Introduce enum fio_q_status
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <string.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <inttypes.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <math.h>
32
33 #include "fio.h"
34 #include "smalloc.h"
35 #include "verify.h"
36 #include "diskutil.h"
37 #include "cgroup.h"
38 #include "profile.h"
39 #include "lib/rand.h"
40 #include "lib/memalign.h"
41 #include "server.h"
42 #include "lib/getrusage.h"
43 #include "idletime.h"
44 #include "err.h"
45 #include "workqueue.h"
46 #include "lib/mountcheck.h"
47 #include "rate-submit.h"
48 #include "helper_thread.h"
49 #include "pshared.h"
50
51 static struct fio_sem *startup_sem;
52 static struct flist_head *cgroup_list;
53 static char *cgroup_mnt;
54 static int exit_value;
55 static volatile int fio_abort;
56 static unsigned int nr_process = 0;
57 static unsigned int nr_thread = 0;
58
59 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
60
61 int groupid = 0;
62 unsigned int thread_number = 0;
63 unsigned int stat_number = 0;
64 int shm_id = 0;
65 int temp_stall_ts;
66 unsigned long done_secs = 0;
67
68 #define JOB_START_TIMEOUT       (5 * 1000)
69
70 static void sig_int(int sig)
71 {
72         if (threads) {
73                 if (is_backend)
74                         fio_server_got_signal(sig);
75                 else {
76                         log_info("\nfio: terminating on signal %d\n", sig);
77                         log_info_flush();
78                         exit_value = 128;
79                 }
80
81                 fio_terminate_threads(TERMINATE_ALL);
82         }
83 }
84
85 void sig_show_status(int sig)
86 {
87         show_running_run_stats();
88 }
89
90 static void set_sig_handlers(void)
91 {
92         struct sigaction act;
93
94         memset(&act, 0, sizeof(act));
95         act.sa_handler = sig_int;
96         act.sa_flags = SA_RESTART;
97         sigaction(SIGINT, &act, NULL);
98
99         memset(&act, 0, sizeof(act));
100         act.sa_handler = sig_int;
101         act.sa_flags = SA_RESTART;
102         sigaction(SIGTERM, &act, NULL);
103
104 /* Windows uses SIGBREAK as a quit signal from other applications */
105 #ifdef WIN32
106         memset(&act, 0, sizeof(act));
107         act.sa_handler = sig_int;
108         act.sa_flags = SA_RESTART;
109         sigaction(SIGBREAK, &act, NULL);
110 #endif
111
112         memset(&act, 0, sizeof(act));
113         act.sa_handler = sig_show_status;
114         act.sa_flags = SA_RESTART;
115         sigaction(SIGUSR1, &act, NULL);
116
117         if (is_backend) {
118                 memset(&act, 0, sizeof(act));
119                 act.sa_handler = sig_int;
120                 act.sa_flags = SA_RESTART;
121                 sigaction(SIGPIPE, &act, NULL);
122         }
123 }
124
125 /*
126  * Check if we are above the minimum rate given.
127  */
128 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
129                              enum fio_ddir ddir)
130 {
131         unsigned long long bytes = 0;
132         unsigned long iops = 0;
133         unsigned long spent;
134         unsigned long rate;
135         unsigned int ratemin = 0;
136         unsigned int rate_iops = 0;
137         unsigned int rate_iops_min = 0;
138
139         assert(ddir_rw(ddir));
140
141         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
142                 return false;
143
144         /*
145          * allow a 2 second settle period in the beginning
146          */
147         if (mtime_since(&td->start, now) < 2000)
148                 return false;
149
150         iops += td->this_io_blocks[ddir];
151         bytes += td->this_io_bytes[ddir];
152         ratemin += td->o.ratemin[ddir];
153         rate_iops += td->o.rate_iops[ddir];
154         rate_iops_min += td->o.rate_iops_min[ddir];
155
156         /*
157          * if rate blocks is set, sample is running
158          */
159         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
160                 spent = mtime_since(&td->lastrate[ddir], now);
161                 if (spent < td->o.ratecycle)
162                         return false;
163
164                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
165                         /*
166                          * check bandwidth specified rate
167                          */
168                         if (bytes < td->rate_bytes[ddir]) {
169                                 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
170                                         td->o.name, ratemin, bytes);
171                                 return true;
172                         } else {
173                                 if (spent)
174                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
175                                 else
176                                         rate = 0;
177
178                                 if (rate < ratemin ||
179                                     bytes < td->rate_bytes[ddir]) {
180                                         log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
181                                                 td->o.name, ratemin, rate);
182                                         return true;
183                                 }
184                         }
185                 } else {
186                         /*
187                          * checks iops specified rate
188                          */
189                         if (iops < rate_iops) {
190                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
191                                                 td->o.name, rate_iops, iops);
192                                 return true;
193                         } else {
194                                 if (spent)
195                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
196                                 else
197                                         rate = 0;
198
199                                 if (rate < rate_iops_min ||
200                                     iops < td->rate_blocks[ddir]) {
201                                         log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
202                                                 td->o.name, rate_iops_min, rate);
203                                         return true;
204                                 }
205                         }
206                 }
207         }
208
209         td->rate_bytes[ddir] = bytes;
210         td->rate_blocks[ddir] = iops;
211         memcpy(&td->lastrate[ddir], now, sizeof(*now));
212         return false;
213 }
214
215 static bool check_min_rate(struct thread_data *td, struct timespec *now)
216 {
217         bool ret = false;
218
219         if (td->bytes_done[DDIR_READ])
220                 ret |= __check_min_rate(td, now, DDIR_READ);
221         if (td->bytes_done[DDIR_WRITE])
222                 ret |= __check_min_rate(td, now, DDIR_WRITE);
223         if (td->bytes_done[DDIR_TRIM])
224                 ret |= __check_min_rate(td, now, DDIR_TRIM);
225
226         return ret;
227 }
228
229 /*
230  * When job exits, we can cancel the in-flight IO if we are using async
231  * io. Attempt to do so.
232  */
233 static void cleanup_pending_aio(struct thread_data *td)
234 {
235         int r;
236
237         /*
238          * get immediately available events, if any
239          */
240         r = io_u_queued_complete(td, 0);
241         if (r < 0)
242                 return;
243
244         /*
245          * now cancel remaining active events
246          */
247         if (td->io_ops->cancel) {
248                 struct io_u *io_u;
249                 int i;
250
251                 io_u_qiter(&td->io_u_all, io_u, i) {
252                         if (io_u->flags & IO_U_F_FLIGHT) {
253                                 r = td->io_ops->cancel(td, io_u);
254                                 if (!r)
255                                         put_io_u(td, io_u);
256                         }
257                 }
258         }
259
260         if (td->cur_depth)
261                 r = io_u_queued_complete(td, td->cur_depth);
262 }
263
264 /*
265  * Helper to handle the final sync of a file. Works just like the normal
266  * io path, just does everything sync.
267  */
268 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
269 {
270         struct io_u *io_u = __get_io_u(td);
271         enum fio_q_status ret;
272
273         if (!io_u)
274                 return true;
275
276         io_u->ddir = DDIR_SYNC;
277         io_u->file = f;
278
279         if (td_io_prep(td, io_u)) {
280                 put_io_u(td, io_u);
281                 return true;
282         }
283
284 requeue:
285         ret = td_io_queue(td, io_u);
286         switch (ret) {
287         case FIO_Q_QUEUED:
288                 td_io_commit(td);
289                 if (io_u_queued_complete(td, 1) < 0)
290                         return true;
291                 break;
292         case FIO_Q_COMPLETED:
293                 if (io_u->error) {
294                         td_verror(td, io_u->error, "td_io_queue");
295                         return true;
296                 }
297
298                 if (io_u_sync_complete(td, io_u) < 0)
299                         return true;
300                 break;
301         case FIO_Q_BUSY:
302                 td_io_commit(td);
303                 goto requeue;
304         }
305
306         return false;
307 }
308
309 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
310 {
311         int ret;
312
313         if (fio_file_open(f))
314                 return fio_io_sync(td, f);
315
316         if (td_io_open_file(td, f))
317                 return 1;
318
319         ret = fio_io_sync(td, f);
320         td_io_close_file(td, f);
321         return ret;
322 }
323
324 static inline void __update_ts_cache(struct thread_data *td)
325 {
326         fio_gettime(&td->ts_cache, NULL);
327 }
328
329 static inline void update_ts_cache(struct thread_data *td)
330 {
331         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
332                 __update_ts_cache(td);
333 }
334
335 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
336 {
337         if (in_ramp_time(td))
338                 return false;
339         if (!td->o.timeout)
340                 return false;
341         if (utime_since(&td->epoch, t) >= td->o.timeout)
342                 return true;
343
344         return false;
345 }
346
347 /*
348  * We need to update the runtime consistently in ms, but keep a running
349  * tally of the current elapsed time in microseconds for sub millisecond
350  * updates.
351  */
352 static inline void update_runtime(struct thread_data *td,
353                                   unsigned long long *elapsed_us,
354                                   const enum fio_ddir ddir)
355 {
356         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
357                 return;
358
359         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
360         elapsed_us[ddir] += utime_since_now(&td->start);
361         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
362 }
363
364 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
365                                 int *retptr)
366 {
367         int ret = *retptr;
368
369         if (ret < 0 || td->error) {
370                 int err = td->error;
371                 enum error_type_bit eb;
372
373                 if (ret < 0)
374                         err = -ret;
375
376                 eb = td_error_type(ddir, err);
377                 if (!(td->o.continue_on_error & (1 << eb)))
378                         return true;
379
380                 if (td_non_fatal_error(td, eb, err)) {
381                         /*
382                          * Continue with the I/Os in case of
383                          * a non fatal error.
384                          */
385                         update_error_count(td, err);
386                         td_clear_error(td);
387                         *retptr = 0;
388                         return false;
389                 } else if (td->o.fill_device && err == ENOSPC) {
390                         /*
391                          * We expect to hit this error if
392                          * fill_device option is set.
393                          */
394                         td_clear_error(td);
395                         fio_mark_td_terminate(td);
396                         return true;
397                 } else {
398                         /*
399                          * Stop the I/O in case of a fatal
400                          * error.
401                          */
402                         update_error_count(td, err);
403                         return true;
404                 }
405         }
406
407         return false;
408 }
409
410 static void check_update_rusage(struct thread_data *td)
411 {
412         if (td->update_rusage) {
413                 td->update_rusage = 0;
414                 update_rusage_stat(td);
415                 fio_sem_up(td->rusage_sem);
416         }
417 }
418
419 static int wait_for_completions(struct thread_data *td, struct timespec *time)
420 {
421         const int full = queue_full(td);
422         int min_evts = 0;
423         int ret;
424
425         if (td->flags & TD_F_REGROW_LOGS)
426                 return io_u_quiesce(td);
427
428         /*
429          * if the queue is full, we MUST reap at least 1 event
430          */
431         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
432         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
433                 min_evts = 1;
434
435         if (time && (__should_check_rate(td, DDIR_READ) ||
436             __should_check_rate(td, DDIR_WRITE) ||
437             __should_check_rate(td, DDIR_TRIM)))
438                 fio_gettime(time, NULL);
439
440         do {
441                 ret = io_u_queued_complete(td, min_evts);
442                 if (ret < 0)
443                         break;
444         } while (full && (td->cur_depth > td->o.iodepth_low));
445
446         return ret;
447 }
448
449 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
450                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
451                    struct timespec *comp_time)
452 {
453         switch (*ret) {
454         case FIO_Q_COMPLETED:
455                 if (io_u->error) {
456                         *ret = -io_u->error;
457                         clear_io_u(td, io_u);
458                 } else if (io_u->resid) {
459                         int bytes = io_u->xfer_buflen - io_u->resid;
460                         struct fio_file *f = io_u->file;
461
462                         if (bytes_issued)
463                                 *bytes_issued += bytes;
464
465                         if (!from_verify)
466                                 trim_io_piece(td, io_u);
467
468                         /*
469                          * zero read, fail
470                          */
471                         if (!bytes) {
472                                 if (!from_verify)
473                                         unlog_io_piece(td, io_u);
474                                 td_verror(td, EIO, "full resid");
475                                 put_io_u(td, io_u);
476                                 break;
477                         }
478
479                         io_u->xfer_buflen = io_u->resid;
480                         io_u->xfer_buf += bytes;
481                         io_u->offset += bytes;
482
483                         if (ddir_rw(io_u->ddir))
484                                 td->ts.short_io_u[io_u->ddir]++;
485
486                         if (io_u->offset == f->real_file_size)
487                                 goto sync_done;
488
489                         requeue_io_u(td, &io_u);
490                 } else {
491 sync_done:
492                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
493                             __should_check_rate(td, DDIR_WRITE) ||
494                             __should_check_rate(td, DDIR_TRIM)))
495                                 fio_gettime(comp_time, NULL);
496
497                         *ret = io_u_sync_complete(td, io_u);
498                         if (*ret < 0)
499                                 break;
500                 }
501
502                 if (td->flags & TD_F_REGROW_LOGS)
503                         regrow_logs(td);
504
505                 /*
506                  * when doing I/O (not when verifying),
507                  * check for any errors that are to be ignored
508                  */
509                 if (!from_verify)
510                         break;
511
512                 return 0;
513         case FIO_Q_QUEUED:
514                 /*
515                  * if the engine doesn't have a commit hook,
516                  * the io_u is really queued. if it does have such
517                  * a hook, it has to call io_u_queued() itself.
518                  */
519                 if (td->io_ops->commit == NULL)
520                         io_u_queued(td, io_u);
521                 if (bytes_issued)
522                         *bytes_issued += io_u->xfer_buflen;
523                 break;
524         case FIO_Q_BUSY:
525                 if (!from_verify)
526                         unlog_io_piece(td, io_u);
527                 requeue_io_u(td, &io_u);
528                 td_io_commit(td);
529                 break;
530         default:
531                 assert(*ret < 0);
532                 td_verror(td, -(*ret), "td_io_queue");
533                 break;
534         }
535
536         if (break_on_this_error(td, ddir, ret))
537                 return 1;
538
539         return 0;
540 }
541
542 static inline bool io_in_polling(struct thread_data *td)
543 {
544         return !td->o.iodepth_batch_complete_min &&
545                    !td->o.iodepth_batch_complete_max;
546 }
547 /*
548  * Unlinks files from thread data fio_file structure
549  */
550 static int unlink_all_files(struct thread_data *td)
551 {
552         struct fio_file *f;
553         unsigned int i;
554         int ret = 0;
555
556         for_each_file(td, f, i) {
557                 if (f->filetype != FIO_TYPE_FILE)
558                         continue;
559                 ret = td_io_unlink_file(td, f);
560                 if (ret)
561                         break;
562         }
563
564         if (ret)
565                 td_verror(td, ret, "unlink_all_files");
566
567         return ret;
568 }
569
570 /*
571  * Check if io_u will overlap an in-flight IO in the queue
572  */
573 static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
574 {
575         bool overlap;
576         struct io_u *check_io_u;
577         unsigned long long x1, x2, y1, y2;
578         int i;
579
580         x1 = io_u->offset;
581         x2 = io_u->offset + io_u->buflen;
582         overlap = false;
583         io_u_qiter(q, check_io_u, i) {
584                 if (check_io_u->flags & IO_U_F_FLIGHT) {
585                         y1 = check_io_u->offset;
586                         y2 = check_io_u->offset + check_io_u->buflen;
587
588                         if (x1 < y2 && y1 < x2) {
589                                 overlap = true;
590                                 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
591                                                 x1, io_u->buflen,
592                                                 y1, check_io_u->buflen);
593                                 break;
594                         }
595                 }
596         }
597
598         return overlap;
599 }
600
601 static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
602 {
603         /*
604          * Check for overlap if the user asked us to, and we have
605          * at least one IO in flight besides this one.
606          */
607         if (td->o.serialize_overlap && td->cur_depth > 1 &&
608             in_flight_overlap(&td->io_u_all, io_u))
609                 return FIO_Q_BUSY;
610
611         return td_io_queue(td, io_u);
612 }
613
614 /*
615  * The main verify engine. Runs over the writes we previously submitted,
616  * reads the blocks back in, and checks the crc/md5 of the data.
617  */
618 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
619 {
620         struct fio_file *f;
621         struct io_u *io_u;
622         int ret, min_events;
623         unsigned int i;
624
625         dprint(FD_VERIFY, "starting loop\n");
626
627         /*
628          * sync io first and invalidate cache, to make sure we really
629          * read from disk.
630          */
631         for_each_file(td, f, i) {
632                 if (!fio_file_open(f))
633                         continue;
634                 if (fio_io_sync(td, f))
635                         break;
636                 if (file_invalidate_cache(td, f))
637                         break;
638         }
639
640         check_update_rusage(td);
641
642         if (td->error)
643                 return;
644
645         /*
646          * verify_state needs to be reset before verification
647          * proceeds so that expected random seeds match actual
648          * random seeds in headers. The main loop will reset
649          * all random number generators if randrepeat is set.
650          */
651         if (!td->o.rand_repeatable)
652                 td_fill_verify_state_seed(td);
653
654         td_set_runstate(td, TD_VERIFYING);
655
656         io_u = NULL;
657         while (!td->terminate) {
658                 enum fio_ddir ddir;
659                 int full;
660
661                 update_ts_cache(td);
662                 check_update_rusage(td);
663
664                 if (runtime_exceeded(td, &td->ts_cache)) {
665                         __update_ts_cache(td);
666                         if (runtime_exceeded(td, &td->ts_cache)) {
667                                 fio_mark_td_terminate(td);
668                                 break;
669                         }
670                 }
671
672                 if (flow_threshold_exceeded(td))
673                         continue;
674
675                 if (!td->o.experimental_verify) {
676                         io_u = __get_io_u(td);
677                         if (!io_u)
678                                 break;
679
680                         if (get_next_verify(td, io_u)) {
681                                 put_io_u(td, io_u);
682                                 break;
683                         }
684
685                         if (td_io_prep(td, io_u)) {
686                                 put_io_u(td, io_u);
687                                 break;
688                         }
689                 } else {
690                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
691                                 break;
692
693                         while ((io_u = get_io_u(td)) != NULL) {
694                                 if (IS_ERR_OR_NULL(io_u)) {
695                                         io_u = NULL;
696                                         ret = FIO_Q_BUSY;
697                                         goto reap;
698                                 }
699
700                                 /*
701                                  * We are only interested in the places where
702                                  * we wrote or trimmed IOs. Turn those into
703                                  * reads for verification purposes.
704                                  */
705                                 if (io_u->ddir == DDIR_READ) {
706                                         /*
707                                          * Pretend we issued it for rwmix
708                                          * accounting
709                                          */
710                                         td->io_issues[DDIR_READ]++;
711                                         put_io_u(td, io_u);
712                                         continue;
713                                 } else if (io_u->ddir == DDIR_TRIM) {
714                                         io_u->ddir = DDIR_READ;
715                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
716                                         break;
717                                 } else if (io_u->ddir == DDIR_WRITE) {
718                                         io_u->ddir = DDIR_READ;
719                                         populate_verify_io_u(td, io_u);
720                                         break;
721                                 } else {
722                                         put_io_u(td, io_u);
723                                         continue;
724                                 }
725                         }
726
727                         if (!io_u)
728                                 break;
729                 }
730
731                 if (verify_state_should_stop(td, io_u)) {
732                         put_io_u(td, io_u);
733                         break;
734                 }
735
736                 if (td->o.verify_async)
737                         io_u->end_io = verify_io_u_async;
738                 else
739                         io_u->end_io = verify_io_u;
740
741                 ddir = io_u->ddir;
742                 if (!td->o.disable_slat)
743                         fio_gettime(&io_u->start_time, NULL);
744
745                 ret = io_u_submit(td, io_u);
746
747                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
748                         break;
749
750                 /*
751                  * if we can queue more, do so. but check if there are
752                  * completed io_u's first. Note that we can get BUSY even
753                  * without IO queued, if the system is resource starved.
754                  */
755 reap:
756                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
757                 if (full || io_in_polling(td))
758                         ret = wait_for_completions(td, NULL);
759
760                 if (ret < 0)
761                         break;
762         }
763
764         check_update_rusage(td);
765
766         if (!td->error) {
767                 min_events = td->cur_depth;
768
769                 if (min_events)
770                         ret = io_u_queued_complete(td, min_events);
771         } else
772                 cleanup_pending_aio(td);
773
774         td_set_runstate(td, TD_RUNNING);
775
776         dprint(FD_VERIFY, "exiting loop\n");
777 }
778
779 static bool exceeds_number_ios(struct thread_data *td)
780 {
781         unsigned long long number_ios;
782
783         if (!td->o.number_ios)
784                 return false;
785
786         number_ios = ddir_rw_sum(td->io_blocks);
787         number_ios += td->io_u_queued + td->io_u_in_flight;
788
789         return number_ios >= (td->o.number_ios * td->loops);
790 }
791
792 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
793 {
794         unsigned long long bytes, limit;
795
796         if (td_rw(td))
797                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
798         else if (td_write(td))
799                 bytes = this_bytes[DDIR_WRITE];
800         else if (td_read(td))
801                 bytes = this_bytes[DDIR_READ];
802         else
803                 bytes = this_bytes[DDIR_TRIM];
804
805         if (td->o.io_size)
806                 limit = td->o.io_size;
807         else
808                 limit = td->o.size;
809
810         limit *= td->loops;
811         return bytes >= limit || exceeds_number_ios(td);
812 }
813
814 static bool io_issue_bytes_exceeded(struct thread_data *td)
815 {
816         return io_bytes_exceeded(td, td->io_issue_bytes);
817 }
818
819 static bool io_complete_bytes_exceeded(struct thread_data *td)
820 {
821         return io_bytes_exceeded(td, td->this_io_bytes);
822 }
823
824 /*
825  * used to calculate the next io time for rate control
826  *
827  */
828 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
829 {
830         uint64_t bps = td->rate_bps[ddir];
831
832         assert(!(td->flags & TD_F_CHILD));
833
834         if (td->o.rate_process == RATE_PROCESS_POISSON) {
835                 uint64_t val, iops;
836
837                 iops = bps / td->o.bs[ddir];
838                 val = (int64_t) (1000000 / iops) *
839                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
840                 if (val) {
841                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
842                                         (unsigned long long) 1000000 / val,
843                                         ddir);
844                 }
845                 td->last_usec[ddir] += val;
846                 return td->last_usec[ddir];
847         } else if (bps) {
848                 uint64_t bytes = td->rate_io_issue_bytes[ddir];
849                 uint64_t secs = bytes / bps;
850                 uint64_t remainder = bytes % bps;
851
852                 return remainder * 1000000 / bps + secs * 1000000;
853         }
854
855         return 0;
856 }
857
858 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
859 {
860         unsigned long long b;
861         uint64_t total;
862         int left;
863
864         b = ddir_rw_sum(td->io_blocks);
865         if (b % td->o.thinktime_blocks)
866                 return;
867
868         io_u_quiesce(td);
869
870         total = 0;
871         if (td->o.thinktime_spin)
872                 total = usec_spin(td->o.thinktime_spin);
873
874         left = td->o.thinktime - total;
875         if (left)
876                 total += usec_sleep(td, left);
877
878         /*
879          * If we're ignoring thinktime for the rate, add the number of bytes
880          * we would have done while sleeping, minus one block to ensure we
881          * start issuing immediately after the sleep.
882          */
883         if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
884                 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
885                 uint64_t bs = td->o.min_bs[ddir];
886                 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
887                 uint64_t over;
888
889                 if (usperop <= total)
890                         over = bs;
891                 else
892                         over = (usperop - total) / usperop * -bs;
893
894                 td->rate_io_issue_bytes[ddir] += (missed - over);
895         }
896 }
897
898 /*
899  * Main IO worker function. It retrieves io_u's to process and queues
900  * and reaps them, checking for rate and errors along the way.
901  *
902  * Returns number of bytes written and trimmed.
903  */
904 static void do_io(struct thread_data *td, uint64_t *bytes_done)
905 {
906         unsigned int i;
907         int ret = 0;
908         uint64_t total_bytes, bytes_issued = 0;
909
910         for (i = 0; i < DDIR_RWDIR_CNT; i++)
911                 bytes_done[i] = td->bytes_done[i];
912
913         if (in_ramp_time(td))
914                 td_set_runstate(td, TD_RAMP);
915         else
916                 td_set_runstate(td, TD_RUNNING);
917
918         lat_target_init(td);
919
920         total_bytes = td->o.size;
921         /*
922         * Allow random overwrite workloads to write up to io_size
923         * before starting verification phase as 'size' doesn't apply.
924         */
925         if (td_write(td) && td_random(td) && td->o.norandommap)
926                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
927         /*
928          * If verify_backlog is enabled, we'll run the verify in this
929          * handler as well. For that case, we may need up to twice the
930          * amount of bytes.
931          */
932         if (td->o.verify != VERIFY_NONE &&
933            (td_write(td) && td->o.verify_backlog))
934                 total_bytes += td->o.size;
935
936         /* In trimwrite mode, each byte is trimmed and then written, so
937          * allow total_bytes to be twice as big */
938         if (td_trimwrite(td))
939                 total_bytes += td->total_io_size;
940
941         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
942                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
943                 td->o.time_based) {
944                 struct timespec comp_time;
945                 struct io_u *io_u;
946                 int full;
947                 enum fio_ddir ddir;
948
949                 check_update_rusage(td);
950
951                 if (td->terminate || td->done)
952                         break;
953
954                 update_ts_cache(td);
955
956                 if (runtime_exceeded(td, &td->ts_cache)) {
957                         __update_ts_cache(td);
958                         if (runtime_exceeded(td, &td->ts_cache)) {
959                                 fio_mark_td_terminate(td);
960                                 break;
961                         }
962                 }
963
964                 if (flow_threshold_exceeded(td))
965                         continue;
966
967                 /*
968                  * Break if we exceeded the bytes. The exception is time
969                  * based runs, but we still need to break out of the loop
970                  * for those to run verification, if enabled.
971                  */
972                 if (bytes_issued >= total_bytes &&
973                     (!td->o.time_based ||
974                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
975                         break;
976
977                 io_u = get_io_u(td);
978                 if (IS_ERR_OR_NULL(io_u)) {
979                         int err = PTR_ERR(io_u);
980
981                         io_u = NULL;
982                         ddir = DDIR_INVAL;
983                         if (err == -EBUSY) {
984                                 ret = FIO_Q_BUSY;
985                                 goto reap;
986                         }
987                         if (td->o.latency_target)
988                                 goto reap;
989                         break;
990                 }
991
992                 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
993                         populate_verify_io_u(td, io_u);
994
995                 ddir = io_u->ddir;
996
997                 /*
998                  * Add verification end_io handler if:
999                  *      - Asked to verify (!td_rw(td))
1000                  *      - Or the io_u is from our verify list (mixed write/ver)
1001                  */
1002                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1003                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1004
1005                         if (!td->o.verify_pattern_bytes) {
1006                                 io_u->rand_seed = __rand(&td->verify_state);
1007                                 if (sizeof(int) != sizeof(long *))
1008                                         io_u->rand_seed *= __rand(&td->verify_state);
1009                         }
1010
1011                         if (verify_state_should_stop(td, io_u)) {
1012                                 put_io_u(td, io_u);
1013                                 break;
1014                         }
1015
1016                         if (td->o.verify_async)
1017                                 io_u->end_io = verify_io_u_async;
1018                         else
1019                                 io_u->end_io = verify_io_u;
1020                         td_set_runstate(td, TD_VERIFYING);
1021                 } else if (in_ramp_time(td))
1022                         td_set_runstate(td, TD_RAMP);
1023                 else
1024                         td_set_runstate(td, TD_RUNNING);
1025
1026                 /*
1027                  * Always log IO before it's issued, so we know the specific
1028                  * order of it. The logged unit will track when the IO has
1029                  * completed.
1030                  */
1031                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1032                     td->o.do_verify &&
1033                     td->o.verify != VERIFY_NONE &&
1034                     !td->o.experimental_verify)
1035                         log_io_piece(td, io_u);
1036
1037                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1038                         const unsigned long blen = io_u->xfer_buflen;
1039                         const enum fio_ddir ddir = acct_ddir(io_u);
1040
1041                         if (td->error)
1042                                 break;
1043
1044                         workqueue_enqueue(&td->io_wq, &io_u->work);
1045                         ret = FIO_Q_QUEUED;
1046
1047                         if (ddir_rw(ddir)) {
1048                                 td->io_issues[ddir]++;
1049                                 td->io_issue_bytes[ddir] += blen;
1050                                 td->rate_io_issue_bytes[ddir] += blen;
1051                         }
1052
1053                         if (should_check_rate(td))
1054                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1055
1056                 } else {
1057                         ret = io_u_submit(td, io_u);
1058
1059                         if (should_check_rate(td))
1060                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1061
1062                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1063                                 break;
1064
1065                         /*
1066                          * See if we need to complete some commands. Note that
1067                          * we can get BUSY even without IO queued, if the
1068                          * system is resource starved.
1069                          */
1070 reap:
1071                         full = queue_full(td) ||
1072                                 (ret == FIO_Q_BUSY && td->cur_depth);
1073                         if (full || io_in_polling(td))
1074                                 ret = wait_for_completions(td, &comp_time);
1075                 }
1076                 if (ret < 0)
1077                         break;
1078                 if (!ddir_rw_sum(td->bytes_done) &&
1079                     !td_ioengine_flagged(td, FIO_NOIO))
1080                         continue;
1081
1082                 if (!in_ramp_time(td) && should_check_rate(td)) {
1083                         if (check_min_rate(td, &comp_time)) {
1084                                 if (exitall_on_terminate || td->o.exitall_error)
1085                                         fio_terminate_threads(td->groupid);
1086                                 td_verror(td, EIO, "check_min_rate");
1087                                 break;
1088                         }
1089                 }
1090                 if (!in_ramp_time(td) && td->o.latency_target)
1091                         lat_target_check(td);
1092
1093                 if (ddir_rw(ddir) && td->o.thinktime)
1094                         handle_thinktime(td, ddir);
1095         }
1096
1097         check_update_rusage(td);
1098
1099         if (td->trim_entries)
1100                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1101
1102         if (td->o.fill_device && td->error == ENOSPC) {
1103                 td->error = 0;
1104                 fio_mark_td_terminate(td);
1105         }
1106         if (!td->error) {
1107                 struct fio_file *f;
1108
1109                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1110                         workqueue_flush(&td->io_wq);
1111                         i = 0;
1112                 } else
1113                         i = td->cur_depth;
1114
1115                 if (i) {
1116                         ret = io_u_queued_complete(td, i);
1117                         if (td->o.fill_device && td->error == ENOSPC)
1118                                 td->error = 0;
1119                 }
1120
1121                 if (should_fsync(td) && td->o.end_fsync) {
1122                         td_set_runstate(td, TD_FSYNCING);
1123
1124                         for_each_file(td, f, i) {
1125                                 if (!fio_file_fsync(td, f))
1126                                         continue;
1127
1128                                 log_err("fio: end_fsync failed for file %s\n",
1129                                                                 f->file_name);
1130                         }
1131                 }
1132         } else
1133                 cleanup_pending_aio(td);
1134
1135         /*
1136          * stop job if we failed doing any IO
1137          */
1138         if (!ddir_rw_sum(td->this_io_bytes))
1139                 td->done = 1;
1140
1141         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1142                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1143 }
1144
1145 static void free_file_completion_logging(struct thread_data *td)
1146 {
1147         struct fio_file *f;
1148         unsigned int i;
1149
1150         for_each_file(td, f, i) {
1151                 if (!f->last_write_comp)
1152                         break;
1153                 sfree(f->last_write_comp);
1154         }
1155 }
1156
1157 static int init_file_completion_logging(struct thread_data *td,
1158                                         unsigned int depth)
1159 {
1160         struct fio_file *f;
1161         unsigned int i;
1162
1163         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1164                 return 0;
1165
1166         for_each_file(td, f, i) {
1167                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1168                 if (!f->last_write_comp)
1169                         goto cleanup;
1170         }
1171
1172         return 0;
1173
1174 cleanup:
1175         free_file_completion_logging(td);
1176         log_err("fio: failed to alloc write comp data\n");
1177         return 1;
1178 }
1179
1180 static void cleanup_io_u(struct thread_data *td)
1181 {
1182         struct io_u *io_u;
1183
1184         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1185
1186                 if (td->io_ops->io_u_free)
1187                         td->io_ops->io_u_free(td, io_u);
1188
1189                 fio_memfree(io_u, sizeof(*io_u));
1190         }
1191
1192         free_io_mem(td);
1193
1194         io_u_rexit(&td->io_u_requeues);
1195         io_u_qexit(&td->io_u_freelist);
1196         io_u_qexit(&td->io_u_all);
1197
1198         free_file_completion_logging(td);
1199 }
1200
1201 static int init_io_u(struct thread_data *td)
1202 {
1203         struct io_u *io_u;
1204         unsigned int max_bs, min_write;
1205         int cl_align, i, max_units;
1206         int data_xfer = 1, err;
1207         char *p;
1208
1209         max_units = td->o.iodepth;
1210         max_bs = td_max_bs(td);
1211         min_write = td->o.min_bs[DDIR_WRITE];
1212         td->orig_buffer_size = (unsigned long long) max_bs
1213                                         * (unsigned long long) max_units;
1214
1215         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1216                 data_xfer = 0;
1217
1218         err = 0;
1219         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1220         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1221         err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1222
1223         if (err) {
1224                 log_err("fio: failed setting up IO queues\n");
1225                 return 1;
1226         }
1227
1228         /*
1229          * if we may later need to do address alignment, then add any
1230          * possible adjustment here so that we don't cause a buffer
1231          * overflow later. this adjustment may be too much if we get
1232          * lucky and the allocator gives us an aligned address.
1233          */
1234         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1235             td_ioengine_flagged(td, FIO_RAWIO))
1236                 td->orig_buffer_size += page_mask + td->o.mem_align;
1237
1238         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1239                 unsigned long bs;
1240
1241                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1242                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1243         }
1244
1245         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1246                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1247                 return 1;
1248         }
1249
1250         if (data_xfer && allocate_io_mem(td))
1251                 return 1;
1252
1253         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1254             td_ioengine_flagged(td, FIO_RAWIO))
1255                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1256         else
1257                 p = td->orig_buffer;
1258
1259         cl_align = os_cache_line_size();
1260
1261         for (i = 0; i < max_units; i++) {
1262                 void *ptr;
1263
1264                 if (td->terminate)
1265                         return 1;
1266
1267                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1268                 if (!ptr) {
1269                         log_err("fio: unable to allocate aligned memory\n");
1270                         break;
1271                 }
1272
1273                 io_u = ptr;
1274                 memset(io_u, 0, sizeof(*io_u));
1275                 INIT_FLIST_HEAD(&io_u->verify_list);
1276                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1277
1278                 if (data_xfer) {
1279                         io_u->buf = p;
1280                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1281
1282                         if (td_write(td))
1283                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1284                         if (td_write(td) && td->o.verify_pattern_bytes) {
1285                                 /*
1286                                  * Fill the buffer with the pattern if we are
1287                                  * going to be doing writes.
1288                                  */
1289                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1290                         }
1291                 }
1292
1293                 io_u->index = i;
1294                 io_u->flags = IO_U_F_FREE;
1295                 io_u_qpush(&td->io_u_freelist, io_u);
1296
1297                 /*
1298                  * io_u never leaves this stack, used for iteration of all
1299                  * io_u buffers.
1300                  */
1301                 io_u_qpush(&td->io_u_all, io_u);
1302
1303                 if (td->io_ops->io_u_init) {
1304                         int ret = td->io_ops->io_u_init(td, io_u);
1305
1306                         if (ret) {
1307                                 log_err("fio: failed to init engine data: %d\n", ret);
1308                                 return 1;
1309                         }
1310                 }
1311
1312                 p += max_bs;
1313         }
1314
1315         if (init_file_completion_logging(td, max_units))
1316                 return 1;
1317
1318         return 0;
1319 }
1320
1321 /*
1322  * This function is Linux specific.
1323  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1324  */
1325 static int switch_ioscheduler(struct thread_data *td)
1326 {
1327 #ifdef FIO_HAVE_IOSCHED_SWITCH
1328         char tmp[256], tmp2[128], *p;
1329         FILE *f;
1330         int ret;
1331
1332         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1333                 return 0;
1334
1335         assert(td->files && td->files[0]);
1336         sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1337
1338         f = fopen(tmp, "r+");
1339         if (!f) {
1340                 if (errno == ENOENT) {
1341                         log_err("fio: os or kernel doesn't support IO scheduler"
1342                                 " switching\n");
1343                         return 0;
1344                 }
1345                 td_verror(td, errno, "fopen iosched");
1346                 return 1;
1347         }
1348
1349         /*
1350          * Set io scheduler.
1351          */
1352         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1353         if (ferror(f) || ret != 1) {
1354                 td_verror(td, errno, "fwrite");
1355                 fclose(f);
1356                 return 1;
1357         }
1358
1359         rewind(f);
1360
1361         /*
1362          * Read back and check that the selected scheduler is now the default.
1363          */
1364         ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1365         if (ferror(f) || ret < 0) {
1366                 td_verror(td, errno, "fread");
1367                 fclose(f);
1368                 return 1;
1369         }
1370         tmp[ret] = '\0';
1371         /*
1372          * either a list of io schedulers or "none\n" is expected. Strip the
1373          * trailing newline.
1374          */
1375         p = tmp;
1376         strsep(&p, "\n");
1377
1378         /*
1379          * Write to "none" entry doesn't fail, so check the result here.
1380          */
1381         if (!strcmp(tmp, "none")) {
1382                 log_err("fio: io scheduler is not tunable\n");
1383                 fclose(f);
1384                 return 0;
1385         }
1386
1387         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1388         if (!strstr(tmp, tmp2)) {
1389                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1390                 td_verror(td, EINVAL, "iosched_switch");
1391                 fclose(f);
1392                 return 1;
1393         }
1394
1395         fclose(f);
1396         return 0;
1397 #else
1398         return 0;
1399 #endif
1400 }
1401
1402 static bool keep_running(struct thread_data *td)
1403 {
1404         unsigned long long limit;
1405
1406         if (td->done)
1407                 return false;
1408         if (td->terminate)
1409                 return false;
1410         if (td->o.time_based)
1411                 return true;
1412         if (td->o.loops) {
1413                 td->o.loops--;
1414                 return true;
1415         }
1416         if (exceeds_number_ios(td))
1417                 return false;
1418
1419         if (td->o.io_size)
1420                 limit = td->o.io_size;
1421         else
1422                 limit = td->o.size;
1423
1424         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1425                 uint64_t diff;
1426
1427                 /*
1428                  * If the difference is less than the maximum IO size, we
1429                  * are done.
1430                  */
1431                 diff = limit - ddir_rw_sum(td->io_bytes);
1432                 if (diff < td_max_bs(td))
1433                         return false;
1434
1435                 if (fio_files_done(td) && !td->o.io_size)
1436                         return false;
1437
1438                 return true;
1439         }
1440
1441         return false;
1442 }
1443
1444 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1445 {
1446         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1447         int ret;
1448         char *str;
1449
1450         str = malloc(newlen);
1451         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1452
1453         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1454         ret = system(str);
1455         if (ret == -1)
1456                 log_err("fio: exec of cmd <%s> failed\n", str);
1457
1458         free(str);
1459         return ret;
1460 }
1461
1462 /*
1463  * Dry run to compute correct state of numberio for verification.
1464  */
1465 static uint64_t do_dry_run(struct thread_data *td)
1466 {
1467         td_set_runstate(td, TD_RUNNING);
1468
1469         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1470                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1471                 struct io_u *io_u;
1472                 int ret;
1473
1474                 if (td->terminate || td->done)
1475                         break;
1476
1477                 io_u = get_io_u(td);
1478                 if (IS_ERR_OR_NULL(io_u))
1479                         break;
1480
1481                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1482                 io_u->error = 0;
1483                 io_u->resid = 0;
1484                 if (ddir_rw(acct_ddir(io_u)))
1485                         td->io_issues[acct_ddir(io_u)]++;
1486                 if (ddir_rw(io_u->ddir)) {
1487                         io_u_mark_depth(td, 1);
1488                         td->ts.total_io_u[io_u->ddir]++;
1489                 }
1490
1491                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1492                     td->o.do_verify &&
1493                     td->o.verify != VERIFY_NONE &&
1494                     !td->o.experimental_verify)
1495                         log_io_piece(td, io_u);
1496
1497                 ret = io_u_sync_complete(td, io_u);
1498                 (void) ret;
1499         }
1500
1501         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1502 }
1503
1504 struct fork_data {
1505         struct thread_data *td;
1506         struct sk_out *sk_out;
1507 };
1508
1509 /*
1510  * Entry point for the thread based jobs. The process based jobs end up
1511  * here as well, after a little setup.
1512  */
1513 static void *thread_main(void *data)
1514 {
1515         struct fork_data *fd = data;
1516         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1517         struct thread_data *td = fd->td;
1518         struct thread_options *o = &td->o;
1519         struct sk_out *sk_out = fd->sk_out;
1520         uint64_t bytes_done[DDIR_RWDIR_CNT];
1521         int deadlock_loop_cnt;
1522         bool clear_state, did_some_io;
1523         int ret;
1524
1525         sk_out_assign(sk_out);
1526         free(fd);
1527
1528         if (!o->use_thread) {
1529                 setsid();
1530                 td->pid = getpid();
1531         } else
1532                 td->pid = gettid();
1533
1534         fio_local_clock_init(o->use_thread);
1535
1536         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1537
1538         if (is_backend)
1539                 fio_server_send_start(td);
1540
1541         INIT_FLIST_HEAD(&td->io_log_list);
1542         INIT_FLIST_HEAD(&td->io_hist_list);
1543         INIT_FLIST_HEAD(&td->verify_list);
1544         INIT_FLIST_HEAD(&td->trim_list);
1545         td->io_hist_tree = RB_ROOT;
1546
1547         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1548         if (ret) {
1549                 td_verror(td, ret, "mutex_cond_init_pshared");
1550                 goto err;
1551         }
1552         ret = cond_init_pshared(&td->verify_cond);
1553         if (ret) {
1554                 td_verror(td, ret, "mutex_cond_pshared");
1555                 goto err;
1556         }
1557
1558         td_set_runstate(td, TD_INITIALIZED);
1559         dprint(FD_MUTEX, "up startup_sem\n");
1560         fio_sem_up(startup_sem);
1561         dprint(FD_MUTEX, "wait on td->sem\n");
1562         fio_sem_down(td->sem);
1563         dprint(FD_MUTEX, "done waiting on td->sem\n");
1564
1565         /*
1566          * A new gid requires privilege, so we need to do this before setting
1567          * the uid.
1568          */
1569         if (o->gid != -1U && setgid(o->gid)) {
1570                 td_verror(td, errno, "setgid");
1571                 goto err;
1572         }
1573         if (o->uid != -1U && setuid(o->uid)) {
1574                 td_verror(td, errno, "setuid");
1575                 goto err;
1576         }
1577
1578         /*
1579          * Do this early, we don't want the compress threads to be limited
1580          * to the same CPUs as the IO workers. So do this before we set
1581          * any potential CPU affinity
1582          */
1583         if (iolog_compress_init(td, sk_out))
1584                 goto err;
1585
1586         /*
1587          * If we have a gettimeofday() thread, make sure we exclude that
1588          * thread from this job
1589          */
1590         if (o->gtod_cpu)
1591                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1592
1593         /*
1594          * Set affinity first, in case it has an impact on the memory
1595          * allocations.
1596          */
1597         if (fio_option_is_set(o, cpumask)) {
1598                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1599                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1600                         if (!ret) {
1601                                 log_err("fio: no CPUs set\n");
1602                                 log_err("fio: Try increasing number of available CPUs\n");
1603                                 td_verror(td, EINVAL, "cpus_split");
1604                                 goto err;
1605                         }
1606                 }
1607                 ret = fio_setaffinity(td->pid, o->cpumask);
1608                 if (ret == -1) {
1609                         td_verror(td, errno, "cpu_set_affinity");
1610                         goto err;
1611                 }
1612         }
1613
1614 #ifdef CONFIG_LIBNUMA
1615         /* numa node setup */
1616         if (fio_option_is_set(o, numa_cpunodes) ||
1617             fio_option_is_set(o, numa_memnodes)) {
1618                 struct bitmask *mask;
1619
1620                 if (numa_available() < 0) {
1621                         td_verror(td, errno, "Does not support NUMA API\n");
1622                         goto err;
1623                 }
1624
1625                 if (fio_option_is_set(o, numa_cpunodes)) {
1626                         mask = numa_parse_nodestring(o->numa_cpunodes);
1627                         ret = numa_run_on_node_mask(mask);
1628                         numa_free_nodemask(mask);
1629                         if (ret == -1) {
1630                                 td_verror(td, errno, \
1631                                         "numa_run_on_node_mask failed\n");
1632                                 goto err;
1633                         }
1634                 }
1635
1636                 if (fio_option_is_set(o, numa_memnodes)) {
1637                         mask = NULL;
1638                         if (o->numa_memnodes)
1639                                 mask = numa_parse_nodestring(o->numa_memnodes);
1640
1641                         switch (o->numa_mem_mode) {
1642                         case MPOL_INTERLEAVE:
1643                                 numa_set_interleave_mask(mask);
1644                                 break;
1645                         case MPOL_BIND:
1646                                 numa_set_membind(mask);
1647                                 break;
1648                         case MPOL_LOCAL:
1649                                 numa_set_localalloc();
1650                                 break;
1651                         case MPOL_PREFERRED:
1652                                 numa_set_preferred(o->numa_mem_prefer_node);
1653                                 break;
1654                         case MPOL_DEFAULT:
1655                         default:
1656                                 break;
1657                         }
1658
1659                         if (mask)
1660                                 numa_free_nodemask(mask);
1661
1662                 }
1663         }
1664 #endif
1665
1666         if (fio_pin_memory(td))
1667                 goto err;
1668
1669         /*
1670          * May alter parameters that init_io_u() will use, so we need to
1671          * do this first.
1672          */
1673         if (init_iolog(td))
1674                 goto err;
1675
1676         if (init_io_u(td))
1677                 goto err;
1678
1679         if (o->verify_async && verify_async_init(td))
1680                 goto err;
1681
1682         if (fio_option_is_set(o, ioprio) ||
1683             fio_option_is_set(o, ioprio_class)) {
1684                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1685                 if (ret == -1) {
1686                         td_verror(td, errno, "ioprio_set");
1687                         goto err;
1688                 }
1689         }
1690
1691         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1692                 goto err;
1693
1694         errno = 0;
1695         if (nice(o->nice) == -1 && errno != 0) {
1696                 td_verror(td, errno, "nice");
1697                 goto err;
1698         }
1699
1700         if (o->ioscheduler && switch_ioscheduler(td))
1701                 goto err;
1702
1703         if (!o->create_serialize && setup_files(td))
1704                 goto err;
1705
1706         if (td_io_init(td))
1707                 goto err;
1708
1709         if (!init_random_map(td))
1710                 goto err;
1711
1712         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1713                 goto err;
1714
1715         if (o->pre_read && !pre_read_files(td))
1716                 goto err;
1717
1718         fio_verify_init(td);
1719
1720         if (rate_submit_init(td, sk_out))
1721                 goto err;
1722
1723         set_epoch_time(td, o->log_unix_epoch);
1724         fio_getrusage(&td->ru_start);
1725         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1726         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1727         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1728
1729         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1730                         o->ratemin[DDIR_TRIM]) {
1731                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1732                                         sizeof(td->bw_sample_time));
1733                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1734                                         sizeof(td->bw_sample_time));
1735                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1736                                         sizeof(td->bw_sample_time));
1737         }
1738
1739         memset(bytes_done, 0, sizeof(bytes_done));
1740         clear_state = false;
1741         did_some_io = false;
1742
1743         while (keep_running(td)) {
1744                 uint64_t verify_bytes;
1745
1746                 fio_gettime(&td->start, NULL);
1747                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1748
1749                 if (clear_state) {
1750                         clear_io_state(td, 0);
1751
1752                         if (o->unlink_each_loop && unlink_all_files(td))
1753                                 break;
1754                 }
1755
1756                 prune_io_piece_log(td);
1757
1758                 if (td->o.verify_only && td_write(td))
1759                         verify_bytes = do_dry_run(td);
1760                 else {
1761                         do_io(td, bytes_done);
1762
1763                         if (!ddir_rw_sum(bytes_done)) {
1764                                 fio_mark_td_terminate(td);
1765                                 verify_bytes = 0;
1766                         } else {
1767                                 verify_bytes = bytes_done[DDIR_WRITE] +
1768                                                 bytes_done[DDIR_TRIM];
1769                         }
1770                 }
1771
1772                 /*
1773                  * If we took too long to shut down, the main thread could
1774                  * already consider us reaped/exited. If that happens, break
1775                  * out and clean up.
1776                  */
1777                 if (td->runstate >= TD_EXITED)
1778                         break;
1779
1780                 clear_state = true;
1781
1782                 /*
1783                  * Make sure we've successfully updated the rusage stats
1784                  * before waiting on the stat mutex. Otherwise we could have
1785                  * the stat thread holding stat mutex and waiting for
1786                  * the rusage_sem, which would never get upped because
1787                  * this thread is waiting for the stat mutex.
1788                  */
1789                 deadlock_loop_cnt = 0;
1790                 do {
1791                         check_update_rusage(td);
1792                         if (!fio_sem_down_trylock(stat_sem))
1793                                 break;
1794                         usleep(1000);
1795                         if (deadlock_loop_cnt++ > 5000) {
1796                                 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1797                                 td->error = EDEADLK;
1798                                 goto err;
1799                         }
1800                 } while (1);
1801
1802                 if (td_read(td) && td->io_bytes[DDIR_READ])
1803                         update_runtime(td, elapsed_us, DDIR_READ);
1804                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1805                         update_runtime(td, elapsed_us, DDIR_WRITE);
1806                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1807                         update_runtime(td, elapsed_us, DDIR_TRIM);
1808                 fio_gettime(&td->start, NULL);
1809                 fio_sem_up(stat_sem);
1810
1811                 if (td->error || td->terminate)
1812                         break;
1813
1814                 if (!o->do_verify ||
1815                     o->verify == VERIFY_NONE ||
1816                     td_ioengine_flagged(td, FIO_UNIDIR))
1817                         continue;
1818
1819                 if (ddir_rw_sum(bytes_done))
1820                         did_some_io = true;
1821
1822                 clear_io_state(td, 0);
1823
1824                 fio_gettime(&td->start, NULL);
1825
1826                 do_verify(td, verify_bytes);
1827
1828                 /*
1829                  * See comment further up for why this is done here.
1830                  */
1831                 check_update_rusage(td);
1832
1833                 fio_sem_down(stat_sem);
1834                 update_runtime(td, elapsed_us, DDIR_READ);
1835                 fio_gettime(&td->start, NULL);
1836                 fio_sem_up(stat_sem);
1837
1838                 if (td->error || td->terminate)
1839                         break;
1840         }
1841
1842         /*
1843          * If td ended up with no I/O when it should have had,
1844          * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1845          * (Are we not missing other flags that can be ignored ?)
1846          */
1847         if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1848             !did_some_io && !td->o.create_only &&
1849             !(td_ioengine_flagged(td, FIO_NOIO) ||
1850               td_ioengine_flagged(td, FIO_DISKLESSIO)))
1851                 log_err("%s: No I/O performed by %s, "
1852                          "perhaps try --debug=io option for details?\n",
1853                          td->o.name, td->io_ops->name);
1854
1855         td_set_runstate(td, TD_FINISHING);
1856
1857         update_rusage_stat(td);
1858         td->ts.total_run_time = mtime_since_now(&td->epoch);
1859         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1860         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1861         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1862
1863         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1864             (td->o.verify != VERIFY_NONE && td_write(td)))
1865                 verify_save_state(td->thread_number);
1866
1867         fio_unpin_memory(td);
1868
1869         td_writeout_logs(td, true);
1870
1871         iolog_compress_exit(td);
1872         rate_submit_exit(td);
1873
1874         if (o->exec_postrun)
1875                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1876
1877         if (exitall_on_terminate || (o->exitall_error && td->error))
1878                 fio_terminate_threads(td->groupid);
1879
1880 err:
1881         if (td->error)
1882                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1883                                                         td->verror);
1884
1885         if (o->verify_async)
1886                 verify_async_exit(td);
1887
1888         close_and_free_files(td);
1889         cleanup_io_u(td);
1890         close_ioengine(td);
1891         cgroup_shutdown(td, &cgroup_mnt);
1892         verify_free_state(td);
1893
1894         if (td->zone_state_index) {
1895                 int i;
1896
1897                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1898                         free(td->zone_state_index[i]);
1899                 free(td->zone_state_index);
1900                 td->zone_state_index = NULL;
1901         }
1902
1903         if (fio_option_is_set(o, cpumask)) {
1904                 ret = fio_cpuset_exit(&o->cpumask);
1905                 if (ret)
1906                         td_verror(td, ret, "fio_cpuset_exit");
1907         }
1908
1909         /*
1910          * do this very late, it will log file closing as well
1911          */
1912         if (o->write_iolog_file)
1913                 write_iolog_close(td);
1914
1915         td_set_runstate(td, TD_EXITED);
1916
1917         /*
1918          * Do this last after setting our runstate to exited, so we
1919          * know that the stat thread is signaled.
1920          */
1921         check_update_rusage(td);
1922
1923         sk_out_drop();
1924         return (void *) (uintptr_t) td->error;
1925 }
1926
1927 /*
1928  * Run over the job map and reap the threads that have exited, if any.
1929  */
1930 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1931                          uint64_t *m_rate)
1932 {
1933         struct thread_data *td;
1934         unsigned int cputhreads, realthreads, pending;
1935         int i, status, ret;
1936
1937         /*
1938          * reap exited threads (TD_EXITED -> TD_REAPED)
1939          */
1940         realthreads = pending = cputhreads = 0;
1941         for_each_td(td, i) {
1942                 int flags = 0;
1943
1944                  if (!strcmp(td->o.ioengine, "cpuio"))
1945                         cputhreads++;
1946                 else
1947                         realthreads++;
1948
1949                 if (!td->pid) {
1950                         pending++;
1951                         continue;
1952                 }
1953                 if (td->runstate == TD_REAPED)
1954                         continue;
1955                 if (td->o.use_thread) {
1956                         if (td->runstate == TD_EXITED) {
1957                                 td_set_runstate(td, TD_REAPED);
1958                                 goto reaped;
1959                         }
1960                         continue;
1961                 }
1962
1963                 flags = WNOHANG;
1964                 if (td->runstate == TD_EXITED)
1965                         flags = 0;
1966
1967                 /*
1968                  * check if someone quit or got killed in an unusual way
1969                  */
1970                 ret = waitpid(td->pid, &status, flags);
1971                 if (ret < 0) {
1972                         if (errno == ECHILD) {
1973                                 log_err("fio: pid=%d disappeared %d\n",
1974                                                 (int) td->pid, td->runstate);
1975                                 td->sig = ECHILD;
1976                                 td_set_runstate(td, TD_REAPED);
1977                                 goto reaped;
1978                         }
1979                         perror("waitpid");
1980                 } else if (ret == td->pid) {
1981                         if (WIFSIGNALED(status)) {
1982                                 int sig = WTERMSIG(status);
1983
1984                                 if (sig != SIGTERM && sig != SIGUSR2)
1985                                         log_err("fio: pid=%d, got signal=%d\n",
1986                                                         (int) td->pid, sig);
1987                                 td->sig = sig;
1988                                 td_set_runstate(td, TD_REAPED);
1989                                 goto reaped;
1990                         }
1991                         if (WIFEXITED(status)) {
1992                                 if (WEXITSTATUS(status) && !td->error)
1993                                         td->error = WEXITSTATUS(status);
1994
1995                                 td_set_runstate(td, TD_REAPED);
1996                                 goto reaped;
1997                         }
1998                 }
1999
2000                 /*
2001                  * If the job is stuck, do a forceful timeout of it and
2002                  * move on.
2003                  */
2004                 if (td->terminate &&
2005                     td->runstate < TD_FSYNCING &&
2006                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2007                         log_err("fio: job '%s' (state=%d) hasn't exited in "
2008                                 "%lu seconds, it appears to be stuck. Doing "
2009                                 "forceful exit of this job.\n",
2010                                 td->o.name, td->runstate,
2011                                 (unsigned long) time_since_now(&td->terminate_time));
2012                         td_set_runstate(td, TD_REAPED);
2013                         goto reaped;
2014                 }
2015
2016                 /*
2017                  * thread is not dead, continue
2018                  */
2019                 pending++;
2020                 continue;
2021 reaped:
2022                 (*nr_running)--;
2023                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2024                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2025                 if (!td->pid)
2026                         pending--;
2027
2028                 if (td->error)
2029                         exit_value++;
2030
2031                 done_secs += mtime_since_now(&td->epoch) / 1000;
2032                 profile_td_exit(td);
2033         }
2034
2035         if (*nr_running == cputhreads && !pending && realthreads)
2036                 fio_terminate_threads(TERMINATE_ALL);
2037 }
2038
2039 static bool __check_trigger_file(void)
2040 {
2041         struct stat sb;
2042
2043         if (!trigger_file)
2044                 return false;
2045
2046         if (stat(trigger_file, &sb))
2047                 return false;
2048
2049         if (unlink(trigger_file) < 0)
2050                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2051                                                         strerror(errno));
2052
2053         return true;
2054 }
2055
2056 static bool trigger_timedout(void)
2057 {
2058         if (trigger_timeout)
2059                 if (time_since_genesis() >= trigger_timeout) {
2060                         trigger_timeout = 0;
2061                         return true;
2062                 }
2063
2064         return false;
2065 }
2066
2067 void exec_trigger(const char *cmd)
2068 {
2069         int ret;
2070
2071         if (!cmd || cmd[0] == '\0')
2072                 return;
2073
2074         ret = system(cmd);
2075         if (ret == -1)
2076                 log_err("fio: failed executing %s trigger\n", cmd);
2077 }
2078
2079 void check_trigger_file(void)
2080 {
2081         if (__check_trigger_file() || trigger_timedout()) {
2082                 if (nr_clients)
2083                         fio_clients_send_trigger(trigger_remote_cmd);
2084                 else {
2085                         verify_save_state(IO_LIST_ALL);
2086                         fio_terminate_threads(TERMINATE_ALL);
2087                         exec_trigger(trigger_cmd);
2088                 }
2089         }
2090 }
2091
2092 static int fio_verify_load_state(struct thread_data *td)
2093 {
2094         int ret;
2095
2096         if (!td->o.verify_state)
2097                 return 0;
2098
2099         if (is_backend) {
2100                 void *data;
2101
2102                 ret = fio_server_get_verify_state(td->o.name,
2103                                         td->thread_number - 1, &data);
2104                 if (!ret)
2105                         verify_assign_state(td, data);
2106         } else
2107                 ret = verify_load_state(td, "local");
2108
2109         return ret;
2110 }
2111
2112 static void do_usleep(unsigned int usecs)
2113 {
2114         check_for_running_stats();
2115         check_trigger_file();
2116         usleep(usecs);
2117 }
2118
2119 static bool check_mount_writes(struct thread_data *td)
2120 {
2121         struct fio_file *f;
2122         unsigned int i;
2123
2124         if (!td_write(td) || td->o.allow_mounted_write)
2125                 return false;
2126
2127         /*
2128          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2129          * are mkfs'd and mounted.
2130          */
2131         for_each_file(td, f, i) {
2132 #ifdef FIO_HAVE_CHARDEV_SIZE
2133                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2134 #else
2135                 if (f->filetype != FIO_TYPE_BLOCK)
2136 #endif
2137                         continue;
2138                 if (device_is_mounted(f->file_name))
2139                         goto mounted;
2140         }
2141
2142         return false;
2143 mounted:
2144         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2145         return true;
2146 }
2147
2148 static bool waitee_running(struct thread_data *me)
2149 {
2150         const char *waitee = me->o.wait_for;
2151         const char *self = me->o.name;
2152         struct thread_data *td;
2153         int i;
2154
2155         if (!waitee)
2156                 return false;
2157
2158         for_each_td(td, i) {
2159                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2160                         continue;
2161
2162                 if (td->runstate < TD_EXITED) {
2163                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2164                                         self, td->o.name,
2165                                         runstate_to_name(td->runstate));
2166                         return true;
2167                 }
2168         }
2169
2170         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2171         return false;
2172 }
2173
2174 /*
2175  * Main function for kicking off and reaping jobs, as needed.
2176  */
2177 static void run_threads(struct sk_out *sk_out)
2178 {
2179         struct thread_data *td;
2180         unsigned int i, todo, nr_running, nr_started;
2181         uint64_t m_rate, t_rate;
2182         uint64_t spent;
2183
2184         if (fio_gtod_offload && fio_start_gtod_thread())
2185                 return;
2186
2187         fio_idle_prof_init();
2188
2189         set_sig_handlers();
2190
2191         nr_thread = nr_process = 0;
2192         for_each_td(td, i) {
2193                 if (check_mount_writes(td))
2194                         return;
2195                 if (td->o.use_thread)
2196                         nr_thread++;
2197                 else
2198                         nr_process++;
2199         }
2200
2201         if (output_format & FIO_OUTPUT_NORMAL) {
2202                 log_info("Starting ");
2203                 if (nr_thread)
2204                         log_info("%d thread%s", nr_thread,
2205                                                 nr_thread > 1 ? "s" : "");
2206                 if (nr_process) {
2207                         if (nr_thread)
2208                                 log_info(" and ");
2209                         log_info("%d process%s", nr_process,
2210                                                 nr_process > 1 ? "es" : "");
2211                 }
2212                 log_info("\n");
2213                 log_info_flush();
2214         }
2215
2216         todo = thread_number;
2217         nr_running = 0;
2218         nr_started = 0;
2219         m_rate = t_rate = 0;
2220
2221         for_each_td(td, i) {
2222                 print_status_init(td->thread_number - 1);
2223
2224                 if (!td->o.create_serialize)
2225                         continue;
2226
2227                 if (fio_verify_load_state(td))
2228                         goto reap;
2229
2230                 /*
2231                  * do file setup here so it happens sequentially,
2232                  * we don't want X number of threads getting their
2233                  * client data interspersed on disk
2234                  */
2235                 if (setup_files(td)) {
2236 reap:
2237                         exit_value++;
2238                         if (td->error)
2239                                 log_err("fio: pid=%d, err=%d/%s\n",
2240                                         (int) td->pid, td->error, td->verror);
2241                         td_set_runstate(td, TD_REAPED);
2242                         todo--;
2243                 } else {
2244                         struct fio_file *f;
2245                         unsigned int j;
2246
2247                         /*
2248                          * for sharing to work, each job must always open
2249                          * its own files. so close them, if we opened them
2250                          * for creation
2251                          */
2252                         for_each_file(td, f, j) {
2253                                 if (fio_file_open(f))
2254                                         td_io_close_file(td, f);
2255                         }
2256                 }
2257         }
2258
2259         /* start idle threads before io threads start to run */
2260         fio_idle_prof_start();
2261
2262         set_genesis_time();
2263
2264         while (todo) {
2265                 struct thread_data *map[REAL_MAX_JOBS];
2266                 struct timespec this_start;
2267                 int this_jobs = 0, left;
2268                 struct fork_data *fd;
2269
2270                 /*
2271                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2272                  */
2273                 for_each_td(td, i) {
2274                         if (td->runstate != TD_NOT_CREATED)
2275                                 continue;
2276
2277                         /*
2278                          * never got a chance to start, killed by other
2279                          * thread for some reason
2280                          */
2281                         if (td->terminate) {
2282                                 todo--;
2283                                 continue;
2284                         }
2285
2286                         if (td->o.start_delay) {
2287                                 spent = utime_since_genesis();
2288
2289                                 if (td->o.start_delay > spent)
2290                                         continue;
2291                         }
2292
2293                         if (td->o.stonewall && (nr_started || nr_running)) {
2294                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2295                                                         td->o.name);
2296                                 break;
2297                         }
2298
2299                         if (waitee_running(td)) {
2300                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2301                                                 td->o.name, td->o.wait_for);
2302                                 continue;
2303                         }
2304
2305                         init_disk_util(td);
2306
2307                         td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2308                         td->update_rusage = 0;
2309
2310                         /*
2311                          * Set state to created. Thread will transition
2312                          * to TD_INITIALIZED when it's done setting up.
2313                          */
2314                         td_set_runstate(td, TD_CREATED);
2315                         map[this_jobs++] = td;
2316                         nr_started++;
2317
2318                         fd = calloc(1, sizeof(*fd));
2319                         fd->td = td;
2320                         fd->sk_out = sk_out;
2321
2322                         if (td->o.use_thread) {
2323                                 int ret;
2324
2325                                 dprint(FD_PROCESS, "will pthread_create\n");
2326                                 ret = pthread_create(&td->thread, NULL,
2327                                                         thread_main, fd);
2328                                 if (ret) {
2329                                         log_err("pthread_create: %s\n",
2330                                                         strerror(ret));
2331                                         free(fd);
2332                                         nr_started--;
2333                                         break;
2334                                 }
2335                                 fd = NULL;
2336                                 ret = pthread_detach(td->thread);
2337                                 if (ret)
2338                                         log_err("pthread_detach: %s",
2339                                                         strerror(ret));
2340                         } else {
2341                                 pid_t pid;
2342                                 dprint(FD_PROCESS, "will fork\n");
2343                                 pid = fork();
2344                                 if (!pid) {
2345                                         int ret;
2346
2347                                         ret = (int)(uintptr_t)thread_main(fd);
2348                                         _exit(ret);
2349                                 } else if (i == fio_debug_jobno)
2350                                         *fio_debug_jobp = pid;
2351                         }
2352                         dprint(FD_MUTEX, "wait on startup_sem\n");
2353                         if (fio_sem_down_timeout(startup_sem, 10000)) {
2354                                 log_err("fio: job startup hung? exiting.\n");
2355                                 fio_terminate_threads(TERMINATE_ALL);
2356                                 fio_abort = 1;
2357                                 nr_started--;
2358                                 free(fd);
2359                                 break;
2360                         }
2361                         dprint(FD_MUTEX, "done waiting on startup_sem\n");
2362                 }
2363
2364                 /*
2365                  * Wait for the started threads to transition to
2366                  * TD_INITIALIZED.
2367                  */
2368                 fio_gettime(&this_start, NULL);
2369                 left = this_jobs;
2370                 while (left && !fio_abort) {
2371                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2372                                 break;
2373
2374                         do_usleep(100000);
2375
2376                         for (i = 0; i < this_jobs; i++) {
2377                                 td = map[i];
2378                                 if (!td)
2379                                         continue;
2380                                 if (td->runstate == TD_INITIALIZED) {
2381                                         map[i] = NULL;
2382                                         left--;
2383                                 } else if (td->runstate >= TD_EXITED) {
2384                                         map[i] = NULL;
2385                                         left--;
2386                                         todo--;
2387                                         nr_running++; /* work-around... */
2388                                 }
2389                         }
2390                 }
2391
2392                 if (left) {
2393                         log_err("fio: %d job%s failed to start\n", left,
2394                                         left > 1 ? "s" : "");
2395                         for (i = 0; i < this_jobs; i++) {
2396                                 td = map[i];
2397                                 if (!td)
2398                                         continue;
2399                                 kill(td->pid, SIGTERM);
2400                         }
2401                         break;
2402                 }
2403
2404                 /*
2405                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2406                  */
2407                 for_each_td(td, i) {
2408                         if (td->runstate != TD_INITIALIZED)
2409                                 continue;
2410
2411                         if (in_ramp_time(td))
2412                                 td_set_runstate(td, TD_RAMP);
2413                         else
2414                                 td_set_runstate(td, TD_RUNNING);
2415                         nr_running++;
2416                         nr_started--;
2417                         m_rate += ddir_rw_sum(td->o.ratemin);
2418                         t_rate += ddir_rw_sum(td->o.rate);
2419                         todo--;
2420                         fio_sem_up(td->sem);
2421                 }
2422
2423                 reap_threads(&nr_running, &t_rate, &m_rate);
2424
2425                 if (todo)
2426                         do_usleep(100000);
2427         }
2428
2429         while (nr_running) {
2430                 reap_threads(&nr_running, &t_rate, &m_rate);
2431                 do_usleep(10000);
2432         }
2433
2434         fio_idle_prof_stop();
2435
2436         update_io_ticks();
2437 }
2438
2439 static void free_disk_util(void)
2440 {
2441         disk_util_prune_entries();
2442         helper_thread_destroy();
2443 }
2444
2445 int fio_backend(struct sk_out *sk_out)
2446 {
2447         struct thread_data *td;
2448         int i;
2449
2450         if (exec_profile) {
2451                 if (load_profile(exec_profile))
2452                         return 1;
2453                 free(exec_profile);
2454                 exec_profile = NULL;
2455         }
2456         if (!thread_number)
2457                 return 0;
2458
2459         if (write_bw_log) {
2460                 struct log_params p = {
2461                         .log_type = IO_LOG_TYPE_BW,
2462                 };
2463
2464                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2465                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2466                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2467         }
2468
2469         startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2470         if (startup_sem == NULL)
2471                 return 1;
2472
2473         set_genesis_time();
2474         stat_init();
2475         helper_thread_create(startup_sem, sk_out);
2476
2477         cgroup_list = smalloc(sizeof(*cgroup_list));
2478         if (cgroup_list)
2479                 INIT_FLIST_HEAD(cgroup_list);
2480
2481         run_threads(sk_out);
2482
2483         helper_thread_exit();
2484
2485         if (!fio_abort) {
2486                 __show_run_stats();
2487                 if (write_bw_log) {
2488                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2489                                 struct io_log *log = agg_io_log[i];
2490
2491                                 flush_log(log, false);
2492                                 free_log(log);
2493                         }
2494                 }
2495         }
2496
2497         for_each_td(td, i) {
2498                 steadystate_free(td);
2499                 fio_options_free(td);
2500                 if (td->rusage_sem) {
2501                         fio_sem_remove(td->rusage_sem);
2502                         td->rusage_sem = NULL;
2503                 }
2504                 fio_sem_remove(td->sem);
2505                 td->sem = NULL;
2506         }
2507
2508         free_disk_util();
2509         if (cgroup_list) {
2510                 cgroup_kill(cgroup_list);
2511                 sfree(cgroup_list);
2512         }
2513         sfree(cgroup_mnt);
2514
2515         fio_sem_remove(startup_sem);
2516         stat_exit();
2517         return exit_value;
2518 }