tp: remove debug start/shutdown printfs
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38
39 #include "fio.h"
40 #ifndef FIO_NO_HAVE_SHM_H
41 #include <sys/shm.h>
42 #endif
43 #include "hash.h"
44 #include "smalloc.h"
45 #include "verify.h"
46 #include "trim.h"
47 #include "diskutil.h"
48 #include "cgroup.h"
49 #include "profile.h"
50 #include "lib/rand.h"
51 #include "memalign.h"
52 #include "server.h"
53 #include "lib/getrusage.h"
54 #include "idletime.h"
55 #include "err.h"
56 #include "tp.h"
57
58 static pthread_t disk_util_thread;
59 static struct fio_mutex *disk_thread_mutex;
60 static struct fio_mutex *startup_mutex;
61 static struct flist_head *cgroup_list;
62 static char *cgroup_mnt;
63 static int exit_value;
64 static volatile int fio_abort;
65 static unsigned int nr_process = 0;
66 static unsigned int nr_thread = 0;
67
68 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
69
70 int groupid = 0;
71 unsigned int thread_number = 0;
72 unsigned int stat_number = 0;
73 int shm_id = 0;
74 int temp_stall_ts;
75 unsigned long done_secs = 0;
76 volatile int disk_util_exit = 0;
77
78 #define PAGE_ALIGN(buf) \
79         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
80
81 #define JOB_START_TIMEOUT       (5 * 1000)
82
83 static void sig_int(int sig)
84 {
85         if (threads) {
86                 if (is_backend)
87                         fio_server_got_signal(sig);
88                 else {
89                         log_info("\nfio: terminating on signal %d\n", sig);
90                         fflush(stdout);
91                         exit_value = 128;
92                 }
93
94                 fio_terminate_threads(TERMINATE_ALL);
95         }
96 }
97
98 static void sig_show_status(int sig)
99 {
100         show_running_run_stats();
101 }
102
103 static void set_sig_handlers(void)
104 {
105         struct sigaction act;
106
107         memset(&act, 0, sizeof(act));
108         act.sa_handler = sig_int;
109         act.sa_flags = SA_RESTART;
110         sigaction(SIGINT, &act, NULL);
111
112         memset(&act, 0, sizeof(act));
113         act.sa_handler = sig_int;
114         act.sa_flags = SA_RESTART;
115         sigaction(SIGTERM, &act, NULL);
116
117 /* Windows uses SIGBREAK as a quit signal from other applications */
118 #ifdef WIN32
119         memset(&act, 0, sizeof(act));
120         act.sa_handler = sig_int;
121         act.sa_flags = SA_RESTART;
122         sigaction(SIGBREAK, &act, NULL);
123 #endif
124
125         memset(&act, 0, sizeof(act));
126         act.sa_handler = sig_show_status;
127         act.sa_flags = SA_RESTART;
128         sigaction(SIGUSR1, &act, NULL);
129
130         if (is_backend) {
131                 memset(&act, 0, sizeof(act));
132                 act.sa_handler = sig_int;
133                 act.sa_flags = SA_RESTART;
134                 sigaction(SIGPIPE, &act, NULL);
135         }
136 }
137
138 /*
139  * Check if we are above the minimum rate given.
140  */
141 static int __check_min_rate(struct thread_data *td, struct timeval *now,
142                             enum fio_ddir ddir)
143 {
144         unsigned long long bytes = 0;
145         unsigned long iops = 0;
146         unsigned long spent;
147         unsigned long rate;
148         unsigned int ratemin = 0;
149         unsigned int rate_iops = 0;
150         unsigned int rate_iops_min = 0;
151
152         assert(ddir_rw(ddir));
153
154         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
155                 return 0;
156
157         /*
158          * allow a 2 second settle period in the beginning
159          */
160         if (mtime_since(&td->start, now) < 2000)
161                 return 0;
162
163         iops += td->this_io_blocks[ddir];
164         bytes += td->this_io_bytes[ddir];
165         ratemin += td->o.ratemin[ddir];
166         rate_iops += td->o.rate_iops[ddir];
167         rate_iops_min += td->o.rate_iops_min[ddir];
168
169         /*
170          * if rate blocks is set, sample is running
171          */
172         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
173                 spent = mtime_since(&td->lastrate[ddir], now);
174                 if (spent < td->o.ratecycle)
175                         return 0;
176
177                 if (td->o.rate[ddir]) {
178                         /*
179                          * check bandwidth specified rate
180                          */
181                         if (bytes < td->rate_bytes[ddir]) {
182                                 log_err("%s: min rate %u not met\n", td->o.name,
183                                                                 ratemin);
184                                 return 1;
185                         } else {
186                                 if (spent)
187                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
188                                 else
189                                         rate = 0;
190
191                                 if (rate < ratemin ||
192                                     bytes < td->rate_bytes[ddir]) {
193                                         log_err("%s: min rate %u not met, got"
194                                                 " %luKB/sec\n", td->o.name,
195                                                         ratemin, rate);
196                                         return 1;
197                                 }
198                         }
199                 } else {
200                         /*
201                          * checks iops specified rate
202                          */
203                         if (iops < rate_iops) {
204                                 log_err("%s: min iops rate %u not met\n",
205                                                 td->o.name, rate_iops);
206                                 return 1;
207                         } else {
208                                 if (spent)
209                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
210                                 else
211                                         rate = 0;
212
213                                 if (rate < rate_iops_min ||
214                                     iops < td->rate_blocks[ddir]) {
215                                         log_err("%s: min iops rate %u not met,"
216                                                 " got %lu\n", td->o.name,
217                                                         rate_iops_min, rate);
218                                 }
219                         }
220                 }
221         }
222
223         td->rate_bytes[ddir] = bytes;
224         td->rate_blocks[ddir] = iops;
225         memcpy(&td->lastrate[ddir], now, sizeof(*now));
226         return 0;
227 }
228
229 static int check_min_rate(struct thread_data *td, struct timeval *now,
230                           uint64_t *bytes_done)
231 {
232         int ret = 0;
233
234         if (bytes_done[DDIR_READ])
235                 ret |= __check_min_rate(td, now, DDIR_READ);
236         if (bytes_done[DDIR_WRITE])
237                 ret |= __check_min_rate(td, now, DDIR_WRITE);
238         if (bytes_done[DDIR_TRIM])
239                 ret |= __check_min_rate(td, now, DDIR_TRIM);
240
241         return ret;
242 }
243
244 /*
245  * When job exits, we can cancel the in-flight IO if we are using async
246  * io. Attempt to do so.
247  */
248 static void cleanup_pending_aio(struct thread_data *td)
249 {
250         int r;
251
252         /*
253          * get immediately available events, if any
254          */
255         r = io_u_queued_complete(td, 0, NULL);
256         if (r < 0)
257                 return;
258
259         /*
260          * now cancel remaining active events
261          */
262         if (td->io_ops->cancel) {
263                 struct io_u *io_u;
264                 int i;
265
266                 io_u_qiter(&td->io_u_all, io_u, i) {
267                         if (io_u->flags & IO_U_F_FLIGHT) {
268                                 r = td->io_ops->cancel(td, io_u);
269                                 if (!r)
270                                         put_io_u(td, io_u);
271                         }
272                 }
273         }
274
275         if (td->cur_depth)
276                 r = io_u_queued_complete(td, td->cur_depth, NULL);
277 }
278
279 /*
280  * Helper to handle the final sync of a file. Works just like the normal
281  * io path, just does everything sync.
282  */
283 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
284 {
285         struct io_u *io_u = __get_io_u(td);
286         int ret;
287
288         if (!io_u)
289                 return 1;
290
291         io_u->ddir = DDIR_SYNC;
292         io_u->file = f;
293
294         if (td_io_prep(td, io_u)) {
295                 put_io_u(td, io_u);
296                 return 1;
297         }
298
299 requeue:
300         ret = td_io_queue(td, io_u);
301         if (ret < 0) {
302                 td_verror(td, io_u->error, "td_io_queue");
303                 put_io_u(td, io_u);
304                 return 1;
305         } else if (ret == FIO_Q_QUEUED) {
306                 if (io_u_queued_complete(td, 1, NULL) < 0)
307                         return 1;
308         } else if (ret == FIO_Q_COMPLETED) {
309                 if (io_u->error) {
310                         td_verror(td, io_u->error, "td_io_queue");
311                         return 1;
312                 }
313
314                 if (io_u_sync_complete(td, io_u, NULL) < 0)
315                         return 1;
316         } else if (ret == FIO_Q_BUSY) {
317                 if (td_io_commit(td))
318                         return 1;
319                 goto requeue;
320         }
321
322         return 0;
323 }
324
325 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
326 {
327         int ret;
328
329         if (fio_file_open(f))
330                 return fio_io_sync(td, f);
331
332         if (td_io_open_file(td, f))
333                 return 1;
334
335         ret = fio_io_sync(td, f);
336         td_io_close_file(td, f);
337         return ret;
338 }
339
340 static inline void __update_tv_cache(struct thread_data *td)
341 {
342         fio_gettime(&td->tv_cache, NULL);
343 }
344
345 static inline void update_tv_cache(struct thread_data *td)
346 {
347         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
348                 __update_tv_cache(td);
349 }
350
351 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
352 {
353         if (in_ramp_time(td))
354                 return 0;
355         if (!td->o.timeout)
356                 return 0;
357         if (utime_since(&td->epoch, t) >= td->o.timeout)
358                 return 1;
359
360         return 0;
361 }
362
363 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
364                                int *retptr)
365 {
366         int ret = *retptr;
367
368         if (ret < 0 || td->error) {
369                 int err = td->error;
370                 enum error_type_bit eb;
371
372                 if (ret < 0)
373                         err = -ret;
374
375                 eb = td_error_type(ddir, err);
376                 if (!(td->o.continue_on_error & (1 << eb)))
377                         return 1;
378
379                 if (td_non_fatal_error(td, eb, err)) {
380                         /*
381                          * Continue with the I/Os in case of
382                          * a non fatal error.
383                          */
384                         update_error_count(td, err);
385                         td_clear_error(td);
386                         *retptr = 0;
387                         return 0;
388                 } else if (td->o.fill_device && err == ENOSPC) {
389                         /*
390                          * We expect to hit this error if
391                          * fill_device option is set.
392                          */
393                         td_clear_error(td);
394                         td->terminate = 1;
395                         return 1;
396                 } else {
397                         /*
398                          * Stop the I/O in case of a fatal
399                          * error.
400                          */
401                         update_error_count(td, err);
402                         return 1;
403                 }
404         }
405
406         return 0;
407 }
408
409 static void check_update_rusage(struct thread_data *td)
410 {
411         if (td->update_rusage) {
412                 td->update_rusage = 0;
413                 update_rusage_stat(td);
414                 fio_mutex_up(td->rusage_sem);
415         }
416 }
417
418 /*
419  * The main verify engine. Runs over the writes we previously submitted,
420  * reads the blocks back in, and checks the crc/md5 of the data.
421  */
422 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
423 {
424         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
425         struct fio_file *f;
426         struct io_u *io_u;
427         int ret, min_events;
428         unsigned int i;
429
430         dprint(FD_VERIFY, "starting loop\n");
431
432         /*
433          * sync io first and invalidate cache, to make sure we really
434          * read from disk.
435          */
436         for_each_file(td, f, i) {
437                 if (!fio_file_open(f))
438                         continue;
439                 if (fio_io_sync(td, f))
440                         break;
441                 if (file_invalidate_cache(td, f))
442                         break;
443         }
444
445         check_update_rusage(td);
446
447         if (td->error)
448                 return;
449
450         td_set_runstate(td, TD_VERIFYING);
451
452         io_u = NULL;
453         while (!td->terminate) {
454                 enum fio_ddir ddir;
455                 int ret2, full;
456
457                 update_tv_cache(td);
458                 check_update_rusage(td);
459
460                 if (runtime_exceeded(td, &td->tv_cache)) {
461                         __update_tv_cache(td);
462                         if (runtime_exceeded(td, &td->tv_cache)) {
463                                 td->terminate = 1;
464                                 break;
465                         }
466                 }
467
468                 if (flow_threshold_exceeded(td))
469                         continue;
470
471                 if (!td->o.experimental_verify) {
472                         io_u = __get_io_u(td);
473                         if (!io_u)
474                                 break;
475
476                         if (get_next_verify(td, io_u)) {
477                                 put_io_u(td, io_u);
478                                 break;
479                         }
480
481                         if (td_io_prep(td, io_u)) {
482                                 put_io_u(td, io_u);
483                                 break;
484                         }
485                 } else {
486                         if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
487                                 break;
488
489                         while ((io_u = get_io_u(td)) != NULL) {
490                                 if (IS_ERR(io_u)) {
491                                         io_u = NULL;
492                                         ret = FIO_Q_BUSY;
493                                         goto reap;
494                                 }
495
496                                 /*
497                                  * We are only interested in the places where
498                                  * we wrote or trimmed IOs. Turn those into
499                                  * reads for verification purposes.
500                                  */
501                                 if (io_u->ddir == DDIR_READ) {
502                                         /*
503                                          * Pretend we issued it for rwmix
504                                          * accounting
505                                          */
506                                         td->io_issues[DDIR_READ]++;
507                                         put_io_u(td, io_u);
508                                         continue;
509                                 } else if (io_u->ddir == DDIR_TRIM) {
510                                         io_u->ddir = DDIR_READ;
511                                         io_u->flags |= IO_U_F_TRIMMED;
512                                         break;
513                                 } else if (io_u->ddir == DDIR_WRITE) {
514                                         io_u->ddir = DDIR_READ;
515                                         break;
516                                 } else {
517                                         put_io_u(td, io_u);
518                                         continue;
519                                 }
520                         }
521
522                         if (!io_u)
523                                 break;
524                 }
525
526                 if (td->o.verify_async)
527                         io_u->end_io = verify_io_u_async;
528                 else
529                         io_u->end_io = verify_io_u;
530
531                 ddir = io_u->ddir;
532
533                 ret = td_io_queue(td, io_u);
534                 switch (ret) {
535                 case FIO_Q_COMPLETED:
536                         if (io_u->error) {
537                                 ret = -io_u->error;
538                                 clear_io_u(td, io_u);
539                         } else if (io_u->resid) {
540                                 int bytes = io_u->xfer_buflen - io_u->resid;
541
542                                 /*
543                                  * zero read, fail
544                                  */
545                                 if (!bytes) {
546                                         td_verror(td, EIO, "full resid");
547                                         put_io_u(td, io_u);
548                                         break;
549                                 }
550
551                                 io_u->xfer_buflen = io_u->resid;
552                                 io_u->xfer_buf += bytes;
553                                 io_u->offset += bytes;
554
555                                 if (ddir_rw(io_u->ddir))
556                                         td->ts.short_io_u[io_u->ddir]++;
557
558                                 f = io_u->file;
559                                 if (io_u->offset == f->real_file_size)
560                                         goto sync_done;
561
562                                 requeue_io_u(td, &io_u);
563                         } else {
564 sync_done:
565                                 ret = io_u_sync_complete(td, io_u, bytes_done);
566                                 if (ret < 0)
567                                         break;
568                         }
569                         continue;
570                 case FIO_Q_QUEUED:
571                         break;
572                 case FIO_Q_BUSY:
573                         requeue_io_u(td, &io_u);
574                         ret2 = td_io_commit(td);
575                         if (ret2 < 0)
576                                 ret = ret2;
577                         break;
578                 default:
579                         assert(ret < 0);
580                         td_verror(td, -ret, "td_io_queue");
581                         break;
582                 }
583
584                 if (break_on_this_error(td, ddir, &ret))
585                         break;
586
587                 /*
588                  * if we can queue more, do so. but check if there are
589                  * completed io_u's first. Note that we can get BUSY even
590                  * without IO queued, if the system is resource starved.
591                  */
592 reap:
593                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
594                 if (full || !td->o.iodepth_batch_complete) {
595                         min_events = min(td->o.iodepth_batch_complete,
596                                          td->cur_depth);
597                         /*
598                          * if the queue is full, we MUST reap at least 1 event
599                          */
600                         if (full && !min_events)
601                                 min_events = 1;
602
603                         do {
604                                 /*
605                                  * Reap required number of io units, if any,
606                                  * and do the verification on them through
607                                  * the callback handler
608                                  */
609                                 if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
610                                         ret = -1;
611                                         break;
612                                 }
613                         } while (full && (td->cur_depth > td->o.iodepth_low));
614                 }
615                 if (ret < 0)
616                         break;
617         }
618
619         check_update_rusage(td);
620
621         if (!td->error) {
622                 min_events = td->cur_depth;
623
624                 if (min_events)
625                         ret = io_u_queued_complete(td, min_events, NULL);
626         } else
627                 cleanup_pending_aio(td);
628
629         td_set_runstate(td, TD_RUNNING);
630
631         dprint(FD_VERIFY, "exiting loop\n");
632 }
633
634 static unsigned int exceeds_number_ios(struct thread_data *td)
635 {
636         unsigned long long number_ios;
637
638         if (!td->o.number_ios)
639                 return 0;
640
641         number_ios = ddir_rw_sum(td->this_io_blocks);
642         number_ios += td->io_u_queued + td->io_u_in_flight;
643
644         return number_ios >= td->o.number_ios;
645 }
646
647 static int io_bytes_exceeded(struct thread_data *td)
648 {
649         unsigned long long bytes, limit;
650
651         if (td_rw(td))
652                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
653         else if (td_write(td))
654                 bytes = td->this_io_bytes[DDIR_WRITE];
655         else if (td_read(td))
656                 bytes = td->this_io_bytes[DDIR_READ];
657         else
658                 bytes = td->this_io_bytes[DDIR_TRIM];
659
660         if (td->o.io_limit)
661                 limit = td->o.io_limit;
662         else
663                 limit = td->o.size;
664
665         return bytes >= limit || exceeds_number_ios(td);
666 }
667
668 /*
669  * Main IO worker function. It retrieves io_u's to process and queues
670  * and reaps them, checking for rate and errors along the way.
671  *
672  * Returns number of bytes written and trimmed.
673  */
674 static uint64_t do_io(struct thread_data *td)
675 {
676         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
677         unsigned int i;
678         int ret = 0;
679         uint64_t total_bytes, bytes_issued = 0;
680
681         if (in_ramp_time(td))
682                 td_set_runstate(td, TD_RAMP);
683         else
684                 td_set_runstate(td, TD_RUNNING);
685
686         lat_target_init(td);
687
688         /*
689          * If verify_backlog is enabled, we'll run the verify in this
690          * handler as well. For that case, we may need up to twice the
691          * amount of bytes.
692          */
693         total_bytes = td->o.size;
694         if (td->o.verify != VERIFY_NONE &&
695            (td_write(td) && td->o.verify_backlog))
696                 total_bytes += td->o.size;
697
698         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
699                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
700                 td->o.time_based) {
701                 struct timeval comp_time;
702                 int min_evts = 0;
703                 struct io_u *io_u;
704                 int ret2, full;
705                 enum fio_ddir ddir;
706
707                 check_update_rusage(td);
708
709                 if (td->terminate || td->done)
710                         break;
711
712                 update_tv_cache(td);
713
714                 if (runtime_exceeded(td, &td->tv_cache)) {
715                         __update_tv_cache(td);
716                         if (runtime_exceeded(td, &td->tv_cache)) {
717                                 td->terminate = 1;
718                                 break;
719                         }
720                 }
721
722                 if (flow_threshold_exceeded(td))
723                         continue;
724
725                 if (bytes_issued >= total_bytes)
726                         break;
727
728                 io_u = get_io_u(td);
729                 if (IS_ERR_OR_NULL(io_u)) {
730                         int err = PTR_ERR(io_u);
731
732                         io_u = NULL;
733                         if (err == -EBUSY) {
734                                 ret = FIO_Q_BUSY;
735                                 goto reap;
736                         }
737                         if (td->o.latency_target)
738                                 goto reap;
739                         break;
740                 }
741
742                 ddir = io_u->ddir;
743
744                 /*
745                  * Add verification end_io handler if:
746                  *      - Asked to verify (!td_rw(td))
747                  *      - Or the io_u is from our verify list (mixed write/ver)
748                  */
749                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
750                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
751
752                         if (!td->o.verify_pattern_bytes) {
753                                 io_u->rand_seed = __rand(&td->__verify_state);
754                                 if (sizeof(int) != sizeof(long *))
755                                         io_u->rand_seed *= __rand(&td->__verify_state);
756                         }
757
758                         if (td->o.verify_async)
759                                 io_u->end_io = verify_io_u_async;
760                         else
761                                 io_u->end_io = verify_io_u;
762                         td_set_runstate(td, TD_VERIFYING);
763                 } else if (in_ramp_time(td))
764                         td_set_runstate(td, TD_RAMP);
765                 else
766                         td_set_runstate(td, TD_RUNNING);
767
768                 /*
769                  * Always log IO before it's issued, so we know the specific
770                  * order of it. The logged unit will track when the IO has
771                  * completed.
772                  */
773                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
774                     td->o.do_verify &&
775                     td->o.verify != VERIFY_NONE &&
776                     !td->o.experimental_verify)
777                         log_io_piece(td, io_u);
778
779                 ret = td_io_queue(td, io_u);
780                 switch (ret) {
781                 case FIO_Q_COMPLETED:
782                         if (io_u->error) {
783                                 ret = -io_u->error;
784                                 unlog_io_piece(td, io_u);
785                                 clear_io_u(td, io_u);
786                         } else if (io_u->resid) {
787                                 int bytes = io_u->xfer_buflen - io_u->resid;
788                                 struct fio_file *f = io_u->file;
789
790                                 bytes_issued += bytes;
791
792                                 trim_io_piece(td, io_u);
793
794                                 /*
795                                  * zero read, fail
796                                  */
797                                 if (!bytes) {
798                                         unlog_io_piece(td, io_u);
799                                         td_verror(td, EIO, "full resid");
800                                         put_io_u(td, io_u);
801                                         break;
802                                 }
803
804                                 io_u->xfer_buflen = io_u->resid;
805                                 io_u->xfer_buf += bytes;
806                                 io_u->offset += bytes;
807
808                                 if (ddir_rw(io_u->ddir))
809                                         td->ts.short_io_u[io_u->ddir]++;
810
811                                 if (io_u->offset == f->real_file_size)
812                                         goto sync_done;
813
814                                 requeue_io_u(td, &io_u);
815                         } else {
816 sync_done:
817                                 if (__should_check_rate(td, DDIR_READ) ||
818                                     __should_check_rate(td, DDIR_WRITE) ||
819                                     __should_check_rate(td, DDIR_TRIM))
820                                         fio_gettime(&comp_time, NULL);
821
822                                 ret = io_u_sync_complete(td, io_u, bytes_done);
823                                 if (ret < 0)
824                                         break;
825                                 bytes_issued += io_u->xfer_buflen;
826                         }
827                         break;
828                 case FIO_Q_QUEUED:
829                         /*
830                          * if the engine doesn't have a commit hook,
831                          * the io_u is really queued. if it does have such
832                          * a hook, it has to call io_u_queued() itself.
833                          */
834                         if (td->io_ops->commit == NULL)
835                                 io_u_queued(td, io_u);
836                         bytes_issued += io_u->xfer_buflen;
837                         break;
838                 case FIO_Q_BUSY:
839                         unlog_io_piece(td, io_u);
840                         requeue_io_u(td, &io_u);
841                         ret2 = td_io_commit(td);
842                         if (ret2 < 0)
843                                 ret = ret2;
844                         break;
845                 default:
846                         assert(ret < 0);
847                         put_io_u(td, io_u);
848                         break;
849                 }
850
851                 if (break_on_this_error(td, ddir, &ret))
852                         break;
853
854                 /*
855                  * See if we need to complete some commands. Note that we
856                  * can get BUSY even without IO queued, if the system is
857                  * resource starved.
858                  */
859 reap:
860                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
861                 if (full || !td->o.iodepth_batch_complete) {
862                         min_evts = min(td->o.iodepth_batch_complete,
863                                         td->cur_depth);
864                         /*
865                          * if the queue is full, we MUST reap at least 1 event
866                          */
867                         if (full && !min_evts)
868                                 min_evts = 1;
869
870                         if (__should_check_rate(td, DDIR_READ) ||
871                             __should_check_rate(td, DDIR_WRITE) ||
872                             __should_check_rate(td, DDIR_TRIM))
873                                 fio_gettime(&comp_time, NULL);
874
875                         do {
876                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
877                                 if (ret < 0)
878                                         break;
879
880                         } while (full && (td->cur_depth > td->o.iodepth_low));
881                 }
882
883                 if (ret < 0)
884                         break;
885                 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
886                         continue;
887
888                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
889                         if (check_min_rate(td, &comp_time, bytes_done)) {
890                                 if (exitall_on_terminate)
891                                         fio_terminate_threads(td->groupid);
892                                 td_verror(td, EIO, "check_min_rate");
893                                 break;
894                         }
895                 }
896                 if (!in_ramp_time(td) && td->o.latency_target)
897                         lat_target_check(td);
898
899                 if (td->o.thinktime) {
900                         unsigned long long b;
901
902                         b = ddir_rw_sum(td->io_blocks);
903                         if (!(b % td->o.thinktime_blocks)) {
904                                 int left;
905
906                                 io_u_quiesce(td);
907
908                                 if (td->o.thinktime_spin)
909                                         usec_spin(td->o.thinktime_spin);
910
911                                 left = td->o.thinktime - td->o.thinktime_spin;
912                                 if (left)
913                                         usec_sleep(td, left);
914                         }
915                 }
916         }
917
918         check_update_rusage(td);
919
920         if (td->trim_entries)
921                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
922
923         if (td->o.fill_device && td->error == ENOSPC) {
924                 td->error = 0;
925                 td->terminate = 1;
926         }
927         if (!td->error) {
928                 struct fio_file *f;
929
930                 i = td->cur_depth;
931                 if (i) {
932                         ret = io_u_queued_complete(td, i, bytes_done);
933                         if (td->o.fill_device && td->error == ENOSPC)
934                                 td->error = 0;
935                 }
936
937                 if (should_fsync(td) && td->o.end_fsync) {
938                         td_set_runstate(td, TD_FSYNCING);
939
940                         for_each_file(td, f, i) {
941                                 if (!fio_file_fsync(td, f))
942                                         continue;
943
944                                 log_err("fio: end_fsync failed for file %s\n",
945                                                                 f->file_name);
946                         }
947                 }
948         } else
949                 cleanup_pending_aio(td);
950
951         /*
952          * stop job if we failed doing any IO
953          */
954         if (!ddir_rw_sum(td->this_io_bytes))
955                 td->done = 1;
956
957         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
958 }
959
960 static void cleanup_io_u(struct thread_data *td)
961 {
962         struct io_u *io_u;
963
964         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
965
966                 if (td->io_ops->io_u_free)
967                         td->io_ops->io_u_free(td, io_u);
968
969                 fio_memfree(io_u, sizeof(*io_u));
970         }
971
972         free_io_mem(td);
973
974         io_u_rexit(&td->io_u_requeues);
975         io_u_qexit(&td->io_u_freelist);
976         io_u_qexit(&td->io_u_all);
977 }
978
979 static int init_io_u(struct thread_data *td)
980 {
981         struct io_u *io_u;
982         unsigned int max_bs, min_write;
983         int cl_align, i, max_units;
984         int data_xfer = 1, err;
985         char *p;
986
987         max_units = td->o.iodepth;
988         max_bs = td_max_bs(td);
989         min_write = td->o.min_bs[DDIR_WRITE];
990         td->orig_buffer_size = (unsigned long long) max_bs
991                                         * (unsigned long long) max_units;
992
993         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
994                 data_xfer = 0;
995
996         err = 0;
997         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
998         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
999         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1000
1001         if (err) {
1002                 log_err("fio: failed setting up IO queues\n");
1003                 return 1;
1004         }
1005
1006         /*
1007          * if we may later need to do address alignment, then add any
1008          * possible adjustment here so that we don't cause a buffer
1009          * overflow later. this adjustment may be too much if we get
1010          * lucky and the allocator gives us an aligned address.
1011          */
1012         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1013             (td->io_ops->flags & FIO_RAWIO))
1014                 td->orig_buffer_size += page_mask + td->o.mem_align;
1015
1016         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1017                 unsigned long bs;
1018
1019                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1020                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1021         }
1022
1023         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1024                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1025                 return 1;
1026         }
1027
1028         if (data_xfer && allocate_io_mem(td))
1029                 return 1;
1030
1031         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1032             (td->io_ops->flags & FIO_RAWIO))
1033                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1034         else
1035                 p = td->orig_buffer;
1036
1037         cl_align = os_cache_line_size();
1038
1039         for (i = 0; i < max_units; i++) {
1040                 void *ptr;
1041
1042                 if (td->terminate)
1043                         return 1;
1044
1045                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1046                 if (!ptr) {
1047                         log_err("fio: unable to allocate aligned memory\n");
1048                         break;
1049                 }
1050
1051                 io_u = ptr;
1052                 memset(io_u, 0, sizeof(*io_u));
1053                 INIT_FLIST_HEAD(&io_u->verify_list);
1054                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1055
1056                 if (data_xfer) {
1057                         io_u->buf = p;
1058                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1059
1060                         if (td_write(td))
1061                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1062                         if (td_write(td) && td->o.verify_pattern_bytes) {
1063                                 /*
1064                                  * Fill the buffer with the pattern if we are
1065                                  * going to be doing writes.
1066                                  */
1067                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1068                         }
1069                 }
1070
1071                 io_u->index = i;
1072                 io_u->flags = IO_U_F_FREE;
1073                 io_u_qpush(&td->io_u_freelist, io_u);
1074
1075                 /*
1076                  * io_u never leaves this stack, used for iteration of all
1077                  * io_u buffers.
1078                  */
1079                 io_u_qpush(&td->io_u_all, io_u);
1080
1081                 if (td->io_ops->io_u_init) {
1082                         int ret = td->io_ops->io_u_init(td, io_u);
1083
1084                         if (ret) {
1085                                 log_err("fio: failed to init engine data: %d\n", ret);
1086                                 return 1;
1087                         }
1088                 }
1089
1090                 p += max_bs;
1091         }
1092
1093         return 0;
1094 }
1095
1096 static int switch_ioscheduler(struct thread_data *td)
1097 {
1098         char tmp[256], tmp2[128];
1099         FILE *f;
1100         int ret;
1101
1102         if (td->io_ops->flags & FIO_DISKLESSIO)
1103                 return 0;
1104
1105         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1106
1107         f = fopen(tmp, "r+");
1108         if (!f) {
1109                 if (errno == ENOENT) {
1110                         log_err("fio: os or kernel doesn't support IO scheduler"
1111                                 " switching\n");
1112                         return 0;
1113                 }
1114                 td_verror(td, errno, "fopen iosched");
1115                 return 1;
1116         }
1117
1118         /*
1119          * Set io scheduler.
1120          */
1121         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1122         if (ferror(f) || ret != 1) {
1123                 td_verror(td, errno, "fwrite");
1124                 fclose(f);
1125                 return 1;
1126         }
1127
1128         rewind(f);
1129
1130         /*
1131          * Read back and check that the selected scheduler is now the default.
1132          */
1133         ret = fread(tmp, sizeof(tmp), 1, f);
1134         if (ferror(f) || ret < 0) {
1135                 td_verror(td, errno, "fread");
1136                 fclose(f);
1137                 return 1;
1138         }
1139         tmp[sizeof(tmp) - 1] = '\0';
1140
1141
1142         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1143         if (!strstr(tmp, tmp2)) {
1144                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1145                 td_verror(td, EINVAL, "iosched_switch");
1146                 fclose(f);
1147                 return 1;
1148         }
1149
1150         fclose(f);
1151         return 0;
1152 }
1153
1154 static int keep_running(struct thread_data *td)
1155 {
1156         unsigned long long limit;
1157
1158         if (td->done)
1159                 return 0;
1160         if (td->o.time_based)
1161                 return 1;
1162         if (td->o.loops) {
1163                 td->o.loops--;
1164                 return 1;
1165         }
1166         if (exceeds_number_ios(td))
1167                 return 0;
1168
1169         if (td->o.io_limit)
1170                 limit = td->o.io_limit;
1171         else
1172                 limit = td->o.size;
1173
1174         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1175                 uint64_t diff;
1176
1177                 /*
1178                  * If the difference is less than the minimum IO size, we
1179                  * are done.
1180                  */
1181                 diff = limit - ddir_rw_sum(td->io_bytes);
1182                 if (diff < td_max_bs(td))
1183                         return 0;
1184
1185                 if (fio_files_done(td))
1186                         return 0;
1187
1188                 return 1;
1189         }
1190
1191         return 0;
1192 }
1193
1194 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1195 {
1196         int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1197         char *str;
1198
1199         str = malloc(newlen);
1200         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1201
1202         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1203         ret = system(str);
1204         if (ret == -1)
1205                 log_err("fio: exec of cmd <%s> failed\n", str);
1206
1207         free(str);
1208         return ret;
1209 }
1210
1211 /*
1212  * Dry run to compute correct state of numberio for verification.
1213  */
1214 static uint64_t do_dry_run(struct thread_data *td)
1215 {
1216         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1217
1218         td_set_runstate(td, TD_RUNNING);
1219
1220         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1221                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1222                 struct io_u *io_u;
1223                 int ret;
1224
1225                 if (td->terminate || td->done)
1226                         break;
1227
1228                 io_u = get_io_u(td);
1229                 if (!io_u)
1230                         break;
1231
1232                 io_u->flags |= IO_U_F_FLIGHT;
1233                 io_u->error = 0;
1234                 io_u->resid = 0;
1235                 if (ddir_rw(acct_ddir(io_u)))
1236                         td->io_issues[acct_ddir(io_u)]++;
1237                 if (ddir_rw(io_u->ddir)) {
1238                         io_u_mark_depth(td, 1);
1239                         td->ts.total_io_u[io_u->ddir]++;
1240                 }
1241
1242                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1243                     td->o.do_verify &&
1244                     td->o.verify != VERIFY_NONE &&
1245                     !td->o.experimental_verify)
1246                         log_io_piece(td, io_u);
1247
1248                 ret = io_u_sync_complete(td, io_u, bytes_done);
1249                 (void) ret;
1250         }
1251
1252         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1253 }
1254
1255 /*
1256  * Entry point for the thread based jobs. The process based jobs end up
1257  * here as well, after a little setup.
1258  */
1259 static void *thread_main(void *data)
1260 {
1261         unsigned long long elapsed;
1262         struct thread_data *td = data;
1263         struct thread_options *o = &td->o;
1264         pthread_condattr_t attr;
1265         int clear_state;
1266         int ret;
1267
1268         if (!o->use_thread) {
1269                 setsid();
1270                 td->pid = getpid();
1271         } else
1272                 td->pid = gettid();
1273
1274         fio_local_clock_init(o->use_thread);
1275
1276         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1277
1278         if (is_backend)
1279                 fio_server_send_start(td);
1280
1281         INIT_FLIST_HEAD(&td->io_log_list);
1282         INIT_FLIST_HEAD(&td->io_hist_list);
1283         INIT_FLIST_HEAD(&td->verify_list);
1284         INIT_FLIST_HEAD(&td->trim_list);
1285         INIT_FLIST_HEAD(&td->next_rand_list);
1286         pthread_mutex_init(&td->io_u_lock, NULL);
1287         td->io_hist_tree = RB_ROOT;
1288
1289         pthread_condattr_init(&attr);
1290         pthread_cond_init(&td->verify_cond, &attr);
1291         pthread_cond_init(&td->free_cond, &attr);
1292
1293         td_set_runstate(td, TD_INITIALIZED);
1294         dprint(FD_MUTEX, "up startup_mutex\n");
1295         fio_mutex_up(startup_mutex);
1296         dprint(FD_MUTEX, "wait on td->mutex\n");
1297         fio_mutex_down(td->mutex);
1298         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1299
1300         /*
1301          * A new gid requires privilege, so we need to do this before setting
1302          * the uid.
1303          */
1304         if (o->gid != -1U && setgid(o->gid)) {
1305                 td_verror(td, errno, "setgid");
1306                 goto err;
1307         }
1308         if (o->uid != -1U && setuid(o->uid)) {
1309                 td_verror(td, errno, "setuid");
1310                 goto err;
1311         }
1312
1313         /*
1314          * If we have a gettimeofday() thread, make sure we exclude that
1315          * thread from this job
1316          */
1317         if (o->gtod_cpu)
1318                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1319
1320         /*
1321          * Set affinity first, in case it has an impact on the memory
1322          * allocations.
1323          */
1324         if (o->cpumask_set) {
1325                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1326                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1327                         if (!ret) {
1328                                 log_err("fio: no CPUs set\n");
1329                                 log_err("fio: Try increasing number of available CPUs\n");
1330                                 td_verror(td, EINVAL, "cpus_split");
1331                                 goto err;
1332                         }
1333                 }
1334                 ret = fio_setaffinity(td->pid, o->cpumask);
1335                 if (ret == -1) {
1336                         td_verror(td, errno, "cpu_set_affinity");
1337                         goto err;
1338                 }
1339         }
1340
1341 #ifdef CONFIG_LIBNUMA
1342         /* numa node setup */
1343         if (o->numa_cpumask_set || o->numa_memmask_set) {
1344                 struct bitmask *mask;
1345                 int ret;
1346
1347                 if (numa_available() < 0) {
1348                         td_verror(td, errno, "Does not support NUMA API\n");
1349                         goto err;
1350                 }
1351
1352                 if (o->numa_cpumask_set) {
1353                         mask = numa_parse_nodestring(o->numa_cpunodes);
1354                         ret = numa_run_on_node_mask(mask);
1355                         numa_free_nodemask(mask);
1356                         if (ret == -1) {
1357                                 td_verror(td, errno, \
1358                                         "numa_run_on_node_mask failed\n");
1359                                 goto err;
1360                         }
1361                 }
1362
1363                 if (o->numa_memmask_set) {
1364
1365                         mask = NULL;
1366                         if (o->numa_memnodes)
1367                                 mask = numa_parse_nodestring(o->numa_memnodes);
1368
1369                         switch (o->numa_mem_mode) {
1370                         case MPOL_INTERLEAVE:
1371                                 numa_set_interleave_mask(mask);
1372                                 break;
1373                         case MPOL_BIND:
1374                                 numa_set_membind(mask);
1375                                 break;
1376                         case MPOL_LOCAL:
1377                                 numa_set_localalloc();
1378                                 break;
1379                         case MPOL_PREFERRED:
1380                                 numa_set_preferred(o->numa_mem_prefer_node);
1381                                 break;
1382                         case MPOL_DEFAULT:
1383                         default:
1384                                 break;
1385                         }
1386
1387                         if (mask)
1388                                 numa_free_nodemask(mask);
1389
1390                 }
1391         }
1392 #endif
1393
1394         if (fio_pin_memory(td))
1395                 goto err;
1396
1397         /*
1398          * May alter parameters that init_io_u() will use, so we need to
1399          * do this first.
1400          */
1401         if (init_iolog(td))
1402                 goto err;
1403
1404         if (init_io_u(td))
1405                 goto err;
1406
1407         if (o->verify_async && verify_async_init(td))
1408                 goto err;
1409
1410         if (o->ioprio) {
1411                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1412                 if (ret == -1) {
1413                         td_verror(td, errno, "ioprio_set");
1414                         goto err;
1415                 }
1416         }
1417
1418         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1419                 goto err;
1420
1421         errno = 0;
1422         if (nice(o->nice) == -1 && errno != 0) {
1423                 td_verror(td, errno, "nice");
1424                 goto err;
1425         }
1426
1427         if (o->ioscheduler && switch_ioscheduler(td))
1428                 goto err;
1429
1430         if (!o->create_serialize && setup_files(td))
1431                 goto err;
1432
1433         if (td_io_init(td))
1434                 goto err;
1435
1436         if (init_random_map(td))
1437                 goto err;
1438
1439         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1440                 goto err;
1441
1442         if (o->pre_read) {
1443                 if (pre_read_files(td) < 0)
1444                         goto err;
1445         }
1446
1447         if (td->flags & TD_F_COMPRESS_LOG)
1448                 tp_init(&td->tp_data);
1449
1450         fio_verify_init(td);
1451
1452         fio_gettime(&td->epoch, NULL);
1453         fio_getrusage(&td->ru_start);
1454         clear_state = 0;
1455         while (keep_running(td)) {
1456                 uint64_t verify_bytes;
1457
1458                 fio_gettime(&td->start, NULL);
1459                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1460                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1461                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1462
1463                 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1464                                 o->ratemin[DDIR_TRIM]) {
1465                         memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1466                                                 sizeof(td->bw_sample_time));
1467                         memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1468                                                 sizeof(td->bw_sample_time));
1469                         memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1470                                                 sizeof(td->bw_sample_time));
1471                 }
1472
1473                 if (clear_state)
1474                         clear_io_state(td);
1475
1476                 prune_io_piece_log(td);
1477
1478                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1479                         verify_bytes = do_dry_run(td);
1480                 else
1481                         verify_bytes = do_io(td);
1482
1483                 clear_state = 1;
1484
1485                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1486                         elapsed = utime_since_now(&td->start);
1487                         td->ts.runtime[DDIR_READ] += elapsed;
1488                 }
1489                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1490                         elapsed = utime_since_now(&td->start);
1491                         td->ts.runtime[DDIR_WRITE] += elapsed;
1492                 }
1493                 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1494                         elapsed = utime_since_now(&td->start);
1495                         td->ts.runtime[DDIR_TRIM] += elapsed;
1496                 }
1497
1498                 if (td->error || td->terminate)
1499                         break;
1500
1501                 if (!o->do_verify ||
1502                     o->verify == VERIFY_NONE ||
1503                     (td->io_ops->flags & FIO_UNIDIR))
1504                         continue;
1505
1506                 clear_io_state(td);
1507
1508                 fio_gettime(&td->start, NULL);
1509
1510                 do_verify(td, verify_bytes);
1511
1512                 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1513
1514                 if (td->error || td->terminate)
1515                         break;
1516         }
1517
1518         update_rusage_stat(td);
1519         td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1520         td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1521         td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1522         td->ts.total_run_time = mtime_since_now(&td->epoch);
1523         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1524         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1525         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1526
1527         fio_unpin_memory(td);
1528
1529         fio_writeout_logs(td);
1530
1531         if (td->flags & TD_F_COMPRESS_LOG)
1532                 tp_exit(&td->tp_data);
1533
1534         if (o->exec_postrun)
1535                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1536
1537         if (exitall_on_terminate)
1538                 fio_terminate_threads(td->groupid);
1539
1540 err:
1541         if (td->error)
1542                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1543                                                         td->verror);
1544
1545         if (o->verify_async)
1546                 verify_async_exit(td);
1547
1548         close_and_free_files(td);
1549         cleanup_io_u(td);
1550         close_ioengine(td);
1551         cgroup_shutdown(td, &cgroup_mnt);
1552
1553         if (o->cpumask_set) {
1554                 int ret = fio_cpuset_exit(&o->cpumask);
1555
1556                 td_verror(td, ret, "fio_cpuset_exit");
1557         }
1558
1559         /*
1560          * do this very late, it will log file closing as well
1561          */
1562         if (o->write_iolog_file)
1563                 write_iolog_close(td);
1564
1565         fio_mutex_remove(td->rusage_sem);
1566         td->rusage_sem = NULL;
1567
1568         fio_mutex_remove(td->mutex);
1569         td->mutex = NULL;
1570
1571         td_set_runstate(td, TD_EXITED);
1572         return (void *) (uintptr_t) td->error;
1573 }
1574
1575
1576 /*
1577  * We cannot pass the td data into a forked process, so attach the td and
1578  * pass it to the thread worker.
1579  */
1580 static int fork_main(int shmid, int offset)
1581 {
1582         struct thread_data *td;
1583         void *data, *ret;
1584
1585 #if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1586         data = shmat(shmid, NULL, 0);
1587         if (data == (void *) -1) {
1588                 int __err = errno;
1589
1590                 perror("shmat");
1591                 return __err;
1592         }
1593 #else
1594         /*
1595          * HP-UX inherits shm mappings?
1596          */
1597         data = threads;
1598 #endif
1599
1600         td = data + offset * sizeof(struct thread_data);
1601         ret = thread_main(td);
1602         shmdt(data);
1603         return (int) (uintptr_t) ret;
1604 }
1605
1606 /*
1607  * Run over the job map and reap the threads that have exited, if any.
1608  */
1609 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1610                          unsigned int *m_rate)
1611 {
1612         struct thread_data *td;
1613         unsigned int cputhreads, realthreads, pending;
1614         int i, status, ret;
1615
1616         /*
1617          * reap exited threads (TD_EXITED -> TD_REAPED)
1618          */
1619         realthreads = pending = cputhreads = 0;
1620         for_each_td(td, i) {
1621                 int flags = 0;
1622
1623                 /*
1624                  * ->io_ops is NULL for a thread that has closed its
1625                  * io engine
1626                  */
1627                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1628                         cputhreads++;
1629                 else
1630                         realthreads++;
1631
1632                 if (!td->pid) {
1633                         pending++;
1634                         continue;
1635                 }
1636                 if (td->runstate == TD_REAPED)
1637                         continue;
1638                 if (td->o.use_thread) {
1639                         if (td->runstate == TD_EXITED) {
1640                                 td_set_runstate(td, TD_REAPED);
1641                                 goto reaped;
1642                         }
1643                         continue;
1644                 }
1645
1646                 flags = WNOHANG;
1647                 if (td->runstate == TD_EXITED)
1648                         flags = 0;
1649
1650                 /*
1651                  * check if someone quit or got killed in an unusual way
1652                  */
1653                 ret = waitpid(td->pid, &status, flags);
1654                 if (ret < 0) {
1655                         if (errno == ECHILD) {
1656                                 log_err("fio: pid=%d disappeared %d\n",
1657                                                 (int) td->pid, td->runstate);
1658                                 td->sig = ECHILD;
1659                                 td_set_runstate(td, TD_REAPED);
1660                                 goto reaped;
1661                         }
1662                         perror("waitpid");
1663                 } else if (ret == td->pid) {
1664                         if (WIFSIGNALED(status)) {
1665                                 int sig = WTERMSIG(status);
1666
1667                                 if (sig != SIGTERM && sig != SIGUSR2)
1668                                         log_err("fio: pid=%d, got signal=%d\n",
1669                                                         (int) td->pid, sig);
1670                                 td->sig = sig;
1671                                 td_set_runstate(td, TD_REAPED);
1672                                 goto reaped;
1673                         }
1674                         if (WIFEXITED(status)) {
1675                                 if (WEXITSTATUS(status) && !td->error)
1676                                         td->error = WEXITSTATUS(status);
1677
1678                                 td_set_runstate(td, TD_REAPED);
1679                                 goto reaped;
1680                         }
1681                 }
1682
1683                 /*
1684                  * thread is not dead, continue
1685                  */
1686                 pending++;
1687                 continue;
1688 reaped:
1689                 (*nr_running)--;
1690                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1691                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1692                 if (!td->pid)
1693                         pending--;
1694
1695                 if (td->error)
1696                         exit_value++;
1697
1698                 done_secs += mtime_since_now(&td->epoch) / 1000;
1699                 profile_td_exit(td);
1700         }
1701
1702         if (*nr_running == cputhreads && !pending && realthreads)
1703                 fio_terminate_threads(TERMINATE_ALL);
1704 }
1705
1706 static void do_usleep(unsigned int usecs)
1707 {
1708         check_for_running_stats();
1709         usleep(usecs);
1710 }
1711
1712 /*
1713  * Main function for kicking off and reaping jobs, as needed.
1714  */
1715 static void run_threads(void)
1716 {
1717         struct thread_data *td;
1718         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1719         uint64_t spent;
1720
1721         if (fio_gtod_offload && fio_start_gtod_thread())
1722                 return;
1723
1724         fio_idle_prof_init();
1725
1726         set_sig_handlers();
1727
1728         nr_thread = nr_process = 0;
1729         for_each_td(td, i) {
1730                 if (td->o.use_thread)
1731                         nr_thread++;
1732                 else
1733                         nr_process++;
1734         }
1735
1736         if (output_format == FIO_OUTPUT_NORMAL) {
1737                 log_info("Starting ");
1738                 if (nr_thread)
1739                         log_info("%d thread%s", nr_thread,
1740                                                 nr_thread > 1 ? "s" : "");
1741                 if (nr_process) {
1742                         if (nr_thread)
1743                                 log_info(" and ");
1744                         log_info("%d process%s", nr_process,
1745                                                 nr_process > 1 ? "es" : "");
1746                 }
1747                 log_info("\n");
1748                 fflush(stdout);
1749         }
1750
1751         todo = thread_number;
1752         nr_running = 0;
1753         nr_started = 0;
1754         m_rate = t_rate = 0;
1755
1756         for_each_td(td, i) {
1757                 print_status_init(td->thread_number - 1);
1758
1759                 if (!td->o.create_serialize)
1760                         continue;
1761
1762                 /*
1763                  * do file setup here so it happens sequentially,
1764                  * we don't want X number of threads getting their
1765                  * client data interspersed on disk
1766                  */
1767                 if (setup_files(td)) {
1768                         exit_value++;
1769                         if (td->error)
1770                                 log_err("fio: pid=%d, err=%d/%s\n",
1771                                         (int) td->pid, td->error, td->verror);
1772                         td_set_runstate(td, TD_REAPED);
1773                         todo--;
1774                 } else {
1775                         struct fio_file *f;
1776                         unsigned int j;
1777
1778                         /*
1779                          * for sharing to work, each job must always open
1780                          * its own files. so close them, if we opened them
1781                          * for creation
1782                          */
1783                         for_each_file(td, f, j) {
1784                                 if (fio_file_open(f))
1785                                         td_io_close_file(td, f);
1786                         }
1787                 }
1788         }
1789
1790         /* start idle threads before io threads start to run */
1791         fio_idle_prof_start();
1792
1793         set_genesis_time();
1794
1795         while (todo) {
1796                 struct thread_data *map[REAL_MAX_JOBS];
1797                 struct timeval this_start;
1798                 int this_jobs = 0, left;
1799
1800                 /*
1801                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1802                  */
1803                 for_each_td(td, i) {
1804                         if (td->runstate != TD_NOT_CREATED)
1805                                 continue;
1806
1807                         /*
1808                          * never got a chance to start, killed by other
1809                          * thread for some reason
1810                          */
1811                         if (td->terminate) {
1812                                 todo--;
1813                                 continue;
1814                         }
1815
1816                         if (td->o.start_delay) {
1817                                 spent = utime_since_genesis();
1818
1819                                 if (td->o.start_delay > spent)
1820                                         continue;
1821                         }
1822
1823                         if (td->o.stonewall && (nr_started || nr_running)) {
1824                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1825                                                         td->o.name);
1826                                 break;
1827                         }
1828
1829                         init_disk_util(td);
1830
1831                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1832                         td->update_rusage = 0;
1833
1834                         /*
1835                          * Set state to created. Thread will transition
1836                          * to TD_INITIALIZED when it's done setting up.
1837                          */
1838                         td_set_runstate(td, TD_CREATED);
1839                         map[this_jobs++] = td;
1840                         nr_started++;
1841
1842                         if (td->o.use_thread) {
1843                                 int ret;
1844
1845                                 dprint(FD_PROCESS, "will pthread_create\n");
1846                                 ret = pthread_create(&td->thread, NULL,
1847                                                         thread_main, td);
1848                                 if (ret) {
1849                                         log_err("pthread_create: %s\n",
1850                                                         strerror(ret));
1851                                         nr_started--;
1852                                         break;
1853                                 }
1854                                 ret = pthread_detach(td->thread);
1855                                 if (ret)
1856                                         log_err("pthread_detach: %s",
1857                                                         strerror(ret));
1858                         } else {
1859                                 pid_t pid;
1860                                 dprint(FD_PROCESS, "will fork\n");
1861                                 pid = fork();
1862                                 if (!pid) {
1863                                         int ret = fork_main(shm_id, i);
1864
1865                                         _exit(ret);
1866                                 } else if (i == fio_debug_jobno)
1867                                         *fio_debug_jobp = pid;
1868                         }
1869                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1870                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
1871                                 log_err("fio: job startup hung? exiting.\n");
1872                                 fio_terminate_threads(TERMINATE_ALL);
1873                                 fio_abort = 1;
1874                                 nr_started--;
1875                                 break;
1876                         }
1877                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1878                 }
1879
1880                 /*
1881                  * Wait for the started threads to transition to
1882                  * TD_INITIALIZED.
1883                  */
1884                 fio_gettime(&this_start, NULL);
1885                 left = this_jobs;
1886                 while (left && !fio_abort) {
1887                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1888                                 break;
1889
1890                         do_usleep(100000);
1891
1892                         for (i = 0; i < this_jobs; i++) {
1893                                 td = map[i];
1894                                 if (!td)
1895                                         continue;
1896                                 if (td->runstate == TD_INITIALIZED) {
1897                                         map[i] = NULL;
1898                                         left--;
1899                                 } else if (td->runstate >= TD_EXITED) {
1900                                         map[i] = NULL;
1901                                         left--;
1902                                         todo--;
1903                                         nr_running++; /* work-around... */
1904                                 }
1905                         }
1906                 }
1907
1908                 if (left) {
1909                         log_err("fio: %d job%s failed to start\n", left,
1910                                         left > 1 ? "s" : "");
1911                         for (i = 0; i < this_jobs; i++) {
1912                                 td = map[i];
1913                                 if (!td)
1914                                         continue;
1915                                 kill(td->pid, SIGTERM);
1916                         }
1917                         break;
1918                 }
1919
1920                 /*
1921                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1922                  */
1923                 for_each_td(td, i) {
1924                         if (td->runstate != TD_INITIALIZED)
1925                                 continue;
1926
1927                         if (in_ramp_time(td))
1928                                 td_set_runstate(td, TD_RAMP);
1929                         else
1930                                 td_set_runstate(td, TD_RUNNING);
1931                         nr_running++;
1932                         nr_started--;
1933                         m_rate += ddir_rw_sum(td->o.ratemin);
1934                         t_rate += ddir_rw_sum(td->o.rate);
1935                         todo--;
1936                         fio_mutex_up(td->mutex);
1937                 }
1938
1939                 reap_threads(&nr_running, &t_rate, &m_rate);
1940
1941                 if (todo)
1942                         do_usleep(100000);
1943         }
1944
1945         while (nr_running) {
1946                 reap_threads(&nr_running, &t_rate, &m_rate);
1947                 do_usleep(10000);
1948         }
1949
1950         fio_idle_prof_stop();
1951
1952         update_io_ticks();
1953 }
1954
1955 void wait_for_disk_thread_exit(void)
1956 {
1957         fio_mutex_down(disk_thread_mutex);
1958 }
1959
1960 static void free_disk_util(void)
1961 {
1962         disk_util_start_exit();
1963         wait_for_disk_thread_exit();
1964         disk_util_prune_entries();
1965 }
1966
1967 static void *disk_thread_main(void *data)
1968 {
1969         int ret = 0;
1970
1971         fio_mutex_up(startup_mutex);
1972
1973         while (threads && !ret) {
1974                 usleep(DISK_UTIL_MSEC * 1000);
1975                 if (!threads)
1976                         break;
1977                 ret = update_io_ticks();
1978
1979                 if (!is_backend)
1980                         print_thread_status();
1981         }
1982
1983         fio_mutex_up(disk_thread_mutex);
1984         return NULL;
1985 }
1986
1987 static int create_disk_util_thread(void)
1988 {
1989         int ret;
1990
1991         setup_disk_util();
1992
1993         disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1994
1995         ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1996         if (ret) {
1997                 fio_mutex_remove(disk_thread_mutex);
1998                 log_err("Can't create disk util thread: %s\n", strerror(ret));
1999                 return 1;
2000         }
2001
2002         ret = pthread_detach(disk_util_thread);
2003         if (ret) {
2004                 fio_mutex_remove(disk_thread_mutex);
2005                 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
2006                 return 1;
2007         }
2008
2009         dprint(FD_MUTEX, "wait on startup_mutex\n");
2010         fio_mutex_down(startup_mutex);
2011         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2012         return 0;
2013 }
2014
2015 int fio_backend(void)
2016 {
2017         struct thread_data *td;
2018         int i;
2019
2020         if (exec_profile) {
2021                 if (load_profile(exec_profile))
2022                         return 1;
2023                 free(exec_profile);
2024                 exec_profile = NULL;
2025         }
2026         if (!thread_number)
2027                 return 0;
2028
2029         if (write_bw_log) {
2030                 struct log_params p = {
2031                         .log_type = IO_LOG_TYPE_BW,
2032                 };
2033
2034                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2035                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2036                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2037         }
2038
2039         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2040         if (startup_mutex == NULL)
2041                 return 1;
2042
2043         set_genesis_time();
2044         stat_init();
2045         create_disk_util_thread();
2046
2047         cgroup_list = smalloc(sizeof(*cgroup_list));
2048         INIT_FLIST_HEAD(cgroup_list);
2049
2050         run_threads();
2051
2052         if (!fio_abort) {
2053                 show_run_stats();
2054                 if (write_bw_log) {
2055                         int i;
2056
2057                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2058                                 struct io_log *log = agg_io_log[i];
2059
2060                                 flush_log(log);
2061                                 free_log(log);
2062                         }
2063                 }
2064         }
2065
2066         for_each_td(td, i)
2067                 fio_options_free(td);
2068
2069         free_disk_util();
2070         cgroup_kill(cgroup_list);
2071         sfree(cgroup_list);
2072         sfree(cgroup_mnt);
2073
2074         fio_mutex_remove(startup_mutex);
2075         fio_mutex_remove(disk_thread_mutex);
2076         stat_exit();
2077         return exit_value;
2078 }