Unify the time handling
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38
39 #include "fio.h"
40 #ifndef FIO_NO_HAVE_SHM_H
41 #include <sys/shm.h>
42 #endif
43 #include "hash.h"
44 #include "smalloc.h"
45 #include "verify.h"
46 #include "trim.h"
47 #include "diskutil.h"
48 #include "cgroup.h"
49 #include "profile.h"
50 #include "lib/rand.h"
51 #include "memalign.h"
52 #include "server.h"
53 #include "lib/getrusage.h"
54 #include "idletime.h"
55 #include "err.h"
56
57 static pthread_t disk_util_thread;
58 static struct fio_mutex *disk_thread_mutex;
59 static struct fio_mutex *startup_mutex;
60 static struct fio_mutex *writeout_mutex;
61 static struct flist_head *cgroup_list;
62 static char *cgroup_mnt;
63 static int exit_value;
64 static volatile int fio_abort;
65 static unsigned int nr_process = 0;
66 static unsigned int nr_thread = 0;
67
68 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
69
70 int groupid = 0;
71 unsigned int thread_number = 0;
72 unsigned int stat_number = 0;
73 int shm_id = 0;
74 int temp_stall_ts;
75 unsigned long done_secs = 0;
76 volatile int disk_util_exit = 0;
77
78 #define PAGE_ALIGN(buf) \
79         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
80
81 #define JOB_START_TIMEOUT       (5 * 1000)
82
83 static void sig_int(int sig)
84 {
85         if (threads) {
86                 if (is_backend)
87                         fio_server_got_signal(sig);
88                 else {
89                         log_info("\nfio: terminating on signal %d\n", sig);
90                         fflush(stdout);
91                         exit_value = 128;
92                 }
93
94                 fio_terminate_threads(TERMINATE_ALL);
95         }
96 }
97
98 static void sig_show_status(int sig)
99 {
100         show_running_run_stats();
101 }
102
103 static void set_sig_handlers(void)
104 {
105         struct sigaction act;
106
107         memset(&act, 0, sizeof(act));
108         act.sa_handler = sig_int;
109         act.sa_flags = SA_RESTART;
110         sigaction(SIGINT, &act, NULL);
111
112         memset(&act, 0, sizeof(act));
113         act.sa_handler = sig_int;
114         act.sa_flags = SA_RESTART;
115         sigaction(SIGTERM, &act, NULL);
116
117 /* Windows uses SIGBREAK as a quit signal from other applications */
118 #ifdef WIN32
119         memset(&act, 0, sizeof(act));
120         act.sa_handler = sig_int;
121         act.sa_flags = SA_RESTART;
122         sigaction(SIGBREAK, &act, NULL);
123 #endif
124
125         memset(&act, 0, sizeof(act));
126         act.sa_handler = sig_show_status;
127         act.sa_flags = SA_RESTART;
128         sigaction(SIGUSR1, &act, NULL);
129
130         if (is_backend) {
131                 memset(&act, 0, sizeof(act));
132                 act.sa_handler = sig_int;
133                 act.sa_flags = SA_RESTART;
134                 sigaction(SIGPIPE, &act, NULL);
135         }
136 }
137
138 /*
139  * Check if we are above the minimum rate given.
140  */
141 static int __check_min_rate(struct thread_data *td, struct timeval *now,
142                             enum fio_ddir ddir)
143 {
144         unsigned long long bytes = 0;
145         unsigned long iops = 0;
146         unsigned long spent;
147         unsigned long rate;
148         unsigned int ratemin = 0;
149         unsigned int rate_iops = 0;
150         unsigned int rate_iops_min = 0;
151
152         assert(ddir_rw(ddir));
153
154         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
155                 return 0;
156
157         /*
158          * allow a 2 second settle period in the beginning
159          */
160         if (mtime_since(&td->start, now) < 2000)
161                 return 0;
162
163         iops += td->this_io_blocks[ddir];
164         bytes += td->this_io_bytes[ddir];
165         ratemin += td->o.ratemin[ddir];
166         rate_iops += td->o.rate_iops[ddir];
167         rate_iops_min += td->o.rate_iops_min[ddir];
168
169         /*
170          * if rate blocks is set, sample is running
171          */
172         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
173                 spent = mtime_since(&td->lastrate[ddir], now);
174                 if (spent < td->o.ratecycle)
175                         return 0;
176
177                 if (td->o.rate[ddir]) {
178                         /*
179                          * check bandwidth specified rate
180                          */
181                         if (bytes < td->rate_bytes[ddir]) {
182                                 log_err("%s: min rate %u not met\n", td->o.name,
183                                                                 ratemin);
184                                 return 1;
185                         } else {
186                                 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
187                                 if (rate < ratemin ||
188                                     bytes < td->rate_bytes[ddir]) {
189                                         log_err("%s: min rate %u not met, got"
190                                                 " %luKB/sec\n", td->o.name,
191                                                         ratemin, rate);
192                                         return 1;
193                                 }
194                         }
195                 } else {
196                         /*
197                          * checks iops specified rate
198                          */
199                         if (iops < rate_iops) {
200                                 log_err("%s: min iops rate %u not met\n",
201                                                 td->o.name, rate_iops);
202                                 return 1;
203                         } else {
204                                 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
205                                 if (rate < rate_iops_min ||
206                                     iops < td->rate_blocks[ddir]) {
207                                         log_err("%s: min iops rate %u not met,"
208                                                 " got %lu\n", td->o.name,
209                                                         rate_iops_min, rate);
210                                 }
211                         }
212                 }
213         }
214
215         td->rate_bytes[ddir] = bytes;
216         td->rate_blocks[ddir] = iops;
217         memcpy(&td->lastrate[ddir], now, sizeof(*now));
218         return 0;
219 }
220
221 static int check_min_rate(struct thread_data *td, struct timeval *now,
222                           uint64_t *bytes_done)
223 {
224         int ret = 0;
225
226         if (bytes_done[DDIR_READ])
227                 ret |= __check_min_rate(td, now, DDIR_READ);
228         if (bytes_done[DDIR_WRITE])
229                 ret |= __check_min_rate(td, now, DDIR_WRITE);
230         if (bytes_done[DDIR_TRIM])
231                 ret |= __check_min_rate(td, now, DDIR_TRIM);
232
233         return ret;
234 }
235
236 /*
237  * When job exits, we can cancel the in-flight IO if we are using async
238  * io. Attempt to do so.
239  */
240 static void cleanup_pending_aio(struct thread_data *td)
241 {
242         int r;
243
244         /*
245          * get immediately available events, if any
246          */
247         r = io_u_queued_complete(td, 0, NULL);
248         if (r < 0)
249                 return;
250
251         /*
252          * now cancel remaining active events
253          */
254         if (td->io_ops->cancel) {
255                 struct io_u *io_u;
256                 int i;
257
258                 io_u_qiter(&td->io_u_all, io_u, i) {
259                         if (io_u->flags & IO_U_F_FLIGHT) {
260                                 r = td->io_ops->cancel(td, io_u);
261                                 if (!r)
262                                         put_io_u(td, io_u);
263                         }
264                 }
265         }
266
267         if (td->cur_depth)
268                 r = io_u_queued_complete(td, td->cur_depth, NULL);
269 }
270
271 /*
272  * Helper to handle the final sync of a file. Works just like the normal
273  * io path, just does everything sync.
274  */
275 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
276 {
277         struct io_u *io_u = __get_io_u(td);
278         int ret;
279
280         if (!io_u)
281                 return 1;
282
283         io_u->ddir = DDIR_SYNC;
284         io_u->file = f;
285
286         if (td_io_prep(td, io_u)) {
287                 put_io_u(td, io_u);
288                 return 1;
289         }
290
291 requeue:
292         ret = td_io_queue(td, io_u);
293         if (ret < 0) {
294                 td_verror(td, io_u->error, "td_io_queue");
295                 put_io_u(td, io_u);
296                 return 1;
297         } else if (ret == FIO_Q_QUEUED) {
298                 if (io_u_queued_complete(td, 1, NULL) < 0)
299                         return 1;
300         } else if (ret == FIO_Q_COMPLETED) {
301                 if (io_u->error) {
302                         td_verror(td, io_u->error, "td_io_queue");
303                         return 1;
304                 }
305
306                 if (io_u_sync_complete(td, io_u, NULL) < 0)
307                         return 1;
308         } else if (ret == FIO_Q_BUSY) {
309                 if (td_io_commit(td))
310                         return 1;
311                 goto requeue;
312         }
313
314         return 0;
315 }
316
317 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
318 {
319         int ret;
320
321         if (fio_file_open(f))
322                 return fio_io_sync(td, f);
323
324         if (td_io_open_file(td, f))
325                 return 1;
326
327         ret = fio_io_sync(td, f);
328         td_io_close_file(td, f);
329         return ret;
330 }
331
332 static inline void __update_tv_cache(struct thread_data *td)
333 {
334         fio_gettime(&td->tv_cache, NULL);
335 }
336
337 static inline void update_tv_cache(struct thread_data *td)
338 {
339         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
340                 __update_tv_cache(td);
341 }
342
343 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
344 {
345         if (in_ramp_time(td))
346                 return 0;
347         if (!td->o.timeout)
348                 return 0;
349         if (utime_since(&td->epoch, t) >= td->o.timeout)
350                 return 1;
351
352         return 0;
353 }
354
355 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
356                                int *retptr)
357 {
358         int ret = *retptr;
359
360         if (ret < 0 || td->error) {
361                 int err = td->error;
362                 enum error_type_bit eb;
363
364                 if (ret < 0)
365                         err = -ret;
366
367                 eb = td_error_type(ddir, err);
368                 if (!(td->o.continue_on_error & (1 << eb)))
369                         return 1;
370
371                 if (td_non_fatal_error(td, eb, err)) {
372                         /*
373                          * Continue with the I/Os in case of
374                          * a non fatal error.
375                          */
376                         update_error_count(td, err);
377                         td_clear_error(td);
378                         *retptr = 0;
379                         return 0;
380                 } else if (td->o.fill_device && err == ENOSPC) {
381                         /*
382                          * We expect to hit this error if
383                          * fill_device option is set.
384                          */
385                         td_clear_error(td);
386                         td->terminate = 1;
387                         return 1;
388                 } else {
389                         /*
390                          * Stop the I/O in case of a fatal
391                          * error.
392                          */
393                         update_error_count(td, err);
394                         return 1;
395                 }
396         }
397
398         return 0;
399 }
400
401 static void check_update_rusage(struct thread_data *td)
402 {
403         if (td->update_rusage) {
404                 td->update_rusage = 0;
405                 update_rusage_stat(td);
406                 fio_mutex_up(td->rusage_sem);
407         }
408 }
409
410 /*
411  * The main verify engine. Runs over the writes we previously submitted,
412  * reads the blocks back in, and checks the crc/md5 of the data.
413  */
414 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
415 {
416         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
417         struct fio_file *f;
418         struct io_u *io_u;
419         int ret, min_events;
420         unsigned int i;
421
422         dprint(FD_VERIFY, "starting loop\n");
423
424         /*
425          * sync io first and invalidate cache, to make sure we really
426          * read from disk.
427          */
428         for_each_file(td, f, i) {
429                 if (!fio_file_open(f))
430                         continue;
431                 if (fio_io_sync(td, f))
432                         break;
433                 if (file_invalidate_cache(td, f))
434                         break;
435         }
436
437         check_update_rusage(td);
438
439         if (td->error)
440                 return;
441
442         td_set_runstate(td, TD_VERIFYING);
443
444         io_u = NULL;
445         while (!td->terminate) {
446                 enum fio_ddir ddir;
447                 int ret2, full;
448
449                 update_tv_cache(td);
450                 check_update_rusage(td);
451
452                 if (runtime_exceeded(td, &td->tv_cache)) {
453                         __update_tv_cache(td);
454                         if (runtime_exceeded(td, &td->tv_cache)) {
455                                 td->terminate = 1;
456                                 break;
457                         }
458                 }
459
460                 if (flow_threshold_exceeded(td))
461                         continue;
462
463                 if (!td->o.experimental_verify) {
464                         io_u = __get_io_u(td);
465                         if (!io_u)
466                                 break;
467
468                         if (get_next_verify(td, io_u)) {
469                                 put_io_u(td, io_u);
470                                 break;
471                         }
472
473                         if (td_io_prep(td, io_u)) {
474                                 put_io_u(td, io_u);
475                                 break;
476                         }
477                 } else {
478                         if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
479                                 break;
480
481                         while ((io_u = get_io_u(td)) != NULL) {
482                                 if (IS_ERR(io_u)) {
483                                         io_u = NULL;
484                                         ret = FIO_Q_BUSY;
485                                         goto reap;
486                                 }
487
488                                 /*
489                                  * We are only interested in the places where
490                                  * we wrote or trimmed IOs. Turn those into
491                                  * reads for verification purposes.
492                                  */
493                                 if (io_u->ddir == DDIR_READ) {
494                                         /*
495                                          * Pretend we issued it for rwmix
496                                          * accounting
497                                          */
498                                         td->io_issues[DDIR_READ]++;
499                                         put_io_u(td, io_u);
500                                         continue;
501                                 } else if (io_u->ddir == DDIR_TRIM) {
502                                         io_u->ddir = DDIR_READ;
503                                         io_u->flags |= IO_U_F_TRIMMED;
504                                         break;
505                                 } else if (io_u->ddir == DDIR_WRITE) {
506                                         io_u->ddir = DDIR_READ;
507                                         break;
508                                 } else {
509                                         put_io_u(td, io_u);
510                                         continue;
511                                 }
512                         }
513
514                         if (!io_u)
515                                 break;
516                 }
517
518                 if (td->o.verify_async)
519                         io_u->end_io = verify_io_u_async;
520                 else
521                         io_u->end_io = verify_io_u;
522
523                 ddir = io_u->ddir;
524
525                 ret = td_io_queue(td, io_u);
526                 switch (ret) {
527                 case FIO_Q_COMPLETED:
528                         if (io_u->error) {
529                                 ret = -io_u->error;
530                                 clear_io_u(td, io_u);
531                         } else if (io_u->resid) {
532                                 int bytes = io_u->xfer_buflen - io_u->resid;
533
534                                 /*
535                                  * zero read, fail
536                                  */
537                                 if (!bytes) {
538                                         td_verror(td, EIO, "full resid");
539                                         put_io_u(td, io_u);
540                                         break;
541                                 }
542
543                                 io_u->xfer_buflen = io_u->resid;
544                                 io_u->xfer_buf += bytes;
545                                 io_u->offset += bytes;
546
547                                 if (ddir_rw(io_u->ddir))
548                                         td->ts.short_io_u[io_u->ddir]++;
549
550                                 f = io_u->file;
551                                 if (io_u->offset == f->real_file_size)
552                                         goto sync_done;
553
554                                 requeue_io_u(td, &io_u);
555                         } else {
556 sync_done:
557                                 ret = io_u_sync_complete(td, io_u, bytes_done);
558                                 if (ret < 0)
559                                         break;
560                         }
561                         continue;
562                 case FIO_Q_QUEUED:
563                         break;
564                 case FIO_Q_BUSY:
565                         requeue_io_u(td, &io_u);
566                         ret2 = td_io_commit(td);
567                         if (ret2 < 0)
568                                 ret = ret2;
569                         break;
570                 default:
571                         assert(ret < 0);
572                         td_verror(td, -ret, "td_io_queue");
573                         break;
574                 }
575
576                 if (break_on_this_error(td, ddir, &ret))
577                         break;
578
579                 /*
580                  * if we can queue more, do so. but check if there are
581                  * completed io_u's first. Note that we can get BUSY even
582                  * without IO queued, if the system is resource starved.
583                  */
584 reap:
585                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
586                 if (full || !td->o.iodepth_batch_complete) {
587                         min_events = min(td->o.iodepth_batch_complete,
588                                          td->cur_depth);
589                         /*
590                          * if the queue is full, we MUST reap at least 1 event
591                          */
592                         if (full && !min_events)
593                                 min_events = 1;
594
595                         do {
596                                 /*
597                                  * Reap required number of io units, if any,
598                                  * and do the verification on them through
599                                  * the callback handler
600                                  */
601                                 if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
602                                         ret = -1;
603                                         break;
604                                 }
605                         } while (full && (td->cur_depth > td->o.iodepth_low));
606                 }
607                 if (ret < 0)
608                         break;
609         }
610
611         check_update_rusage(td);
612
613         if (!td->error) {
614                 min_events = td->cur_depth;
615
616                 if (min_events)
617                         ret = io_u_queued_complete(td, min_events, NULL);
618         } else
619                 cleanup_pending_aio(td);
620
621         td_set_runstate(td, TD_RUNNING);
622
623         dprint(FD_VERIFY, "exiting loop\n");
624 }
625
626 static int io_bytes_exceeded(struct thread_data *td)
627 {
628         unsigned long long bytes;
629
630         if (td_rw(td))
631                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
632         else if (td_write(td))
633                 bytes = td->this_io_bytes[DDIR_WRITE];
634         else if (td_read(td))
635                 bytes = td->this_io_bytes[DDIR_READ];
636         else
637                 bytes = td->this_io_bytes[DDIR_TRIM];
638
639         return bytes >= td->o.size;
640 }
641
642 /*
643  * Main IO worker function. It retrieves io_u's to process and queues
644  * and reaps them, checking for rate and errors along the way.
645  *
646  * Returns number of bytes written and trimmed.
647  */
648 static uint64_t do_io(struct thread_data *td)
649 {
650         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
651         unsigned int i;
652         int ret = 0;
653         uint64_t total_bytes, bytes_issued = 0;
654
655         if (in_ramp_time(td))
656                 td_set_runstate(td, TD_RAMP);
657         else
658                 td_set_runstate(td, TD_RUNNING);
659
660         lat_target_init(td);
661
662         /*
663          * If verify_backlog is enabled, we'll run the verify in this
664          * handler as well. For that case, we may need up to twice the
665          * amount of bytes.
666          */
667         total_bytes = td->o.size;
668         if (td->o.verify != VERIFY_NONE &&
669            (td_write(td) && td->o.verify_backlog))
670                 total_bytes += td->o.size;
671
672         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
673                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
674                 td->o.time_based) {
675                 struct timeval comp_time;
676                 int min_evts = 0;
677                 struct io_u *io_u;
678                 int ret2, full;
679                 enum fio_ddir ddir;
680
681                 check_update_rusage(td);
682
683                 if (td->terminate || td->done)
684                         break;
685
686                 update_tv_cache(td);
687
688                 if (runtime_exceeded(td, &td->tv_cache)) {
689                         __update_tv_cache(td);
690                         if (runtime_exceeded(td, &td->tv_cache)) {
691                                 td->terminate = 1;
692                                 break;
693                         }
694                 }
695
696                 if (flow_threshold_exceeded(td))
697                         continue;
698
699                 if (bytes_issued >= total_bytes)
700                         break;
701
702                 io_u = get_io_u(td);
703                 if (IS_ERR_OR_NULL(io_u)) {
704                         int err = PTR_ERR(io_u);
705
706                         io_u = NULL;
707                         if (err == -EBUSY) {
708                                 ret = FIO_Q_BUSY;
709                                 goto reap;
710                         }
711                         if (td->o.latency_target)
712                                 goto reap;
713                         break;
714                 }
715
716                 ddir = io_u->ddir;
717
718                 /*
719                  * Add verification end_io handler if:
720                  *      - Asked to verify (!td_rw(td))
721                  *      - Or the io_u is from our verify list (mixed write/ver)
722                  */
723                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
724                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
725
726                         if (!td->o.verify_pattern_bytes) {
727                                 io_u->rand_seed = __rand(&td->__verify_state);
728                                 if (sizeof(int) != sizeof(long *))
729                                         io_u->rand_seed *= __rand(&td->__verify_state);
730                         }
731
732                         if (td->o.verify_async)
733                                 io_u->end_io = verify_io_u_async;
734                         else
735                                 io_u->end_io = verify_io_u;
736                         td_set_runstate(td, TD_VERIFYING);
737                 } else if (in_ramp_time(td))
738                         td_set_runstate(td, TD_RAMP);
739                 else
740                         td_set_runstate(td, TD_RUNNING);
741
742                 /*
743                  * Always log IO before it's issued, so we know the specific
744                  * order of it. The logged unit will track when the IO has
745                  * completed.
746                  */
747                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
748                     td->o.do_verify &&
749                     td->o.verify != VERIFY_NONE &&
750                     !td->o.experimental_verify)
751                         log_io_piece(td, io_u);
752
753                 ret = td_io_queue(td, io_u);
754                 switch (ret) {
755                 case FIO_Q_COMPLETED:
756                         if (io_u->error) {
757                                 ret = -io_u->error;
758                                 clear_io_u(td, io_u);
759                         } else if (io_u->resid) {
760                                 int bytes = io_u->xfer_buflen - io_u->resid;
761                                 struct fio_file *f = io_u->file;
762
763                                 bytes_issued += bytes;
764                                 /*
765                                  * zero read, fail
766                                  */
767                                 if (!bytes) {
768                                         td_verror(td, EIO, "full resid");
769                                         put_io_u(td, io_u);
770                                         break;
771                                 }
772
773                                 io_u->xfer_buflen = io_u->resid;
774                                 io_u->xfer_buf += bytes;
775                                 io_u->offset += bytes;
776
777                                 if (ddir_rw(io_u->ddir))
778                                         td->ts.short_io_u[io_u->ddir]++;
779
780                                 if (io_u->offset == f->real_file_size)
781                                         goto sync_done;
782
783                                 requeue_io_u(td, &io_u);
784                         } else {
785 sync_done:
786                                 if (__should_check_rate(td, DDIR_READ) ||
787                                     __should_check_rate(td, DDIR_WRITE) ||
788                                     __should_check_rate(td, DDIR_TRIM))
789                                         fio_gettime(&comp_time, NULL);
790
791                                 ret = io_u_sync_complete(td, io_u, bytes_done);
792                                 if (ret < 0)
793                                         break;
794                                 bytes_issued += io_u->xfer_buflen;
795                         }
796                         break;
797                 case FIO_Q_QUEUED:
798                         /*
799                          * if the engine doesn't have a commit hook,
800                          * the io_u is really queued. if it does have such
801                          * a hook, it has to call io_u_queued() itself.
802                          */
803                         if (td->io_ops->commit == NULL)
804                                 io_u_queued(td, io_u);
805                         bytes_issued += io_u->xfer_buflen;
806                         break;
807                 case FIO_Q_BUSY:
808                         requeue_io_u(td, &io_u);
809                         ret2 = td_io_commit(td);
810                         if (ret2 < 0)
811                                 ret = ret2;
812                         break;
813                 default:
814                         assert(ret < 0);
815                         put_io_u(td, io_u);
816                         break;
817                 }
818
819                 if (break_on_this_error(td, ddir, &ret))
820                         break;
821
822                 /*
823                  * See if we need to complete some commands. Note that we
824                  * can get BUSY even without IO queued, if the system is
825                  * resource starved.
826                  */
827 reap:
828                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
829                 if (full || !td->o.iodepth_batch_complete) {
830                         min_evts = min(td->o.iodepth_batch_complete,
831                                         td->cur_depth);
832                         /*
833                          * if the queue is full, we MUST reap at least 1 event
834                          */
835                         if (full && !min_evts)
836                                 min_evts = 1;
837
838                         if (__should_check_rate(td, DDIR_READ) ||
839                             __should_check_rate(td, DDIR_WRITE) ||
840                             __should_check_rate(td, DDIR_TRIM))
841                                 fio_gettime(&comp_time, NULL);
842
843                         do {
844                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
845                                 if (ret < 0)
846                                         break;
847
848                         } while (full && (td->cur_depth > td->o.iodepth_low));
849                 }
850
851                 if (ret < 0)
852                         break;
853                 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
854                         continue;
855
856                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
857                         if (check_min_rate(td, &comp_time, bytes_done)) {
858                                 if (exitall_on_terminate)
859                                         fio_terminate_threads(td->groupid);
860                                 td_verror(td, EIO, "check_min_rate");
861                                 break;
862                         }
863                 }
864                 if (!in_ramp_time(td) && td->o.latency_target)
865                         lat_target_check(td);
866
867                 if (td->o.thinktime) {
868                         unsigned long long b;
869
870                         b = ddir_rw_sum(td->io_blocks);
871                         if (!(b % td->o.thinktime_blocks)) {
872                                 int left;
873
874                                 io_u_quiesce(td);
875
876                                 if (td->o.thinktime_spin)
877                                         usec_spin(td->o.thinktime_spin);
878
879                                 left = td->o.thinktime - td->o.thinktime_spin;
880                                 if (left)
881                                         usec_sleep(td, left);
882                         }
883                 }
884         }
885
886         check_update_rusage(td);
887
888         if (td->trim_entries)
889                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
890
891         if (td->o.fill_device && td->error == ENOSPC) {
892                 td->error = 0;
893                 td->terminate = 1;
894         }
895         if (!td->error) {
896                 struct fio_file *f;
897
898                 i = td->cur_depth;
899                 if (i) {
900                         ret = io_u_queued_complete(td, i, bytes_done);
901                         if (td->o.fill_device && td->error == ENOSPC)
902                                 td->error = 0;
903                 }
904
905                 if (should_fsync(td) && td->o.end_fsync) {
906                         td_set_runstate(td, TD_FSYNCING);
907
908                         for_each_file(td, f, i) {
909                                 if (!fio_file_fsync(td, f))
910                                         continue;
911
912                                 log_err("fio: end_fsync failed for file %s\n",
913                                                                 f->file_name);
914                         }
915                 }
916         } else
917                 cleanup_pending_aio(td);
918
919         /*
920          * stop job if we failed doing any IO
921          */
922         if (!ddir_rw_sum(td->this_io_bytes))
923                 td->done = 1;
924
925         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
926 }
927
928 static void cleanup_io_u(struct thread_data *td)
929 {
930         struct io_u *io_u;
931
932         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
933
934                 if (td->io_ops->io_u_free)
935                         td->io_ops->io_u_free(td, io_u);
936
937                 fio_memfree(io_u, sizeof(*io_u));
938         }
939
940         free_io_mem(td);
941
942         io_u_rexit(&td->io_u_requeues);
943         io_u_qexit(&td->io_u_freelist);
944         io_u_qexit(&td->io_u_all);
945 }
946
947 static int init_io_u(struct thread_data *td)
948 {
949         struct io_u *io_u;
950         unsigned int max_bs, min_write;
951         int cl_align, i, max_units;
952         int data_xfer = 1, err;
953         char *p;
954
955         max_units = td->o.iodepth;
956         max_bs = td_max_bs(td);
957         min_write = td->o.min_bs[DDIR_WRITE];
958         td->orig_buffer_size = (unsigned long long) max_bs
959                                         * (unsigned long long) max_units;
960
961         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
962                 data_xfer = 0;
963
964         err = 0;
965         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
966         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
967         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
968
969         if (err) {
970                 log_err("fio: failed setting up IO queues\n");
971                 return 1;
972         }
973
974         /*
975          * if we may later need to do address alignment, then add any
976          * possible adjustment here so that we don't cause a buffer
977          * overflow later. this adjustment may be too much if we get
978          * lucky and the allocator gives us an aligned address.
979          */
980         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
981             (td->io_ops->flags & FIO_RAWIO))
982                 td->orig_buffer_size += page_mask + td->o.mem_align;
983
984         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
985                 unsigned long bs;
986
987                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
988                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
989         }
990
991         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
992                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
993                 return 1;
994         }
995
996         if (data_xfer && allocate_io_mem(td))
997                 return 1;
998
999         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1000             (td->io_ops->flags & FIO_RAWIO))
1001                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1002         else
1003                 p = td->orig_buffer;
1004
1005         cl_align = os_cache_line_size();
1006
1007         for (i = 0; i < max_units; i++) {
1008                 void *ptr;
1009
1010                 if (td->terminate)
1011                         return 1;
1012
1013                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1014                 if (!ptr) {
1015                         log_err("fio: unable to allocate aligned memory\n");
1016                         break;
1017                 }
1018
1019                 io_u = ptr;
1020                 memset(io_u, 0, sizeof(*io_u));
1021                 INIT_FLIST_HEAD(&io_u->verify_list);
1022                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1023
1024                 if (data_xfer) {
1025                         io_u->buf = p;
1026                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1027
1028                         if (td_write(td))
1029                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1030                         if (td_write(td) && td->o.verify_pattern_bytes) {
1031                                 /*
1032                                  * Fill the buffer with the pattern if we are
1033                                  * going to be doing writes.
1034                                  */
1035                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1036                         }
1037                 }
1038
1039                 io_u->index = i;
1040                 io_u->flags = IO_U_F_FREE;
1041                 io_u_qpush(&td->io_u_freelist, io_u);
1042
1043                 /*
1044                  * io_u never leaves this stack, used for iteration of all
1045                  * io_u buffers.
1046                  */
1047                 io_u_qpush(&td->io_u_all, io_u);
1048
1049                 if (td->io_ops->io_u_init) {
1050                         int ret = td->io_ops->io_u_init(td, io_u);
1051
1052                         if (ret) {
1053                                 log_err("fio: failed to init engine data: %d\n", ret);
1054                                 return 1;
1055                         }
1056                 }
1057
1058                 p += max_bs;
1059         }
1060
1061         return 0;
1062 }
1063
1064 static int switch_ioscheduler(struct thread_data *td)
1065 {
1066         char tmp[256], tmp2[128];
1067         FILE *f;
1068         int ret;
1069
1070         if (td->io_ops->flags & FIO_DISKLESSIO)
1071                 return 0;
1072
1073         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1074
1075         f = fopen(tmp, "r+");
1076         if (!f) {
1077                 if (errno == ENOENT) {
1078                         log_err("fio: os or kernel doesn't support IO scheduler"
1079                                 " switching\n");
1080                         return 0;
1081                 }
1082                 td_verror(td, errno, "fopen iosched");
1083                 return 1;
1084         }
1085
1086         /*
1087          * Set io scheduler.
1088          */
1089         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1090         if (ferror(f) || ret != 1) {
1091                 td_verror(td, errno, "fwrite");
1092                 fclose(f);
1093                 return 1;
1094         }
1095
1096         rewind(f);
1097
1098         /*
1099          * Read back and check that the selected scheduler is now the default.
1100          */
1101         ret = fread(tmp, 1, sizeof(tmp), f);
1102         if (ferror(f) || ret < 0) {
1103                 td_verror(td, errno, "fread");
1104                 fclose(f);
1105                 return 1;
1106         }
1107
1108         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1109         if (!strstr(tmp, tmp2)) {
1110                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1111                 td_verror(td, EINVAL, "iosched_switch");
1112                 fclose(f);
1113                 return 1;
1114         }
1115
1116         fclose(f);
1117         return 0;
1118 }
1119
1120 static int keep_running(struct thread_data *td)
1121 {
1122         if (td->done)
1123                 return 0;
1124         if (td->o.time_based)
1125                 return 1;
1126         if (td->o.loops) {
1127                 td->o.loops--;
1128                 return 1;
1129         }
1130
1131         if (td->o.size != -1ULL && ddir_rw_sum(td->io_bytes) < td->o.size) {
1132                 uint64_t diff;
1133
1134                 /*
1135                  * If the difference is less than the minimum IO size, we
1136                  * are done.
1137                  */
1138                 diff = td->o.size - ddir_rw_sum(td->io_bytes);
1139                 if (diff < td_max_bs(td))
1140                         return 0;
1141
1142                 if (fio_files_done(td))
1143                         return 0;
1144
1145                 return 1;
1146         }
1147
1148         return 0;
1149 }
1150
1151 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1152 {
1153         int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1154         char *str;
1155
1156         str = malloc(newlen);
1157         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1158
1159         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1160         ret = system(str);
1161         if (ret == -1)
1162                 log_err("fio: exec of cmd <%s> failed\n", str);
1163
1164         free(str);
1165         return ret;
1166 }
1167
1168 /*
1169  * Dry run to compute correct state of numberio for verification.
1170  */
1171 static uint64_t do_dry_run(struct thread_data *td)
1172 {
1173         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1174
1175         td_set_runstate(td, TD_RUNNING);
1176
1177         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1178                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1179                 struct io_u *io_u;
1180                 int ret;
1181
1182                 if (td->terminate || td->done)
1183                         break;
1184
1185                 io_u = get_io_u(td);
1186                 if (!io_u)
1187                         break;
1188
1189                 io_u->flags |= IO_U_F_FLIGHT;
1190                 io_u->error = 0;
1191                 io_u->resid = 0;
1192                 if (ddir_rw(acct_ddir(io_u)))
1193                         td->io_issues[acct_ddir(io_u)]++;
1194                 if (ddir_rw(io_u->ddir)) {
1195                         io_u_mark_depth(td, 1);
1196                         td->ts.total_io_u[io_u->ddir]++;
1197                 }
1198
1199                 ret = io_u_sync_complete(td, io_u, bytes_done);
1200                 (void) ret;
1201         }
1202
1203         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1204 }
1205
1206 /*
1207  * Entry point for the thread based jobs. The process based jobs end up
1208  * here as well, after a little setup.
1209  */
1210 static void *thread_main(void *data)
1211 {
1212         unsigned long long elapsed;
1213         struct thread_data *td = data;
1214         struct thread_options *o = &td->o;
1215         pthread_condattr_t attr;
1216         int clear_state;
1217         int ret;
1218
1219         if (!o->use_thread) {
1220                 setsid();
1221                 td->pid = getpid();
1222         } else
1223                 td->pid = gettid();
1224
1225         /*
1226          * fio_time_init() may not have been called yet if running as a server
1227          */
1228         fio_time_init();
1229
1230         fio_local_clock_init(o->use_thread);
1231
1232         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1233
1234         if (is_backend)
1235                 fio_server_send_start(td);
1236
1237         INIT_FLIST_HEAD(&td->io_log_list);
1238         INIT_FLIST_HEAD(&td->io_hist_list);
1239         INIT_FLIST_HEAD(&td->verify_list);
1240         INIT_FLIST_HEAD(&td->trim_list);
1241         INIT_FLIST_HEAD(&td->next_rand_list);
1242         pthread_mutex_init(&td->io_u_lock, NULL);
1243         td->io_hist_tree = RB_ROOT;
1244
1245         pthread_condattr_init(&attr);
1246         pthread_cond_init(&td->verify_cond, &attr);
1247         pthread_cond_init(&td->free_cond, &attr);
1248
1249         td_set_runstate(td, TD_INITIALIZED);
1250         dprint(FD_MUTEX, "up startup_mutex\n");
1251         fio_mutex_up(startup_mutex);
1252         dprint(FD_MUTEX, "wait on td->mutex\n");
1253         fio_mutex_down(td->mutex);
1254         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1255
1256         /*
1257          * A new gid requires privilege, so we need to do this before setting
1258          * the uid.
1259          */
1260         if (o->gid != -1U && setgid(o->gid)) {
1261                 td_verror(td, errno, "setgid");
1262                 goto err;
1263         }
1264         if (o->uid != -1U && setuid(o->uid)) {
1265                 td_verror(td, errno, "setuid");
1266                 goto err;
1267         }
1268
1269         /*
1270          * If we have a gettimeofday() thread, make sure we exclude that
1271          * thread from this job
1272          */
1273         if (o->gtod_cpu)
1274                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1275
1276         /*
1277          * Set affinity first, in case it has an impact on the memory
1278          * allocations.
1279          */
1280         if (o->cpumask_set) {
1281                 ret = fio_setaffinity(td->pid, o->cpumask);
1282                 if (ret == -1) {
1283                         td_verror(td, errno, "cpu_set_affinity");
1284                         goto err;
1285                 }
1286         }
1287
1288 #ifdef CONFIG_LIBNUMA
1289         /* numa node setup */
1290         if (o->numa_cpumask_set || o->numa_memmask_set) {
1291                 int ret;
1292
1293                 if (numa_available() < 0) {
1294                         td_verror(td, errno, "Does not support NUMA API\n");
1295                         goto err;
1296                 }
1297
1298                 if (o->numa_cpumask_set) {
1299                         ret = numa_run_on_node_mask(o->numa_cpunodesmask);
1300                         if (ret == -1) {
1301                                 td_verror(td, errno, \
1302                                         "numa_run_on_node_mask failed\n");
1303                                 goto err;
1304                         }
1305                 }
1306
1307                 if (o->numa_memmask_set) {
1308
1309                         switch (o->numa_mem_mode) {
1310                         case MPOL_INTERLEAVE:
1311                                 numa_set_interleave_mask(o->numa_memnodesmask);
1312                                 break;
1313                         case MPOL_BIND:
1314                                 numa_set_membind(o->numa_memnodesmask);
1315                                 break;
1316                         case MPOL_LOCAL:
1317                                 numa_set_localalloc();
1318                                 break;
1319                         case MPOL_PREFERRED:
1320                                 numa_set_preferred(o->numa_mem_prefer_node);
1321                                 break;
1322                         case MPOL_DEFAULT:
1323                         default:
1324                                 break;
1325                         }
1326
1327                 }
1328         }
1329 #endif
1330
1331         if (fio_pin_memory(td))
1332                 goto err;
1333
1334         /*
1335          * May alter parameters that init_io_u() will use, so we need to
1336          * do this first.
1337          */
1338         if (init_iolog(td))
1339                 goto err;
1340
1341         if (init_io_u(td))
1342                 goto err;
1343
1344         if (o->verify_async && verify_async_init(td))
1345                 goto err;
1346
1347         if (o->ioprio) {
1348                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1349                 if (ret == -1) {
1350                         td_verror(td, errno, "ioprio_set");
1351                         goto err;
1352                 }
1353         }
1354
1355         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1356                 goto err;
1357
1358         errno = 0;
1359         if (nice(o->nice) == -1 && errno != 0) {
1360                 td_verror(td, errno, "nice");
1361                 goto err;
1362         }
1363
1364         if (o->ioscheduler && switch_ioscheduler(td))
1365                 goto err;
1366
1367         if (!o->create_serialize && setup_files(td))
1368                 goto err;
1369
1370         if (td_io_init(td))
1371                 goto err;
1372
1373         if (init_random_map(td))
1374                 goto err;
1375
1376         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1377                 goto err;
1378
1379         if (o->pre_read) {
1380                 if (pre_read_files(td) < 0)
1381                         goto err;
1382         }
1383
1384         fio_verify_init(td);
1385
1386         fio_gettime(&td->epoch, NULL);
1387         fio_getrusage(&td->ru_start);
1388         clear_state = 0;
1389         while (keep_running(td)) {
1390                 uint64_t verify_bytes;
1391
1392                 fio_gettime(&td->start, NULL);
1393                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1394                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1395                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1396
1397                 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1398                                 o->ratemin[DDIR_TRIM]) {
1399                         memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1400                                                 sizeof(td->bw_sample_time));
1401                         memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1402                                                 sizeof(td->bw_sample_time));
1403                         memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1404                                                 sizeof(td->bw_sample_time));
1405                 }
1406
1407                 if (clear_state)
1408                         clear_io_state(td);
1409
1410                 prune_io_piece_log(td);
1411
1412                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1413                         verify_bytes = do_dry_run(td);
1414                 else
1415                         verify_bytes = do_io(td);
1416
1417                 clear_state = 1;
1418
1419                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1420                         elapsed = utime_since_now(&td->start);
1421                         td->ts.runtime[DDIR_READ] += elapsed;
1422                 }
1423                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1424                         elapsed = utime_since_now(&td->start);
1425                         td->ts.runtime[DDIR_WRITE] += elapsed;
1426                 }
1427                 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1428                         elapsed = utime_since_now(&td->start);
1429                         td->ts.runtime[DDIR_TRIM] += elapsed;
1430                 }
1431
1432                 if (td->error || td->terminate)
1433                         break;
1434
1435                 if (!o->do_verify ||
1436                     o->verify == VERIFY_NONE ||
1437                     (td->io_ops->flags & FIO_UNIDIR))
1438                         continue;
1439
1440                 clear_io_state(td);
1441
1442                 fio_gettime(&td->start, NULL);
1443
1444                 do_verify(td, verify_bytes);
1445
1446                 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1447
1448                 if (td->error || td->terminate)
1449                         break;
1450         }
1451
1452         update_rusage_stat(td);
1453         td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1454         td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1455         td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1456         td->ts.total_run_time = mtime_since_now(&td->epoch);
1457         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1458         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1459         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1460
1461         fio_unpin_memory(td);
1462
1463         fio_mutex_down(writeout_mutex);
1464         finalize_logs(td);
1465         if (td->bw_log) {
1466                 if (o->bw_log_file) {
1467                         finish_log_named(td, td->bw_log,
1468                                                 o->bw_log_file, "bw");
1469                 } else
1470                         finish_log(td, td->bw_log, "bw");
1471         }
1472         if (td->lat_log) {
1473                 if (o->lat_log_file) {
1474                         finish_log_named(td, td->lat_log,
1475                                                 o->lat_log_file, "lat");
1476                 } else
1477                         finish_log(td, td->lat_log, "lat");
1478         }
1479         if (td->slat_log) {
1480                 if (o->lat_log_file) {
1481                         finish_log_named(td, td->slat_log,
1482                                                 o->lat_log_file, "slat");
1483                 } else
1484                         finish_log(td, td->slat_log, "slat");
1485         }
1486         if (td->clat_log) {
1487                 if (o->lat_log_file) {
1488                         finish_log_named(td, td->clat_log,
1489                                                 o->lat_log_file, "clat");
1490                 } else
1491                         finish_log(td, td->clat_log, "clat");
1492         }
1493         if (td->iops_log) {
1494                 if (o->iops_log_file) {
1495                         finish_log_named(td, td->iops_log,
1496                                                 o->iops_log_file, "iops");
1497                 } else
1498                         finish_log(td, td->iops_log, "iops");
1499         }
1500
1501         fio_mutex_up(writeout_mutex);
1502         if (o->exec_postrun)
1503                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1504
1505         if (exitall_on_terminate)
1506                 fio_terminate_threads(td->groupid);
1507
1508 err:
1509         if (td->error)
1510                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1511                                                         td->verror);
1512
1513         if (o->verify_async)
1514                 verify_async_exit(td);
1515
1516         close_and_free_files(td);
1517         cleanup_io_u(td);
1518         close_ioengine(td);
1519         cgroup_shutdown(td, &cgroup_mnt);
1520
1521         if (o->cpumask_set) {
1522                 int ret = fio_cpuset_exit(&o->cpumask);
1523
1524                 td_verror(td, ret, "fio_cpuset_exit");
1525         }
1526
1527         /*
1528          * do this very late, it will log file closing as well
1529          */
1530         if (o->write_iolog_file)
1531                 write_iolog_close(td);
1532
1533         fio_mutex_remove(td->rusage_sem);
1534         td->rusage_sem = NULL;
1535
1536         fio_mutex_remove(td->mutex);
1537         td->mutex = NULL;
1538
1539         td_set_runstate(td, TD_EXITED);
1540         return (void *) (uintptr_t) td->error;
1541 }
1542
1543
1544 /*
1545  * We cannot pass the td data into a forked process, so attach the td and
1546  * pass it to the thread worker.
1547  */
1548 static int fork_main(int shmid, int offset)
1549 {
1550         struct thread_data *td;
1551         void *data, *ret;
1552
1553 #ifndef __hpux
1554         data = shmat(shmid, NULL, 0);
1555         if (data == (void *) -1) {
1556                 int __err = errno;
1557
1558                 perror("shmat");
1559                 return __err;
1560         }
1561 #else
1562         /*
1563          * HP-UX inherits shm mappings?
1564          */
1565         data = threads;
1566 #endif
1567
1568         td = data + offset * sizeof(struct thread_data);
1569         ret = thread_main(td);
1570         shmdt(data);
1571         return (int) (uintptr_t) ret;
1572 }
1573
1574 /*
1575  * Run over the job map and reap the threads that have exited, if any.
1576  */
1577 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1578                          unsigned int *m_rate)
1579 {
1580         struct thread_data *td;
1581         unsigned int cputhreads, realthreads, pending;
1582         int i, status, ret;
1583
1584         /*
1585          * reap exited threads (TD_EXITED -> TD_REAPED)
1586          */
1587         realthreads = pending = cputhreads = 0;
1588         for_each_td(td, i) {
1589                 int flags = 0;
1590
1591                 /*
1592                  * ->io_ops is NULL for a thread that has closed its
1593                  * io engine
1594                  */
1595                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1596                         cputhreads++;
1597                 else
1598                         realthreads++;
1599
1600                 if (!td->pid) {
1601                         pending++;
1602                         continue;
1603                 }
1604                 if (td->runstate == TD_REAPED)
1605                         continue;
1606                 if (td->o.use_thread) {
1607                         if (td->runstate == TD_EXITED) {
1608                                 td_set_runstate(td, TD_REAPED);
1609                                 goto reaped;
1610                         }
1611                         continue;
1612                 }
1613
1614                 flags = WNOHANG;
1615                 if (td->runstate == TD_EXITED)
1616                         flags = 0;
1617
1618                 /*
1619                  * check if someone quit or got killed in an unusual way
1620                  */
1621                 ret = waitpid(td->pid, &status, flags);
1622                 if (ret < 0) {
1623                         if (errno == ECHILD) {
1624                                 log_err("fio: pid=%d disappeared %d\n",
1625                                                 (int) td->pid, td->runstate);
1626                                 td->sig = ECHILD;
1627                                 td_set_runstate(td, TD_REAPED);
1628                                 goto reaped;
1629                         }
1630                         perror("waitpid");
1631                 } else if (ret == td->pid) {
1632                         if (WIFSIGNALED(status)) {
1633                                 int sig = WTERMSIG(status);
1634
1635                                 if (sig != SIGTERM && sig != SIGUSR2)
1636                                         log_err("fio: pid=%d, got signal=%d\n",
1637                                                         (int) td->pid, sig);
1638                                 td->sig = sig;
1639                                 td_set_runstate(td, TD_REAPED);
1640                                 goto reaped;
1641                         }
1642                         if (WIFEXITED(status)) {
1643                                 if (WEXITSTATUS(status) && !td->error)
1644                                         td->error = WEXITSTATUS(status);
1645
1646                                 td_set_runstate(td, TD_REAPED);
1647                                 goto reaped;
1648                         }
1649                 }
1650
1651                 /*
1652                  * thread is not dead, continue
1653                  */
1654                 pending++;
1655                 continue;
1656 reaped:
1657                 (*nr_running)--;
1658                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1659                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1660                 if (!td->pid)
1661                         pending--;
1662
1663                 if (td->error)
1664                         exit_value++;
1665
1666                 done_secs += mtime_since_now(&td->epoch) / 1000;
1667                 profile_td_exit(td);
1668         }
1669
1670         if (*nr_running == cputhreads && !pending && realthreads)
1671                 fio_terminate_threads(TERMINATE_ALL);
1672 }
1673
1674 static void do_usleep(unsigned int usecs)
1675 {
1676         check_for_running_stats();
1677         usleep(usecs);
1678 }
1679
1680 /*
1681  * Main function for kicking off and reaping jobs, as needed.
1682  */
1683 static void run_threads(void)
1684 {
1685         struct thread_data *td;
1686         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1687         uint64_t spent;
1688
1689         if (fio_gtod_offload && fio_start_gtod_thread())
1690                 return;
1691
1692         fio_idle_prof_init();
1693
1694         set_sig_handlers();
1695
1696         nr_thread = nr_process = 0;
1697         for_each_td(td, i) {
1698                 if (td->o.use_thread)
1699                         nr_thread++;
1700                 else
1701                         nr_process++;
1702         }
1703
1704         if (output_format == FIO_OUTPUT_NORMAL) {
1705                 log_info("Starting ");
1706                 if (nr_thread)
1707                         log_info("%d thread%s", nr_thread,
1708                                                 nr_thread > 1 ? "s" : "");
1709                 if (nr_process) {
1710                         if (nr_thread)
1711                                 log_info(" and ");
1712                         log_info("%d process%s", nr_process,
1713                                                 nr_process > 1 ? "es" : "");
1714                 }
1715                 log_info("\n");
1716                 fflush(stdout);
1717         }
1718
1719         todo = thread_number;
1720         nr_running = 0;
1721         nr_started = 0;
1722         m_rate = t_rate = 0;
1723
1724         for_each_td(td, i) {
1725                 print_status_init(td->thread_number - 1);
1726
1727                 if (!td->o.create_serialize)
1728                         continue;
1729
1730                 /*
1731                  * do file setup here so it happens sequentially,
1732                  * we don't want X number of threads getting their
1733                  * client data interspersed on disk
1734                  */
1735                 if (setup_files(td)) {
1736                         exit_value++;
1737                         if (td->error)
1738                                 log_err("fio: pid=%d, err=%d/%s\n",
1739                                         (int) td->pid, td->error, td->verror);
1740                         td_set_runstate(td, TD_REAPED);
1741                         todo--;
1742                 } else {
1743                         struct fio_file *f;
1744                         unsigned int j;
1745
1746                         /*
1747                          * for sharing to work, each job must always open
1748                          * its own files. so close them, if we opened them
1749                          * for creation
1750                          */
1751                         for_each_file(td, f, j) {
1752                                 if (fio_file_open(f))
1753                                         td_io_close_file(td, f);
1754                         }
1755                 }
1756         }
1757
1758         /* start idle threads before io threads start to run */
1759         fio_idle_prof_start();
1760
1761         set_genesis_time();
1762
1763         while (todo) {
1764                 struct thread_data *map[REAL_MAX_JOBS];
1765                 struct timeval this_start;
1766                 int this_jobs = 0, left;
1767
1768                 /*
1769                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1770                  */
1771                 for_each_td(td, i) {
1772                         if (td->runstate != TD_NOT_CREATED)
1773                                 continue;
1774
1775                         /*
1776                          * never got a chance to start, killed by other
1777                          * thread for some reason
1778                          */
1779                         if (td->terminate) {
1780                                 todo--;
1781                                 continue;
1782                         }
1783
1784                         if (td->o.start_delay) {
1785                                 spent = utime_since_genesis();
1786
1787                                 if (td->o.start_delay > spent)
1788                                         continue;
1789                         }
1790
1791                         if (td->o.stonewall && (nr_started || nr_running)) {
1792                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1793                                                         td->o.name);
1794                                 break;
1795                         }
1796
1797                         init_disk_util(td);
1798
1799                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1800                         td->update_rusage = 0;
1801
1802                         /*
1803                          * Set state to created. Thread will transition
1804                          * to TD_INITIALIZED when it's done setting up.
1805                          */
1806                         td_set_runstate(td, TD_CREATED);
1807                         map[this_jobs++] = td;
1808                         nr_started++;
1809
1810                         if (td->o.use_thread) {
1811                                 int ret;
1812
1813                                 dprint(FD_PROCESS, "will pthread_create\n");
1814                                 ret = pthread_create(&td->thread, NULL,
1815                                                         thread_main, td);
1816                                 if (ret) {
1817                                         log_err("pthread_create: %s\n",
1818                                                         strerror(ret));
1819                                         nr_started--;
1820                                         break;
1821                                 }
1822                                 ret = pthread_detach(td->thread);
1823                                 if (ret)
1824                                         log_err("pthread_detach: %s",
1825                                                         strerror(ret));
1826                         } else {
1827                                 pid_t pid;
1828                                 dprint(FD_PROCESS, "will fork\n");
1829                                 pid = fork();
1830                                 if (!pid) {
1831                                         int ret = fork_main(shm_id, i);
1832
1833                                         _exit(ret);
1834                                 } else if (i == fio_debug_jobno)
1835                                         *fio_debug_jobp = pid;
1836                         }
1837                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1838                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
1839                                 log_err("fio: job startup hung? exiting.\n");
1840                                 fio_terminate_threads(TERMINATE_ALL);
1841                                 fio_abort = 1;
1842                                 nr_started--;
1843                                 break;
1844                         }
1845                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1846                 }
1847
1848                 /*
1849                  * Wait for the started threads to transition to
1850                  * TD_INITIALIZED.
1851                  */
1852                 fio_gettime(&this_start, NULL);
1853                 left = this_jobs;
1854                 while (left && !fio_abort) {
1855                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1856                                 break;
1857
1858                         do_usleep(100000);
1859
1860                         for (i = 0; i < this_jobs; i++) {
1861                                 td = map[i];
1862                                 if (!td)
1863                                         continue;
1864                                 if (td->runstate == TD_INITIALIZED) {
1865                                         map[i] = NULL;
1866                                         left--;
1867                                 } else if (td->runstate >= TD_EXITED) {
1868                                         map[i] = NULL;
1869                                         left--;
1870                                         todo--;
1871                                         nr_running++; /* work-around... */
1872                                 }
1873                         }
1874                 }
1875
1876                 if (left) {
1877                         log_err("fio: %d job%s failed to start\n", left,
1878                                         left > 1 ? "s" : "");
1879                         for (i = 0; i < this_jobs; i++) {
1880                                 td = map[i];
1881                                 if (!td)
1882                                         continue;
1883                                 kill(td->pid, SIGTERM);
1884                         }
1885                         break;
1886                 }
1887
1888                 /*
1889                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1890                  */
1891                 for_each_td(td, i) {
1892                         if (td->runstate != TD_INITIALIZED)
1893                                 continue;
1894
1895                         if (in_ramp_time(td))
1896                                 td_set_runstate(td, TD_RAMP);
1897                         else
1898                                 td_set_runstate(td, TD_RUNNING);
1899                         nr_running++;
1900                         nr_started--;
1901                         m_rate += ddir_rw_sum(td->o.ratemin);
1902                         t_rate += ddir_rw_sum(td->o.rate);
1903                         todo--;
1904                         fio_mutex_up(td->mutex);
1905                 }
1906
1907                 reap_threads(&nr_running, &t_rate, &m_rate);
1908
1909                 if (todo)
1910                         do_usleep(100000);
1911         }
1912
1913         while (nr_running) {
1914                 reap_threads(&nr_running, &t_rate, &m_rate);
1915                 do_usleep(10000);
1916         }
1917
1918         fio_idle_prof_stop();
1919
1920         update_io_ticks();
1921 }
1922
1923 void wait_for_disk_thread_exit(void)
1924 {
1925         fio_mutex_down(disk_thread_mutex);
1926 }
1927
1928 static void free_disk_util(void)
1929 {
1930         disk_util_start_exit();
1931         wait_for_disk_thread_exit();
1932         disk_util_prune_entries();
1933 }
1934
1935 static void *disk_thread_main(void *data)
1936 {
1937         int ret = 0;
1938
1939         fio_mutex_up(startup_mutex);
1940
1941         while (threads && !ret) {
1942                 usleep(DISK_UTIL_MSEC * 1000);
1943                 if (!threads)
1944                         break;
1945                 ret = update_io_ticks();
1946
1947                 if (!is_backend)
1948                         print_thread_status();
1949         }
1950
1951         fio_mutex_up(disk_thread_mutex);
1952         return NULL;
1953 }
1954
1955 static int create_disk_util_thread(void)
1956 {
1957         int ret;
1958
1959         setup_disk_util();
1960
1961         disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1962
1963         ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1964         if (ret) {
1965                 fio_mutex_remove(disk_thread_mutex);
1966                 log_err("Can't create disk util thread: %s\n", strerror(ret));
1967                 return 1;
1968         }
1969
1970         ret = pthread_detach(disk_util_thread);
1971         if (ret) {
1972                 fio_mutex_remove(disk_thread_mutex);
1973                 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1974                 return 1;
1975         }
1976
1977         dprint(FD_MUTEX, "wait on startup_mutex\n");
1978         fio_mutex_down(startup_mutex);
1979         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1980         return 0;
1981 }
1982
1983 int fio_backend(void)
1984 {
1985         struct thread_data *td;
1986         int i;
1987
1988         if (exec_profile) {
1989                 if (load_profile(exec_profile))
1990                         return 1;
1991                 free(exec_profile);
1992                 exec_profile = NULL;
1993         }
1994         if (!thread_number)
1995                 return 0;
1996
1997         if (write_bw_log) {
1998                 setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
1999                 setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
2000                 setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
2001         }
2002
2003         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2004         if (startup_mutex == NULL)
2005                 return 1;
2006         writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2007         if (writeout_mutex == NULL)
2008                 return 1;
2009
2010         set_genesis_time();
2011         stat_init();
2012         create_disk_util_thread();
2013
2014         cgroup_list = smalloc(sizeof(*cgroup_list));
2015         INIT_FLIST_HEAD(cgroup_list);
2016
2017         run_threads();
2018
2019         if (!fio_abort) {
2020                 show_run_stats();
2021                 if (write_bw_log) {
2022                         __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
2023                         __finish_log(agg_io_log[DDIR_WRITE],
2024                                         "agg-write_bw.log");
2025                         __finish_log(agg_io_log[DDIR_TRIM],
2026                                         "agg-write_bw.log");
2027                 }
2028         }
2029
2030         for_each_td(td, i)
2031                 fio_options_free(td);
2032
2033         free_disk_util();
2034         cgroup_kill(cgroup_list);
2035         sfree(cgroup_list);
2036         sfree(cgroup_mnt);
2037
2038         fio_mutex_remove(startup_mutex);
2039         fio_mutex_remove(writeout_mutex);
2040         fio_mutex_remove(disk_thread_mutex);
2041         stat_exit();
2042         return exit_value;
2043 }