e248117f20624846dbfac614abe7204ca3259807
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "workqueue.h"
58 #include "lib/mountcheck.h"
59 #include "rate-submit.h"
60 #include "helper_thread.h"
61
62 static struct fio_mutex *startup_mutex;
63 static struct flist_head *cgroup_list;
64 static char *cgroup_mnt;
65 static int exit_value;
66 static volatile int fio_abort;
67 static unsigned int nr_process = 0;
68 static unsigned int nr_thread = 0;
69
70 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72 int groupid = 0;
73 unsigned int thread_number = 0;
74 unsigned int stat_number = 0;
75 int shm_id = 0;
76 int temp_stall_ts;
77 unsigned long done_secs = 0;
78
79 #define JOB_START_TIMEOUT       (5 * 1000)
80
81 static void sig_int(int sig)
82 {
83         if (threads) {
84                 if (is_backend)
85                         fio_server_got_signal(sig);
86                 else {
87                         log_info("\nfio: terminating on signal %d\n", sig);
88                         log_info_flush();
89                         exit_value = 128;
90                 }
91
92                 fio_terminate_threads(TERMINATE_ALL);
93         }
94 }
95
96 void sig_show_status(int sig)
97 {
98         show_running_run_stats();
99 }
100
101 static void set_sig_handlers(void)
102 {
103         struct sigaction act;
104
105         memset(&act, 0, sizeof(act));
106         act.sa_handler = sig_int;
107         act.sa_flags = SA_RESTART;
108         sigaction(SIGINT, &act, NULL);
109
110         memset(&act, 0, sizeof(act));
111         act.sa_handler = sig_int;
112         act.sa_flags = SA_RESTART;
113         sigaction(SIGTERM, &act, NULL);
114
115 /* Windows uses SIGBREAK as a quit signal from other applications */
116 #ifdef WIN32
117         memset(&act, 0, sizeof(act));
118         act.sa_handler = sig_int;
119         act.sa_flags = SA_RESTART;
120         sigaction(SIGBREAK, &act, NULL);
121 #endif
122
123         memset(&act, 0, sizeof(act));
124         act.sa_handler = sig_show_status;
125         act.sa_flags = SA_RESTART;
126         sigaction(SIGUSR1, &act, NULL);
127
128         if (is_backend) {
129                 memset(&act, 0, sizeof(act));
130                 act.sa_handler = sig_int;
131                 act.sa_flags = SA_RESTART;
132                 sigaction(SIGPIPE, &act, NULL);
133         }
134 }
135
136 /*
137  * Check if we are above the minimum rate given.
138  */
139 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
140                              enum fio_ddir ddir)
141 {
142         unsigned long long bytes = 0;
143         unsigned long iops = 0;
144         unsigned long spent;
145         unsigned long rate;
146         unsigned int ratemin = 0;
147         unsigned int rate_iops = 0;
148         unsigned int rate_iops_min = 0;
149
150         assert(ddir_rw(ddir));
151
152         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153                 return false;
154
155         /*
156          * allow a 2 second settle period in the beginning
157          */
158         if (mtime_since(&td->start, now) < 2000)
159                 return false;
160
161         iops += td->this_io_blocks[ddir];
162         bytes += td->this_io_bytes[ddir];
163         ratemin += td->o.ratemin[ddir];
164         rate_iops += td->o.rate_iops[ddir];
165         rate_iops_min += td->o.rate_iops_min[ddir];
166
167         /*
168          * if rate blocks is set, sample is running
169          */
170         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171                 spent = mtime_since(&td->lastrate[ddir], now);
172                 if (spent < td->o.ratecycle)
173                         return false;
174
175                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176                         /*
177                          * check bandwidth specified rate
178                          */
179                         if (bytes < td->rate_bytes[ddir]) {
180                                 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181                                         td->o.name, ratemin, bytes);
182                                 return true;
183                         } else {
184                                 if (spent)
185                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186                                 else
187                                         rate = 0;
188
189                                 if (rate < ratemin ||
190                                     bytes < td->rate_bytes[ddir]) {
191                                         log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192                                                 td->o.name, ratemin, rate);
193                                         return true;
194                                 }
195                         }
196                 } else {
197                         /*
198                          * checks iops specified rate
199                          */
200                         if (iops < rate_iops) {
201                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202                                                 td->o.name, rate_iops, iops);
203                                 return true;
204                         } else {
205                                 if (spent)
206                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207                                 else
208                                         rate = 0;
209
210                                 if (rate < rate_iops_min ||
211                                     iops < td->rate_blocks[ddir]) {
212                                         log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213                                                 td->o.name, rate_iops_min, rate);
214                                         return true;
215                                 }
216                         }
217                 }
218         }
219
220         td->rate_bytes[ddir] = bytes;
221         td->rate_blocks[ddir] = iops;
222         memcpy(&td->lastrate[ddir], now, sizeof(*now));
223         return false;
224 }
225
226 static bool check_min_rate(struct thread_data *td, struct timespec *now)
227 {
228         bool ret = false;
229
230         if (td->bytes_done[DDIR_READ])
231                 ret |= __check_min_rate(td, now, DDIR_READ);
232         if (td->bytes_done[DDIR_WRITE])
233                 ret |= __check_min_rate(td, now, DDIR_WRITE);
234         if (td->bytes_done[DDIR_TRIM])
235                 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237         return ret;
238 }
239
240 /*
241  * When job exits, we can cancel the in-flight IO if we are using async
242  * io. Attempt to do so.
243  */
244 static void cleanup_pending_aio(struct thread_data *td)
245 {
246         int r;
247
248         /*
249          * get immediately available events, if any
250          */
251         r = io_u_queued_complete(td, 0);
252         if (r < 0)
253                 return;
254
255         /*
256          * now cancel remaining active events
257          */
258         if (td->io_ops->cancel) {
259                 struct io_u *io_u;
260                 int i;
261
262                 io_u_qiter(&td->io_u_all, io_u, i) {
263                         if (io_u->flags & IO_U_F_FLIGHT) {
264                                 r = td->io_ops->cancel(td, io_u);
265                                 if (!r)
266                                         put_io_u(td, io_u);
267                         }
268                 }
269         }
270
271         if (td->cur_depth)
272                 r = io_u_queued_complete(td, td->cur_depth);
273 }
274
275 /*
276  * Helper to handle the final sync of a file. Works just like the normal
277  * io path, just does everything sync.
278  */
279 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280 {
281         struct io_u *io_u = __get_io_u(td);
282         int ret;
283
284         if (!io_u)
285                 return true;
286
287         io_u->ddir = DDIR_SYNC;
288         io_u->file = f;
289
290         if (td_io_prep(td, io_u)) {
291                 put_io_u(td, io_u);
292                 return true;
293         }
294
295 requeue:
296         ret = td_io_queue(td, io_u);
297         if (ret < 0) {
298                 td_verror(td, io_u->error, "td_io_queue");
299                 put_io_u(td, io_u);
300                 return true;
301         } else if (ret == FIO_Q_QUEUED) {
302                 if (td_io_commit(td))
303                         return true;
304                 if (io_u_queued_complete(td, 1) < 0)
305                         return true;
306         } else if (ret == FIO_Q_COMPLETED) {
307                 if (io_u->error) {
308                         td_verror(td, io_u->error, "td_io_queue");
309                         return true;
310                 }
311
312                 if (io_u_sync_complete(td, io_u) < 0)
313                         return true;
314         } else if (ret == FIO_Q_BUSY) {
315                 if (td_io_commit(td))
316                         return true;
317                 goto requeue;
318         }
319
320         return false;
321 }
322
323 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324 {
325         int ret;
326
327         if (fio_file_open(f))
328                 return fio_io_sync(td, f);
329
330         if (td_io_open_file(td, f))
331                 return 1;
332
333         ret = fio_io_sync(td, f);
334         td_io_close_file(td, f);
335         return ret;
336 }
337
338 static inline void __update_ts_cache(struct thread_data *td)
339 {
340         fio_gettime(&td->ts_cache, NULL);
341 }
342
343 static inline void update_ts_cache(struct thread_data *td)
344 {
345         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
346                 __update_ts_cache(td);
347 }
348
349 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
350 {
351         if (in_ramp_time(td))
352                 return false;
353         if (!td->o.timeout)
354                 return false;
355         if (utime_since(&td->epoch, t) >= td->o.timeout)
356                 return true;
357
358         return false;
359 }
360
361 /*
362  * We need to update the runtime consistently in ms, but keep a running
363  * tally of the current elapsed time in microseconds for sub millisecond
364  * updates.
365  */
366 static inline void update_runtime(struct thread_data *td,
367                                   unsigned long long *elapsed_us,
368                                   const enum fio_ddir ddir)
369 {
370         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371                 return;
372
373         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374         elapsed_us[ddir] += utime_since_now(&td->start);
375         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376 }
377
378 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379                                 int *retptr)
380 {
381         int ret = *retptr;
382
383         if (ret < 0 || td->error) {
384                 int err = td->error;
385                 enum error_type_bit eb;
386
387                 if (ret < 0)
388                         err = -ret;
389
390                 eb = td_error_type(ddir, err);
391                 if (!(td->o.continue_on_error & (1 << eb)))
392                         return true;
393
394                 if (td_non_fatal_error(td, eb, err)) {
395                         /*
396                          * Continue with the I/Os in case of
397                          * a non fatal error.
398                          */
399                         update_error_count(td, err);
400                         td_clear_error(td);
401                         *retptr = 0;
402                         return false;
403                 } else if (td->o.fill_device && err == ENOSPC) {
404                         /*
405                          * We expect to hit this error if
406                          * fill_device option is set.
407                          */
408                         td_clear_error(td);
409                         fio_mark_td_terminate(td);
410                         return true;
411                 } else {
412                         /*
413                          * Stop the I/O in case of a fatal
414                          * error.
415                          */
416                         update_error_count(td, err);
417                         return true;
418                 }
419         }
420
421         return false;
422 }
423
424 static void check_update_rusage(struct thread_data *td)
425 {
426         if (td->update_rusage) {
427                 td->update_rusage = 0;
428                 update_rusage_stat(td);
429                 fio_mutex_up(td->rusage_sem);
430         }
431 }
432
433 static int wait_for_completions(struct thread_data *td, struct timespec *time)
434 {
435         const int full = queue_full(td);
436         int min_evts = 0;
437         int ret;
438
439         if (td->flags & TD_F_REGROW_LOGS)
440                 return io_u_quiesce(td);
441
442         /*
443          * if the queue is full, we MUST reap at least 1 event
444          */
445         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447                 min_evts = 1;
448
449         if (time && (__should_check_rate(td, DDIR_READ) ||
450             __should_check_rate(td, DDIR_WRITE) ||
451             __should_check_rate(td, DDIR_TRIM)))
452                 fio_gettime(time, NULL);
453
454         do {
455                 ret = io_u_queued_complete(td, min_evts);
456                 if (ret < 0)
457                         break;
458         } while (full && (td->cur_depth > td->o.iodepth_low));
459
460         return ret;
461 }
462
463 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465                    struct timespec *comp_time)
466 {
467         int ret2;
468
469         switch (*ret) {
470         case FIO_Q_COMPLETED:
471                 if (io_u->error) {
472                         *ret = -io_u->error;
473                         clear_io_u(td, io_u);
474                 } else if (io_u->resid) {
475                         int bytes = io_u->xfer_buflen - io_u->resid;
476                         struct fio_file *f = io_u->file;
477
478                         if (bytes_issued)
479                                 *bytes_issued += bytes;
480
481                         if (!from_verify)
482                                 trim_io_piece(td, io_u);
483
484                         /*
485                          * zero read, fail
486                          */
487                         if (!bytes) {
488                                 if (!from_verify)
489                                         unlog_io_piece(td, io_u);
490                                 td_verror(td, EIO, "full resid");
491                                 put_io_u(td, io_u);
492                                 break;
493                         }
494
495                         io_u->xfer_buflen = io_u->resid;
496                         io_u->xfer_buf += bytes;
497                         io_u->offset += bytes;
498
499                         if (ddir_rw(io_u->ddir))
500                                 td->ts.short_io_u[io_u->ddir]++;
501
502                         if (io_u->offset == f->real_file_size)
503                                 goto sync_done;
504
505                         requeue_io_u(td, &io_u);
506                 } else {
507 sync_done:
508                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
509                             __should_check_rate(td, DDIR_WRITE) ||
510                             __should_check_rate(td, DDIR_TRIM)))
511                                 fio_gettime(comp_time, NULL);
512
513                         *ret = io_u_sync_complete(td, io_u);
514                         if (*ret < 0)
515                                 break;
516                 }
517
518                 if (td->flags & TD_F_REGROW_LOGS)
519                         regrow_logs(td);
520
521                 /*
522                  * when doing I/O (not when verifying),
523                  * check for any errors that are to be ignored
524                  */
525                 if (!from_verify)
526                         break;
527
528                 return 0;
529         case FIO_Q_QUEUED:
530                 /*
531                  * if the engine doesn't have a commit hook,
532                  * the io_u is really queued. if it does have such
533                  * a hook, it has to call io_u_queued() itself.
534                  */
535                 if (td->io_ops->commit == NULL)
536                         io_u_queued(td, io_u);
537                 if (bytes_issued)
538                         *bytes_issued += io_u->xfer_buflen;
539                 break;
540         case FIO_Q_BUSY:
541                 if (!from_verify)
542                         unlog_io_piece(td, io_u);
543                 requeue_io_u(td, &io_u);
544                 ret2 = td_io_commit(td);
545                 if (ret2 < 0)
546                         *ret = ret2;
547                 break;
548         default:
549                 assert(*ret < 0);
550                 td_verror(td, -(*ret), "td_io_queue");
551                 break;
552         }
553
554         if (break_on_this_error(td, ddir, ret))
555                 return 1;
556
557         return 0;
558 }
559
560 static inline bool io_in_polling(struct thread_data *td)
561 {
562         return !td->o.iodepth_batch_complete_min &&
563                    !td->o.iodepth_batch_complete_max;
564 }
565 /*
566  * Unlinks files from thread data fio_file structure
567  */
568 static int unlink_all_files(struct thread_data *td)
569 {
570         struct fio_file *f;
571         unsigned int i;
572         int ret = 0;
573
574         for_each_file(td, f, i) {
575                 if (f->filetype != FIO_TYPE_FILE)
576                         continue;
577                 ret = td_io_unlink_file(td, f);
578                 if (ret)
579                         break;
580         }
581
582         if (ret)
583                 td_verror(td, ret, "unlink_all_files");
584
585         return ret;
586 }
587
588 /*
589  * Check if io_u will overlap an in-flight IO in the queue
590  */
591 static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
592 {
593         bool overlap;
594         struct io_u *check_io_u;
595         unsigned long long x1, x2, y1, y2;
596         int i;
597
598         x1 = io_u->offset;
599         x2 = io_u->offset + io_u->buflen;
600         overlap = false;
601         io_u_qiter(q, check_io_u, i) {
602                 if (check_io_u->flags & IO_U_F_FLIGHT) {
603                         y1 = check_io_u->offset;
604                         y2 = check_io_u->offset + check_io_u->buflen;
605
606                         if (x1 < y2 && y1 < x2) {
607                                 overlap = true;
608                                 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
609                                                 x1, io_u->buflen,
610                                                 y1, check_io_u->buflen);
611                                 break;
612                         }
613                 }
614         }
615
616         return overlap;
617 }
618
619 static int io_u_submit(struct thread_data *td, struct io_u *io_u)
620 {
621         /*
622          * Check for overlap if the user asked us to, and we have
623          * at least one IO in flight besides this one.
624          */
625         if (td->o.serialize_overlap && td->cur_depth > 1 &&
626             in_flight_overlap(&td->io_u_all, io_u))
627                 return FIO_Q_BUSY;
628
629         return td_io_queue(td, io_u);
630 }
631
632 /*
633  * The main verify engine. Runs over the writes we previously submitted,
634  * reads the blocks back in, and checks the crc/md5 of the data.
635  */
636 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
637 {
638         struct fio_file *f;
639         struct io_u *io_u;
640         int ret, min_events;
641         unsigned int i;
642
643         dprint(FD_VERIFY, "starting loop\n");
644
645         /*
646          * sync io first and invalidate cache, to make sure we really
647          * read from disk.
648          */
649         for_each_file(td, f, i) {
650                 if (!fio_file_open(f))
651                         continue;
652                 if (fio_io_sync(td, f))
653                         break;
654                 if (file_invalidate_cache(td, f))
655                         break;
656         }
657
658         check_update_rusage(td);
659
660         if (td->error)
661                 return;
662
663         /*
664          * verify_state needs to be reset before verification
665          * proceeds so that expected random seeds match actual
666          * random seeds in headers. The main loop will reset
667          * all random number generators if randrepeat is set.
668          */
669         if (!td->o.rand_repeatable)
670                 td_fill_verify_state_seed(td);
671
672         td_set_runstate(td, TD_VERIFYING);
673
674         io_u = NULL;
675         while (!td->terminate) {
676                 enum fio_ddir ddir;
677                 int full;
678
679                 update_ts_cache(td);
680                 check_update_rusage(td);
681
682                 if (runtime_exceeded(td, &td->ts_cache)) {
683                         __update_ts_cache(td);
684                         if (runtime_exceeded(td, &td->ts_cache)) {
685                                 fio_mark_td_terminate(td);
686                                 break;
687                         }
688                 }
689
690                 if (flow_threshold_exceeded(td))
691                         continue;
692
693                 if (!td->o.experimental_verify) {
694                         io_u = __get_io_u(td);
695                         if (!io_u)
696                                 break;
697
698                         if (get_next_verify(td, io_u)) {
699                                 put_io_u(td, io_u);
700                                 break;
701                         }
702
703                         if (td_io_prep(td, io_u)) {
704                                 put_io_u(td, io_u);
705                                 break;
706                         }
707                 } else {
708                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
709                                 break;
710
711                         while ((io_u = get_io_u(td)) != NULL) {
712                                 if (IS_ERR_OR_NULL(io_u)) {
713                                         io_u = NULL;
714                                         ret = FIO_Q_BUSY;
715                                         goto reap;
716                                 }
717
718                                 /*
719                                  * We are only interested in the places where
720                                  * we wrote or trimmed IOs. Turn those into
721                                  * reads for verification purposes.
722                                  */
723                                 if (io_u->ddir == DDIR_READ) {
724                                         /*
725                                          * Pretend we issued it for rwmix
726                                          * accounting
727                                          */
728                                         td->io_issues[DDIR_READ]++;
729                                         put_io_u(td, io_u);
730                                         continue;
731                                 } else if (io_u->ddir == DDIR_TRIM) {
732                                         io_u->ddir = DDIR_READ;
733                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
734                                         break;
735                                 } else if (io_u->ddir == DDIR_WRITE) {
736                                         io_u->ddir = DDIR_READ;
737                                         break;
738                                 } else {
739                                         put_io_u(td, io_u);
740                                         continue;
741                                 }
742                         }
743
744                         if (!io_u)
745                                 break;
746                 }
747
748                 if (verify_state_should_stop(td, io_u)) {
749                         put_io_u(td, io_u);
750                         break;
751                 }
752
753                 if (td->o.verify_async)
754                         io_u->end_io = verify_io_u_async;
755                 else
756                         io_u->end_io = verify_io_u;
757
758                 ddir = io_u->ddir;
759                 if (!td->o.disable_slat)
760                         fio_gettime(&io_u->start_time, NULL);
761
762                 ret = io_u_submit(td, io_u);
763
764                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
765                         break;
766
767                 /*
768                  * if we can queue more, do so. but check if there are
769                  * completed io_u's first. Note that we can get BUSY even
770                  * without IO queued, if the system is resource starved.
771                  */
772 reap:
773                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
774                 if (full || io_in_polling(td))
775                         ret = wait_for_completions(td, NULL);
776
777                 if (ret < 0)
778                         break;
779         }
780
781         check_update_rusage(td);
782
783         if (!td->error) {
784                 min_events = td->cur_depth;
785
786                 if (min_events)
787                         ret = io_u_queued_complete(td, min_events);
788         } else
789                 cleanup_pending_aio(td);
790
791         td_set_runstate(td, TD_RUNNING);
792
793         dprint(FD_VERIFY, "exiting loop\n");
794 }
795
796 static bool exceeds_number_ios(struct thread_data *td)
797 {
798         unsigned long long number_ios;
799
800         if (!td->o.number_ios)
801                 return false;
802
803         number_ios = ddir_rw_sum(td->io_blocks);
804         number_ios += td->io_u_queued + td->io_u_in_flight;
805
806         return number_ios >= (td->o.number_ios * td->loops);
807 }
808
809 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
810 {
811         unsigned long long bytes, limit;
812
813         if (td_rw(td))
814                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
815         else if (td_write(td))
816                 bytes = this_bytes[DDIR_WRITE];
817         else if (td_read(td))
818                 bytes = this_bytes[DDIR_READ];
819         else
820                 bytes = this_bytes[DDIR_TRIM];
821
822         if (td->o.io_size)
823                 limit = td->o.io_size;
824         else
825                 limit = td->o.size;
826
827         limit *= td->loops;
828         return bytes >= limit || exceeds_number_ios(td);
829 }
830
831 static bool io_issue_bytes_exceeded(struct thread_data *td)
832 {
833         return io_bytes_exceeded(td, td->io_issue_bytes);
834 }
835
836 static bool io_complete_bytes_exceeded(struct thread_data *td)
837 {
838         return io_bytes_exceeded(td, td->this_io_bytes);
839 }
840
841 /*
842  * used to calculate the next io time for rate control
843  *
844  */
845 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
846 {
847         uint64_t bps = td->rate_bps[ddir];
848
849         assert(!(td->flags & TD_F_CHILD));
850
851         if (td->o.rate_process == RATE_PROCESS_POISSON) {
852                 uint64_t val, iops;
853
854                 iops = bps / td->o.bs[ddir];
855                 val = (int64_t) (1000000 / iops) *
856                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
857                 if (val) {
858                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
859                                         (unsigned long long) 1000000 / val,
860                                         ddir);
861                 }
862                 td->last_usec[ddir] += val;
863                 return td->last_usec[ddir];
864         } else if (bps) {
865                 uint64_t bytes = td->rate_io_issue_bytes[ddir];
866                 uint64_t secs = bytes / bps;
867                 uint64_t remainder = bytes % bps;
868
869                 return remainder * 1000000 / bps + secs * 1000000;
870         }
871
872         return 0;
873 }
874
875 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
876 {
877         unsigned long long b;
878         uint64_t total;
879         int left;
880
881         b = ddir_rw_sum(td->io_blocks);
882         if (b % td->o.thinktime_blocks)
883                 return;
884
885         io_u_quiesce(td);
886
887         total = 0;
888         if (td->o.thinktime_spin)
889                 total = usec_spin(td->o.thinktime_spin);
890
891         left = td->o.thinktime - total;
892         if (left)
893                 total += usec_sleep(td, left);
894
895         /*
896          * If we're ignoring thinktime for the rate, add the number of bytes
897          * we would have done while sleeping, minus one block to ensure we
898          * start issuing immediately after the sleep.
899          */
900         if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
901                 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
902                 uint64_t over;
903
904                 if (total >= 1000000)
905                         over = td->o.min_bs[ddir];
906                 else
907                         over = (td->o.min_bs[ddir] * total) / 1000000ULL;
908
909                 td->rate_io_issue_bytes[ddir] += (missed - over);
910         }
911 }
912
913 /*
914  * Main IO worker function. It retrieves io_u's to process and queues
915  * and reaps them, checking for rate and errors along the way.
916  *
917  * Returns number of bytes written and trimmed.
918  */
919 static void do_io(struct thread_data *td, uint64_t *bytes_done)
920 {
921         unsigned int i;
922         int ret = 0;
923         uint64_t total_bytes, bytes_issued = 0;
924
925         for (i = 0; i < DDIR_RWDIR_CNT; i++)
926                 bytes_done[i] = td->bytes_done[i];
927
928         if (in_ramp_time(td))
929                 td_set_runstate(td, TD_RAMP);
930         else
931                 td_set_runstate(td, TD_RUNNING);
932
933         lat_target_init(td);
934
935         total_bytes = td->o.size;
936         /*
937         * Allow random overwrite workloads to write up to io_size
938         * before starting verification phase as 'size' doesn't apply.
939         */
940         if (td_write(td) && td_random(td) && td->o.norandommap)
941                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
942         /*
943          * If verify_backlog is enabled, we'll run the verify in this
944          * handler as well. For that case, we may need up to twice the
945          * amount of bytes.
946          */
947         if (td->o.verify != VERIFY_NONE &&
948            (td_write(td) && td->o.verify_backlog))
949                 total_bytes += td->o.size;
950
951         /* In trimwrite mode, each byte is trimmed and then written, so
952          * allow total_bytes to be twice as big */
953         if (td_trimwrite(td))
954                 total_bytes += td->total_io_size;
955
956         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
957                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
958                 td->o.time_based) {
959                 struct timespec comp_time;
960                 struct io_u *io_u;
961                 int full;
962                 enum fio_ddir ddir;
963
964                 check_update_rusage(td);
965
966                 if (td->terminate || td->done)
967                         break;
968
969                 update_ts_cache(td);
970
971                 if (runtime_exceeded(td, &td->ts_cache)) {
972                         __update_ts_cache(td);
973                         if (runtime_exceeded(td, &td->ts_cache)) {
974                                 fio_mark_td_terminate(td);
975                                 break;
976                         }
977                 }
978
979                 if (flow_threshold_exceeded(td))
980                         continue;
981
982                 /*
983                  * Break if we exceeded the bytes. The exception is time
984                  * based runs, but we still need to break out of the loop
985                  * for those to run verification, if enabled.
986                  */
987                 if (bytes_issued >= total_bytes &&
988                     (!td->o.time_based ||
989                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
990                         break;
991
992                 io_u = get_io_u(td);
993                 if (IS_ERR_OR_NULL(io_u)) {
994                         int err = PTR_ERR(io_u);
995
996                         io_u = NULL;
997                         ddir = DDIR_INVAL;
998                         if (err == -EBUSY) {
999                                 ret = FIO_Q_BUSY;
1000                                 goto reap;
1001                         }
1002                         if (td->o.latency_target)
1003                                 goto reap;
1004                         break;
1005                 }
1006
1007                 ddir = io_u->ddir;
1008
1009                 /*
1010                  * Add verification end_io handler if:
1011                  *      - Asked to verify (!td_rw(td))
1012                  *      - Or the io_u is from our verify list (mixed write/ver)
1013                  */
1014                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1015                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1016
1017                         if (!td->o.verify_pattern_bytes) {
1018                                 io_u->rand_seed = __rand(&td->verify_state);
1019                                 if (sizeof(int) != sizeof(long *))
1020                                         io_u->rand_seed *= __rand(&td->verify_state);
1021                         }
1022
1023                         if (verify_state_should_stop(td, io_u)) {
1024                                 put_io_u(td, io_u);
1025                                 break;
1026                         }
1027
1028                         if (td->o.verify_async)
1029                                 io_u->end_io = verify_io_u_async;
1030                         else
1031                                 io_u->end_io = verify_io_u;
1032                         td_set_runstate(td, TD_VERIFYING);
1033                 } else if (in_ramp_time(td))
1034                         td_set_runstate(td, TD_RAMP);
1035                 else
1036                         td_set_runstate(td, TD_RUNNING);
1037
1038                 /*
1039                  * Always log IO before it's issued, so we know the specific
1040                  * order of it. The logged unit will track when the IO has
1041                  * completed.
1042                  */
1043                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1044                     td->o.do_verify &&
1045                     td->o.verify != VERIFY_NONE &&
1046                     !td->o.experimental_verify)
1047                         log_io_piece(td, io_u);
1048
1049                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1050                         const unsigned long blen = io_u->xfer_buflen;
1051                         const enum fio_ddir ddir = acct_ddir(io_u);
1052
1053                         if (td->error)
1054                                 break;
1055
1056                         workqueue_enqueue(&td->io_wq, &io_u->work);
1057                         ret = FIO_Q_QUEUED;
1058
1059                         if (ddir_rw(ddir)) {
1060                                 td->io_issues[ddir]++;
1061                                 td->io_issue_bytes[ddir] += blen;
1062                                 td->rate_io_issue_bytes[ddir] += blen;
1063                         }
1064
1065                         if (should_check_rate(td))
1066                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1067
1068                 } else {
1069                         ret = io_u_submit(td, io_u);
1070
1071                         if (should_check_rate(td))
1072                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1073
1074                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1075                                 break;
1076
1077                         /*
1078                          * See if we need to complete some commands. Note that
1079                          * we can get BUSY even without IO queued, if the
1080                          * system is resource starved.
1081                          */
1082 reap:
1083                         full = queue_full(td) ||
1084                                 (ret == FIO_Q_BUSY && td->cur_depth);
1085                         if (full || io_in_polling(td))
1086                                 ret = wait_for_completions(td, &comp_time);
1087                 }
1088                 if (ret < 0)
1089                         break;
1090                 if (!ddir_rw_sum(td->bytes_done) &&
1091                     !td_ioengine_flagged(td, FIO_NOIO))
1092                         continue;
1093
1094                 if (!in_ramp_time(td) && should_check_rate(td)) {
1095                         if (check_min_rate(td, &comp_time)) {
1096                                 if (exitall_on_terminate || td->o.exitall_error)
1097                                         fio_terminate_threads(td->groupid);
1098                                 td_verror(td, EIO, "check_min_rate");
1099                                 break;
1100                         }
1101                 }
1102                 if (!in_ramp_time(td) && td->o.latency_target)
1103                         lat_target_check(td);
1104
1105                 if (ddir_rw(ddir) && td->o.thinktime)
1106                         handle_thinktime(td, ddir);
1107         }
1108
1109         check_update_rusage(td);
1110
1111         if (td->trim_entries)
1112                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1113
1114         if (td->o.fill_device && td->error == ENOSPC) {
1115                 td->error = 0;
1116                 fio_mark_td_terminate(td);
1117         }
1118         if (!td->error) {
1119                 struct fio_file *f;
1120
1121                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1122                         workqueue_flush(&td->io_wq);
1123                         i = 0;
1124                 } else
1125                         i = td->cur_depth;
1126
1127                 if (i) {
1128                         ret = io_u_queued_complete(td, i);
1129                         if (td->o.fill_device && td->error == ENOSPC)
1130                                 td->error = 0;
1131                 }
1132
1133                 if (should_fsync(td) && td->o.end_fsync) {
1134                         td_set_runstate(td, TD_FSYNCING);
1135
1136                         for_each_file(td, f, i) {
1137                                 if (!fio_file_fsync(td, f))
1138                                         continue;
1139
1140                                 log_err("fio: end_fsync failed for file %s\n",
1141                                                                 f->file_name);
1142                         }
1143                 }
1144         } else
1145                 cleanup_pending_aio(td);
1146
1147         /*
1148          * stop job if we failed doing any IO
1149          */
1150         if (!ddir_rw_sum(td->this_io_bytes))
1151                 td->done = 1;
1152
1153         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1154                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1155 }
1156
1157 static void free_file_completion_logging(struct thread_data *td)
1158 {
1159         struct fio_file *f;
1160         unsigned int i;
1161
1162         for_each_file(td, f, i) {
1163                 if (!f->last_write_comp)
1164                         break;
1165                 sfree(f->last_write_comp);
1166         }
1167 }
1168
1169 static int init_file_completion_logging(struct thread_data *td,
1170                                         unsigned int depth)
1171 {
1172         struct fio_file *f;
1173         unsigned int i;
1174
1175         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1176                 return 0;
1177
1178         for_each_file(td, f, i) {
1179                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1180                 if (!f->last_write_comp)
1181                         goto cleanup;
1182         }
1183
1184         return 0;
1185
1186 cleanup:
1187         free_file_completion_logging(td);
1188         log_err("fio: failed to alloc write comp data\n");
1189         return 1;
1190 }
1191
1192 static void cleanup_io_u(struct thread_data *td)
1193 {
1194         struct io_u *io_u;
1195
1196         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1197
1198                 if (td->io_ops->io_u_free)
1199                         td->io_ops->io_u_free(td, io_u);
1200
1201                 fio_memfree(io_u, sizeof(*io_u));
1202         }
1203
1204         free_io_mem(td);
1205
1206         io_u_rexit(&td->io_u_requeues);
1207         io_u_qexit(&td->io_u_freelist);
1208         io_u_qexit(&td->io_u_all);
1209
1210         free_file_completion_logging(td);
1211 }
1212
1213 static int init_io_u(struct thread_data *td)
1214 {
1215         struct io_u *io_u;
1216         unsigned int max_bs, min_write;
1217         int cl_align, i, max_units;
1218         int data_xfer = 1, err;
1219         char *p;
1220
1221         max_units = td->o.iodepth;
1222         max_bs = td_max_bs(td);
1223         min_write = td->o.min_bs[DDIR_WRITE];
1224         td->orig_buffer_size = (unsigned long long) max_bs
1225                                         * (unsigned long long) max_units;
1226
1227         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1228                 data_xfer = 0;
1229
1230         err = 0;
1231         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1232         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1233         err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1234
1235         if (err) {
1236                 log_err("fio: failed setting up IO queues\n");
1237                 return 1;
1238         }
1239
1240         /*
1241          * if we may later need to do address alignment, then add any
1242          * possible adjustment here so that we don't cause a buffer
1243          * overflow later. this adjustment may be too much if we get
1244          * lucky and the allocator gives us an aligned address.
1245          */
1246         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1247             td_ioengine_flagged(td, FIO_RAWIO))
1248                 td->orig_buffer_size += page_mask + td->o.mem_align;
1249
1250         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1251                 unsigned long bs;
1252
1253                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1254                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1255         }
1256
1257         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1258                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1259                 return 1;
1260         }
1261
1262         if (data_xfer && allocate_io_mem(td))
1263                 return 1;
1264
1265         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1266             td_ioengine_flagged(td, FIO_RAWIO))
1267                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1268         else
1269                 p = td->orig_buffer;
1270
1271         cl_align = os_cache_line_size();
1272
1273         for (i = 0; i < max_units; i++) {
1274                 void *ptr;
1275
1276                 if (td->terminate)
1277                         return 1;
1278
1279                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1280                 if (!ptr) {
1281                         log_err("fio: unable to allocate aligned memory\n");
1282                         break;
1283                 }
1284
1285                 io_u = ptr;
1286                 memset(io_u, 0, sizeof(*io_u));
1287                 INIT_FLIST_HEAD(&io_u->verify_list);
1288                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1289
1290                 if (data_xfer) {
1291                         io_u->buf = p;
1292                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1293
1294                         if (td_write(td))
1295                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1296                         if (td_write(td) && td->o.verify_pattern_bytes) {
1297                                 /*
1298                                  * Fill the buffer with the pattern if we are
1299                                  * going to be doing writes.
1300                                  */
1301                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1302                         }
1303                 }
1304
1305                 io_u->index = i;
1306                 io_u->flags = IO_U_F_FREE;
1307                 io_u_qpush(&td->io_u_freelist, io_u);
1308
1309                 /*
1310                  * io_u never leaves this stack, used for iteration of all
1311                  * io_u buffers.
1312                  */
1313                 io_u_qpush(&td->io_u_all, io_u);
1314
1315                 if (td->io_ops->io_u_init) {
1316                         int ret = td->io_ops->io_u_init(td, io_u);
1317
1318                         if (ret) {
1319                                 log_err("fio: failed to init engine data: %d\n", ret);
1320                                 return 1;
1321                         }
1322                 }
1323
1324                 p += max_bs;
1325         }
1326
1327         if (init_file_completion_logging(td, max_units))
1328                 return 1;
1329
1330         return 0;
1331 }
1332
1333 /*
1334  * This function is Linux specific.
1335  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1336  */
1337 static int switch_ioscheduler(struct thread_data *td)
1338 {
1339 #ifdef FIO_HAVE_IOSCHED_SWITCH
1340         char tmp[256], tmp2[128];
1341         FILE *f;
1342         int ret;
1343
1344         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1345                 return 0;
1346
1347         assert(td->files && td->files[0]);
1348         sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1349
1350         f = fopen(tmp, "r+");
1351         if (!f) {
1352                 if (errno == ENOENT) {
1353                         log_err("fio: os or kernel doesn't support IO scheduler"
1354                                 " switching\n");
1355                         return 0;
1356                 }
1357                 td_verror(td, errno, "fopen iosched");
1358                 return 1;
1359         }
1360
1361         /*
1362          * Set io scheduler.
1363          */
1364         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1365         if (ferror(f) || ret != 1) {
1366                 td_verror(td, errno, "fwrite");
1367                 fclose(f);
1368                 return 1;
1369         }
1370
1371         rewind(f);
1372
1373         /*
1374          * Read back and check that the selected scheduler is now the default.
1375          */
1376         memset(tmp, 0, sizeof(tmp));
1377         ret = fread(tmp, sizeof(tmp), 1, f);
1378         if (ferror(f) || ret < 0) {
1379                 td_verror(td, errno, "fread");
1380                 fclose(f);
1381                 return 1;
1382         }
1383         /*
1384          * either a list of io schedulers or "none\n" is expected.
1385          */
1386         tmp[strlen(tmp) - 1] = '\0';
1387
1388         /*
1389          * Write to "none" entry doesn't fail, so check the result here.
1390          */
1391         if (!strcmp(tmp, "none")) {
1392                 log_err("fio: io scheduler is not tunable\n");
1393                 fclose(f);
1394                 return 0;
1395         }
1396
1397         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1398         if (!strstr(tmp, tmp2)) {
1399                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1400                 td_verror(td, EINVAL, "iosched_switch");
1401                 fclose(f);
1402                 return 1;
1403         }
1404
1405         fclose(f);
1406         return 0;
1407 #else
1408         return 0;
1409 #endif
1410 }
1411
1412 static bool keep_running(struct thread_data *td)
1413 {
1414         unsigned long long limit;
1415
1416         if (td->done)
1417                 return false;
1418         if (td->terminate)
1419                 return false;
1420         if (td->o.time_based)
1421                 return true;
1422         if (td->o.loops) {
1423                 td->o.loops--;
1424                 return true;
1425         }
1426         if (exceeds_number_ios(td))
1427                 return false;
1428
1429         if (td->o.io_size)
1430                 limit = td->o.io_size;
1431         else
1432                 limit = td->o.size;
1433
1434         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1435                 uint64_t diff;
1436
1437                 /*
1438                  * If the difference is less than the maximum IO size, we
1439                  * are done.
1440                  */
1441                 diff = limit - ddir_rw_sum(td->io_bytes);
1442                 if (diff < td_max_bs(td))
1443                         return false;
1444
1445                 if (fio_files_done(td) && !td->o.io_size)
1446                         return false;
1447
1448                 return true;
1449         }
1450
1451         return false;
1452 }
1453
1454 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1455 {
1456         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1457         int ret;
1458         char *str;
1459
1460         str = malloc(newlen);
1461         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1462
1463         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1464         ret = system(str);
1465         if (ret == -1)
1466                 log_err("fio: exec of cmd <%s> failed\n", str);
1467
1468         free(str);
1469         return ret;
1470 }
1471
1472 /*
1473  * Dry run to compute correct state of numberio for verification.
1474  */
1475 static uint64_t do_dry_run(struct thread_data *td)
1476 {
1477         td_set_runstate(td, TD_RUNNING);
1478
1479         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1480                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1481                 struct io_u *io_u;
1482                 int ret;
1483
1484                 if (td->terminate || td->done)
1485                         break;
1486
1487                 io_u = get_io_u(td);
1488                 if (IS_ERR_OR_NULL(io_u))
1489                         break;
1490
1491                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1492                 io_u->error = 0;
1493                 io_u->resid = 0;
1494                 if (ddir_rw(acct_ddir(io_u)))
1495                         td->io_issues[acct_ddir(io_u)]++;
1496                 if (ddir_rw(io_u->ddir)) {
1497                         io_u_mark_depth(td, 1);
1498                         td->ts.total_io_u[io_u->ddir]++;
1499                 }
1500
1501                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1502                     td->o.do_verify &&
1503                     td->o.verify != VERIFY_NONE &&
1504                     !td->o.experimental_verify)
1505                         log_io_piece(td, io_u);
1506
1507                 ret = io_u_sync_complete(td, io_u);
1508                 (void) ret;
1509         }
1510
1511         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1512 }
1513
1514 struct fork_data {
1515         struct thread_data *td;
1516         struct sk_out *sk_out;
1517 };
1518
1519 /*
1520  * Entry point for the thread based jobs. The process based jobs end up
1521  * here as well, after a little setup.
1522  */
1523 static void *thread_main(void *data)
1524 {
1525         struct fork_data *fd = data;
1526         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1527         struct thread_data *td = fd->td;
1528         struct thread_options *o = &td->o;
1529         struct sk_out *sk_out = fd->sk_out;
1530         uint64_t bytes_done[DDIR_RWDIR_CNT];
1531         int deadlock_loop_cnt;
1532         bool clear_state, did_some_io;
1533         int ret;
1534
1535         sk_out_assign(sk_out);
1536         free(fd);
1537
1538         if (!o->use_thread) {
1539                 setsid();
1540                 td->pid = getpid();
1541         } else
1542                 td->pid = gettid();
1543
1544         fio_local_clock_init(o->use_thread);
1545
1546         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1547
1548         if (is_backend)
1549                 fio_server_send_start(td);
1550
1551         INIT_FLIST_HEAD(&td->io_log_list);
1552         INIT_FLIST_HEAD(&td->io_hist_list);
1553         INIT_FLIST_HEAD(&td->verify_list);
1554         INIT_FLIST_HEAD(&td->trim_list);
1555         INIT_FLIST_HEAD(&td->next_rand_list);
1556         td->io_hist_tree = RB_ROOT;
1557
1558         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1559         if (ret) {
1560                 td_verror(td, ret, "mutex_cond_init_pshared");
1561                 goto err;
1562         }
1563         ret = cond_init_pshared(&td->verify_cond);
1564         if (ret) {
1565                 td_verror(td, ret, "mutex_cond_pshared");
1566                 goto err;
1567         }
1568
1569         td_set_runstate(td, TD_INITIALIZED);
1570         dprint(FD_MUTEX, "up startup_mutex\n");
1571         fio_mutex_up(startup_mutex);
1572         dprint(FD_MUTEX, "wait on td->mutex\n");
1573         fio_mutex_down(td->mutex);
1574         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1575
1576         /*
1577          * A new gid requires privilege, so we need to do this before setting
1578          * the uid.
1579          */
1580         if (o->gid != -1U && setgid(o->gid)) {
1581                 td_verror(td, errno, "setgid");
1582                 goto err;
1583         }
1584         if (o->uid != -1U && setuid(o->uid)) {
1585                 td_verror(td, errno, "setuid");
1586                 goto err;
1587         }
1588
1589         /*
1590          * Do this early, we don't want the compress threads to be limited
1591          * to the same CPUs as the IO workers. So do this before we set
1592          * any potential CPU affinity
1593          */
1594         if (iolog_compress_init(td, sk_out))
1595                 goto err;
1596
1597         /*
1598          * If we have a gettimeofday() thread, make sure we exclude that
1599          * thread from this job
1600          */
1601         if (o->gtod_cpu)
1602                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1603
1604         /*
1605          * Set affinity first, in case it has an impact on the memory
1606          * allocations.
1607          */
1608         if (fio_option_is_set(o, cpumask)) {
1609                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1610                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1611                         if (!ret) {
1612                                 log_err("fio: no CPUs set\n");
1613                                 log_err("fio: Try increasing number of available CPUs\n");
1614                                 td_verror(td, EINVAL, "cpus_split");
1615                                 goto err;
1616                         }
1617                 }
1618                 ret = fio_setaffinity(td->pid, o->cpumask);
1619                 if (ret == -1) {
1620                         td_verror(td, errno, "cpu_set_affinity");
1621                         goto err;
1622                 }
1623         }
1624
1625 #ifdef CONFIG_LIBNUMA
1626         /* numa node setup */
1627         if (fio_option_is_set(o, numa_cpunodes) ||
1628             fio_option_is_set(o, numa_memnodes)) {
1629                 struct bitmask *mask;
1630
1631                 if (numa_available() < 0) {
1632                         td_verror(td, errno, "Does not support NUMA API\n");
1633                         goto err;
1634                 }
1635
1636                 if (fio_option_is_set(o, numa_cpunodes)) {
1637                         mask = numa_parse_nodestring(o->numa_cpunodes);
1638                         ret = numa_run_on_node_mask(mask);
1639                         numa_free_nodemask(mask);
1640                         if (ret == -1) {
1641                                 td_verror(td, errno, \
1642                                         "numa_run_on_node_mask failed\n");
1643                                 goto err;
1644                         }
1645                 }
1646
1647                 if (fio_option_is_set(o, numa_memnodes)) {
1648                         mask = NULL;
1649                         if (o->numa_memnodes)
1650                                 mask = numa_parse_nodestring(o->numa_memnodes);
1651
1652                         switch (o->numa_mem_mode) {
1653                         case MPOL_INTERLEAVE:
1654                                 numa_set_interleave_mask(mask);
1655                                 break;
1656                         case MPOL_BIND:
1657                                 numa_set_membind(mask);
1658                                 break;
1659                         case MPOL_LOCAL:
1660                                 numa_set_localalloc();
1661                                 break;
1662                         case MPOL_PREFERRED:
1663                                 numa_set_preferred(o->numa_mem_prefer_node);
1664                                 break;
1665                         case MPOL_DEFAULT:
1666                         default:
1667                                 break;
1668                         }
1669
1670                         if (mask)
1671                                 numa_free_nodemask(mask);
1672
1673                 }
1674         }
1675 #endif
1676
1677         if (fio_pin_memory(td))
1678                 goto err;
1679
1680         /*
1681          * May alter parameters that init_io_u() will use, so we need to
1682          * do this first.
1683          */
1684         if (init_iolog(td))
1685                 goto err;
1686
1687         if (init_io_u(td))
1688                 goto err;
1689
1690         if (o->verify_async && verify_async_init(td))
1691                 goto err;
1692
1693         if (fio_option_is_set(o, ioprio) ||
1694             fio_option_is_set(o, ioprio_class)) {
1695                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1696                 if (ret == -1) {
1697                         td_verror(td, errno, "ioprio_set");
1698                         goto err;
1699                 }
1700         }
1701
1702         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1703                 goto err;
1704
1705         errno = 0;
1706         if (nice(o->nice) == -1 && errno != 0) {
1707                 td_verror(td, errno, "nice");
1708                 goto err;
1709         }
1710
1711         if (o->ioscheduler && switch_ioscheduler(td))
1712                 goto err;
1713
1714         if (!o->create_serialize && setup_files(td))
1715                 goto err;
1716
1717         if (td_io_init(td))
1718                 goto err;
1719
1720         if (!init_random_map(td))
1721                 goto err;
1722
1723         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1724                 goto err;
1725
1726         if (o->pre_read && !pre_read_files(td))
1727                 goto err;
1728
1729         fio_verify_init(td);
1730
1731         if (rate_submit_init(td, sk_out))
1732                 goto err;
1733
1734         set_epoch_time(td, o->log_unix_epoch);
1735         fio_getrusage(&td->ru_start);
1736         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1737         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1738         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1739
1740         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1741                         o->ratemin[DDIR_TRIM]) {
1742                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1743                                         sizeof(td->bw_sample_time));
1744                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1745                                         sizeof(td->bw_sample_time));
1746                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1747                                         sizeof(td->bw_sample_time));
1748         }
1749
1750         memset(bytes_done, 0, sizeof(bytes_done));
1751         clear_state = false;
1752         did_some_io = false;
1753
1754         while (keep_running(td)) {
1755                 uint64_t verify_bytes;
1756
1757                 fio_gettime(&td->start, NULL);
1758                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1759
1760                 if (clear_state) {
1761                         clear_io_state(td, 0);
1762
1763                         if (o->unlink_each_loop && unlink_all_files(td))
1764                                 break;
1765                 }
1766
1767                 prune_io_piece_log(td);
1768
1769                 if (td->o.verify_only && td_write(td))
1770                         verify_bytes = do_dry_run(td);
1771                 else {
1772                         do_io(td, bytes_done);
1773
1774                         if (!ddir_rw_sum(bytes_done)) {
1775                                 fio_mark_td_terminate(td);
1776                                 verify_bytes = 0;
1777                         } else {
1778                                 verify_bytes = bytes_done[DDIR_WRITE] +
1779                                                 bytes_done[DDIR_TRIM];
1780                         }
1781                 }
1782
1783                 /*
1784                  * If we took too long to shut down, the main thread could
1785                  * already consider us reaped/exited. If that happens, break
1786                  * out and clean up.
1787                  */
1788                 if (td->runstate >= TD_EXITED)
1789                         break;
1790
1791                 clear_state = true;
1792
1793                 /*
1794                  * Make sure we've successfully updated the rusage stats
1795                  * before waiting on the stat mutex. Otherwise we could have
1796                  * the stat thread holding stat mutex and waiting for
1797                  * the rusage_sem, which would never get upped because
1798                  * this thread is waiting for the stat mutex.
1799                  */
1800                 deadlock_loop_cnt = 0;
1801                 do {
1802                         check_update_rusage(td);
1803                         if (!fio_mutex_down_trylock(stat_mutex))
1804                                 break;
1805                         usleep(1000);
1806                         if (deadlock_loop_cnt++ > 5000) {
1807                                 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1808                                 td->error = EDEADLK;
1809                                 goto err;
1810                         }
1811                 } while (1);
1812
1813                 if (td_read(td) && td->io_bytes[DDIR_READ])
1814                         update_runtime(td, elapsed_us, DDIR_READ);
1815                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1816                         update_runtime(td, elapsed_us, DDIR_WRITE);
1817                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1818                         update_runtime(td, elapsed_us, DDIR_TRIM);
1819                 fio_gettime(&td->start, NULL);
1820                 fio_mutex_up(stat_mutex);
1821
1822                 if (td->error || td->terminate)
1823                         break;
1824
1825                 if (!o->do_verify ||
1826                     o->verify == VERIFY_NONE ||
1827                     td_ioengine_flagged(td, FIO_UNIDIR))
1828                         continue;
1829
1830                 if (ddir_rw_sum(bytes_done))
1831                         did_some_io = true;
1832
1833                 clear_io_state(td, 0);
1834
1835                 fio_gettime(&td->start, NULL);
1836
1837                 do_verify(td, verify_bytes);
1838
1839                 /*
1840                  * See comment further up for why this is done here.
1841                  */
1842                 check_update_rusage(td);
1843
1844                 fio_mutex_down(stat_mutex);
1845                 update_runtime(td, elapsed_us, DDIR_READ);
1846                 fio_gettime(&td->start, NULL);
1847                 fio_mutex_up(stat_mutex);
1848
1849                 if (td->error || td->terminate)
1850                         break;
1851         }
1852
1853         /*
1854          * If td ended up with no I/O when it should have had,
1855          * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1856          * (Are we not missing other flags that can be ignored ?)
1857          */
1858         if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1859             !did_some_io && !td->o.create_only &&
1860             !(td_ioengine_flagged(td, FIO_NOIO) ||
1861               td_ioengine_flagged(td, FIO_DISKLESSIO)))
1862                 log_err("%s: No I/O performed by %s, "
1863                          "perhaps try --debug=io option for details?\n",
1864                          td->o.name, td->io_ops->name);
1865
1866         td_set_runstate(td, TD_FINISHING);
1867
1868         update_rusage_stat(td);
1869         td->ts.total_run_time = mtime_since_now(&td->epoch);
1870         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1871         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1872         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1873
1874         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1875             (td->o.verify != VERIFY_NONE && td_write(td)))
1876                 verify_save_state(td->thread_number);
1877
1878         fio_unpin_memory(td);
1879
1880         td_writeout_logs(td, true);
1881
1882         iolog_compress_exit(td);
1883         rate_submit_exit(td);
1884
1885         if (o->exec_postrun)
1886                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1887
1888         if (exitall_on_terminate || (o->exitall_error && td->error))
1889                 fio_terminate_threads(td->groupid);
1890
1891 err:
1892         if (td->error)
1893                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1894                                                         td->verror);
1895
1896         if (o->verify_async)
1897                 verify_async_exit(td);
1898
1899         close_and_free_files(td);
1900         cleanup_io_u(td);
1901         close_ioengine(td);
1902         cgroup_shutdown(td, &cgroup_mnt);
1903         verify_free_state(td);
1904
1905         if (td->zone_state_index) {
1906                 int i;
1907
1908                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1909                         free(td->zone_state_index[i]);
1910                 free(td->zone_state_index);
1911                 td->zone_state_index = NULL;
1912         }
1913
1914         if (fio_option_is_set(o, cpumask)) {
1915                 ret = fio_cpuset_exit(&o->cpumask);
1916                 if (ret)
1917                         td_verror(td, ret, "fio_cpuset_exit");
1918         }
1919
1920         /*
1921          * do this very late, it will log file closing as well
1922          */
1923         if (o->write_iolog_file)
1924                 write_iolog_close(td);
1925
1926         td_set_runstate(td, TD_EXITED);
1927
1928         /*
1929          * Do this last after setting our runstate to exited, so we
1930          * know that the stat thread is signaled.
1931          */
1932         check_update_rusage(td);
1933
1934         sk_out_drop();
1935         return (void *) (uintptr_t) td->error;
1936 }
1937
1938 /*
1939  * Run over the job map and reap the threads that have exited, if any.
1940  */
1941 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1942                          uint64_t *m_rate)
1943 {
1944         struct thread_data *td;
1945         unsigned int cputhreads, realthreads, pending;
1946         int i, status, ret;
1947
1948         /*
1949          * reap exited threads (TD_EXITED -> TD_REAPED)
1950          */
1951         realthreads = pending = cputhreads = 0;
1952         for_each_td(td, i) {
1953                 int flags = 0;
1954
1955                  if (!strcmp(td->o.ioengine, "cpuio"))
1956                         cputhreads++;
1957                 else
1958                         realthreads++;
1959
1960                 if (!td->pid) {
1961                         pending++;
1962                         continue;
1963                 }
1964                 if (td->runstate == TD_REAPED)
1965                         continue;
1966                 if (td->o.use_thread) {
1967                         if (td->runstate == TD_EXITED) {
1968                                 td_set_runstate(td, TD_REAPED);
1969                                 goto reaped;
1970                         }
1971                         continue;
1972                 }
1973
1974                 flags = WNOHANG;
1975                 if (td->runstate == TD_EXITED)
1976                         flags = 0;
1977
1978                 /*
1979                  * check if someone quit or got killed in an unusual way
1980                  */
1981                 ret = waitpid(td->pid, &status, flags);
1982                 if (ret < 0) {
1983                         if (errno == ECHILD) {
1984                                 log_err("fio: pid=%d disappeared %d\n",
1985                                                 (int) td->pid, td->runstate);
1986                                 td->sig = ECHILD;
1987                                 td_set_runstate(td, TD_REAPED);
1988                                 goto reaped;
1989                         }
1990                         perror("waitpid");
1991                 } else if (ret == td->pid) {
1992                         if (WIFSIGNALED(status)) {
1993                                 int sig = WTERMSIG(status);
1994
1995                                 if (sig != SIGTERM && sig != SIGUSR2)
1996                                         log_err("fio: pid=%d, got signal=%d\n",
1997                                                         (int) td->pid, sig);
1998                                 td->sig = sig;
1999                                 td_set_runstate(td, TD_REAPED);
2000                                 goto reaped;
2001                         }
2002                         if (WIFEXITED(status)) {
2003                                 if (WEXITSTATUS(status) && !td->error)
2004                                         td->error = WEXITSTATUS(status);
2005
2006                                 td_set_runstate(td, TD_REAPED);
2007                                 goto reaped;
2008                         }
2009                 }
2010
2011                 /*
2012                  * If the job is stuck, do a forceful timeout of it and
2013                  * move on.
2014                  */
2015                 if (td->terminate &&
2016                     td->runstate < TD_FSYNCING &&
2017                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2018                         log_err("fio: job '%s' (state=%d) hasn't exited in "
2019                                 "%lu seconds, it appears to be stuck. Doing "
2020                                 "forceful exit of this job.\n",
2021                                 td->o.name, td->runstate,
2022                                 (unsigned long) time_since_now(&td->terminate_time));
2023                         td_set_runstate(td, TD_REAPED);
2024                         goto reaped;
2025                 }
2026
2027                 /*
2028                  * thread is not dead, continue
2029                  */
2030                 pending++;
2031                 continue;
2032 reaped:
2033                 (*nr_running)--;
2034                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2035                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2036                 if (!td->pid)
2037                         pending--;
2038
2039                 if (td->error)
2040                         exit_value++;
2041
2042                 done_secs += mtime_since_now(&td->epoch) / 1000;
2043                 profile_td_exit(td);
2044         }
2045
2046         if (*nr_running == cputhreads && !pending && realthreads)
2047                 fio_terminate_threads(TERMINATE_ALL);
2048 }
2049
2050 static bool __check_trigger_file(void)
2051 {
2052         struct stat sb;
2053
2054         if (!trigger_file)
2055                 return false;
2056
2057         if (stat(trigger_file, &sb))
2058                 return false;
2059
2060         if (unlink(trigger_file) < 0)
2061                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2062                                                         strerror(errno));
2063
2064         return true;
2065 }
2066
2067 static bool trigger_timedout(void)
2068 {
2069         if (trigger_timeout)
2070                 if (time_since_genesis() >= trigger_timeout) {
2071                         trigger_timeout = 0;
2072                         return true;
2073                 }
2074
2075         return false;
2076 }
2077
2078 void exec_trigger(const char *cmd)
2079 {
2080         int ret;
2081
2082         if (!cmd || cmd[0] == '\0')
2083                 return;
2084
2085         ret = system(cmd);
2086         if (ret == -1)
2087                 log_err("fio: failed executing %s trigger\n", cmd);
2088 }
2089
2090 void check_trigger_file(void)
2091 {
2092         if (__check_trigger_file() || trigger_timedout()) {
2093                 if (nr_clients)
2094                         fio_clients_send_trigger(trigger_remote_cmd);
2095                 else {
2096                         verify_save_state(IO_LIST_ALL);
2097                         fio_terminate_threads(TERMINATE_ALL);
2098                         exec_trigger(trigger_cmd);
2099                 }
2100         }
2101 }
2102
2103 static int fio_verify_load_state(struct thread_data *td)
2104 {
2105         int ret;
2106
2107         if (!td->o.verify_state)
2108                 return 0;
2109
2110         if (is_backend) {
2111                 void *data;
2112
2113                 ret = fio_server_get_verify_state(td->o.name,
2114                                         td->thread_number - 1, &data);
2115                 if (!ret)
2116                         verify_assign_state(td, data);
2117         } else
2118                 ret = verify_load_state(td, "local");
2119
2120         return ret;
2121 }
2122
2123 static void do_usleep(unsigned int usecs)
2124 {
2125         check_for_running_stats();
2126         check_trigger_file();
2127         usleep(usecs);
2128 }
2129
2130 static bool check_mount_writes(struct thread_data *td)
2131 {
2132         struct fio_file *f;
2133         unsigned int i;
2134
2135         if (!td_write(td) || td->o.allow_mounted_write)
2136                 return false;
2137
2138         /*
2139          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2140          * are mkfs'd and mounted.
2141          */
2142         for_each_file(td, f, i) {
2143 #ifdef FIO_HAVE_CHARDEV_SIZE
2144                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2145 #else
2146                 if (f->filetype != FIO_TYPE_BLOCK)
2147 #endif
2148                         continue;
2149                 if (device_is_mounted(f->file_name))
2150                         goto mounted;
2151         }
2152
2153         return false;
2154 mounted:
2155         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2156         return true;
2157 }
2158
2159 static bool waitee_running(struct thread_data *me)
2160 {
2161         const char *waitee = me->o.wait_for;
2162         const char *self = me->o.name;
2163         struct thread_data *td;
2164         int i;
2165
2166         if (!waitee)
2167                 return false;
2168
2169         for_each_td(td, i) {
2170                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2171                         continue;
2172
2173                 if (td->runstate < TD_EXITED) {
2174                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2175                                         self, td->o.name,
2176                                         runstate_to_name(td->runstate));
2177                         return true;
2178                 }
2179         }
2180
2181         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2182         return false;
2183 }
2184
2185 /*
2186  * Main function for kicking off and reaping jobs, as needed.
2187  */
2188 static void run_threads(struct sk_out *sk_out)
2189 {
2190         struct thread_data *td;
2191         unsigned int i, todo, nr_running, nr_started;
2192         uint64_t m_rate, t_rate;
2193         uint64_t spent;
2194
2195         if (fio_gtod_offload && fio_start_gtod_thread())
2196                 return;
2197
2198         fio_idle_prof_init();
2199
2200         set_sig_handlers();
2201
2202         nr_thread = nr_process = 0;
2203         for_each_td(td, i) {
2204                 if (check_mount_writes(td))
2205                         return;
2206                 if (td->o.use_thread)
2207                         nr_thread++;
2208                 else
2209                         nr_process++;
2210         }
2211
2212         if (output_format & FIO_OUTPUT_NORMAL) {
2213                 log_info("Starting ");
2214                 if (nr_thread)
2215                         log_info("%d thread%s", nr_thread,
2216                                                 nr_thread > 1 ? "s" : "");
2217                 if (nr_process) {
2218                         if (nr_thread)
2219                                 log_info(" and ");
2220                         log_info("%d process%s", nr_process,
2221                                                 nr_process > 1 ? "es" : "");
2222                 }
2223                 log_info("\n");
2224                 log_info_flush();
2225         }
2226
2227         todo = thread_number;
2228         nr_running = 0;
2229         nr_started = 0;
2230         m_rate = t_rate = 0;
2231
2232         for_each_td(td, i) {
2233                 print_status_init(td->thread_number - 1);
2234
2235                 if (!td->o.create_serialize)
2236                         continue;
2237
2238                 if (fio_verify_load_state(td))
2239                         goto reap;
2240
2241                 /*
2242                  * do file setup here so it happens sequentially,
2243                  * we don't want X number of threads getting their
2244                  * client data interspersed on disk
2245                  */
2246                 if (setup_files(td)) {
2247 reap:
2248                         exit_value++;
2249                         if (td->error)
2250                                 log_err("fio: pid=%d, err=%d/%s\n",
2251                                         (int) td->pid, td->error, td->verror);
2252                         td_set_runstate(td, TD_REAPED);
2253                         todo--;
2254                 } else {
2255                         struct fio_file *f;
2256                         unsigned int j;
2257
2258                         /*
2259                          * for sharing to work, each job must always open
2260                          * its own files. so close them, if we opened them
2261                          * for creation
2262                          */
2263                         for_each_file(td, f, j) {
2264                                 if (fio_file_open(f))
2265                                         td_io_close_file(td, f);
2266                         }
2267                 }
2268         }
2269
2270         /* start idle threads before io threads start to run */
2271         fio_idle_prof_start();
2272
2273         set_genesis_time();
2274
2275         while (todo) {
2276                 struct thread_data *map[REAL_MAX_JOBS];
2277                 struct timespec this_start;
2278                 int this_jobs = 0, left;
2279                 struct fork_data *fd;
2280
2281                 /*
2282                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2283                  */
2284                 for_each_td(td, i) {
2285                         if (td->runstate != TD_NOT_CREATED)
2286                                 continue;
2287
2288                         /*
2289                          * never got a chance to start, killed by other
2290                          * thread for some reason
2291                          */
2292                         if (td->terminate) {
2293                                 todo--;
2294                                 continue;
2295                         }
2296
2297                         if (td->o.start_delay) {
2298                                 spent = utime_since_genesis();
2299
2300                                 if (td->o.start_delay > spent)
2301                                         continue;
2302                         }
2303
2304                         if (td->o.stonewall && (nr_started || nr_running)) {
2305                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2306                                                         td->o.name);
2307                                 break;
2308                         }
2309
2310                         if (waitee_running(td)) {
2311                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2312                                                 td->o.name, td->o.wait_for);
2313                                 continue;
2314                         }
2315
2316                         init_disk_util(td);
2317
2318                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2319                         td->update_rusage = 0;
2320
2321                         /*
2322                          * Set state to created. Thread will transition
2323                          * to TD_INITIALIZED when it's done setting up.
2324                          */
2325                         td_set_runstate(td, TD_CREATED);
2326                         map[this_jobs++] = td;
2327                         nr_started++;
2328
2329                         fd = calloc(1, sizeof(*fd));
2330                         fd->td = td;
2331                         fd->sk_out = sk_out;
2332
2333                         if (td->o.use_thread) {
2334                                 int ret;
2335
2336                                 dprint(FD_PROCESS, "will pthread_create\n");
2337                                 ret = pthread_create(&td->thread, NULL,
2338                                                         thread_main, fd);
2339                                 if (ret) {
2340                                         log_err("pthread_create: %s\n",
2341                                                         strerror(ret));
2342                                         free(fd);
2343                                         nr_started--;
2344                                         break;
2345                                 }
2346                                 fd = NULL;
2347                                 ret = pthread_detach(td->thread);
2348                                 if (ret)
2349                                         log_err("pthread_detach: %s",
2350                                                         strerror(ret));
2351                         } else {
2352                                 pid_t pid;
2353                                 dprint(FD_PROCESS, "will fork\n");
2354                                 pid = fork();
2355                                 if (!pid) {
2356                                         int ret;
2357
2358                                         ret = (int)(uintptr_t)thread_main(fd);
2359                                         _exit(ret);
2360                                 } else if (i == fio_debug_jobno)
2361                                         *fio_debug_jobp = pid;
2362                         }
2363                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2364                         if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2365                                 log_err("fio: job startup hung? exiting.\n");
2366                                 fio_terminate_threads(TERMINATE_ALL);
2367                                 fio_abort = 1;
2368                                 nr_started--;
2369                                 free(fd);
2370                                 break;
2371                         }
2372                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2373                 }
2374
2375                 /*
2376                  * Wait for the started threads to transition to
2377                  * TD_INITIALIZED.
2378                  */
2379                 fio_gettime(&this_start, NULL);
2380                 left = this_jobs;
2381                 while (left && !fio_abort) {
2382                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2383                                 break;
2384
2385                         do_usleep(100000);
2386
2387                         for (i = 0; i < this_jobs; i++) {
2388                                 td = map[i];
2389                                 if (!td)
2390                                         continue;
2391                                 if (td->runstate == TD_INITIALIZED) {
2392                                         map[i] = NULL;
2393                                         left--;
2394                                 } else if (td->runstate >= TD_EXITED) {
2395                                         map[i] = NULL;
2396                                         left--;
2397                                         todo--;
2398                                         nr_running++; /* work-around... */
2399                                 }
2400                         }
2401                 }
2402
2403                 if (left) {
2404                         log_err("fio: %d job%s failed to start\n", left,
2405                                         left > 1 ? "s" : "");
2406                         for (i = 0; i < this_jobs; i++) {
2407                                 td = map[i];
2408                                 if (!td)
2409                                         continue;
2410                                 kill(td->pid, SIGTERM);
2411                         }
2412                         break;
2413                 }
2414
2415                 /*
2416                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2417                  */
2418                 for_each_td(td, i) {
2419                         if (td->runstate != TD_INITIALIZED)
2420                                 continue;
2421
2422                         if (in_ramp_time(td))
2423                                 td_set_runstate(td, TD_RAMP);
2424                         else
2425                                 td_set_runstate(td, TD_RUNNING);
2426                         nr_running++;
2427                         nr_started--;
2428                         m_rate += ddir_rw_sum(td->o.ratemin);
2429                         t_rate += ddir_rw_sum(td->o.rate);
2430                         todo--;
2431                         fio_mutex_up(td->mutex);
2432                 }
2433
2434                 reap_threads(&nr_running, &t_rate, &m_rate);
2435
2436                 if (todo)
2437                         do_usleep(100000);
2438         }
2439
2440         while (nr_running) {
2441                 reap_threads(&nr_running, &t_rate, &m_rate);
2442                 do_usleep(10000);
2443         }
2444
2445         fio_idle_prof_stop();
2446
2447         update_io_ticks();
2448 }
2449
2450 static void free_disk_util(void)
2451 {
2452         disk_util_prune_entries();
2453         helper_thread_destroy();
2454 }
2455
2456 int fio_backend(struct sk_out *sk_out)
2457 {
2458         struct thread_data *td;
2459         int i;
2460
2461         if (exec_profile) {
2462                 if (load_profile(exec_profile))
2463                         return 1;
2464                 free(exec_profile);
2465                 exec_profile = NULL;
2466         }
2467         if (!thread_number)
2468                 return 0;
2469
2470         if (write_bw_log) {
2471                 struct log_params p = {
2472                         .log_type = IO_LOG_TYPE_BW,
2473                 };
2474
2475                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2476                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2477                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2478         }
2479
2480         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2481         if (startup_mutex == NULL)
2482                 return 1;
2483
2484         set_genesis_time();
2485         stat_init();
2486         helper_thread_create(startup_mutex, sk_out);
2487
2488         cgroup_list = smalloc(sizeof(*cgroup_list));
2489         INIT_FLIST_HEAD(cgroup_list);
2490
2491         run_threads(sk_out);
2492
2493         helper_thread_exit();
2494
2495         if (!fio_abort) {
2496                 __show_run_stats();
2497                 if (write_bw_log) {
2498                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2499                                 struct io_log *log = agg_io_log[i];
2500
2501                                 flush_log(log, false);
2502                                 free_log(log);
2503                         }
2504                 }
2505         }
2506
2507         for_each_td(td, i) {
2508                 steadystate_free(td);
2509                 fio_options_free(td);
2510                 if (td->rusage_sem) {
2511                         fio_mutex_remove(td->rusage_sem);
2512                         td->rusage_sem = NULL;
2513                 }
2514                 fio_mutex_remove(td->mutex);
2515                 td->mutex = NULL;
2516         }
2517
2518         free_disk_util();
2519         cgroup_kill(cgroup_list);
2520         sfree(cgroup_list);
2521         sfree(cgroup_mnt);
2522
2523         fio_mutex_remove(startup_mutex);
2524         stat_exit();
2525         return exit_value;
2526 }