Run the gluster engines through indent
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38
39 #include "fio.h"
40 #ifndef FIO_NO_HAVE_SHM_H
41 #include <sys/shm.h>
42 #endif
43 #include "hash.h"
44 #include "smalloc.h"
45 #include "verify.h"
46 #include "trim.h"
47 #include "diskutil.h"
48 #include "cgroup.h"
49 #include "profile.h"
50 #include "lib/rand.h"
51 #include "memalign.h"
52 #include "server.h"
53 #include "lib/getrusage.h"
54 #include "idletime.h"
55 #include "err.h"
56
57 static pthread_t disk_util_thread;
58 static struct fio_mutex *disk_thread_mutex;
59 static struct fio_mutex *startup_mutex;
60 static struct flist_head *cgroup_list;
61 static char *cgroup_mnt;
62 static int exit_value;
63 static volatile int fio_abort;
64 static unsigned int nr_process = 0;
65 static unsigned int nr_thread = 0;
66
67 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69 int groupid = 0;
70 unsigned int thread_number = 0;
71 unsigned int stat_number = 0;
72 int shm_id = 0;
73 int temp_stall_ts;
74 unsigned long done_secs = 0;
75 volatile int disk_util_exit = 0;
76
77 #define PAGE_ALIGN(buf) \
78         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80 #define JOB_START_TIMEOUT       (5 * 1000)
81
82 static void sig_int(int sig)
83 {
84         if (threads) {
85                 if (is_backend)
86                         fio_server_got_signal(sig);
87                 else {
88                         log_info("\nfio: terminating on signal %d\n", sig);
89                         fflush(stdout);
90                         exit_value = 128;
91                 }
92
93                 fio_terminate_threads(TERMINATE_ALL);
94         }
95 }
96
97 static void sig_show_status(int sig)
98 {
99         show_running_run_stats();
100 }
101
102 static void set_sig_handlers(void)
103 {
104         struct sigaction act;
105
106         memset(&act, 0, sizeof(act));
107         act.sa_handler = sig_int;
108         act.sa_flags = SA_RESTART;
109         sigaction(SIGINT, &act, NULL);
110
111         memset(&act, 0, sizeof(act));
112         act.sa_handler = sig_int;
113         act.sa_flags = SA_RESTART;
114         sigaction(SIGTERM, &act, NULL);
115
116 /* Windows uses SIGBREAK as a quit signal from other applications */
117 #ifdef WIN32
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_int;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGBREAK, &act, NULL);
122 #endif
123
124         memset(&act, 0, sizeof(act));
125         act.sa_handler = sig_show_status;
126         act.sa_flags = SA_RESTART;
127         sigaction(SIGUSR1, &act, NULL);
128
129         if (is_backend) {
130                 memset(&act, 0, sizeof(act));
131                 act.sa_handler = sig_int;
132                 act.sa_flags = SA_RESTART;
133                 sigaction(SIGPIPE, &act, NULL);
134         }
135 }
136
137 /*
138  * Check if we are above the minimum rate given.
139  */
140 static int __check_min_rate(struct thread_data *td, struct timeval *now,
141                             enum fio_ddir ddir)
142 {
143         unsigned long long bytes = 0;
144         unsigned long iops = 0;
145         unsigned long spent;
146         unsigned long rate;
147         unsigned int ratemin = 0;
148         unsigned int rate_iops = 0;
149         unsigned int rate_iops_min = 0;
150
151         assert(ddir_rw(ddir));
152
153         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154                 return 0;
155
156         /*
157          * allow a 2 second settle period in the beginning
158          */
159         if (mtime_since(&td->start, now) < 2000)
160                 return 0;
161
162         iops += td->this_io_blocks[ddir];
163         bytes += td->this_io_bytes[ddir];
164         ratemin += td->o.ratemin[ddir];
165         rate_iops += td->o.rate_iops[ddir];
166         rate_iops_min += td->o.rate_iops_min[ddir];
167
168         /*
169          * if rate blocks is set, sample is running
170          */
171         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172                 spent = mtime_since(&td->lastrate[ddir], now);
173                 if (spent < td->o.ratecycle)
174                         return 0;
175
176                 if (td->o.rate[ddir]) {
177                         /*
178                          * check bandwidth specified rate
179                          */
180                         if (bytes < td->rate_bytes[ddir]) {
181                                 log_err("%s: min rate %u not met\n", td->o.name,
182                                                                 ratemin);
183                                 return 1;
184                         } else {
185                                 if (spent)
186                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
187                                 else
188                                         rate = 0;
189
190                                 if (rate < ratemin ||
191                                     bytes < td->rate_bytes[ddir]) {
192                                         log_err("%s: min rate %u not met, got"
193                                                 " %luKB/sec\n", td->o.name,
194                                                         ratemin, rate);
195                                         return 1;
196                                 }
197                         }
198                 } else {
199                         /*
200                          * checks iops specified rate
201                          */
202                         if (iops < rate_iops) {
203                                 log_err("%s: min iops rate %u not met\n",
204                                                 td->o.name, rate_iops);
205                                 return 1;
206                         } else {
207                                 if (spent)
208                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
209                                 else
210                                         rate = 0;
211
212                                 if (rate < rate_iops_min ||
213                                     iops < td->rate_blocks[ddir]) {
214                                         log_err("%s: min iops rate %u not met,"
215                                                 " got %lu\n", td->o.name,
216                                                         rate_iops_min, rate);
217                                 }
218                         }
219                 }
220         }
221
222         td->rate_bytes[ddir] = bytes;
223         td->rate_blocks[ddir] = iops;
224         memcpy(&td->lastrate[ddir], now, sizeof(*now));
225         return 0;
226 }
227
228 static int check_min_rate(struct thread_data *td, struct timeval *now,
229                           uint64_t *bytes_done)
230 {
231         int ret = 0;
232
233         if (bytes_done[DDIR_READ])
234                 ret |= __check_min_rate(td, now, DDIR_READ);
235         if (bytes_done[DDIR_WRITE])
236                 ret |= __check_min_rate(td, now, DDIR_WRITE);
237         if (bytes_done[DDIR_TRIM])
238                 ret |= __check_min_rate(td, now, DDIR_TRIM);
239
240         return ret;
241 }
242
243 /*
244  * When job exits, we can cancel the in-flight IO if we are using async
245  * io. Attempt to do so.
246  */
247 static void cleanup_pending_aio(struct thread_data *td)
248 {
249         int r;
250
251         /*
252          * get immediately available events, if any
253          */
254         r = io_u_queued_complete(td, 0, NULL);
255         if (r < 0)
256                 return;
257
258         /*
259          * now cancel remaining active events
260          */
261         if (td->io_ops->cancel) {
262                 struct io_u *io_u;
263                 int i;
264
265                 io_u_qiter(&td->io_u_all, io_u, i) {
266                         if (io_u->flags & IO_U_F_FLIGHT) {
267                                 r = td->io_ops->cancel(td, io_u);
268                                 if (!r)
269                                         put_io_u(td, io_u);
270                         }
271                 }
272         }
273
274         if (td->cur_depth)
275                 r = io_u_queued_complete(td, td->cur_depth, NULL);
276 }
277
278 /*
279  * Helper to handle the final sync of a file. Works just like the normal
280  * io path, just does everything sync.
281  */
282 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
283 {
284         struct io_u *io_u = __get_io_u(td);
285         int ret;
286
287         if (!io_u)
288                 return 1;
289
290         io_u->ddir = DDIR_SYNC;
291         io_u->file = f;
292
293         if (td_io_prep(td, io_u)) {
294                 put_io_u(td, io_u);
295                 return 1;
296         }
297
298 requeue:
299         ret = td_io_queue(td, io_u);
300         if (ret < 0) {
301                 td_verror(td, io_u->error, "td_io_queue");
302                 put_io_u(td, io_u);
303                 return 1;
304         } else if (ret == FIO_Q_QUEUED) {
305                 if (io_u_queued_complete(td, 1, NULL) < 0)
306                         return 1;
307         } else if (ret == FIO_Q_COMPLETED) {
308                 if (io_u->error) {
309                         td_verror(td, io_u->error, "td_io_queue");
310                         return 1;
311                 }
312
313                 if (io_u_sync_complete(td, io_u, NULL) < 0)
314                         return 1;
315         } else if (ret == FIO_Q_BUSY) {
316                 if (td_io_commit(td))
317                         return 1;
318                 goto requeue;
319         }
320
321         return 0;
322 }
323
324 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
325 {
326         int ret;
327
328         if (fio_file_open(f))
329                 return fio_io_sync(td, f);
330
331         if (td_io_open_file(td, f))
332                 return 1;
333
334         ret = fio_io_sync(td, f);
335         td_io_close_file(td, f);
336         return ret;
337 }
338
339 static inline void __update_tv_cache(struct thread_data *td)
340 {
341         fio_gettime(&td->tv_cache, NULL);
342 }
343
344 static inline void update_tv_cache(struct thread_data *td)
345 {
346         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
347                 __update_tv_cache(td);
348 }
349
350 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
351 {
352         if (in_ramp_time(td))
353                 return 0;
354         if (!td->o.timeout)
355                 return 0;
356         if (utime_since(&td->epoch, t) >= td->o.timeout)
357                 return 1;
358
359         return 0;
360 }
361
362 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
363                                int *retptr)
364 {
365         int ret = *retptr;
366
367         if (ret < 0 || td->error) {
368                 int err = td->error;
369                 enum error_type_bit eb;
370
371                 if (ret < 0)
372                         err = -ret;
373
374                 eb = td_error_type(ddir, err);
375                 if (!(td->o.continue_on_error & (1 << eb)))
376                         return 1;
377
378                 if (td_non_fatal_error(td, eb, err)) {
379                         /*
380                          * Continue with the I/Os in case of
381                          * a non fatal error.
382                          */
383                         update_error_count(td, err);
384                         td_clear_error(td);
385                         *retptr = 0;
386                         return 0;
387                 } else if (td->o.fill_device && err == ENOSPC) {
388                         /*
389                          * We expect to hit this error if
390                          * fill_device option is set.
391                          */
392                         td_clear_error(td);
393                         td->terminate = 1;
394                         return 1;
395                 } else {
396                         /*
397                          * Stop the I/O in case of a fatal
398                          * error.
399                          */
400                         update_error_count(td, err);
401                         return 1;
402                 }
403         }
404
405         return 0;
406 }
407
408 static void check_update_rusage(struct thread_data *td)
409 {
410         if (td->update_rusage) {
411                 td->update_rusage = 0;
412                 update_rusage_stat(td);
413                 fio_mutex_up(td->rusage_sem);
414         }
415 }
416
417 /*
418  * The main verify engine. Runs over the writes we previously submitted,
419  * reads the blocks back in, and checks the crc/md5 of the data.
420  */
421 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
422 {
423         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
424         struct fio_file *f;
425         struct io_u *io_u;
426         int ret, min_events;
427         unsigned int i;
428
429         dprint(FD_VERIFY, "starting loop\n");
430
431         /*
432          * sync io first and invalidate cache, to make sure we really
433          * read from disk.
434          */
435         for_each_file(td, f, i) {
436                 if (!fio_file_open(f))
437                         continue;
438                 if (fio_io_sync(td, f))
439                         break;
440                 if (file_invalidate_cache(td, f))
441                         break;
442         }
443
444         check_update_rusage(td);
445
446         if (td->error)
447                 return;
448
449         td_set_runstate(td, TD_VERIFYING);
450
451         io_u = NULL;
452         while (!td->terminate) {
453                 enum fio_ddir ddir;
454                 int ret2, full;
455
456                 update_tv_cache(td);
457                 check_update_rusage(td);
458
459                 if (runtime_exceeded(td, &td->tv_cache)) {
460                         __update_tv_cache(td);
461                         if (runtime_exceeded(td, &td->tv_cache)) {
462                                 td->terminate = 1;
463                                 break;
464                         }
465                 }
466
467                 if (flow_threshold_exceeded(td))
468                         continue;
469
470                 if (!td->o.experimental_verify) {
471                         io_u = __get_io_u(td);
472                         if (!io_u)
473                                 break;
474
475                         if (get_next_verify(td, io_u)) {
476                                 put_io_u(td, io_u);
477                                 break;
478                         }
479
480                         if (td_io_prep(td, io_u)) {
481                                 put_io_u(td, io_u);
482                                 break;
483                         }
484                 } else {
485                         if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
486                                 break;
487
488                         while ((io_u = get_io_u(td)) != NULL) {
489                                 if (IS_ERR(io_u)) {
490                                         io_u = NULL;
491                                         ret = FIO_Q_BUSY;
492                                         goto reap;
493                                 }
494
495                                 /*
496                                  * We are only interested in the places where
497                                  * we wrote or trimmed IOs. Turn those into
498                                  * reads for verification purposes.
499                                  */
500                                 if (io_u->ddir == DDIR_READ) {
501                                         /*
502                                          * Pretend we issued it for rwmix
503                                          * accounting
504                                          */
505                                         td->io_issues[DDIR_READ]++;
506                                         put_io_u(td, io_u);
507                                         continue;
508                                 } else if (io_u->ddir == DDIR_TRIM) {
509                                         io_u->ddir = DDIR_READ;
510                                         io_u->flags |= IO_U_F_TRIMMED;
511                                         break;
512                                 } else if (io_u->ddir == DDIR_WRITE) {
513                                         io_u->ddir = DDIR_READ;
514                                         break;
515                                 } else {
516                                         put_io_u(td, io_u);
517                                         continue;
518                                 }
519                         }
520
521                         if (!io_u)
522                                 break;
523                 }
524
525                 if (td->o.verify_async)
526                         io_u->end_io = verify_io_u_async;
527                 else
528                         io_u->end_io = verify_io_u;
529
530                 ddir = io_u->ddir;
531
532                 ret = td_io_queue(td, io_u);
533                 switch (ret) {
534                 case FIO_Q_COMPLETED:
535                         if (io_u->error) {
536                                 ret = -io_u->error;
537                                 clear_io_u(td, io_u);
538                         } else if (io_u->resid) {
539                                 int bytes = io_u->xfer_buflen - io_u->resid;
540
541                                 /*
542                                  * zero read, fail
543                                  */
544                                 if (!bytes) {
545                                         td_verror(td, EIO, "full resid");
546                                         put_io_u(td, io_u);
547                                         break;
548                                 }
549
550                                 io_u->xfer_buflen = io_u->resid;
551                                 io_u->xfer_buf += bytes;
552                                 io_u->offset += bytes;
553
554                                 if (ddir_rw(io_u->ddir))
555                                         td->ts.short_io_u[io_u->ddir]++;
556
557                                 f = io_u->file;
558                                 if (io_u->offset == f->real_file_size)
559                                         goto sync_done;
560
561                                 requeue_io_u(td, &io_u);
562                         } else {
563 sync_done:
564                                 ret = io_u_sync_complete(td, io_u, bytes_done);
565                                 if (ret < 0)
566                                         break;
567                         }
568                         continue;
569                 case FIO_Q_QUEUED:
570                         break;
571                 case FIO_Q_BUSY:
572                         requeue_io_u(td, &io_u);
573                         ret2 = td_io_commit(td);
574                         if (ret2 < 0)
575                                 ret = ret2;
576                         break;
577                 default:
578                         assert(ret < 0);
579                         td_verror(td, -ret, "td_io_queue");
580                         break;
581                 }
582
583                 if (break_on_this_error(td, ddir, &ret))
584                         break;
585
586                 /*
587                  * if we can queue more, do so. but check if there are
588                  * completed io_u's first. Note that we can get BUSY even
589                  * without IO queued, if the system is resource starved.
590                  */
591 reap:
592                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
593                 if (full || !td->o.iodepth_batch_complete) {
594                         min_events = min(td->o.iodepth_batch_complete,
595                                          td->cur_depth);
596                         /*
597                          * if the queue is full, we MUST reap at least 1 event
598                          */
599                         if (full && !min_events)
600                                 min_events = 1;
601
602                         do {
603                                 /*
604                                  * Reap required number of io units, if any,
605                                  * and do the verification on them through
606                                  * the callback handler
607                                  */
608                                 if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
609                                         ret = -1;
610                                         break;
611                                 }
612                         } while (full && (td->cur_depth > td->o.iodepth_low));
613                 }
614                 if (ret < 0)
615                         break;
616         }
617
618         check_update_rusage(td);
619
620         if (!td->error) {
621                 min_events = td->cur_depth;
622
623                 if (min_events)
624                         ret = io_u_queued_complete(td, min_events, NULL);
625         } else
626                 cleanup_pending_aio(td);
627
628         td_set_runstate(td, TD_RUNNING);
629
630         dprint(FD_VERIFY, "exiting loop\n");
631 }
632
633 static unsigned int exceeds_number_ios(struct thread_data *td)
634 {
635         unsigned long long number_ios;
636
637         if (!td->o.number_ios)
638                 return 0;
639
640         number_ios = ddir_rw_sum(td->this_io_blocks);
641         number_ios += td->io_u_queued + td->io_u_in_flight;
642
643         return number_ios >= td->o.number_ios;
644 }
645
646 static int io_bytes_exceeded(struct thread_data *td)
647 {
648         unsigned long long bytes, limit;
649
650         if (td_rw(td))
651                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
652         else if (td_write(td))
653                 bytes = td->this_io_bytes[DDIR_WRITE];
654         else if (td_read(td))
655                 bytes = td->this_io_bytes[DDIR_READ];
656         else
657                 bytes = td->this_io_bytes[DDIR_TRIM];
658
659         if (td->o.io_limit)
660                 limit = td->o.io_limit;
661         else
662                 limit = td->o.size;
663
664         return bytes >= limit || exceeds_number_ios(td);
665 }
666
667 /*
668  * Main IO worker function. It retrieves io_u's to process and queues
669  * and reaps them, checking for rate and errors along the way.
670  *
671  * Returns number of bytes written and trimmed.
672  */
673 static uint64_t do_io(struct thread_data *td)
674 {
675         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
676         unsigned int i;
677         int ret = 0;
678         uint64_t total_bytes, bytes_issued = 0;
679
680         if (in_ramp_time(td))
681                 td_set_runstate(td, TD_RAMP);
682         else
683                 td_set_runstate(td, TD_RUNNING);
684
685         lat_target_init(td);
686
687         /*
688          * If verify_backlog is enabled, we'll run the verify in this
689          * handler as well. For that case, we may need up to twice the
690          * amount of bytes.
691          */
692         total_bytes = td->o.size;
693         if (td->o.verify != VERIFY_NONE &&
694            (td_write(td) && td->o.verify_backlog))
695                 total_bytes += td->o.size;
696
697         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
698                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
699                 td->o.time_based) {
700                 struct timeval comp_time;
701                 int min_evts = 0;
702                 struct io_u *io_u;
703                 int ret2, full;
704                 enum fio_ddir ddir;
705
706                 check_update_rusage(td);
707
708                 if (td->terminate || td->done)
709                         break;
710
711                 update_tv_cache(td);
712
713                 if (runtime_exceeded(td, &td->tv_cache)) {
714                         __update_tv_cache(td);
715                         if (runtime_exceeded(td, &td->tv_cache)) {
716                                 td->terminate = 1;
717                                 break;
718                         }
719                 }
720
721                 if (flow_threshold_exceeded(td))
722                         continue;
723
724                 if (bytes_issued >= total_bytes)
725                         break;
726
727                 io_u = get_io_u(td);
728                 if (IS_ERR_OR_NULL(io_u)) {
729                         int err = PTR_ERR(io_u);
730
731                         io_u = NULL;
732                         if (err == -EBUSY) {
733                                 ret = FIO_Q_BUSY;
734                                 goto reap;
735                         }
736                         if (td->o.latency_target)
737                                 goto reap;
738                         break;
739                 }
740
741                 ddir = io_u->ddir;
742
743                 /*
744                  * Add verification end_io handler if:
745                  *      - Asked to verify (!td_rw(td))
746                  *      - Or the io_u is from our verify list (mixed write/ver)
747                  */
748                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
749                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
750
751                         if (!td->o.verify_pattern_bytes) {
752                                 io_u->rand_seed = __rand(&td->__verify_state);
753                                 if (sizeof(int) != sizeof(long *))
754                                         io_u->rand_seed *= __rand(&td->__verify_state);
755                         }
756
757                         if (td->o.verify_async)
758                                 io_u->end_io = verify_io_u_async;
759                         else
760                                 io_u->end_io = verify_io_u;
761                         td_set_runstate(td, TD_VERIFYING);
762                 } else if (in_ramp_time(td))
763                         td_set_runstate(td, TD_RAMP);
764                 else
765                         td_set_runstate(td, TD_RUNNING);
766
767                 /*
768                  * Always log IO before it's issued, so we know the specific
769                  * order of it. The logged unit will track when the IO has
770                  * completed.
771                  */
772                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
773                     td->o.do_verify &&
774                     td->o.verify != VERIFY_NONE &&
775                     !td->o.experimental_verify)
776                         log_io_piece(td, io_u);
777
778                 ret = td_io_queue(td, io_u);
779                 switch (ret) {
780                 case FIO_Q_COMPLETED:
781                         if (io_u->error) {
782                                 ret = -io_u->error;
783                                 unlog_io_piece(td, io_u);
784                                 clear_io_u(td, io_u);
785                         } else if (io_u->resid) {
786                                 int bytes = io_u->xfer_buflen - io_u->resid;
787                                 struct fio_file *f = io_u->file;
788
789                                 bytes_issued += bytes;
790
791                                 trim_io_piece(td, io_u);
792
793                                 /*
794                                  * zero read, fail
795                                  */
796                                 if (!bytes) {
797                                         unlog_io_piece(td, io_u);
798                                         td_verror(td, EIO, "full resid");
799                                         put_io_u(td, io_u);
800                                         break;
801                                 }
802
803                                 io_u->xfer_buflen = io_u->resid;
804                                 io_u->xfer_buf += bytes;
805                                 io_u->offset += bytes;
806
807                                 if (ddir_rw(io_u->ddir))
808                                         td->ts.short_io_u[io_u->ddir]++;
809
810                                 if (io_u->offset == f->real_file_size)
811                                         goto sync_done;
812
813                                 requeue_io_u(td, &io_u);
814                         } else {
815 sync_done:
816                                 if (__should_check_rate(td, DDIR_READ) ||
817                                     __should_check_rate(td, DDIR_WRITE) ||
818                                     __should_check_rate(td, DDIR_TRIM))
819                                         fio_gettime(&comp_time, NULL);
820
821                                 ret = io_u_sync_complete(td, io_u, bytes_done);
822                                 if (ret < 0)
823                                         break;
824                                 bytes_issued += io_u->xfer_buflen;
825                         }
826                         break;
827                 case FIO_Q_QUEUED:
828                         /*
829                          * if the engine doesn't have a commit hook,
830                          * the io_u is really queued. if it does have such
831                          * a hook, it has to call io_u_queued() itself.
832                          */
833                         if (td->io_ops->commit == NULL)
834                                 io_u_queued(td, io_u);
835                         bytes_issued += io_u->xfer_buflen;
836                         break;
837                 case FIO_Q_BUSY:
838                         unlog_io_piece(td, io_u);
839                         requeue_io_u(td, &io_u);
840                         ret2 = td_io_commit(td);
841                         if (ret2 < 0)
842                                 ret = ret2;
843                         break;
844                 default:
845                         assert(ret < 0);
846                         put_io_u(td, io_u);
847                         break;
848                 }
849
850                 if (break_on_this_error(td, ddir, &ret))
851                         break;
852
853                 /*
854                  * See if we need to complete some commands. Note that we
855                  * can get BUSY even without IO queued, if the system is
856                  * resource starved.
857                  */
858 reap:
859                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
860                 if (full || !td->o.iodepth_batch_complete) {
861                         min_evts = min(td->o.iodepth_batch_complete,
862                                         td->cur_depth);
863                         /*
864                          * if the queue is full, we MUST reap at least 1 event
865                          */
866                         if (full && !min_evts)
867                                 min_evts = 1;
868
869                         if (__should_check_rate(td, DDIR_READ) ||
870                             __should_check_rate(td, DDIR_WRITE) ||
871                             __should_check_rate(td, DDIR_TRIM))
872                                 fio_gettime(&comp_time, NULL);
873
874                         do {
875                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
876                                 if (ret < 0)
877                                         break;
878
879                         } while (full && (td->cur_depth > td->o.iodepth_low));
880                 }
881
882                 if (ret < 0)
883                         break;
884                 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
885                         continue;
886
887                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
888                         if (check_min_rate(td, &comp_time, bytes_done)) {
889                                 if (exitall_on_terminate)
890                                         fio_terminate_threads(td->groupid);
891                                 td_verror(td, EIO, "check_min_rate");
892                                 break;
893                         }
894                 }
895                 if (!in_ramp_time(td) && td->o.latency_target)
896                         lat_target_check(td);
897
898                 if (td->o.thinktime) {
899                         unsigned long long b;
900
901                         b = ddir_rw_sum(td->io_blocks);
902                         if (!(b % td->o.thinktime_blocks)) {
903                                 int left;
904
905                                 io_u_quiesce(td);
906
907                                 if (td->o.thinktime_spin)
908                                         usec_spin(td->o.thinktime_spin);
909
910                                 left = td->o.thinktime - td->o.thinktime_spin;
911                                 if (left)
912                                         usec_sleep(td, left);
913                         }
914                 }
915         }
916
917         check_update_rusage(td);
918
919         if (td->trim_entries)
920                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
921
922         if (td->o.fill_device && td->error == ENOSPC) {
923                 td->error = 0;
924                 td->terminate = 1;
925         }
926         if (!td->error) {
927                 struct fio_file *f;
928
929                 i = td->cur_depth;
930                 if (i) {
931                         ret = io_u_queued_complete(td, i, bytes_done);
932                         if (td->o.fill_device && td->error == ENOSPC)
933                                 td->error = 0;
934                 }
935
936                 if (should_fsync(td) && td->o.end_fsync) {
937                         td_set_runstate(td, TD_FSYNCING);
938
939                         for_each_file(td, f, i) {
940                                 if (!fio_file_fsync(td, f))
941                                         continue;
942
943                                 log_err("fio: end_fsync failed for file %s\n",
944                                                                 f->file_name);
945                         }
946                 }
947         } else
948                 cleanup_pending_aio(td);
949
950         /*
951          * stop job if we failed doing any IO
952          */
953         if (!ddir_rw_sum(td->this_io_bytes))
954                 td->done = 1;
955
956         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
957 }
958
959 static void cleanup_io_u(struct thread_data *td)
960 {
961         struct io_u *io_u;
962
963         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
964
965                 if (td->io_ops->io_u_free)
966                         td->io_ops->io_u_free(td, io_u);
967
968                 fio_memfree(io_u, sizeof(*io_u));
969         }
970
971         free_io_mem(td);
972
973         io_u_rexit(&td->io_u_requeues);
974         io_u_qexit(&td->io_u_freelist);
975         io_u_qexit(&td->io_u_all);
976 }
977
978 static int init_io_u(struct thread_data *td)
979 {
980         struct io_u *io_u;
981         unsigned int max_bs, min_write;
982         int cl_align, i, max_units;
983         int data_xfer = 1, err;
984         char *p;
985
986         max_units = td->o.iodepth;
987         max_bs = td_max_bs(td);
988         min_write = td->o.min_bs[DDIR_WRITE];
989         td->orig_buffer_size = (unsigned long long) max_bs
990                                         * (unsigned long long) max_units;
991
992         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
993                 data_xfer = 0;
994
995         err = 0;
996         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
997         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
998         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
999
1000         if (err) {
1001                 log_err("fio: failed setting up IO queues\n");
1002                 return 1;
1003         }
1004
1005         /*
1006          * if we may later need to do address alignment, then add any
1007          * possible adjustment here so that we don't cause a buffer
1008          * overflow later. this adjustment may be too much if we get
1009          * lucky and the allocator gives us an aligned address.
1010          */
1011         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1012             (td->io_ops->flags & FIO_RAWIO))
1013                 td->orig_buffer_size += page_mask + td->o.mem_align;
1014
1015         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1016                 unsigned long bs;
1017
1018                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1019                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1020         }
1021
1022         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1023                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1024                 return 1;
1025         }
1026
1027         if (data_xfer && allocate_io_mem(td))
1028                 return 1;
1029
1030         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1031             (td->io_ops->flags & FIO_RAWIO))
1032                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1033         else
1034                 p = td->orig_buffer;
1035
1036         cl_align = os_cache_line_size();
1037
1038         for (i = 0; i < max_units; i++) {
1039                 void *ptr;
1040
1041                 if (td->terminate)
1042                         return 1;
1043
1044                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1045                 if (!ptr) {
1046                         log_err("fio: unable to allocate aligned memory\n");
1047                         break;
1048                 }
1049
1050                 io_u = ptr;
1051                 memset(io_u, 0, sizeof(*io_u));
1052                 INIT_FLIST_HEAD(&io_u->verify_list);
1053                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1054
1055                 if (data_xfer) {
1056                         io_u->buf = p;
1057                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1058
1059                         if (td_write(td))
1060                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1061                         if (td_write(td) && td->o.verify_pattern_bytes) {
1062                                 /*
1063                                  * Fill the buffer with the pattern if we are
1064                                  * going to be doing writes.
1065                                  */
1066                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1067                         }
1068                 }
1069
1070                 io_u->index = i;
1071                 io_u->flags = IO_U_F_FREE;
1072                 io_u_qpush(&td->io_u_freelist, io_u);
1073
1074                 /*
1075                  * io_u never leaves this stack, used for iteration of all
1076                  * io_u buffers.
1077                  */
1078                 io_u_qpush(&td->io_u_all, io_u);
1079
1080                 if (td->io_ops->io_u_init) {
1081                         int ret = td->io_ops->io_u_init(td, io_u);
1082
1083                         if (ret) {
1084                                 log_err("fio: failed to init engine data: %d\n", ret);
1085                                 return 1;
1086                         }
1087                 }
1088
1089                 p += max_bs;
1090         }
1091
1092         return 0;
1093 }
1094
1095 static int switch_ioscheduler(struct thread_data *td)
1096 {
1097         char tmp[256], tmp2[128];
1098         FILE *f;
1099         int ret;
1100
1101         if (td->io_ops->flags & FIO_DISKLESSIO)
1102                 return 0;
1103
1104         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1105
1106         f = fopen(tmp, "r+");
1107         if (!f) {
1108                 if (errno == ENOENT) {
1109                         log_err("fio: os or kernel doesn't support IO scheduler"
1110                                 " switching\n");
1111                         return 0;
1112                 }
1113                 td_verror(td, errno, "fopen iosched");
1114                 return 1;
1115         }
1116
1117         /*
1118          * Set io scheduler.
1119          */
1120         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1121         if (ferror(f) || ret != 1) {
1122                 td_verror(td, errno, "fwrite");
1123                 fclose(f);
1124                 return 1;
1125         }
1126
1127         rewind(f);
1128
1129         /*
1130          * Read back and check that the selected scheduler is now the default.
1131          */
1132         ret = fread(tmp, sizeof(tmp), 1, f);
1133         if (ferror(f) || ret < 0) {
1134                 td_verror(td, errno, "fread");
1135                 fclose(f);
1136                 return 1;
1137         }
1138         tmp[sizeof(tmp) - 1] = '\0';
1139
1140
1141         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1142         if (!strstr(tmp, tmp2)) {
1143                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1144                 td_verror(td, EINVAL, "iosched_switch");
1145                 fclose(f);
1146                 return 1;
1147         }
1148
1149         fclose(f);
1150         return 0;
1151 }
1152
1153 static int keep_running(struct thread_data *td)
1154 {
1155         unsigned long long limit;
1156
1157         if (td->done)
1158                 return 0;
1159         if (td->o.time_based)
1160                 return 1;
1161         if (td->o.loops) {
1162                 td->o.loops--;
1163                 return 1;
1164         }
1165         if (exceeds_number_ios(td))
1166                 return 0;
1167
1168         if (td->o.io_limit)
1169                 limit = td->o.io_limit;
1170         else
1171                 limit = td->o.size;
1172
1173         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1174                 uint64_t diff;
1175
1176                 /*
1177                  * If the difference is less than the minimum IO size, we
1178                  * are done.
1179                  */
1180                 diff = limit - ddir_rw_sum(td->io_bytes);
1181                 if (diff < td_max_bs(td))
1182                         return 0;
1183
1184                 if (fio_files_done(td))
1185                         return 0;
1186
1187                 return 1;
1188         }
1189
1190         return 0;
1191 }
1192
1193 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1194 {
1195         int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1196         char *str;
1197
1198         str = malloc(newlen);
1199         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1200
1201         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1202         ret = system(str);
1203         if (ret == -1)
1204                 log_err("fio: exec of cmd <%s> failed\n", str);
1205
1206         free(str);
1207         return ret;
1208 }
1209
1210 /*
1211  * Dry run to compute correct state of numberio for verification.
1212  */
1213 static uint64_t do_dry_run(struct thread_data *td)
1214 {
1215         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1216
1217         td_set_runstate(td, TD_RUNNING);
1218
1219         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1220                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1221                 struct io_u *io_u;
1222                 int ret;
1223
1224                 if (td->terminate || td->done)
1225                         break;
1226
1227                 io_u = get_io_u(td);
1228                 if (!io_u)
1229                         break;
1230
1231                 io_u->flags |= IO_U_F_FLIGHT;
1232                 io_u->error = 0;
1233                 io_u->resid = 0;
1234                 if (ddir_rw(acct_ddir(io_u)))
1235                         td->io_issues[acct_ddir(io_u)]++;
1236                 if (ddir_rw(io_u->ddir)) {
1237                         io_u_mark_depth(td, 1);
1238                         td->ts.total_io_u[io_u->ddir]++;
1239                 }
1240
1241                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1242                     td->o.do_verify &&
1243                     td->o.verify != VERIFY_NONE &&
1244                     !td->o.experimental_verify)
1245                         log_io_piece(td, io_u);
1246
1247                 ret = io_u_sync_complete(td, io_u, bytes_done);
1248                 (void) ret;
1249         }
1250
1251         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1252 }
1253
1254 /*
1255  * Entry point for the thread based jobs. The process based jobs end up
1256  * here as well, after a little setup.
1257  */
1258 static void *thread_main(void *data)
1259 {
1260         unsigned long long elapsed;
1261         struct thread_data *td = data;
1262         struct thread_options *o = &td->o;
1263         pthread_condattr_t attr;
1264         int clear_state;
1265         int ret;
1266
1267         if (!o->use_thread) {
1268                 setsid();
1269                 td->pid = getpid();
1270         } else
1271                 td->pid = gettid();
1272
1273         /*
1274          * fio_time_init() may not have been called yet if running as a server
1275          */
1276         fio_time_init();
1277
1278         fio_local_clock_init(o->use_thread);
1279
1280         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1281
1282         if (is_backend)
1283                 fio_server_send_start(td);
1284
1285         INIT_FLIST_HEAD(&td->io_log_list);
1286         INIT_FLIST_HEAD(&td->io_hist_list);
1287         INIT_FLIST_HEAD(&td->verify_list);
1288         INIT_FLIST_HEAD(&td->trim_list);
1289         INIT_FLIST_HEAD(&td->next_rand_list);
1290         pthread_mutex_init(&td->io_u_lock, NULL);
1291         td->io_hist_tree = RB_ROOT;
1292
1293         pthread_condattr_init(&attr);
1294         pthread_cond_init(&td->verify_cond, &attr);
1295         pthread_cond_init(&td->free_cond, &attr);
1296
1297         td_set_runstate(td, TD_INITIALIZED);
1298         dprint(FD_MUTEX, "up startup_mutex\n");
1299         fio_mutex_up(startup_mutex);
1300         dprint(FD_MUTEX, "wait on td->mutex\n");
1301         fio_mutex_down(td->mutex);
1302         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1303
1304         /*
1305          * A new gid requires privilege, so we need to do this before setting
1306          * the uid.
1307          */
1308         if (o->gid != -1U && setgid(o->gid)) {
1309                 td_verror(td, errno, "setgid");
1310                 goto err;
1311         }
1312         if (o->uid != -1U && setuid(o->uid)) {
1313                 td_verror(td, errno, "setuid");
1314                 goto err;
1315         }
1316
1317         /*
1318          * If we have a gettimeofday() thread, make sure we exclude that
1319          * thread from this job
1320          */
1321         if (o->gtod_cpu)
1322                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1323
1324         /*
1325          * Set affinity first, in case it has an impact on the memory
1326          * allocations.
1327          */
1328         if (o->cpumask_set) {
1329                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1330                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1331                         if (!ret) {
1332                                 log_err("fio: no CPUs set\n");
1333                                 log_err("fio: Try increasing number of available CPUs\n");
1334                                 td_verror(td, EINVAL, "cpus_split");
1335                                 goto err;
1336                         }
1337                 }
1338                 ret = fio_setaffinity(td->pid, o->cpumask);
1339                 if (ret == -1) {
1340                         td_verror(td, errno, "cpu_set_affinity");
1341                         goto err;
1342                 }
1343         }
1344
1345 #ifdef CONFIG_LIBNUMA
1346         /* numa node setup */
1347         if (o->numa_cpumask_set || o->numa_memmask_set) {
1348                 struct bitmask *mask;
1349                 int ret;
1350
1351                 if (numa_available() < 0) {
1352                         td_verror(td, errno, "Does not support NUMA API\n");
1353                         goto err;
1354                 }
1355
1356                 if (o->numa_cpumask_set) {
1357                         mask = numa_parse_nodestring(o->numa_cpunodes);
1358                         ret = numa_run_on_node_mask(mask);
1359                         numa_free_nodemask(mask);
1360                         if (ret == -1) {
1361                                 td_verror(td, errno, \
1362                                         "numa_run_on_node_mask failed\n");
1363                                 goto err;
1364                         }
1365                 }
1366
1367                 if (o->numa_memmask_set) {
1368
1369                         mask = NULL;
1370                         if (o->numa_memnodes)
1371                                 mask = numa_parse_nodestring(o->numa_memnodes);
1372
1373                         switch (o->numa_mem_mode) {
1374                         case MPOL_INTERLEAVE:
1375                                 numa_set_interleave_mask(mask);
1376                                 break;
1377                         case MPOL_BIND:
1378                                 numa_set_membind(mask);
1379                                 break;
1380                         case MPOL_LOCAL:
1381                                 numa_set_localalloc();
1382                                 break;
1383                         case MPOL_PREFERRED:
1384                                 numa_set_preferred(o->numa_mem_prefer_node);
1385                                 break;
1386                         case MPOL_DEFAULT:
1387                         default:
1388                                 break;
1389                         }
1390
1391                         if (mask)
1392                                 numa_free_nodemask(mask);
1393
1394                 }
1395         }
1396 #endif
1397
1398         if (fio_pin_memory(td))
1399                 goto err;
1400
1401         /*
1402          * May alter parameters that init_io_u() will use, so we need to
1403          * do this first.
1404          */
1405         if (init_iolog(td))
1406                 goto err;
1407
1408         if (init_io_u(td))
1409                 goto err;
1410
1411         if (o->verify_async && verify_async_init(td))
1412                 goto err;
1413
1414         if (o->ioprio) {
1415                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1416                 if (ret == -1) {
1417                         td_verror(td, errno, "ioprio_set");
1418                         goto err;
1419                 }
1420         }
1421
1422         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1423                 goto err;
1424
1425         errno = 0;
1426         if (nice(o->nice) == -1 && errno != 0) {
1427                 td_verror(td, errno, "nice");
1428                 goto err;
1429         }
1430
1431         if (o->ioscheduler && switch_ioscheduler(td))
1432                 goto err;
1433
1434         if (!o->create_serialize && setup_files(td))
1435                 goto err;
1436
1437         if (td_io_init(td))
1438                 goto err;
1439
1440         if (init_random_map(td))
1441                 goto err;
1442
1443         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1444                 goto err;
1445
1446         if (o->pre_read) {
1447                 if (pre_read_files(td) < 0)
1448                         goto err;
1449         }
1450
1451         fio_verify_init(td);
1452
1453         fio_gettime(&td->epoch, NULL);
1454         fio_getrusage(&td->ru_start);
1455         clear_state = 0;
1456         while (keep_running(td)) {
1457                 uint64_t verify_bytes;
1458
1459                 fio_gettime(&td->start, NULL);
1460                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1461                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1462                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1463
1464                 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1465                                 o->ratemin[DDIR_TRIM]) {
1466                         memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1467                                                 sizeof(td->bw_sample_time));
1468                         memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1469                                                 sizeof(td->bw_sample_time));
1470                         memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1471                                                 sizeof(td->bw_sample_time));
1472                 }
1473
1474                 if (clear_state)
1475                         clear_io_state(td);
1476
1477                 prune_io_piece_log(td);
1478
1479                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1480                         verify_bytes = do_dry_run(td);
1481                 else
1482                         verify_bytes = do_io(td);
1483
1484                 clear_state = 1;
1485
1486                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1487                         elapsed = utime_since_now(&td->start);
1488                         td->ts.runtime[DDIR_READ] += elapsed;
1489                 }
1490                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1491                         elapsed = utime_since_now(&td->start);
1492                         td->ts.runtime[DDIR_WRITE] += elapsed;
1493                 }
1494                 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1495                         elapsed = utime_since_now(&td->start);
1496                         td->ts.runtime[DDIR_TRIM] += elapsed;
1497                 }
1498
1499                 if (td->error || td->terminate)
1500                         break;
1501
1502                 if (!o->do_verify ||
1503                     o->verify == VERIFY_NONE ||
1504                     (td->io_ops->flags & FIO_UNIDIR))
1505                         continue;
1506
1507                 clear_io_state(td);
1508
1509                 fio_gettime(&td->start, NULL);
1510
1511                 do_verify(td, verify_bytes);
1512
1513                 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1514
1515                 if (td->error || td->terminate)
1516                         break;
1517         }
1518
1519         update_rusage_stat(td);
1520         td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1521         td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1522         td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1523         td->ts.total_run_time = mtime_since_now(&td->epoch);
1524         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1525         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1526         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1527
1528         fio_unpin_memory(td);
1529
1530         fio_writeout_logs(td);
1531
1532         if (o->exec_postrun)
1533                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1534
1535         if (exitall_on_terminate)
1536                 fio_terminate_threads(td->groupid);
1537
1538 err:
1539         if (td->error)
1540                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1541                                                         td->verror);
1542
1543         if (o->verify_async)
1544                 verify_async_exit(td);
1545
1546         close_and_free_files(td);
1547         cleanup_io_u(td);
1548         close_ioengine(td);
1549         cgroup_shutdown(td, &cgroup_mnt);
1550
1551         if (o->cpumask_set) {
1552                 int ret = fio_cpuset_exit(&o->cpumask);
1553
1554                 td_verror(td, ret, "fio_cpuset_exit");
1555         }
1556
1557         /*
1558          * do this very late, it will log file closing as well
1559          */
1560         if (o->write_iolog_file)
1561                 write_iolog_close(td);
1562
1563         fio_mutex_remove(td->rusage_sem);
1564         td->rusage_sem = NULL;
1565
1566         fio_mutex_remove(td->mutex);
1567         td->mutex = NULL;
1568
1569         td_set_runstate(td, TD_EXITED);
1570         return (void *) (uintptr_t) td->error;
1571 }
1572
1573
1574 /*
1575  * We cannot pass the td data into a forked process, so attach the td and
1576  * pass it to the thread worker.
1577  */
1578 static int fork_main(int shmid, int offset)
1579 {
1580         struct thread_data *td;
1581         void *data, *ret;
1582
1583 #ifndef __hpux
1584         data = shmat(shmid, NULL, 0);
1585         if (data == (void *) -1) {
1586                 int __err = errno;
1587
1588                 perror("shmat");
1589                 return __err;
1590         }
1591 #else
1592         /*
1593          * HP-UX inherits shm mappings?
1594          */
1595         data = threads;
1596 #endif
1597
1598         td = data + offset * sizeof(struct thread_data);
1599         ret = thread_main(td);
1600         shmdt(data);
1601         return (int) (uintptr_t) ret;
1602 }
1603
1604 /*
1605  * Run over the job map and reap the threads that have exited, if any.
1606  */
1607 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1608                          unsigned int *m_rate)
1609 {
1610         struct thread_data *td;
1611         unsigned int cputhreads, realthreads, pending;
1612         int i, status, ret;
1613
1614         /*
1615          * reap exited threads (TD_EXITED -> TD_REAPED)
1616          */
1617         realthreads = pending = cputhreads = 0;
1618         for_each_td(td, i) {
1619                 int flags = 0;
1620
1621                 /*
1622                  * ->io_ops is NULL for a thread that has closed its
1623                  * io engine
1624                  */
1625                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1626                         cputhreads++;
1627                 else
1628                         realthreads++;
1629
1630                 if (!td->pid) {
1631                         pending++;
1632                         continue;
1633                 }
1634                 if (td->runstate == TD_REAPED)
1635                         continue;
1636                 if (td->o.use_thread) {
1637                         if (td->runstate == TD_EXITED) {
1638                                 td_set_runstate(td, TD_REAPED);
1639                                 goto reaped;
1640                         }
1641                         continue;
1642                 }
1643
1644                 flags = WNOHANG;
1645                 if (td->runstate == TD_EXITED)
1646                         flags = 0;
1647
1648                 /*
1649                  * check if someone quit or got killed in an unusual way
1650                  */
1651                 ret = waitpid(td->pid, &status, flags);
1652                 if (ret < 0) {
1653                         if (errno == ECHILD) {
1654                                 log_err("fio: pid=%d disappeared %d\n",
1655                                                 (int) td->pid, td->runstate);
1656                                 td->sig = ECHILD;
1657                                 td_set_runstate(td, TD_REAPED);
1658                                 goto reaped;
1659                         }
1660                         perror("waitpid");
1661                 } else if (ret == td->pid) {
1662                         if (WIFSIGNALED(status)) {
1663                                 int sig = WTERMSIG(status);
1664
1665                                 if (sig != SIGTERM && sig != SIGUSR2)
1666                                         log_err("fio: pid=%d, got signal=%d\n",
1667                                                         (int) td->pid, sig);
1668                                 td->sig = sig;
1669                                 td_set_runstate(td, TD_REAPED);
1670                                 goto reaped;
1671                         }
1672                         if (WIFEXITED(status)) {
1673                                 if (WEXITSTATUS(status) && !td->error)
1674                                         td->error = WEXITSTATUS(status);
1675
1676                                 td_set_runstate(td, TD_REAPED);
1677                                 goto reaped;
1678                         }
1679                 }
1680
1681                 /*
1682                  * thread is not dead, continue
1683                  */
1684                 pending++;
1685                 continue;
1686 reaped:
1687                 (*nr_running)--;
1688                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1689                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1690                 if (!td->pid)
1691                         pending--;
1692
1693                 if (td->error)
1694                         exit_value++;
1695
1696                 done_secs += mtime_since_now(&td->epoch) / 1000;
1697                 profile_td_exit(td);
1698         }
1699
1700         if (*nr_running == cputhreads && !pending && realthreads)
1701                 fio_terminate_threads(TERMINATE_ALL);
1702 }
1703
1704 static void do_usleep(unsigned int usecs)
1705 {
1706         check_for_running_stats();
1707         usleep(usecs);
1708 }
1709
1710 /*
1711  * Main function for kicking off and reaping jobs, as needed.
1712  */
1713 static void run_threads(void)
1714 {
1715         struct thread_data *td;
1716         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1717         uint64_t spent;
1718
1719         if (fio_gtod_offload && fio_start_gtod_thread())
1720                 return;
1721
1722         fio_idle_prof_init();
1723
1724         set_sig_handlers();
1725
1726         nr_thread = nr_process = 0;
1727         for_each_td(td, i) {
1728                 if (td->o.use_thread)
1729                         nr_thread++;
1730                 else
1731                         nr_process++;
1732         }
1733
1734         if (output_format == FIO_OUTPUT_NORMAL) {
1735                 log_info("Starting ");
1736                 if (nr_thread)
1737                         log_info("%d thread%s", nr_thread,
1738                                                 nr_thread > 1 ? "s" : "");
1739                 if (nr_process) {
1740                         if (nr_thread)
1741                                 log_info(" and ");
1742                         log_info("%d process%s", nr_process,
1743                                                 nr_process > 1 ? "es" : "");
1744                 }
1745                 log_info("\n");
1746                 fflush(stdout);
1747         }
1748
1749         todo = thread_number;
1750         nr_running = 0;
1751         nr_started = 0;
1752         m_rate = t_rate = 0;
1753
1754         for_each_td(td, i) {
1755                 print_status_init(td->thread_number - 1);
1756
1757                 if (!td->o.create_serialize)
1758                         continue;
1759
1760                 /*
1761                  * do file setup here so it happens sequentially,
1762                  * we don't want X number of threads getting their
1763                  * client data interspersed on disk
1764                  */
1765                 if (setup_files(td)) {
1766                         exit_value++;
1767                         if (td->error)
1768                                 log_err("fio: pid=%d, err=%d/%s\n",
1769                                         (int) td->pid, td->error, td->verror);
1770                         td_set_runstate(td, TD_REAPED);
1771                         todo--;
1772                 } else {
1773                         struct fio_file *f;
1774                         unsigned int j;
1775
1776                         /*
1777                          * for sharing to work, each job must always open
1778                          * its own files. so close them, if we opened them
1779                          * for creation
1780                          */
1781                         for_each_file(td, f, j) {
1782                                 if (fio_file_open(f))
1783                                         td_io_close_file(td, f);
1784                         }
1785                 }
1786         }
1787
1788         /* start idle threads before io threads start to run */
1789         fio_idle_prof_start();
1790
1791         set_genesis_time();
1792
1793         while (todo) {
1794                 struct thread_data *map[REAL_MAX_JOBS];
1795                 struct timeval this_start;
1796                 int this_jobs = 0, left;
1797
1798                 /*
1799                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1800                  */
1801                 for_each_td(td, i) {
1802                         if (td->runstate != TD_NOT_CREATED)
1803                                 continue;
1804
1805                         /*
1806                          * never got a chance to start, killed by other
1807                          * thread for some reason
1808                          */
1809                         if (td->terminate) {
1810                                 todo--;
1811                                 continue;
1812                         }
1813
1814                         if (td->o.start_delay) {
1815                                 spent = utime_since_genesis();
1816
1817                                 if (td->o.start_delay > spent)
1818                                         continue;
1819                         }
1820
1821                         if (td->o.stonewall && (nr_started || nr_running)) {
1822                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1823                                                         td->o.name);
1824                                 break;
1825                         }
1826
1827                         init_disk_util(td);
1828
1829                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1830                         td->update_rusage = 0;
1831
1832                         /*
1833                          * Set state to created. Thread will transition
1834                          * to TD_INITIALIZED when it's done setting up.
1835                          */
1836                         td_set_runstate(td, TD_CREATED);
1837                         map[this_jobs++] = td;
1838                         nr_started++;
1839
1840                         if (td->o.use_thread) {
1841                                 int ret;
1842
1843                                 dprint(FD_PROCESS, "will pthread_create\n");
1844                                 ret = pthread_create(&td->thread, NULL,
1845                                                         thread_main, td);
1846                                 if (ret) {
1847                                         log_err("pthread_create: %s\n",
1848                                                         strerror(ret));
1849                                         nr_started--;
1850                                         break;
1851                                 }
1852                                 ret = pthread_detach(td->thread);
1853                                 if (ret)
1854                                         log_err("pthread_detach: %s",
1855                                                         strerror(ret));
1856                         } else {
1857                                 pid_t pid;
1858                                 dprint(FD_PROCESS, "will fork\n");
1859                                 pid = fork();
1860                                 if (!pid) {
1861                                         int ret = fork_main(shm_id, i);
1862
1863                                         _exit(ret);
1864                                 } else if (i == fio_debug_jobno)
1865                                         *fio_debug_jobp = pid;
1866                         }
1867                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1868                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
1869                                 log_err("fio: job startup hung? exiting.\n");
1870                                 fio_terminate_threads(TERMINATE_ALL);
1871                                 fio_abort = 1;
1872                                 nr_started--;
1873                                 break;
1874                         }
1875                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1876                 }
1877
1878                 /*
1879                  * Wait for the started threads to transition to
1880                  * TD_INITIALIZED.
1881                  */
1882                 fio_gettime(&this_start, NULL);
1883                 left = this_jobs;
1884                 while (left && !fio_abort) {
1885                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1886                                 break;
1887
1888                         do_usleep(100000);
1889
1890                         for (i = 0; i < this_jobs; i++) {
1891                                 td = map[i];
1892                                 if (!td)
1893                                         continue;
1894                                 if (td->runstate == TD_INITIALIZED) {
1895                                         map[i] = NULL;
1896                                         left--;
1897                                 } else if (td->runstate >= TD_EXITED) {
1898                                         map[i] = NULL;
1899                                         left--;
1900                                         todo--;
1901                                         nr_running++; /* work-around... */
1902                                 }
1903                         }
1904                 }
1905
1906                 if (left) {
1907                         log_err("fio: %d job%s failed to start\n", left,
1908                                         left > 1 ? "s" : "");
1909                         for (i = 0; i < this_jobs; i++) {
1910                                 td = map[i];
1911                                 if (!td)
1912                                         continue;
1913                                 kill(td->pid, SIGTERM);
1914                         }
1915                         break;
1916                 }
1917
1918                 /*
1919                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1920                  */
1921                 for_each_td(td, i) {
1922                         if (td->runstate != TD_INITIALIZED)
1923                                 continue;
1924
1925                         if (in_ramp_time(td))
1926                                 td_set_runstate(td, TD_RAMP);
1927                         else
1928                                 td_set_runstate(td, TD_RUNNING);
1929                         nr_running++;
1930                         nr_started--;
1931                         m_rate += ddir_rw_sum(td->o.ratemin);
1932                         t_rate += ddir_rw_sum(td->o.rate);
1933                         todo--;
1934                         fio_mutex_up(td->mutex);
1935                 }
1936
1937                 reap_threads(&nr_running, &t_rate, &m_rate);
1938
1939                 if (todo)
1940                         do_usleep(100000);
1941         }
1942
1943         while (nr_running) {
1944                 reap_threads(&nr_running, &t_rate, &m_rate);
1945                 do_usleep(10000);
1946         }
1947
1948         fio_idle_prof_stop();
1949
1950         update_io_ticks();
1951 }
1952
1953 void wait_for_disk_thread_exit(void)
1954 {
1955         fio_mutex_down(disk_thread_mutex);
1956 }
1957
1958 static void free_disk_util(void)
1959 {
1960         disk_util_start_exit();
1961         wait_for_disk_thread_exit();
1962         disk_util_prune_entries();
1963 }
1964
1965 static void *disk_thread_main(void *data)
1966 {
1967         int ret = 0;
1968
1969         fio_mutex_up(startup_mutex);
1970
1971         while (threads && !ret) {
1972                 usleep(DISK_UTIL_MSEC * 1000);
1973                 if (!threads)
1974                         break;
1975                 ret = update_io_ticks();
1976
1977                 if (!is_backend)
1978                         print_thread_status();
1979         }
1980
1981         fio_mutex_up(disk_thread_mutex);
1982         return NULL;
1983 }
1984
1985 static int create_disk_util_thread(void)
1986 {
1987         int ret;
1988
1989         setup_disk_util();
1990
1991         disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1992
1993         ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1994         if (ret) {
1995                 fio_mutex_remove(disk_thread_mutex);
1996                 log_err("Can't create disk util thread: %s\n", strerror(ret));
1997                 return 1;
1998         }
1999
2000         ret = pthread_detach(disk_util_thread);
2001         if (ret) {
2002                 fio_mutex_remove(disk_thread_mutex);
2003                 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
2004                 return 1;
2005         }
2006
2007         dprint(FD_MUTEX, "wait on startup_mutex\n");
2008         fio_mutex_down(startup_mutex);
2009         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2010         return 0;
2011 }
2012
2013 int fio_backend(void)
2014 {
2015         struct thread_data *td;
2016         int i;
2017
2018         if (exec_profile) {
2019                 if (load_profile(exec_profile))
2020                         return 1;
2021                 free(exec_profile);
2022                 exec_profile = NULL;
2023         }
2024         if (!thread_number)
2025                 return 0;
2026
2027         if (write_bw_log) {
2028                 setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
2029                 setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
2030                 setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
2031         }
2032
2033         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2034         if (startup_mutex == NULL)
2035                 return 1;
2036
2037         set_genesis_time();
2038         stat_init();
2039         create_disk_util_thread();
2040
2041         cgroup_list = smalloc(sizeof(*cgroup_list));
2042         INIT_FLIST_HEAD(cgroup_list);
2043
2044         run_threads();
2045
2046         if (!fio_abort) {
2047                 show_run_stats();
2048                 if (write_bw_log) {
2049                         __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
2050                         __finish_log(agg_io_log[DDIR_WRITE],
2051                                         "agg-write_bw.log");
2052                         __finish_log(agg_io_log[DDIR_TRIM],
2053                                         "agg-write_bw.log");
2054                 }
2055         }
2056
2057         for_each_td(td, i)
2058                 fio_options_free(td);
2059
2060         free_disk_util();
2061         cgroup_kill(cgroup_list);
2062         sfree(cgroup_list);
2063         sfree(cgroup_mnt);
2064
2065         fio_mutex_remove(startup_mutex);
2066         fio_mutex_remove(disk_thread_mutex);
2067         stat_exit();
2068         return exit_value;
2069 }