIFEXITED(status)) {
1898                                 if (WEXITSTATUS(status) && !td->error)
1899                                         td->error = WEXITSTATUS(status);
1900
1901                                 td_set_runstate(td, TD_REAPED);
1902                                 goto reaped;
1903                         }
1904                 }
1905
1906                 /*
1907                  * If the job is stuck, do a forceful timeout of it and
1908                  * move on.
1909                  */
1910                 if (td->terminate &&
1911                     td->runstate < TD_FSYNCING &&
1912                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1913                         dump_td_info(td);
1914                         td_set_runstate(td, TD_REAPED);
1915                         goto reaped;
1916                 }
1917
1918                 /*
1919                  * thread is not dead, continue
1920                  */
1921                 pending++;
1922                 continue;
1923 reaped:
1924                 (*nr_running)--;
1925                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1926                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1927                 if (!td->pid)
1928                         pending--;
1929
1930                 if (td->error)
1931                         exit_value++;
1932
1933                 done_secs += mtime_since_now(&td->epoch) / 1000;
1934                 profile_td_exit(td);
1935         }
1936
1937         if (*nr_running == cputhreads && !pending && realthreads)
1938                 fio_terminate_threads(TERMINATE_ALL);
1939 }
1940
1941 static bool __check_trigger_file(void)
1942 {
1943         struct stat sb;
1944
1945         if (!trigger_file)
1946                 return false;
1947
1948         if (stat(trigger_file, &sb))
1949                 return false;
1950
1951         if (unlink(trigger_file) < 0)
1952                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1953                                                         strerror(errno));
1954
1955         return true;
1956 }
1957
1958 static bool trigger_timedout(void)
1959 {
1960         if (trigger_timeout)
1961                 return time_since_genesis() >= trigger_timeout;
1962
1963         return false;
1964 }
1965
1966 void exec_trigger(const char *cmd)
1967 {
1968         int ret;
1969
1970         if (!cmd)
1971                 return;
1972
1973         ret = system(cmd);
1974         if (ret == -1)
1975                 log_err("fio: failed executing %s trigger\n", cmd);
1976 }
1977
1978 void check_trigger_file(void)
1979 {
1980         if (__check_trigger_file() || trigger_timedout()) {
1981                 if (nr_clients)
1982                         fio_clients_send_trigger(trigger_remote_cmd);
1983                 else {
1984                         verify_save_state(IO_LIST_ALL);
1985                         fio_terminate_threads(TERMINATE_ALL);
1986                         exec_trigger(trigger_cmd);
1987                 }
1988         }
1989 }
1990
1991 static int fio_verify_load_state(struct thread_data *td)
1992 {
1993         int ret;
1994
1995         if (!td->o.verify_state)
1996                 return 0;
1997
1998         if (is_backend) {
1999                 void *data;
2000
2001                 ret = fio_server_get_verify_state(td->o.name,
2002                                         td->thread_number - 1, &data);
2003                 if (!ret)
2004                         verify_assign_state(td, data);
2005         } else
2006                 ret = verify_load_state(td, "local");
2007
2008         return ret;
2009 }
2010
2011 static void do_usleep(unsigned int usecs)
2012 {
2013         check_for_running_stats();
2014         check_trigger_file();
2015         usleep(usecs);
2016 }
2017
2018 static bool check_mount_writes(struct thread_data *td)
2019 {
2020         struct fio_file *f;
2021         unsigned int i;
2022
2023         if (!td_write(td) || td->o.allow_mounted_write)
2024                 return false;
2025
2026         for_each_file(td, f, i) {
2027                 if (f->filetype != FIO_TYPE_BD)
2028                         continue;
2029                 if (device_is_mounted(f->file_name))
2030                         goto mounted;
2031         }
2032
2033         return false;
2034 mounted:
2035         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
2036         return true;
2037 }
2038
2039 static bool waitee_running(struct thread_data *me)
2040 {
2041         const char *waitee = me->o.wait_for;
2042         const char *self = me->o.name;
2043         struct thread_data *td;
2044         int i;
2045
2046         if (!waitee)
2047                 return false;
2048
2049         for_each_td(td, i) {
2050                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2051                         continue;
2052
2053                 if (td->runstate < TD_EXITED) {
2054                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2055                                         self, td->o.name,
2056                                         runstate_to_name(td->runstate));
2057                         return true;
2058                 }
2059         }
2060
2061         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2062         return false;
2063 }
2064
2065 /*
2066  * Main function for kicking off and reaping jobs, as needed.
2067  */
2068 static void run_threads(struct sk_out *sk_out)
2069 {
2070         struct thread_data *td;
2071         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2072         uint64_t spent;
2073
2074         if (fio_gtod_offload && fio_start_gtod_thread())
2075                 return;
2076
2077         fio_idle_prof_init();
2078
2079         set_sig_handlers();
2080
2081         nr_thread = nr_process = 0;
2082         for_each_td(td, i) {
2083                 if (check_mount_writes(td))
2084                         return;
2085                 if (td->o.use_thread)
2086                         nr_thread++;
2087                 else
2088                         nr_process++;
2089         }
2090
2091         if (output_format & FIO_OUTPUT_NORMAL) {
2092                 log_info("Starting ");
2093                 if (nr_thread)
2094                         log_info("%d thread%s", nr_thread,
2095                                                 nr_thread > 1 ? "s" : "");
2096                 if (nr_process) {
2097                         if (nr_thread)
2098                                 log_info(" and ");
2099                         log_info("%d process%s", nr_process,
2100                                                 nr_process > 1 ? "es" : "");
2101                 }
2102                 log_info("\n");
2103                 log_info_flush();
2104         }
2105
2106         todo = thread_number;
2107         nr_running = 0;
2108         nr_started = 0;
2109         m_rate = t_rate = 0;
2110
2111         for_each_td(td, i) {
2112                 print_status_init(td->thread_number - 1);
2113
2114                 if (!td->o.create_serialize)
2115                         continue;
2116
2117                 if (fio_verify_load_state(td))
2118                         goto reap;
2119
2120                 /*
2121                  * do file setup here so it happens sequentially,
2122                  * we don't want X number of threads getting their
2123                  * client data interspersed on disk
2124                  */
2125                 if (setup_files(td)) {
2126 reap:
2127                         exit_value++;
2128                         if (td->error)
2129                                 log_err("fio: pid=%d, err=%d/%s\n",
2130                                         (int) td->pid, td->error, td->verror);
2131                         td_set_runstate(td, TD_REAPED);
2132                         todo--;
2133                 } else {
2134                         struct fio_file *f;
2135                         unsigned int j;
2136
2137                         /*
2138                          * for sharing to work, each job must always open
2139                          * its own files. so close them, if we opened them
2140                          * for creation
2141                          */
2142                         for_each_file(td, f, j) {
2143                                 if (fio_file_open(f))
2144                                         td_io_close_file(td, f);
2145                         }
2146                 }
2147         }
2148
2149         /* start idle threads before io threads start to run */
2150         fio_idle_prof_start();
2151
2152         set_genesis_time();
2153
2154         while (todo) {
2155                 struct thread_data *map[REAL_MAX_JOBS];
2156                 struct timeval this_start;
2157                 int this_jobs = 0, left;
2158
2159                 /*
2160                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2161                  */
2162                 for_each_td(td, i) {
2163                         if (td->runstate != TD_NOT_CREATED)
2164                                 continue;
2165
2166                         /*
2167                          * never got a chance to start, killed by other
2168                          * thread for some reason
2169                          */
2170                         if (td->terminate) {
2171                                 todo--;
2172                                 continue;
2173                         }
2174
2175                         if (td->o.start_delay) {
2176                                 spent = utime_since_genesis();
2177
2178                                 if (td->o.start_delay > spent)
2179                                         continue;
2180                         }
2181
2182                         if (td->o.stonewall && (nr_started || nr_running)) {
2183                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2184                                                         td->o.name);
2185                                 break;
2186                         }
2187
2188                         if (waitee_running(td)) {
2189                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2190                                                 td->o.name, td->o.wait_for);
2191                                 continue;
2192                         }
2193
2194                         init_disk_util(td);
2195
2196                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2197                         td->update_rusage = 0;
2198
2199                         /*
2200                          * Set state to created. Thread will transition
2201                          * to TD_INITIALIZED when it's done setting up.
2202                          */
2203                         td_set_runstate(td, TD_CREATED);
2204                         map[this_jobs++] = td;
2205                         nr_started++;
2206
2207                         if (td->o.use_thread) {
2208                                 struct fork_data *fd;
2209                                 int ret;
2210
2211                                 fd = calloc(1, sizeof(*fd));
2212                                 fd->td = td;
2213                                 fd->sk_out = sk_out;
2214
2215                                 dprint(FD_PROCESS, "will pthread_create\n");
2216                                 ret = pthread_create(&td->thread, NULL,
2217                                                         thread_main, fd);
2218                                 if (ret) {
2219                                         log_err("pthread_create: %s\n",
2220                                                         strerror(ret));
2221                                         free(fd);
2222                                         nr_started--;
2223                                         break;
2224                                 }
2225                                 ret = pthread_detach(td->thread);
2226                                 if (ret)
2227                                         log_err("pthread_detach: %s",
2228                                                         strerror(ret));
2229                         } else {
2230                                 pid_t pid;
2231                                 dprint(FD_PROCESS, "will fork\n");
2232                                 pid = fork();
2233                                 if (!pid) {
2234                                         int ret = fork_main(sk_out, shm_id, i);
2235
2236                                         _exit(ret);
2237                                 } else if (i == fio_debug_jobno)
2238                                         *fio_debug_jobp = pid;
2239                         }
2240                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2241                         if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2242                                 log_err("fio: job startup hung? exiting.\n");
2243                                 fio_terminate_threads(TERMINATE_ALL);
2244                                 fio_abort = 1;
2245                                 nr_started--;
2246                                 break;
2247                         }
2248                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2249                 }
2250
2251                 /*
2252                  * Wait for the started threads to transition to
2253                  * TD_INITIALIZED.
2254                  */
2255                 fio_gettime(&this_start, NULL);
2256                 left = this_jobs;
2257                 while (left && !fio_abort) {
2258                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2259                                 break;
2260
2261                         do_usleep(100000);
2262
2263                         for (i = 0; i < this_jobs; i++) {
2264                                 td = map[i];
2265                                 if (!td)
2266                                         continue;
2267                                 if (td->runstate == TD_INITIALIZED) {
2268                                         map[i] = NULL;
2269                                         left--;
2270                                 } else if (td->runstate >= TD_EXITED) {
2271                                         map[i] = NULL;
2272                                         left--;
2273                                         todo--;
2274                                         nr_running++; /* work-around... */
2275                                 }
2276                         }
2277                 }
2278
2279                 if (left) {
2280                         log_err("fio: %d job%s failed to start\n", left,
2281                                         left > 1 ? "s" : "");
2282                         for (i = 0; i < this_jobs; i++) {
2283                                 td = map[i];
2284                                 if (!td)
2285                                         continue;
2286                                 kill(td->pid, SIGTERM);
2287                         }
2288                         break;
2289                 }
2290
2291                 /*
2292                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2293                  */
2294                 for_each_td(td, i) {
2295                         if (td->runstate != TD_INITIALIZED)
2296                                 continue;
2297
2298                         if (in_ramp_time(td))
2299                                 td_set_runstate(td, TD_RAMP);
2300                         else
2301                                 td_set_runstate(td, TD_RUNNING);
2302                         nr_running++;
2303                         nr_started--;
2304                         m_rate += ddir_rw_sum(td->o.ratemin);
2305                         t_rate += ddir_rw_sum(td->o.rate);
2306                         todo--;
2307                         fio_mutex_up(td->mutex);
2308                 }
2309
2310                 reap_threads(&nr_running, &t_rate, &m_rate);
2311
2312                 if (todo)
2313                         do_usleep(100000);
2314         }
2315
2316         while (nr_running) {
2317                 reap_threads(&nr_running, &t_rate, &m_rate);
2318                 do_usleep(10000);
2319         }
2320
2321         fio_idle_prof_stop();
2322
2323         update_io_ticks();
2324 }
2325
2326 static void free_disk_util(void)
2327 {
2328         disk_util_prune_entries();
2329         helper_thread_destroy();
2330 }
2331
2332 int fio_backend(struct sk_out *sk_out)
2333 {
2334         struct thread_data *td;
2335         int i;
2336
2337         if (exec_profile) {
2338                 if (load_profile(exec_profile))
2339                         return 1;
2340                 free(exec_profile);
2341                 exec_profile = NULL;
2342         }
2343         if (!thread_number)
2344                 return 0;
2345
2346         if (write_bw_log) {
2347                 struct log_params p = {
2348                         .log_type = IO_LOG_TYPE_BW,
2349                 };
2350
2351                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2352                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2353                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2354         }
2355
2356         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2357         if (startup_mutex == NULL)
2358                 return 1;
2359
2360         set_genesis_time();
2361         stat_init();
2362         helper_thread_create(startup_mutex, sk_out);
2363
2364         cgroup_list = smalloc(sizeof(*cgroup_list));
2365         INIT_FLIST_HEAD(cgroup_list);
2366
2367         run_threads(sk_out);
2368
2369         helper_thread_exit();
2370
2371         if (!fio_abort) {
2372                 __show_run_stats();
2373                 if (write_bw_log) {
2374                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2375                                 struct io_log *log = agg_io_log[i];
2376
2377                                 flush_log(log, 0);
2378                                 free_log(log);
2379                         }
2380                 }
2381         }
2382
2383         for_each_td(td, i) {
2384                 fio_options_free(td);
2385                 if (td->rusage_sem) {
2386                         fio_mutex_remove(td->rusage_sem);
2387                         td->rusage_sem = NULL;
2388                 }
2389         }
2390
2391         free_disk_util();
2392         cgroup_kill(cgroup_list);
2393         sfree(cgroup_list);
2394         sfree(cgroup_mnt);
2395
2396         fio_mutex_remove(startup_mutex);
2397         stat_exit();
2398         return exit_value;
2399 }