f003761deac2f989f563a2f2af6cfb3135138fe5
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "workqueue.h"
58 #include "lib/mountcheck.h"
59 #include "rate-submit.h"
60 #include "helper_thread.h"
61
62 static struct fio_mutex *startup_mutex;
63 static struct flist_head *cgroup_list;
64 static char *cgroup_mnt;
65 static int exit_value;
66 static volatile int fio_abort;
67 static unsigned int nr_process = 0;
68 static unsigned int nr_thread = 0;
69
70 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72 int groupid = 0;
73 unsigned int thread_number = 0;
74 unsigned int stat_number = 0;
75 int shm_id = 0;
76 int temp_stall_ts;
77 unsigned long done_secs = 0;
78
79 #define JOB_START_TIMEOUT       (5 * 1000)
80
81 static void sig_int(int sig)
82 {
83         if (threads) {
84                 if (is_backend)
85                         fio_server_got_signal(sig);
86                 else {
87                         log_info("\nfio: terminating on signal %d\n", sig);
88                         log_info_flush();
89                         exit_value = 128;
90                 }
91
92                 fio_terminate_threads(TERMINATE_ALL);
93         }
94 }
95
96 void sig_show_status(int sig)
97 {
98         show_running_run_stats();
99 }
100
101 static void set_sig_handlers(void)
102 {
103         struct sigaction act;
104
105         memset(&act, 0, sizeof(act));
106         act.sa_handler = sig_int;
107         act.sa_flags = SA_RESTART;
108         sigaction(SIGINT, &act, NULL);
109
110         memset(&act, 0, sizeof(act));
111         act.sa_handler = sig_int;
112         act.sa_flags = SA_RESTART;
113         sigaction(SIGTERM, &act, NULL);
114
115 /* Windows uses SIGBREAK as a quit signal from other applications */
116 #ifdef WIN32
117         memset(&act, 0, sizeof(act));
118         act.sa_handler = sig_int;
119         act.sa_flags = SA_RESTART;
120         sigaction(SIGBREAK, &act, NULL);
121 #endif
122
123         memset(&act, 0, sizeof(act));
124         act.sa_handler = sig_show_status;
125         act.sa_flags = SA_RESTART;
126         sigaction(SIGUSR1, &act, NULL);
127
128         if (is_backend) {
129                 memset(&act, 0, sizeof(act));
130                 act.sa_handler = sig_int;
131                 act.sa_flags = SA_RESTART;
132                 sigaction(SIGPIPE, &act, NULL);
133         }
134 }
135
136 /*
137  * Check if we are above the minimum rate given.
138  */
139 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
140                              enum fio_ddir ddir)
141 {
142         unsigned long long bytes = 0;
143         unsigned long iops = 0;
144         unsigned long spent;
145         unsigned long rate;
146         unsigned int ratemin = 0;
147         unsigned int rate_iops = 0;
148         unsigned int rate_iops_min = 0;
149
150         assert(ddir_rw(ddir));
151
152         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153                 return false;
154
155         /*
156          * allow a 2 second settle period in the beginning
157          */
158         if (mtime_since(&td->start, now) < 2000)
159                 return false;
160
161         iops += td->this_io_blocks[ddir];
162         bytes += td->this_io_bytes[ddir];
163         ratemin += td->o.ratemin[ddir];
164         rate_iops += td->o.rate_iops[ddir];
165         rate_iops_min += td->o.rate_iops_min[ddir];
166
167         /*
168          * if rate blocks is set, sample is running
169          */
170         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171                 spent = mtime_since(&td->lastrate[ddir], now);
172                 if (spent < td->o.ratecycle)
173                         return false;
174
175                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176                         /*
177                          * check bandwidth specified rate
178                          */
179                         if (bytes < td->rate_bytes[ddir]) {
180                                 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181                                         td->o.name, ratemin, bytes);
182                                 return true;
183                         } else {
184                                 if (spent)
185                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186                                 else
187                                         rate = 0;
188
189                                 if (rate < ratemin ||
190                                     bytes < td->rate_bytes[ddir]) {
191                                         log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192                                                 td->o.name, ratemin, rate);
193                                         return true;
194                                 }
195                         }
196                 } else {
197                         /*
198                          * checks iops specified rate
199                          */
200                         if (iops < rate_iops) {
201                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202                                                 td->o.name, rate_iops, iops);
203                                 return true;
204                         } else {
205                                 if (spent)
206                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207                                 else
208                                         rate = 0;
209
210                                 if (rate < rate_iops_min ||
211                                     iops < td->rate_blocks[ddir]) {
212                                         log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213                                                 td->o.name, rate_iops_min, rate);
214                                         return true;
215                                 }
216                         }
217                 }
218         }
219
220         td->rate_bytes[ddir] = bytes;
221         td->rate_blocks[ddir] = iops;
222         memcpy(&td->lastrate[ddir], now, sizeof(*now));
223         return false;
224 }
225
226 static bool check_min_rate(struct thread_data *td, struct timespec *now)
227 {
228         bool ret = false;
229
230         if (td->bytes_done[DDIR_READ])
231                 ret |= __check_min_rate(td, now, DDIR_READ);
232         if (td->bytes_done[DDIR_WRITE])
233                 ret |= __check_min_rate(td, now, DDIR_WRITE);
234         if (td->bytes_done[DDIR_TRIM])
235                 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237         return ret;
238 }
239
240 /*
241  * When job exits, we can cancel the in-flight IO if we are using async
242  * io. Attempt to do so.
243  */
244 static void cleanup_pending_aio(struct thread_data *td)
245 {
246         int r;
247
248         /*
249          * get immediately available events, if any
250          */
251         r = io_u_queued_complete(td, 0);
252         if (r < 0)
253                 return;
254
255         /*
256          * now cancel remaining active events
257          */
258         if (td->io_ops->cancel) {
259                 struct io_u *io_u;
260                 int i;
261
262                 io_u_qiter(&td->io_u_all, io_u, i) {
263                         if (io_u->flags & IO_U_F_FLIGHT) {
264                                 r = td->io_ops->cancel(td, io_u);
265                                 if (!r)
266                                         put_io_u(td, io_u);
267                         }
268                 }
269         }
270
271         if (td->cur_depth)
272                 r = io_u_queued_complete(td, td->cur_depth);
273 }
274
275 /*
276  * Helper to handle the final sync of a file. Works just like the normal
277  * io path, just does everything sync.
278  */
279 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280 {
281         struct io_u *io_u = __get_io_u(td);
282         int ret;
283
284         if (!io_u)
285                 return true;
286
287         io_u->ddir = DDIR_SYNC;
288         io_u->file = f;
289
290         if (td_io_prep(td, io_u)) {
291                 put_io_u(td, io_u);
292                 return true;
293         }
294
295 requeue:
296         ret = td_io_queue(td, io_u);
297         if (ret < 0) {
298                 td_verror(td, io_u->error, "td_io_queue");
299                 put_io_u(td, io_u);
300                 return true;
301         } else if (ret == FIO_Q_QUEUED) {
302                 if (td_io_commit(td))
303                         return true;
304                 if (io_u_queued_complete(td, 1) < 0)
305                         return true;
306         } else if (ret == FIO_Q_COMPLETED) {
307                 if (io_u->error) {
308                         td_verror(td, io_u->error, "td_io_queue");
309                         return true;
310                 }
311
312                 if (io_u_sync_complete(td, io_u) < 0)
313                         return true;
314         } else if (ret == FIO_Q_BUSY) {
315                 if (td_io_commit(td))
316                         return true;
317                 goto requeue;
318         }
319
320         return false;
321 }
322
323 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324 {
325         int ret;
326
327         if (fio_file_open(f))
328                 return fio_io_sync(td, f);
329
330         if (td_io_open_file(td, f))
331                 return 1;
332
333         ret = fio_io_sync(td, f);
334         td_io_close_file(td, f);
335         return ret;
336 }
337
338 static inline void __update_ts_cache(struct thread_data *td)
339 {
340         fio_gettime(&td->ts_cache, NULL);
341 }
342
343 static inline void update_ts_cache(struct thread_data *td)
344 {
345         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
346                 __update_ts_cache(td);
347 }
348
349 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
350 {
351         if (in_ramp_time(td))
352                 return false;
353         if (!td->o.timeout)
354                 return false;
355         if (utime_since(&td->epoch, t) >= td->o.timeout)
356                 return true;
357
358         return false;
359 }
360
361 /*
362  * We need to update the runtime consistently in ms, but keep a running
363  * tally of the current elapsed time in microseconds for sub millisecond
364  * updates.
365  */
366 static inline void update_runtime(struct thread_data *td,
367                                   unsigned long long *elapsed_us,
368                                   const enum fio_ddir ddir)
369 {
370         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371                 return;
372
373         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374         elapsed_us[ddir] += utime_since_now(&td->start);
375         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376 }
377
378 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379                                 int *retptr)
380 {
381         int ret = *retptr;
382
383         if (ret < 0 || td->error) {
384                 int err = td->error;
385                 enum error_type_bit eb;
386
387                 if (ret < 0)
388                         err = -ret;
389
390                 eb = td_error_type(ddir, err);
391                 if (!(td->o.continue_on_error & (1 << eb)))
392                         return true;
393
394                 if (td_non_fatal_error(td, eb, err)) {
395                         /*
396                          * Continue with the I/Os in case of
397                          * a non fatal error.
398                          */
399                         update_error_count(td, err);
400                         td_clear_error(td);
401                         *retptr = 0;
402                         return false;
403                 } else if (td->o.fill_device && err == ENOSPC) {
404                         /*
405                          * We expect to hit this error if
406                          * fill_device option is set.
407                          */
408                         td_clear_error(td);
409                         fio_mark_td_terminate(td);
410                         return true;
411                 } else {
412                         /*
413                          * Stop the I/O in case of a fatal
414                          * error.
415                          */
416                         update_error_count(td, err);
417                         return true;
418                 }
419         }
420
421         return false;
422 }
423
424 static void check_update_rusage(struct thread_data *td)
425 {
426         if (td->update_rusage) {
427                 td->update_rusage = 0;
428                 update_rusage_stat(td);
429                 fio_mutex_up(td->rusage_sem);
430         }
431 }
432
433 static int wait_for_completions(struct thread_data *td, struct timespec *time)
434 {
435         const int full = queue_full(td);
436         int min_evts = 0;
437         int ret;
438
439         if (td->flags & TD_F_REGROW_LOGS)
440                 return io_u_quiesce(td);
441
442         /*
443          * if the queue is full, we MUST reap at least 1 event
444          */
445         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447                 min_evts = 1;
448
449         if (time && (__should_check_rate(td, DDIR_READ) ||
450             __should_check_rate(td, DDIR_WRITE) ||
451             __should_check_rate(td, DDIR_TRIM)))
452                 fio_gettime(time, NULL);
453
454         do {
455                 ret = io_u_queued_complete(td, min_evts);
456                 if (ret < 0)
457                         break;
458         } while (full && (td->cur_depth > td->o.iodepth_low));
459
460         return ret;
461 }
462
463 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465                    struct timespec *comp_time)
466 {
467         int ret2;
468
469         switch (*ret) {
470         case FIO_Q_COMPLETED:
471                 if (io_u->error) {
472                         *ret = -io_u->error;
473                         clear_io_u(td, io_u);
474                 } else if (io_u->resid) {
475                         int bytes = io_u->xfer_buflen - io_u->resid;
476                         struct fio_file *f = io_u->file;
477
478                         if (bytes_issued)
479                                 *bytes_issued += bytes;
480
481                         if (!from_verify)
482                                 trim_io_piece(td, io_u);
483
484                         /*
485                          * zero read, fail
486                          */
487                         if (!bytes) {
488                                 if (!from_verify)
489                                         unlog_io_piece(td, io_u);
490                                 td_verror(td, EIO, "full resid");
491                                 put_io_u(td, io_u);
492                                 break;
493                         }
494
495                         io_u->xfer_buflen = io_u->resid;
496                         io_u->xfer_buf += bytes;
497                         io_u->offset += bytes;
498
499                         if (ddir_rw(io_u->ddir))
500                                 td->ts.short_io_u[io_u->ddir]++;
501
502                         f = io_u->file;
503                         if (io_u->offset == f->real_file_size)
504                                 goto sync_done;
505
506                         requeue_io_u(td, &io_u);
507                 } else {
508 sync_done:
509                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
510                             __should_check_rate(td, DDIR_WRITE) ||
511                             __should_check_rate(td, DDIR_TRIM)))
512                                 fio_gettime(comp_time, NULL);
513
514                         *ret = io_u_sync_complete(td, io_u);
515                         if (*ret < 0)
516                                 break;
517                 }
518
519                 if (td->flags & TD_F_REGROW_LOGS)
520                         regrow_logs(td);
521
522                 /*
523                  * when doing I/O (not when verifying),
524                  * check for any errors that are to be ignored
525                  */
526                 if (!from_verify)
527                         break;
528
529                 return 0;
530         case FIO_Q_QUEUED:
531                 /*
532                  * if the engine doesn't have a commit hook,
533                  * the io_u is really queued. if it does have such
534                  * a hook, it has to call io_u_queued() itself.
535                  */
536                 if (td->io_ops->commit == NULL)
537                         io_u_queued(td, io_u);
538                 if (bytes_issued)
539                         *bytes_issued += io_u->xfer_buflen;
540                 break;
541         case FIO_Q_BUSY:
542                 if (!from_verify)
543                         unlog_io_piece(td, io_u);
544                 requeue_io_u(td, &io_u);
545                 ret2 = td_io_commit(td);
546                 if (ret2 < 0)
547                         *ret = ret2;
548                 break;
549         default:
550                 assert(*ret < 0);
551                 td_verror(td, -(*ret), "td_io_queue");
552                 break;
553         }
554
555         if (break_on_this_error(td, ddir, ret))
556                 return 1;
557
558         return 0;
559 }
560
561 static inline bool io_in_polling(struct thread_data *td)
562 {
563         return !td->o.iodepth_batch_complete_min &&
564                    !td->o.iodepth_batch_complete_max;
565 }
566 /*
567  * Unlinks files from thread data fio_file structure
568  */
569 static int unlink_all_files(struct thread_data *td)
570 {
571         struct fio_file *f;
572         unsigned int i;
573         int ret = 0;
574
575         for_each_file(td, f, i) {
576                 if (f->filetype != FIO_TYPE_FILE)
577                         continue;
578                 ret = td_io_unlink_file(td, f);
579                 if (ret)
580                         break;
581         }
582
583         if (ret)
584                 td_verror(td, ret, "unlink_all_files");
585
586         return ret;
587 }
588
589 /*
590  * Check if io_u will overlap an in-flight IO in the queue
591  */
592 static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
593 {
594         bool overlap;
595         struct io_u *check_io_u;
596         unsigned long long x1, x2, y1, y2;
597         int i;
598
599         x1 = io_u->offset;
600         x2 = io_u->offset + io_u->buflen;
601         overlap = false;
602         io_u_qiter(q, check_io_u, i) {
603                 if (check_io_u->flags & IO_U_F_FLIGHT) {
604                         y1 = check_io_u->offset;
605                         y2 = check_io_u->offset + check_io_u->buflen;
606
607                         if (x1 < y2 && y1 < x2) {
608                                 overlap = true;
609                                 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
610                                                 x1, io_u->buflen,
611                                                 y1, check_io_u->buflen);
612                                 break;
613                         }
614                 }
615         }
616
617         return overlap;
618 }
619
620 /*
621  * The main verify engine. Runs over the writes we previously submitted,
622  * reads the blocks back in, and checks the crc/md5 of the data.
623  */
624 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
625 {
626         struct fio_file *f;
627         struct io_u *io_u;
628         int ret, min_events;
629         unsigned int i;
630
631         dprint(FD_VERIFY, "starting loop\n");
632
633         /*
634          * sync io first and invalidate cache, to make sure we really
635          * read from disk.
636          */
637         for_each_file(td, f, i) {
638                 if (!fio_file_open(f))
639                         continue;
640                 if (fio_io_sync(td, f))
641                         break;
642                 if (file_invalidate_cache(td, f))
643                         break;
644         }
645
646         check_update_rusage(td);
647
648         if (td->error)
649                 return;
650
651         /*
652          * verify_state needs to be reset before verification
653          * proceeds so that expected random seeds match actual
654          * random seeds in headers. The main loop will reset
655          * all random number generators if randrepeat is set.
656          */
657         if (!td->o.rand_repeatable)
658                 td_fill_verify_state_seed(td);
659
660         td_set_runstate(td, TD_VERIFYING);
661
662         io_u = NULL;
663         while (!td->terminate) {
664                 enum fio_ddir ddir;
665                 int full;
666
667                 update_ts_cache(td);
668                 check_update_rusage(td);
669
670                 if (runtime_exceeded(td, &td->ts_cache)) {
671                         __update_ts_cache(td);
672                         if (runtime_exceeded(td, &td->ts_cache)) {
673                                 fio_mark_td_terminate(td);
674                                 break;
675                         }
676                 }
677
678                 if (flow_threshold_exceeded(td))
679                         continue;
680
681                 if (!td->o.experimental_verify) {
682                         io_u = __get_io_u(td);
683                         if (!io_u)
684                                 break;
685
686                         if (get_next_verify(td, io_u)) {
687                                 put_io_u(td, io_u);
688                                 break;
689                         }
690
691                         if (td_io_prep(td, io_u)) {
692                                 put_io_u(td, io_u);
693                                 break;
694                         }
695                 } else {
696                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
697                                 break;
698
699                         while ((io_u = get_io_u(td)) != NULL) {
700                                 if (IS_ERR_OR_NULL(io_u)) {
701                                         io_u = NULL;
702                                         ret = FIO_Q_BUSY;
703                                         goto reap;
704                                 }
705
706                                 /*
707                                  * We are only interested in the places where
708                                  * we wrote or trimmed IOs. Turn those into
709                                  * reads for verification purposes.
710                                  */
711                                 if (io_u->ddir == DDIR_READ) {
712                                         /*
713                                          * Pretend we issued it for rwmix
714                                          * accounting
715                                          */
716                                         td->io_issues[DDIR_READ]++;
717                                         put_io_u(td, io_u);
718                                         continue;
719                                 } else if (io_u->ddir == DDIR_TRIM) {
720                                         io_u->ddir = DDIR_READ;
721                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
722                                         break;
723                                 } else if (io_u->ddir == DDIR_WRITE) {
724                                         io_u->ddir = DDIR_READ;
725                                         break;
726                                 } else {
727                                         put_io_u(td, io_u);
728                                         continue;
729                                 }
730                         }
731
732                         if (!io_u)
733                                 break;
734                 }
735
736                 if (verify_state_should_stop(td, io_u)) {
737                         put_io_u(td, io_u);
738                         break;
739                 }
740
741                 if (td->o.verify_async)
742                         io_u->end_io = verify_io_u_async;
743                 else
744                         io_u->end_io = verify_io_u;
745
746                 ddir = io_u->ddir;
747                 if (!td->o.disable_slat)
748                         fio_gettime(&io_u->start_time, NULL);
749
750                 if (td->o.serialize_overlap && td->cur_depth > 0) {
751                         if (in_flight_overlap(&td->io_u_all, io_u))
752                                 ret = FIO_Q_BUSY;
753                         else
754                                 ret = td_io_queue(td, io_u);
755                 } else
756                         ret = td_io_queue(td, io_u);
757
758                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
759                         break;
760
761                 /*
762                  * if we can queue more, do so. but check if there are
763                  * completed io_u's first. Note that we can get BUSY even
764                  * without IO queued, if the system is resource starved.
765                  */
766 reap:
767                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
768                 if (full || io_in_polling(td))
769                         ret = wait_for_completions(td, NULL);
770
771                 if (ret < 0)
772                         break;
773         }
774
775         check_update_rusage(td);
776
777         if (!td->error) {
778                 min_events = td->cur_depth;
779
780                 if (min_events)
781                         ret = io_u_queued_complete(td, min_events);
782         } else
783                 cleanup_pending_aio(td);
784
785         td_set_runstate(td, TD_RUNNING);
786
787         dprint(FD_VERIFY, "exiting loop\n");
788 }
789
790 static bool exceeds_number_ios(struct thread_data *td)
791 {
792         unsigned long long number_ios;
793
794         if (!td->o.number_ios)
795                 return false;
796
797         number_ios = ddir_rw_sum(td->io_blocks);
798         number_ios += td->io_u_queued + td->io_u_in_flight;
799
800         return number_ios >= (td->o.number_ios * td->loops);
801 }
802
803 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
804 {
805         unsigned long long bytes, limit;
806
807         if (td_rw(td))
808                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
809         else if (td_write(td))
810                 bytes = this_bytes[DDIR_WRITE];
811         else if (td_read(td))
812                 bytes = this_bytes[DDIR_READ];
813         else
814                 bytes = this_bytes[DDIR_TRIM];
815
816         if (td->o.io_size)
817                 limit = td->o.io_size;
818         else
819                 limit = td->o.size;
820
821         limit *= td->loops;
822         return bytes >= limit || exceeds_number_ios(td);
823 }
824
825 static bool io_issue_bytes_exceeded(struct thread_data *td)
826 {
827         return io_bytes_exceeded(td, td->io_issue_bytes);
828 }
829
830 static bool io_complete_bytes_exceeded(struct thread_data *td)
831 {
832         return io_bytes_exceeded(td, td->this_io_bytes);
833 }
834
835 /*
836  * used to calculate the next io time for rate control
837  *
838  */
839 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
840 {
841         uint64_t secs, remainder, bps, bytes, iops;
842
843         assert(!(td->flags & TD_F_CHILD));
844         bytes = td->rate_io_issue_bytes[ddir];
845         bps = td->rate_bps[ddir];
846
847         if (td->o.rate_process == RATE_PROCESS_POISSON) {
848                 uint64_t val;
849                 iops = bps / td->o.bs[ddir];
850                 val = (int64_t) (1000000 / iops) *
851                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
852                 if (val) {
853                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
854                                         (unsigned long long) 1000000 / val,
855                                         ddir);
856                 }
857                 td->last_usec[ddir] += val;
858                 return td->last_usec[ddir];
859         } else if (bps) {
860                 secs = bytes / bps;
861                 remainder = bytes % bps;
862                 return remainder * 1000000 / bps + secs * 1000000;
863         }
864
865         return 0;
866 }
867
868 /*
869  * Main IO worker function. It retrieves io_u's to process and queues
870  * and reaps them, checking for rate and errors along the way.
871  *
872  * Returns number of bytes written and trimmed.
873  */
874 static void do_io(struct thread_data *td, uint64_t *bytes_done)
875 {
876         unsigned int i;
877         int ret = 0;
878         uint64_t total_bytes, bytes_issued = 0;
879
880         for (i = 0; i < DDIR_RWDIR_CNT; i++)
881                 bytes_done[i] = td->bytes_done[i];
882
883         if (in_ramp_time(td))
884                 td_set_runstate(td, TD_RAMP);
885         else
886                 td_set_runstate(td, TD_RUNNING);
887
888         lat_target_init(td);
889
890         total_bytes = td->o.size;
891         /*
892         * Allow random overwrite workloads to write up to io_size
893         * before starting verification phase as 'size' doesn't apply.
894         */
895         if (td_write(td) && td_random(td) && td->o.norandommap)
896                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
897         /*
898          * If verify_backlog is enabled, we'll run the verify in this
899          * handler as well. For that case, we may need up to twice the
900          * amount of bytes.
901          */
902         if (td->o.verify != VERIFY_NONE &&
903            (td_write(td) && td->o.verify_backlog))
904                 total_bytes += td->o.size;
905
906         /* In trimwrite mode, each byte is trimmed and then written, so
907          * allow total_bytes to be twice as big */
908         if (td_trimwrite(td))
909                 total_bytes += td->total_io_size;
910
911         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
912                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
913                 td->o.time_based) {
914                 struct timespec comp_time;
915                 struct io_u *io_u;
916                 int full;
917                 enum fio_ddir ddir;
918
919                 check_update_rusage(td);
920
921                 if (td->terminate || td->done)
922                         break;
923
924                 update_ts_cache(td);
925
926                 if (runtime_exceeded(td, &td->ts_cache)) {
927                         __update_ts_cache(td);
928                         if (runtime_exceeded(td, &td->ts_cache)) {
929                                 fio_mark_td_terminate(td);
930                                 break;
931                         }
932                 }
933
934                 if (flow_threshold_exceeded(td))
935                         continue;
936
937                 /*
938                  * Break if we exceeded the bytes. The exception is time
939                  * based runs, but we still need to break out of the loop
940                  * for those to run verification, if enabled.
941                  */
942                 if (bytes_issued >= total_bytes &&
943                     (!td->o.time_based ||
944                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
945                         break;
946
947                 io_u = get_io_u(td);
948                 if (IS_ERR_OR_NULL(io_u)) {
949                         int err = PTR_ERR(io_u);
950
951                         io_u = NULL;
952                         if (err == -EBUSY) {
953                                 ret = FIO_Q_BUSY;
954                                 goto reap;
955                         }
956                         if (td->o.latency_target)
957                                 goto reap;
958                         break;
959                 }
960
961                 ddir = io_u->ddir;
962
963                 /*
964                  * Add verification end_io handler if:
965                  *      - Asked to verify (!td_rw(td))
966                  *      - Or the io_u is from our verify list (mixed write/ver)
967                  */
968                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
969                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
970
971                         if (!td->o.verify_pattern_bytes) {
972                                 io_u->rand_seed = __rand(&td->verify_state);
973                                 if (sizeof(int) != sizeof(long *))
974                                         io_u->rand_seed *= __rand(&td->verify_state);
975                         }
976
977                         if (verify_state_should_stop(td, io_u)) {
978                                 put_io_u(td, io_u);
979                                 break;
980                         }
981
982                         if (td->o.verify_async)
983                                 io_u->end_io = verify_io_u_async;
984                         else
985                                 io_u->end_io = verify_io_u;
986                         td_set_runstate(td, TD_VERIFYING);
987                 } else if (in_ramp_time(td))
988                         td_set_runstate(td, TD_RAMP);
989                 else
990                         td_set_runstate(td, TD_RUNNING);
991
992                 /*
993                  * Always log IO before it's issued, so we know the specific
994                  * order of it. The logged unit will track when the IO has
995                  * completed.
996                  */
997                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
998                     td->o.do_verify &&
999                     td->o.verify != VERIFY_NONE &&
1000                     !td->o.experimental_verify)
1001                         log_io_piece(td, io_u);
1002
1003                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1004                         const unsigned long blen = io_u->xfer_buflen;
1005                         const enum fio_ddir ddir = acct_ddir(io_u);
1006
1007                         if (td->error)
1008                                 break;
1009
1010                         workqueue_enqueue(&td->io_wq, &io_u->work);
1011                         ret = FIO_Q_QUEUED;
1012
1013                         if (ddir_rw(ddir)) {
1014                                 td->io_issues[ddir]++;
1015                                 td->io_issue_bytes[ddir] += blen;
1016                                 td->rate_io_issue_bytes[ddir] += blen;
1017                         }
1018
1019                         if (should_check_rate(td))
1020                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1021
1022                 } else {
1023                         if (td->o.serialize_overlap && td->cur_depth > 0) {
1024                                 if (in_flight_overlap(&td->io_u_all, io_u))
1025                                         ret = FIO_Q_BUSY;
1026                                 else
1027                                         ret = td_io_queue(td, io_u);
1028                         } else
1029                                 ret = td_io_queue(td, io_u);
1030
1031                         if (should_check_rate(td))
1032                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1033
1034                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1035                                 break;
1036
1037                         /*
1038                          * See if we need to complete some commands. Note that
1039                          * we can get BUSY even without IO queued, if the
1040                          * system is resource starved.
1041                          */
1042 reap:
1043                         full = queue_full(td) ||
1044                                 (ret == FIO_Q_BUSY && td->cur_depth);
1045                         if (full || io_in_polling(td))
1046                                 ret = wait_for_completions(td, &comp_time);
1047                 }
1048                 if (ret < 0)
1049                         break;
1050                 if (!ddir_rw_sum(td->bytes_done) &&
1051                     !td_ioengine_flagged(td, FIO_NOIO))
1052                         continue;
1053
1054                 if (!in_ramp_time(td) && should_check_rate(td)) {
1055                         if (check_min_rate(td, &comp_time)) {
1056                                 if (exitall_on_terminate || td->o.exitall_error)
1057                                         fio_terminate_threads(td->groupid);
1058                                 td_verror(td, EIO, "check_min_rate");
1059                                 break;
1060                         }
1061                 }
1062                 if (!in_ramp_time(td) && td->o.latency_target)
1063                         lat_target_check(td);
1064
1065                 if (td->o.thinktime) {
1066                         unsigned long long b;
1067
1068                         b = ddir_rw_sum(td->io_blocks);
1069                         if (!(b % td->o.thinktime_blocks)) {
1070                                 int left;
1071
1072                                 io_u_quiesce(td);
1073
1074                                 if (td->o.thinktime_spin)
1075                                         usec_spin(td->o.thinktime_spin);
1076
1077                                 left = td->o.thinktime - td->o.thinktime_spin;
1078                                 if (left)
1079                                         usec_sleep(td, left);
1080                         }
1081                 }
1082         }
1083
1084         check_update_rusage(td);
1085
1086         if (td->trim_entries)
1087                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1088
1089         if (td->o.fill_device && td->error == ENOSPC) {
1090                 td->error = 0;
1091                 fio_mark_td_terminate(td);
1092         }
1093         if (!td->error) {
1094                 struct fio_file *f;
1095
1096                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1097                         workqueue_flush(&td->io_wq);
1098                         i = 0;
1099                 } else
1100                         i = td->cur_depth;
1101
1102                 if (i) {
1103                         ret = io_u_queued_complete(td, i);
1104                         if (td->o.fill_device && td->error == ENOSPC)
1105                                 td->error = 0;
1106                 }
1107
1108                 if (should_fsync(td) && td->o.end_fsync) {
1109                         td_set_runstate(td, TD_FSYNCING);
1110
1111                         for_each_file(td, f, i) {
1112                                 if (!fio_file_fsync(td, f))
1113                                         continue;
1114
1115                                 log_err("fio: end_fsync failed for file %s\n",
1116                                                                 f->file_name);
1117                         }
1118                 }
1119         } else
1120                 cleanup_pending_aio(td);
1121
1122         /*
1123          * stop job if we failed doing any IO
1124          */
1125         if (!ddir_rw_sum(td->this_io_bytes))
1126                 td->done = 1;
1127
1128         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1129                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1130 }
1131
1132 static void free_file_completion_logging(struct thread_data *td)
1133 {
1134         struct fio_file *f;
1135         unsigned int i;
1136
1137         for_each_file(td, f, i) {
1138                 if (!f->last_write_comp)
1139                         break;
1140                 sfree(f->last_write_comp);
1141         }
1142 }
1143
1144 static int init_file_completion_logging(struct thread_data *td,
1145                                         unsigned int depth)
1146 {
1147         struct fio_file *f;
1148         unsigned int i;
1149
1150         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1151                 return 0;
1152
1153         for_each_file(td, f, i) {
1154                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1155                 if (!f->last_write_comp)
1156                         goto cleanup;
1157         }
1158
1159         return 0;
1160
1161 cleanup:
1162         free_file_completion_logging(td);
1163         log_err("fio: failed to alloc write comp data\n");
1164         return 1;
1165 }
1166
1167 static void cleanup_io_u(struct thread_data *td)
1168 {
1169         struct io_u *io_u;
1170
1171         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1172
1173                 if (td->io_ops->io_u_free)
1174                         td->io_ops->io_u_free(td, io_u);
1175
1176                 fio_memfree(io_u, sizeof(*io_u));
1177         }
1178
1179         free_io_mem(td);
1180
1181         io_u_rexit(&td->io_u_requeues);
1182         io_u_qexit(&td->io_u_freelist);
1183         io_u_qexit(&td->io_u_all);
1184
1185         free_file_completion_logging(td);
1186 }
1187
1188 static int init_io_u(struct thread_data *td)
1189 {
1190         struct io_u *io_u;
1191         unsigned int max_bs, min_write;
1192         int cl_align, i, max_units;
1193         int data_xfer = 1, err;
1194         char *p;
1195
1196         max_units = td->o.iodepth;
1197         max_bs = td_max_bs(td);
1198         min_write = td->o.min_bs[DDIR_WRITE];
1199         td->orig_buffer_size = (unsigned long long) max_bs
1200                                         * (unsigned long long) max_units;
1201
1202         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1203                 data_xfer = 0;
1204
1205         err = 0;
1206         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1207         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1208         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1209
1210         if (err) {
1211                 log_err("fio: failed setting up IO queues\n");
1212                 return 1;
1213         }
1214
1215         /*
1216          * if we may later need to do address alignment, then add any
1217          * possible adjustment here so that we don't cause a buffer
1218          * overflow later. this adjustment may be too much if we get
1219          * lucky and the allocator gives us an aligned address.
1220          */
1221         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1222             td_ioengine_flagged(td, FIO_RAWIO))
1223                 td->orig_buffer_size += page_mask + td->o.mem_align;
1224
1225         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1226                 unsigned long bs;
1227
1228                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1229                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1230         }
1231
1232         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1233                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1234                 return 1;
1235         }
1236
1237         if (data_xfer && allocate_io_mem(td))
1238                 return 1;
1239
1240         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1241             td_ioengine_flagged(td, FIO_RAWIO))
1242                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1243         else
1244                 p = td->orig_buffer;
1245
1246         cl_align = os_cache_line_size();
1247
1248         for (i = 0; i < max_units; i++) {
1249                 void *ptr;
1250
1251                 if (td->terminate)
1252                         return 1;
1253
1254                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1255                 if (!ptr) {
1256                         log_err("fio: unable to allocate aligned memory\n");
1257                         break;
1258                 }
1259
1260                 io_u = ptr;
1261                 memset(io_u, 0, sizeof(*io_u));
1262                 INIT_FLIST_HEAD(&io_u->verify_list);
1263                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1264
1265                 if (data_xfer) {
1266                         io_u->buf = p;
1267                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1268
1269                         if (td_write(td))
1270                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1271                         if (td_write(td) && td->o.verify_pattern_bytes) {
1272                                 /*
1273                                  * Fill the buffer with the pattern if we are
1274                                  * going to be doing writes.
1275                                  */
1276                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1277                         }
1278                 }
1279
1280                 io_u->index = i;
1281                 io_u->flags = IO_U_F_FREE;
1282                 io_u_qpush(&td->io_u_freelist, io_u);
1283
1284                 /*
1285                  * io_u never leaves this stack, used for iteration of all
1286                  * io_u buffers.
1287                  */
1288                 io_u_qpush(&td->io_u_all, io_u);
1289
1290                 if (td->io_ops->io_u_init) {
1291                         int ret = td->io_ops->io_u_init(td, io_u);
1292
1293                         if (ret) {
1294                                 log_err("fio: failed to init engine data: %d\n", ret);
1295                                 return 1;
1296                         }
1297                 }
1298
1299                 p += max_bs;
1300         }
1301
1302         if (init_file_completion_logging(td, max_units))
1303                 return 1;
1304
1305         return 0;
1306 }
1307
1308 /*
1309  * This function is Linux specific.
1310  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1311  */
1312 static int switch_ioscheduler(struct thread_data *td)
1313 {
1314 #ifdef FIO_HAVE_IOSCHED_SWITCH
1315         char tmp[256], tmp2[128];
1316         FILE *f;
1317         int ret;
1318
1319         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1320                 return 0;
1321
1322         assert(td->files && td->files[0]);
1323         sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1324
1325         f = fopen(tmp, "r+");
1326         if (!f) {
1327                 if (errno == ENOENT) {
1328                         log_err("fio: os or kernel doesn't support IO scheduler"
1329                                 " switching\n");
1330                         return 0;
1331                 }
1332                 td_verror(td, errno, "fopen iosched");
1333                 return 1;
1334         }
1335
1336         /*
1337          * Set io scheduler.
1338          */
1339         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1340         if (ferror(f) || ret != 1) {
1341                 td_verror(td, errno, "fwrite");
1342                 fclose(f);
1343                 return 1;
1344         }
1345
1346         rewind(f);
1347
1348         /*
1349          * Read back and check that the selected scheduler is now the default.
1350          */
1351         memset(tmp, 0, sizeof(tmp));
1352         ret = fread(tmp, sizeof(tmp), 1, f);
1353         if (ferror(f) || ret < 0) {
1354                 td_verror(td, errno, "fread");
1355                 fclose(f);
1356                 return 1;
1357         }
1358         /*
1359          * either a list of io schedulers or "none\n" is expected.
1360          */
1361         tmp[strlen(tmp) - 1] = '\0';
1362
1363         /*
1364          * Write to "none" entry doesn't fail, so check the result here.
1365          */
1366         if (!strcmp(tmp, "none")) {
1367                 log_err("fio: io scheduler is not tunable\n");
1368                 fclose(f);
1369                 return 0;
1370         }
1371
1372         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1373         if (!strstr(tmp, tmp2)) {
1374                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1375                 td_verror(td, EINVAL, "iosched_switch");
1376                 fclose(f);
1377                 return 1;
1378         }
1379
1380         fclose(f);
1381         return 0;
1382 #else
1383         return 0;
1384 #endif
1385 }
1386
1387 static bool keep_running(struct thread_data *td)
1388 {
1389         unsigned long long limit;
1390
1391         if (td->done)
1392                 return false;
1393         if (td->o.time_based)
1394                 return true;
1395         if (td->o.loops) {
1396                 td->o.loops--;
1397                 return true;
1398         }
1399         if (exceeds_number_ios(td))
1400                 return false;
1401
1402         if (td->o.io_size)
1403                 limit = td->o.io_size;
1404         else
1405                 limit = td->o.size;
1406
1407         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1408                 uint64_t diff;
1409
1410                 /*
1411                  * If the difference is less than the maximum IO size, we
1412                  * are done.
1413                  */
1414                 diff = limit - ddir_rw_sum(td->io_bytes);
1415                 if (diff < td_max_bs(td))
1416                         return false;
1417
1418                 if (fio_files_done(td) && !td->o.io_size)
1419                         return false;
1420
1421                 return true;
1422         }
1423
1424         return false;
1425 }
1426
1427 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1428 {
1429         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1430         int ret;
1431         char *str;
1432
1433         str = malloc(newlen);
1434         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1435
1436         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1437         ret = system(str);
1438         if (ret == -1)
1439                 log_err("fio: exec of cmd <%s> failed\n", str);
1440
1441         free(str);
1442         return ret;
1443 }
1444
1445 /*
1446  * Dry run to compute correct state of numberio for verification.
1447  */
1448 static uint64_t do_dry_run(struct thread_data *td)
1449 {
1450         td_set_runstate(td, TD_RUNNING);
1451
1452         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1453                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1454                 struct io_u *io_u;
1455                 int ret;
1456
1457                 if (td->terminate || td->done)
1458                         break;
1459
1460                 io_u = get_io_u(td);
1461                 if (IS_ERR_OR_NULL(io_u))
1462                         break;
1463
1464                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1465                 io_u->error = 0;
1466                 io_u->resid = 0;
1467                 if (ddir_rw(acct_ddir(io_u)))
1468                         td->io_issues[acct_ddir(io_u)]++;
1469                 if (ddir_rw(io_u->ddir)) {
1470                         io_u_mark_depth(td, 1);
1471                         td->ts.total_io_u[io_u->ddir]++;
1472                 }
1473
1474                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1475                     td->o.do_verify &&
1476                     td->o.verify != VERIFY_NONE &&
1477                     !td->o.experimental_verify)
1478                         log_io_piece(td, io_u);
1479
1480                 ret = io_u_sync_complete(td, io_u);
1481                 (void) ret;
1482         }
1483
1484         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1485 }
1486
1487 struct fork_data {
1488         struct thread_data *td;
1489         struct sk_out *sk_out;
1490 };
1491
1492 /*
1493  * Entry point for the thread based jobs. The process based jobs end up
1494  * here as well, after a little setup.
1495  */
1496 static void *thread_main(void *data)
1497 {
1498         struct fork_data *fd = data;
1499         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1500         struct thread_data *td = fd->td;
1501         struct thread_options *o = &td->o;
1502         struct sk_out *sk_out = fd->sk_out;
1503         uint64_t bytes_done[DDIR_RWDIR_CNT];
1504         int deadlock_loop_cnt;
1505         int clear_state;
1506         int ret;
1507
1508         sk_out_assign(sk_out);
1509         free(fd);
1510
1511         if (!o->use_thread) {
1512                 setsid();
1513                 td->pid = getpid();
1514         } else
1515                 td->pid = gettid();
1516
1517         fio_local_clock_init(o->use_thread);
1518
1519         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1520
1521         if (is_backend)
1522                 fio_server_send_start(td);
1523
1524         INIT_FLIST_HEAD(&td->io_log_list);
1525         INIT_FLIST_HEAD(&td->io_hist_list);
1526         INIT_FLIST_HEAD(&td->verify_list);
1527         INIT_FLIST_HEAD(&td->trim_list);
1528         INIT_FLIST_HEAD(&td->next_rand_list);
1529         td->io_hist_tree = RB_ROOT;
1530
1531         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1532         if (ret) {
1533                 td_verror(td, ret, "mutex_cond_init_pshared");
1534                 goto err;
1535         }
1536         ret = cond_init_pshared(&td->verify_cond);
1537         if (ret) {
1538                 td_verror(td, ret, "mutex_cond_pshared");
1539                 goto err;
1540         }
1541
1542         td_set_runstate(td, TD_INITIALIZED);
1543         dprint(FD_MUTEX, "up startup_mutex\n");
1544         fio_mutex_up(startup_mutex);
1545         dprint(FD_MUTEX, "wait on td->mutex\n");
1546         fio_mutex_down(td->mutex);
1547         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1548
1549         /*
1550          * A new gid requires privilege, so we need to do this before setting
1551          * the uid.
1552          */
1553         if (o->gid != -1U && setgid(o->gid)) {
1554                 td_verror(td, errno, "setgid");
1555                 goto err;
1556         }
1557         if (o->uid != -1U && setuid(o->uid)) {
1558                 td_verror(td, errno, "setuid");
1559                 goto err;
1560         }
1561
1562         /*
1563          * Do this early, we don't want the compress threads to be limited
1564          * to the same CPUs as the IO workers. So do this before we set
1565          * any potential CPU affinity
1566          */
1567         if (iolog_compress_init(td, sk_out))
1568                 goto err;
1569
1570         /*
1571          * If we have a gettimeofday() thread, make sure we exclude that
1572          * thread from this job
1573          */
1574         if (o->gtod_cpu)
1575                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1576
1577         /*
1578          * Set affinity first, in case it has an impact on the memory
1579          * allocations.
1580          */
1581         if (fio_option_is_set(o, cpumask)) {
1582                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1583                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1584                         if (!ret) {
1585                                 log_err("fio: no CPUs set\n");
1586                                 log_err("fio: Try increasing number of available CPUs\n");
1587                                 td_verror(td, EINVAL, "cpus_split");
1588                                 goto err;
1589                         }
1590                 }
1591                 ret = fio_setaffinity(td->pid, o->cpumask);
1592                 if (ret == -1) {
1593                         td_verror(td, errno, "cpu_set_affinity");
1594                         goto err;
1595                 }
1596         }
1597
1598 #ifdef CONFIG_LIBNUMA
1599         /* numa node setup */
1600         if (fio_option_is_set(o, numa_cpunodes) ||
1601             fio_option_is_set(o, numa_memnodes)) {
1602                 struct bitmask *mask;
1603
1604                 if (numa_available() < 0) {
1605                         td_verror(td, errno, "Does not support NUMA API\n");
1606                         goto err;
1607                 }
1608
1609                 if (fio_option_is_set(o, numa_cpunodes)) {
1610                         mask = numa_parse_nodestring(o->numa_cpunodes);
1611                         ret = numa_run_on_node_mask(mask);
1612                         numa_free_nodemask(mask);
1613                         if (ret == -1) {
1614                                 td_verror(td, errno, \
1615                                         "numa_run_on_node_mask failed\n");
1616                                 goto err;
1617                         }
1618                 }
1619
1620                 if (fio_option_is_set(o, numa_memnodes)) {
1621                         mask = NULL;
1622                         if (o->numa_memnodes)
1623                                 mask = numa_parse_nodestring(o->numa_memnodes);
1624
1625                         switch (o->numa_mem_mode) {
1626                         case MPOL_INTERLEAVE:
1627                                 numa_set_interleave_mask(mask);
1628                                 break;
1629                         case MPOL_BIND:
1630                                 numa_set_membind(mask);
1631                                 break;
1632                         case MPOL_LOCAL:
1633                                 numa_set_localalloc();
1634                                 break;
1635                         case MPOL_PREFERRED:
1636                                 numa_set_preferred(o->numa_mem_prefer_node);
1637                                 break;
1638                         case MPOL_DEFAULT:
1639                         default:
1640                                 break;
1641                         }
1642
1643                         if (mask)
1644                                 numa_free_nodemask(mask);
1645
1646                 }
1647         }
1648 #endif
1649
1650         if (fio_pin_memory(td))
1651                 goto err;
1652
1653         /*
1654          * May alter parameters that init_io_u() will use, so we need to
1655          * do this first.
1656          */
1657         if (init_iolog(td))
1658                 goto err;
1659
1660         if (init_io_u(td))
1661                 goto err;
1662
1663         if (o->verify_async && verify_async_init(td))
1664                 goto err;
1665
1666         if (fio_option_is_set(o, ioprio) ||
1667             fio_option_is_set(o, ioprio_class)) {
1668                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1669                 if (ret == -1) {
1670                         td_verror(td, errno, "ioprio_set");
1671                         goto err;
1672                 }
1673         }
1674
1675         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1676                 goto err;
1677
1678         errno = 0;
1679         if (nice(o->nice) == -1 && errno != 0) {
1680                 td_verror(td, errno, "nice");
1681                 goto err;
1682         }
1683
1684         if (o->ioscheduler && switch_ioscheduler(td))
1685                 goto err;
1686
1687         if (!o->create_serialize && setup_files(td))
1688                 goto err;
1689
1690         if (td_io_init(td))
1691                 goto err;
1692
1693         if (init_random_map(td))
1694                 goto err;
1695
1696         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1697                 goto err;
1698
1699         if (o->pre_read) {
1700                 if (pre_read_files(td) < 0)
1701                         goto err;
1702         }
1703
1704         fio_verify_init(td);
1705
1706         if (rate_submit_init(td, sk_out))
1707                 goto err;
1708
1709         set_epoch_time(td, o->log_unix_epoch);
1710         fio_getrusage(&td->ru_start);
1711         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1712         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1713         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1714
1715         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1716                         o->ratemin[DDIR_TRIM]) {
1717                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1718                                         sizeof(td->bw_sample_time));
1719                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1720                                         sizeof(td->bw_sample_time));
1721                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1722                                         sizeof(td->bw_sample_time));
1723         }
1724
1725         memset(bytes_done, 0, sizeof(bytes_done));
1726         clear_state = 0;
1727
1728         while (keep_running(td)) {
1729                 uint64_t verify_bytes;
1730
1731                 fio_gettime(&td->start, NULL);
1732                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1733
1734                 if (clear_state) {
1735                         clear_io_state(td, 0);
1736
1737                         if (o->unlink_each_loop && unlink_all_files(td))
1738                                 break;
1739                 }
1740
1741                 prune_io_piece_log(td);
1742
1743                 if (td->o.verify_only && td_write(td))
1744                         verify_bytes = do_dry_run(td);
1745                 else {
1746                         do_io(td, bytes_done);
1747
1748                         if (!ddir_rw_sum(bytes_done)) {
1749                                 fio_mark_td_terminate(td);
1750                                 verify_bytes = 0;
1751                         } else {
1752                                 verify_bytes = bytes_done[DDIR_WRITE] +
1753                                                 bytes_done[DDIR_TRIM];
1754                         }
1755                 }
1756
1757                 /*
1758                  * If we took too long to shut down, the main thread could
1759                  * already consider us reaped/exited. If that happens, break
1760                  * out and clean up.
1761                  */
1762                 if (td->runstate >= TD_EXITED)
1763                         break;
1764
1765                 clear_state = 1;
1766
1767                 /*
1768                  * Make sure we've successfully updated the rusage stats
1769                  * before waiting on the stat mutex. Otherwise we could have
1770                  * the stat thread holding stat mutex and waiting for
1771                  * the rusage_sem, which would never get upped because
1772                  * this thread is waiting for the stat mutex.
1773                  */
1774                 deadlock_loop_cnt = 0;
1775                 do {
1776                         check_update_rusage(td);
1777                         if (!fio_mutex_down_trylock(stat_mutex))
1778                                 break;
1779                         usleep(1000);
1780                         if (deadlock_loop_cnt++ > 5000) {
1781                                 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1782                                 td->error = EDEADLK;
1783                                 goto err;
1784                         }
1785                 } while (1);
1786
1787                 if (td_read(td) && td->io_bytes[DDIR_READ])
1788                         update_runtime(td, elapsed_us, DDIR_READ);
1789                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1790                         update_runtime(td, elapsed_us, DDIR_WRITE);
1791                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1792                         update_runtime(td, elapsed_us, DDIR_TRIM);
1793                 fio_gettime(&td->start, NULL);
1794                 fio_mutex_up(stat_mutex);
1795
1796                 if (td->error || td->terminate)
1797                         break;
1798
1799                 if (!o->do_verify ||
1800                     o->verify == VERIFY_NONE ||
1801                     td_ioengine_flagged(td, FIO_UNIDIR))
1802                         continue;
1803
1804                 clear_io_state(td, 0);
1805
1806                 fio_gettime(&td->start, NULL);
1807
1808                 do_verify(td, verify_bytes);
1809
1810                 /*
1811                  * See comment further up for why this is done here.
1812                  */
1813                 check_update_rusage(td);
1814
1815                 fio_mutex_down(stat_mutex);
1816                 update_runtime(td, elapsed_us, DDIR_READ);
1817                 fio_gettime(&td->start, NULL);
1818                 fio_mutex_up(stat_mutex);
1819
1820                 if (td->error || td->terminate)
1821                         break;
1822         }
1823
1824         /*
1825          * If td ended up with no I/O when it should have had,
1826          * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1827          * (Are we not missing other flags that can be ignored ?)
1828          */
1829         if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1830             !(td_ioengine_flagged(td, FIO_NOIO) ||
1831               td_ioengine_flagged(td, FIO_DISKLESSIO)))
1832                 log_err("%s: No I/O performed by %s, "
1833                          "perhaps try --debug=io option for details?\n",
1834                          td->o.name, td->io_ops->name);
1835
1836         td_set_runstate(td, TD_FINISHING);
1837
1838         update_rusage_stat(td);
1839         td->ts.total_run_time = mtime_since_now(&td->epoch);
1840         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1841         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1842         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1843
1844         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1845             (td->o.verify != VERIFY_NONE && td_write(td)))
1846                 verify_save_state(td->thread_number);
1847
1848         fio_unpin_memory(td);
1849
1850         td_writeout_logs(td, true);
1851
1852         iolog_compress_exit(td);
1853         rate_submit_exit(td);
1854
1855         if (o->exec_postrun)
1856                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1857
1858         if (exitall_on_terminate || (o->exitall_error && td->error))
1859                 fio_terminate_threads(td->groupid);
1860
1861 err:
1862         if (td->error)
1863                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1864                                                         td->verror);
1865
1866         if (o->verify_async)
1867                 verify_async_exit(td);
1868
1869         close_and_free_files(td);
1870         cleanup_io_u(td);
1871         close_ioengine(td);
1872         cgroup_shutdown(td, &cgroup_mnt);
1873         verify_free_state(td);
1874
1875         if (td->zone_state_index) {
1876                 int i;
1877
1878                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1879                         free(td->zone_state_index[i]);
1880                 free(td->zone_state_index);
1881                 td->zone_state_index = NULL;
1882         }
1883
1884         if (fio_option_is_set(o, cpumask)) {
1885                 ret = fio_cpuset_exit(&o->cpumask);
1886                 if (ret)
1887                         td_verror(td, ret, "fio_cpuset_exit");
1888         }
1889
1890         /*
1891          * do this very late, it will log file closing as well
1892          */
1893         if (o->write_iolog_file)
1894                 write_iolog_close(td);
1895
1896         td_set_runstate(td, TD_EXITED);
1897
1898         /*
1899          * Do this last after setting our runstate to exited, so we
1900          * know that the stat thread is signaled.
1901          */
1902         check_update_rusage(td);
1903
1904         sk_out_drop();
1905         return (void *) (uintptr_t) td->error;
1906 }
1907
1908 /*
1909  * Run over the job map and reap the threads that have exited, if any.
1910  */
1911 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1912                          uint64_t *m_rate)
1913 {
1914         struct thread_data *td;
1915         unsigned int cputhreads, realthreads, pending;
1916         int i, status, ret;
1917
1918         /*
1919          * reap exited threads (TD_EXITED -> TD_REAPED)
1920          */
1921         realthreads = pending = cputhreads = 0;
1922         for_each_td(td, i) {
1923                 int flags = 0;
1924
1925                 /*
1926                  * ->io_ops is NULL for a thread that has closed its
1927                  * io engine
1928                  */
1929                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1930                         cputhreads++;
1931                 else
1932                         realthreads++;
1933
1934                 if (!td->pid) {
1935                         pending++;
1936                         continue;
1937                 }
1938                 if (td->runstate == TD_REAPED)
1939                         continue;
1940                 if (td->o.use_thread) {
1941                         if (td->runstate == TD_EXITED) {
1942                                 td_set_runstate(td, TD_REAPED);
1943                                 goto reaped;
1944                         }
1945                         continue;
1946                 }
1947
1948                 flags = WNOHANG;
1949                 if (td->runstate == TD_EXITED)
1950                         flags = 0;
1951
1952                 /*
1953                  * check if someone quit or got killed in an unusual way
1954                  */
1955                 ret = waitpid(td->pid, &status, flags);
1956                 if (ret < 0) {
1957                         if (errno == ECHILD) {
1958                                 log_err("fio: pid=%d disappeared %d\n",
1959                                                 (int) td->pid, td->runstate);
1960                                 td->sig = ECHILD;
1961                                 td_set_runstate(td, TD_REAPED);
1962                                 goto reaped;
1963                         }
1964                         perror("waitpid");
1965                 } else if (ret == td->pid) {
1966                         if (WIFSIGNALED(status)) {
1967                                 int sig = WTERMSIG(status);
1968
1969                                 if (sig != SIGTERM && sig != SIGUSR2)
1970                                         log_err("fio: pid=%d, got signal=%d\n",
1971                                                         (int) td->pid, sig);
1972                                 td->sig = sig;
1973                                 td_set_runstate(td, TD_REAPED);
1974                                 goto reaped;
1975                         }
1976                         if (WIFEXITED(status)) {
1977                                 if (WEXITSTATUS(status) && !td->error)
1978                                         td->error = WEXITSTATUS(status);
1979
1980                                 td_set_runstate(td, TD_REAPED);
1981                                 goto reaped;
1982                         }
1983                 }
1984
1985                 /*
1986                  * If the job is stuck, do a forceful timeout of it and
1987                  * move on.
1988                  */
1989                 if (td->terminate &&
1990                     td->runstate < TD_FSYNCING &&
1991                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1992                         log_err("fio: job '%s' (state=%d) hasn't exited in "
1993                                 "%lu seconds, it appears to be stuck. Doing "
1994                                 "forceful exit of this job.\n",
1995                                 td->o.name, td->runstate,
1996                                 (unsigned long) time_since_now(&td->terminate_time));
1997                         td_set_runstate(td, TD_REAPED);
1998                         goto reaped;
1999                 }
2000
2001                 /*
2002                  * thread is not dead, continue
2003                  */
2004                 pending++;
2005                 continue;
2006 reaped:
2007                 (*nr_running)--;
2008                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2009                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2010                 if (!td->pid)
2011                         pending--;
2012
2013                 if (td->error)
2014                         exit_value++;
2015
2016                 done_secs += mtime_since_now(&td->epoch) / 1000;
2017                 profile_td_exit(td);
2018         }
2019
2020         if (*nr_running == cputhreads && !pending && realthreads)
2021                 fio_terminate_threads(TERMINATE_ALL);
2022 }
2023
2024 static bool __check_trigger_file(void)
2025 {
2026         struct stat sb;
2027
2028         if (!trigger_file)
2029                 return false;
2030
2031         if (stat(trigger_file, &sb))
2032                 return false;
2033
2034         if (unlink(trigger_file) < 0)
2035                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2036                                                         strerror(errno));
2037
2038         return true;
2039 }
2040
2041 static bool trigger_timedout(void)
2042 {
2043         if (trigger_timeout)
2044                 return time_since_genesis() >= trigger_timeout;
2045
2046         return false;
2047 }
2048
2049 void exec_trigger(const char *cmd)
2050 {
2051         int ret;
2052
2053         if (!cmd)
2054                 return;
2055
2056         ret = system(cmd);
2057         if (ret == -1)
2058                 log_err("fio: failed executing %s trigger\n", cmd);
2059 }
2060
2061 void check_trigger_file(void)
2062 {
2063         if (__check_trigger_file() || trigger_timedout()) {
2064                 if (nr_clients)
2065                         fio_clients_send_trigger(trigger_remote_cmd);
2066                 else {
2067                         verify_save_state(IO_LIST_ALL);
2068                         fio_terminate_threads(TERMINATE_ALL);
2069                         exec_trigger(trigger_cmd);
2070                 }
2071         }
2072 }
2073
2074 static int fio_verify_load_state(struct thread_data *td)
2075 {
2076         int ret;
2077
2078         if (!td->o.verify_state)
2079                 return 0;
2080
2081         if (is_backend) {
2082                 void *data;
2083
2084                 ret = fio_server_get_verify_state(td->o.name,
2085                                         td->thread_number - 1, &data);
2086                 if (!ret)
2087                         verify_assign_state(td, data);
2088         } else
2089                 ret = verify_load_state(td, "local");
2090
2091         return ret;
2092 }
2093
2094 static void do_usleep(unsigned int usecs)
2095 {
2096         check_for_running_stats();
2097         check_trigger_file();
2098         usleep(usecs);
2099 }
2100
2101 static bool check_mount_writes(struct thread_data *td)
2102 {
2103         struct fio_file *f;
2104         unsigned int i;
2105
2106         if (!td_write(td) || td->o.allow_mounted_write)
2107                 return false;
2108
2109         /*
2110          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2111          * are mkfs'd and mounted.
2112          */
2113         for_each_file(td, f, i) {
2114 #ifdef FIO_HAVE_CHARDEV_SIZE
2115                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2116 #else
2117                 if (f->filetype != FIO_TYPE_BLOCK)
2118 #endif
2119                         continue;
2120                 if (device_is_mounted(f->file_name))
2121                         goto mounted;
2122         }
2123
2124         return false;
2125 mounted:
2126         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2127         return true;
2128 }
2129
2130 static bool waitee_running(struct thread_data *me)
2131 {
2132         const char *waitee = me->o.wait_for;
2133         const char *self = me->o.name;
2134         struct thread_data *td;
2135         int i;
2136
2137         if (!waitee)
2138                 return false;
2139
2140         for_each_td(td, i) {
2141                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2142                         continue;
2143
2144                 if (td->runstate < TD_EXITED) {
2145                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2146                                         self, td->o.name,
2147                                         runstate_to_name(td->runstate));
2148                         return true;
2149                 }
2150         }
2151
2152         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2153         return false;
2154 }
2155
2156 /*
2157  * Main function for kicking off and reaping jobs, as needed.
2158  */
2159 static void run_threads(struct sk_out *sk_out)
2160 {
2161         struct thread_data *td;
2162         unsigned int i, todo, nr_running, nr_started;
2163         uint64_t m_rate, t_rate;
2164         uint64_t spent;
2165
2166         if (fio_gtod_offload && fio_start_gtod_thread())
2167                 return;
2168
2169         fio_idle_prof_init();
2170
2171         set_sig_handlers();
2172
2173         nr_thread = nr_process = 0;
2174         for_each_td(td, i) {
2175                 if (check_mount_writes(td))
2176                         return;
2177                 if (td->o.use_thread)
2178                         nr_thread++;
2179                 else
2180                         nr_process++;
2181         }
2182
2183         if (output_format & FIO_OUTPUT_NORMAL) {
2184                 log_info("Starting ");
2185                 if (nr_thread)
2186                         log_info("%d thread%s", nr_thread,
2187                                                 nr_thread > 1 ? "s" : "");
2188                 if (nr_process) {
2189                         if (nr_thread)
2190                                 log_info(" and ");
2191                         log_info("%d process%s", nr_process,
2192                                                 nr_process > 1 ? "es" : "");
2193                 }
2194                 log_info("\n");
2195                 log_info_flush();
2196         }
2197
2198         todo = thread_number;
2199         nr_running = 0;
2200         nr_started = 0;
2201         m_rate = t_rate = 0;
2202
2203         for_each_td(td, i) {
2204                 print_status_init(td->thread_number - 1);
2205
2206                 if (!td->o.create_serialize)
2207                         continue;
2208
2209                 if (fio_verify_load_state(td))
2210                         goto reap;
2211
2212                 /*
2213                  * do file setup here so it happens sequentially,
2214                  * we don't want X number of threads getting their
2215                  * client data interspersed on disk
2216                  */
2217                 if (setup_files(td)) {
2218 reap:
2219                         exit_value++;
2220                         if (td->error)
2221                                 log_err("fio: pid=%d, err=%d/%s\n",
2222                                         (int) td->pid, td->error, td->verror);
2223                         td_set_runstate(td, TD_REAPED);
2224                         todo--;
2225                 } else {
2226                         struct fio_file *f;
2227                         unsigned int j;
2228
2229                         /*
2230                          * for sharing to work, each job must always open
2231                          * its own files. so close them, if we opened them
2232                          * for creation
2233                          */
2234                         for_each_file(td, f, j) {
2235                                 if (fio_file_open(f))
2236                                         td_io_close_file(td, f);
2237                         }
2238                 }
2239         }
2240
2241         /* start idle threads before io threads start to run */
2242         fio_idle_prof_start();
2243
2244         set_genesis_time();
2245
2246         while (todo) {
2247                 struct thread_data *map[REAL_MAX_JOBS];
2248                 struct timespec this_start;
2249                 int this_jobs = 0, left;
2250                 struct fork_data *fd;
2251
2252                 /*
2253                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2254                  */
2255                 for_each_td(td, i) {
2256                         if (td->runstate != TD_NOT_CREATED)
2257                                 continue;
2258
2259                         /*
2260                          * never got a chance to start, killed by other
2261                          * thread for some reason
2262                          */
2263                         if (td->terminate) {
2264                                 todo--;
2265                                 continue;
2266                         }
2267
2268                         if (td->o.start_delay) {
2269                                 spent = utime_since_genesis();
2270
2271                                 if (td->o.start_delay > spent)
2272                                         continue;
2273                         }
2274
2275                         if (td->o.stonewall && (nr_started || nr_running)) {
2276                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2277                                                         td->o.name);
2278                                 break;
2279                         }
2280
2281                         if (waitee_running(td)) {
2282                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2283                                                 td->o.name, td->o.wait_for);
2284                                 continue;
2285                         }
2286
2287                         init_disk_util(td);
2288
2289                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2290                         td->update_rusage = 0;
2291
2292                         /*
2293                          * Set state to created. Thread will transition
2294                          * to TD_INITIALIZED when it's done setting up.
2295                          */
2296                         td_set_runstate(td, TD_CREATED);
2297                         map[this_jobs++] = td;
2298                         nr_started++;
2299
2300                         fd = calloc(1, sizeof(*fd));
2301                         fd->td = td;
2302                         fd->sk_out = sk_out;
2303
2304                         if (td->o.use_thread) {
2305                                 int ret;
2306
2307                                 dprint(FD_PROCESS, "will pthread_create\n");
2308                                 ret = pthread_create(&td->thread, NULL,
2309                                                         thread_main, fd);
2310                                 if (ret) {
2311                                         log_err("pthread_create: %s\n",
2312                                                         strerror(ret));
2313                                         free(fd);
2314                                         nr_started--;
2315                                         break;
2316                                 }
2317                                 ret = pthread_detach(td->thread);
2318                                 if (ret)
2319                                         log_err("pthread_detach: %s",
2320                                                         strerror(ret));
2321                         } else {
2322                                 pid_t pid;
2323                                 dprint(FD_PROCESS, "will fork\n");
2324                                 pid = fork();
2325                                 if (!pid) {
2326                                         int ret;
2327
2328                                         ret = (int)(uintptr_t)thread_main(fd);
2329                                         _exit(ret);
2330                                 } else if (i == fio_debug_jobno)
2331                                         *fio_debug_jobp = pid;
2332                         }
2333                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2334                         if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2335                                 log_err("fio: job startup hung? exiting.\n");
2336                                 fio_terminate_threads(TERMINATE_ALL);
2337                                 fio_abort = 1;
2338                                 nr_started--;
2339                                 break;
2340                         }
2341                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2342                 }
2343
2344                 /*
2345                  * Wait for the started threads to transition to
2346                  * TD_INITIALIZED.
2347                  */
2348                 fio_gettime(&this_start, NULL);
2349                 left = this_jobs;
2350                 while (left && !fio_abort) {
2351                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2352                                 break;
2353
2354                         do_usleep(100000);
2355
2356                         for (i = 0; i < this_jobs; i++) {
2357                                 td = map[i];
2358                                 if (!td)
2359                                         continue;
2360                                 if (td->runstate == TD_INITIALIZED) {
2361                                         map[i] = NULL;
2362                                         left--;
2363                                 } else if (td->runstate >= TD_EXITED) {
2364                                         map[i] = NULL;
2365                                         left--;
2366                                         todo--;
2367                                         nr_running++; /* work-around... */
2368                                 }
2369                         }
2370                 }
2371
2372                 if (left) {
2373                         log_err("fio: %d job%s failed to start\n", left,
2374                                         left > 1 ? "s" : "");
2375                         for (i = 0; i < this_jobs; i++) {
2376                                 td = map[i];
2377                                 if (!td)
2378                                         continue;
2379                                 kill(td->pid, SIGTERM);
2380                         }
2381                         break;
2382                 }
2383
2384                 /*
2385                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2386                  */
2387                 for_each_td(td, i) {
2388                         if (td->runstate != TD_INITIALIZED)
2389                                 continue;
2390
2391                         if (in_ramp_time(td))
2392                                 td_set_runstate(td, TD_RAMP);
2393                         else
2394                                 td_set_runstate(td, TD_RUNNING);
2395                         nr_running++;
2396                         nr_started--;
2397                         m_rate += ddir_rw_sum(td->o.ratemin);
2398                         t_rate += ddir_rw_sum(td->o.rate);
2399                         todo--;
2400                         fio_mutex_up(td->mutex);
2401                 }
2402
2403                 reap_threads(&nr_running, &t_rate, &m_rate);
2404
2405                 if (todo)
2406                         do_usleep(100000);
2407         }
2408
2409         while (nr_running) {
2410                 reap_threads(&nr_running, &t_rate, &m_rate);
2411                 do_usleep(10000);
2412         }
2413
2414         fio_idle_prof_stop();
2415
2416         update_io_ticks();
2417 }
2418
2419 static void free_disk_util(void)
2420 {
2421         disk_util_prune_entries();
2422         helper_thread_destroy();
2423 }
2424
2425 int fio_backend(struct sk_out *sk_out)
2426 {
2427         struct thread_data *td;
2428         int i;
2429
2430         if (exec_profile) {
2431                 if (load_profile(exec_profile))
2432                         return 1;
2433                 free(exec_profile);
2434                 exec_profile = NULL;
2435         }
2436         if (!thread_number)
2437                 return 0;
2438
2439         if (write_bw_log) {
2440                 struct log_params p = {
2441                         .log_type = IO_LOG_TYPE_BW,
2442                 };
2443
2444                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2445                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2446                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2447         }
2448
2449         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2450         if (startup_mutex == NULL)
2451                 return 1;
2452
2453         set_genesis_time();
2454         stat_init();
2455         helper_thread_create(startup_mutex, sk_out);
2456
2457         cgroup_list = smalloc(sizeof(*cgroup_list));
2458         INIT_FLIST_HEAD(cgroup_list);
2459
2460         run_threads(sk_out);
2461
2462         helper_thread_exit();
2463
2464         if (!fio_abort) {
2465                 __show_run_stats();
2466                 if (write_bw_log) {
2467                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2468                                 struct io_log *log = agg_io_log[i];
2469
2470                                 flush_log(log, false);
2471                                 free_log(log);
2472                         }
2473                 }
2474         }
2475
2476         for_each_td(td, i) {
2477                 if (td->ss.dur) {
2478                         if (td->ss.iops_data != NULL) {
2479                                 free(td->ss.iops_data);
2480                                 free(td->ss.bw_data);
2481                         }
2482                 }
2483                 fio_options_free(td);
2484                 if (td->rusage_sem) {
2485                         fio_mutex_remove(td->rusage_sem);
2486                         td->rusage_sem = NULL;
2487                 }
2488                 fio_mutex_remove(td->mutex);
2489                 td->mutex = NULL;
2490         }
2491
2492         free_disk_util();
2493         cgroup_kill(cgroup_list);
2494         sfree(cgroup_list);
2495         sfree(cgroup_mnt);
2496
2497         fio_mutex_remove(startup_mutex);
2498         stat_exit();
2499         return exit_value;
2500 }