options: wire up e4defrag and falloc engines
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/shm.h>
38 #include <sys/mman.h>
39
40 #include "fio.h"
41 #include "hash.h"
42 #include "smalloc.h"
43 #include "verify.h"
44 #include "trim.h"
45 #include "diskutil.h"
46 #include "cgroup.h"
47 #include "profile.h"
48 #include "lib/rand.h"
49 #include "memalign.h"
50 #include "server.h"
51
52 static pthread_t disk_util_thread;
53 static struct fio_mutex *disk_thread_mutex;
54 static struct fio_mutex *startup_mutex;
55 static struct fio_mutex *writeout_mutex;
56 static struct flist_head *cgroup_list;
57 static char *cgroup_mnt;
58 static int exit_value;
59 static volatile int fio_abort;
60
61 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63 int groupid = 0;
64 unsigned int thread_number = 0;
65 unsigned int nr_process = 0;
66 unsigned int nr_thread = 0;
67 int shm_id = 0;
68 int temp_stall_ts;
69 unsigned long done_secs = 0;
70
71 #define PAGE_ALIGN(buf) \
72         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
73
74 #define JOB_START_TIMEOUT       (5 * 1000)
75
76 static void sig_int(int sig)
77 {
78         if (threads) {
79                 if (is_backend)
80                         fio_server_got_signal(sig);
81                 else {
82                         log_info("\nfio: terminating on signal %d\n", sig);
83                         fflush(stdout);
84                         exit_value = 128;
85                 }
86
87                 fio_terminate_threads(TERMINATE_ALL);
88         }
89 }
90
91 static void sig_show_status(int sig)
92 {
93         show_running_run_stats();
94 }
95
96 static void set_sig_handlers(void)
97 {
98         struct sigaction act;
99
100         memset(&act, 0, sizeof(act));
101         act.sa_handler = sig_int;
102         act.sa_flags = SA_RESTART;
103         sigaction(SIGINT, &act, NULL);
104
105         memset(&act, 0, sizeof(act));
106         act.sa_handler = sig_int;
107         act.sa_flags = SA_RESTART;
108         sigaction(SIGTERM, &act, NULL);
109
110         memset(&act, 0, sizeof(act));
111         act.sa_handler = sig_show_status;
112         act.sa_flags = SA_RESTART;
113         sigaction(SIGUSR1, &act, NULL);
114
115         if (is_backend) {
116                 memset(&act, 0, sizeof(act));
117                 act.sa_handler = sig_int;
118                 act.sa_flags = SA_RESTART;
119                 sigaction(SIGPIPE, &act, NULL);
120         }
121 }
122
123 /*
124  * Check if we are above the minimum rate given.
125  */
126 static int __check_min_rate(struct thread_data *td, struct timeval *now,
127                             enum fio_ddir ddir)
128 {
129         unsigned long long bytes = 0;
130         unsigned long iops = 0;
131         unsigned long spent;
132         unsigned long rate;
133         unsigned int ratemin = 0;
134         unsigned int rate_iops = 0;
135         unsigned int rate_iops_min = 0;
136
137         assert(ddir_rw(ddir));
138
139         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
140                 return 0;
141
142         /*
143          * allow a 2 second settle period in the beginning
144          */
145         if (mtime_since(&td->start, now) < 2000)
146                 return 0;
147
148         iops += td->this_io_blocks[ddir];
149         bytes += td->this_io_bytes[ddir];
150         ratemin += td->o.ratemin[ddir];
151         rate_iops += td->o.rate_iops[ddir];
152         rate_iops_min += td->o.rate_iops_min[ddir];
153
154         /*
155          * if rate blocks is set, sample is running
156          */
157         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
158                 spent = mtime_since(&td->lastrate[ddir], now);
159                 if (spent < td->o.ratecycle)
160                         return 0;
161
162                 if (td->o.rate[ddir]) {
163                         /*
164                          * check bandwidth specified rate
165                          */
166                         if (bytes < td->rate_bytes[ddir]) {
167                                 log_err("%s: min rate %u not met\n", td->o.name,
168                                                                 ratemin);
169                                 return 1;
170                         } else {
171                                 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
172                                 if (rate < ratemin ||
173                                     bytes < td->rate_bytes[ddir]) {
174                                         log_err("%s: min rate %u not met, got"
175                                                 " %luKB/sec\n", td->o.name,
176                                                         ratemin, rate);
177                                         return 1;
178                                 }
179                         }
180                 } else {
181                         /*
182                          * checks iops specified rate
183                          */
184                         if (iops < rate_iops) {
185                                 log_err("%s: min iops rate %u not met\n",
186                                                 td->o.name, rate_iops);
187                                 return 1;
188                         } else {
189                                 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
190                                 if (rate < rate_iops_min ||
191                                     iops < td->rate_blocks[ddir]) {
192                                         log_err("%s: min iops rate %u not met,"
193                                                 " got %lu\n", td->o.name,
194                                                         rate_iops_min, rate);
195                                 }
196                         }
197                 }
198         }
199
200         td->rate_bytes[ddir] = bytes;
201         td->rate_blocks[ddir] = iops;
202         memcpy(&td->lastrate[ddir], now, sizeof(*now));
203         return 0;
204 }
205
206 static int check_min_rate(struct thread_data *td, struct timeval *now,
207                           unsigned long *bytes_done)
208 {
209         int ret = 0;
210
211         if (bytes_done[DDIR_READ])
212                 ret |= __check_min_rate(td, now, DDIR_READ);
213         if (bytes_done[DDIR_WRITE])
214                 ret |= __check_min_rate(td, now, DDIR_WRITE);
215         if (bytes_done[DDIR_TRIM])
216                 ret |= __check_min_rate(td, now, DDIR_TRIM);
217
218         return ret;
219 }
220
221 /*
222  * When job exits, we can cancel the in-flight IO if we are using async
223  * io. Attempt to do so.
224  */
225 static void cleanup_pending_aio(struct thread_data *td)
226 {
227         struct flist_head *entry, *n;
228         struct io_u *io_u;
229         int r;
230
231         /*
232          * get immediately available events, if any
233          */
234         r = io_u_queued_complete(td, 0, NULL);
235         if (r < 0)
236                 return;
237
238         /*
239          * now cancel remaining active events
240          */
241         if (td->io_ops->cancel) {
242                 flist_for_each_safe(entry, n, &td->io_u_busylist) {
243                         io_u = flist_entry(entry, struct io_u, list);
244
245                         /*
246                          * if the io_u isn't in flight, then that generally
247                          * means someone leaked an io_u. complain but fix
248                          * it up, so we don't stall here.
249                          */
250                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
251                                 log_err("fio: non-busy IO on busy list\n");
252                                 put_io_u(td, io_u);
253                         } else {
254                                 r = td->io_ops->cancel(td, io_u);
255                                 if (!r)
256                                         put_io_u(td, io_u);
257                         }
258                 }
259         }
260
261         if (td->cur_depth)
262                 r = io_u_queued_complete(td, td->cur_depth, NULL);
263 }
264
265 /*
266  * Helper to handle the final sync of a file. Works just like the normal
267  * io path, just does everything sync.
268  */
269 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
270 {
271         struct io_u *io_u = __get_io_u(td);
272         int ret;
273
274         if (!io_u)
275                 return 1;
276
277         io_u->ddir = DDIR_SYNC;
278         io_u->file = f;
279
280         if (td_io_prep(td, io_u)) {
281                 put_io_u(td, io_u);
282                 return 1;
283         }
284
285 requeue:
286         ret = td_io_queue(td, io_u);
287         if (ret < 0) {
288                 td_verror(td, io_u->error, "td_io_queue");
289                 put_io_u(td, io_u);
290                 return 1;
291         } else if (ret == FIO_Q_QUEUED) {
292                 if (io_u_queued_complete(td, 1, NULL) < 0)
293                         return 1;
294         } else if (ret == FIO_Q_COMPLETED) {
295                 if (io_u->error) {
296                         td_verror(td, io_u->error, "td_io_queue");
297                         return 1;
298                 }
299
300                 if (io_u_sync_complete(td, io_u, NULL) < 0)
301                         return 1;
302         } else if (ret == FIO_Q_BUSY) {
303                 if (td_io_commit(td))
304                         return 1;
305                 goto requeue;
306         }
307
308         return 0;
309 }
310
311 static inline void __update_tv_cache(struct thread_data *td)
312 {
313         fio_gettime(&td->tv_cache, NULL);
314 }
315
316 static inline void update_tv_cache(struct thread_data *td)
317 {
318         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
319                 __update_tv_cache(td);
320 }
321
322 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
323 {
324         if (in_ramp_time(td))
325                 return 0;
326         if (!td->o.timeout)
327                 return 0;
328         if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
329                 return 1;
330
331         return 0;
332 }
333
334 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
335                                int *retptr)
336 {
337         int ret = *retptr;
338
339         if (ret < 0 || td->error) {
340                 int err;
341
342                 if (ret < 0)
343                         err = -ret;
344                 else
345                         err = td->error;
346
347                 if (!(td->o.continue_on_error & td_error_type(ddir, err)))
348                         return 1;
349
350                 if (td_non_fatal_error(err)) {
351                         /*
352                          * Continue with the I/Os in case of
353                          * a non fatal error.
354                          */
355                         update_error_count(td, err);
356                         td_clear_error(td);
357                         *retptr = 0;
358                         return 0;
359                 } else if (td->o.fill_device && err == ENOSPC) {
360                         /*
361                          * We expect to hit this error if
362                          * fill_device option is set.
363                          */
364                         td_clear_error(td);
365                         td->terminate = 1;
366                         return 1;
367                 } else {
368                         /*
369                          * Stop the I/O in case of a fatal
370                          * error.
371                          */
372                         update_error_count(td, err);
373                         return 1;
374                 }
375         }
376
377         return 0;
378 }
379
380 /*
381  * The main verify engine. Runs over the writes we previously submitted,
382  * reads the blocks back in, and checks the crc/md5 of the data.
383  */
384 static void do_verify(struct thread_data *td)
385 {
386         struct fio_file *f;
387         struct io_u *io_u;
388         int ret, min_events;
389         unsigned int i;
390
391         dprint(FD_VERIFY, "starting loop\n");
392
393         /*
394          * sync io first and invalidate cache, to make sure we really
395          * read from disk.
396          */
397         for_each_file(td, f, i) {
398                 if (!fio_file_open(f))
399                         continue;
400                 if (fio_io_sync(td, f))
401                         break;
402                 if (file_invalidate_cache(td, f))
403                         break;
404         }
405
406         if (td->error)
407                 return;
408
409         td_set_runstate(td, TD_VERIFYING);
410
411         io_u = NULL;
412         while (!td->terminate) {
413                 int ret2, full;
414
415                 update_tv_cache(td);
416
417                 if (runtime_exceeded(td, &td->tv_cache)) {
418                         __update_tv_cache(td);
419                         if (runtime_exceeded(td, &td->tv_cache)) {
420                                 td->terminate = 1;
421                                 break;
422                         }
423                 }
424
425                 if (flow_threshold_exceeded(td))
426                         continue;
427
428                 io_u = __get_io_u(td);
429                 if (!io_u)
430                         break;
431
432                 if (get_next_verify(td, io_u)) {
433                         put_io_u(td, io_u);
434                         break;
435                 }
436
437                 if (td_io_prep(td, io_u)) {
438                         put_io_u(td, io_u);
439                         break;
440                 }
441
442                 if (td->o.verify_async)
443                         io_u->end_io = verify_io_u_async;
444                 else
445                         io_u->end_io = verify_io_u;
446
447                 ret = td_io_queue(td, io_u);
448                 switch (ret) {
449                 case FIO_Q_COMPLETED:
450                         if (io_u->error) {
451                                 ret = -io_u->error;
452                                 clear_io_u(td, io_u);
453                         } else if (io_u->resid) {
454                                 int bytes = io_u->xfer_buflen - io_u->resid;
455
456                                 /*
457                                  * zero read, fail
458                                  */
459                                 if (!bytes) {
460                                         td_verror(td, EIO, "full resid");
461                                         put_io_u(td, io_u);
462                                         break;
463                                 }
464
465                                 io_u->xfer_buflen = io_u->resid;
466                                 io_u->xfer_buf += bytes;
467                                 io_u->offset += bytes;
468
469                                 if (ddir_rw(io_u->ddir))
470                                         td->ts.short_io_u[io_u->ddir]++;
471
472                                 f = io_u->file;
473                                 if (io_u->offset == f->real_file_size)
474                                         goto sync_done;
475
476                                 requeue_io_u(td, &io_u);
477                         } else {
478 sync_done:
479                                 ret = io_u_sync_complete(td, io_u, NULL);
480                                 if (ret < 0)
481                                         break;
482                         }
483                         continue;
484                 case FIO_Q_QUEUED:
485                         break;
486                 case FIO_Q_BUSY:
487                         requeue_io_u(td, &io_u);
488                         ret2 = td_io_commit(td);
489                         if (ret2 < 0)
490                                 ret = ret2;
491                         break;
492                 default:
493                         assert(ret < 0);
494                         td_verror(td, -ret, "td_io_queue");
495                         break;
496                 }
497
498                 if (break_on_this_error(td, io_u->ddir, &ret))
499                         break;
500
501                 /*
502                  * if we can queue more, do so. but check if there are
503                  * completed io_u's first. Note that we can get BUSY even
504                  * without IO queued, if the system is resource starved.
505                  */
506                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
507                 if (full || !td->o.iodepth_batch_complete) {
508                         min_events = min(td->o.iodepth_batch_complete,
509                                          td->cur_depth);
510                         /*
511                          * if the queue is full, we MUST reap at least 1 event
512                          */
513                         if (full && !min_events)
514                                 min_events = 1;
515
516                         do {
517                                 /*
518                                  * Reap required number of io units, if any,
519                                  * and do the verification on them through
520                                  * the callback handler
521                                  */
522                                 if (io_u_queued_complete(td, min_events, NULL) < 0) {
523                                         ret = -1;
524                                         break;
525                                 }
526                         } while (full && (td->cur_depth > td->o.iodepth_low));
527                 }
528                 if (ret < 0)
529                         break;
530         }
531
532         if (!td->error) {
533                 min_events = td->cur_depth;
534
535                 if (min_events)
536                         ret = io_u_queued_complete(td, min_events, NULL);
537         } else
538                 cleanup_pending_aio(td);
539
540         td_set_runstate(td, TD_RUNNING);
541
542         dprint(FD_VERIFY, "exiting loop\n");
543 }
544
545 static int io_bytes_exceeded(struct thread_data *td)
546 {
547         unsigned long long bytes;
548
549         if (td_rw(td))
550                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
551         else if (td_write(td))
552                 bytes = td->this_io_bytes[DDIR_WRITE];
553         else if (td_read(td))
554                 bytes = td->this_io_bytes[DDIR_READ];
555         else
556                 bytes = td->this_io_bytes[DDIR_TRIM];
557
558         return bytes >= td->o.size;
559 }
560
561 /*
562  * Main IO worker function. It retrieves io_u's to process and queues
563  * and reaps them, checking for rate and errors along the way.
564  */
565 static void do_io(struct thread_data *td)
566 {
567         unsigned int i;
568         int ret = 0;
569
570         if (in_ramp_time(td))
571                 td_set_runstate(td, TD_RAMP);
572         else
573                 td_set_runstate(td, TD_RUNNING);
574
575         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
576                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
577                 td->o.time_based) {
578                 struct timeval comp_time;
579                 unsigned long bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
580                 int min_evts = 0;
581                 struct io_u *io_u;
582                 int ret2, full;
583                 enum fio_ddir ddir;
584
585                 if (td->terminate)
586                         break;
587
588                 update_tv_cache(td);
589
590                 if (runtime_exceeded(td, &td->tv_cache)) {
591                         __update_tv_cache(td);
592                         if (runtime_exceeded(td, &td->tv_cache)) {
593                                 td->terminate = 1;
594                                 break;
595                         }
596                 }
597
598                 if (flow_threshold_exceeded(td))
599                         continue;
600
601                 io_u = get_io_u(td);
602                 if (!io_u)
603                         break;
604
605                 ddir = io_u->ddir;
606
607                 /*
608                  * Add verification end_io handler if:
609                  *      - Asked to verify (!td_rw(td))
610                  *      - Or the io_u is from our verify list (mixed write/ver)
611                  */
612                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
613                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
614                         if (td->o.verify_async)
615                                 io_u->end_io = verify_io_u_async;
616                         else
617                                 io_u->end_io = verify_io_u;
618                         td_set_runstate(td, TD_VERIFYING);
619                 } else if (in_ramp_time(td))
620                         td_set_runstate(td, TD_RAMP);
621                 else
622                         td_set_runstate(td, TD_RUNNING);
623
624                 ret = td_io_queue(td, io_u);
625                 switch (ret) {
626                 case FIO_Q_COMPLETED:
627                         if (io_u->error) {
628                                 ret = -io_u->error;
629                                 clear_io_u(td, io_u);
630                         } else if (io_u->resid) {
631                                 int bytes = io_u->xfer_buflen - io_u->resid;
632                                 struct fio_file *f = io_u->file;
633
634                                 /*
635                                  * zero read, fail
636                                  */
637                                 if (!bytes) {
638                                         td_verror(td, EIO, "full resid");
639                                         put_io_u(td, io_u);
640                                         break;
641                                 }
642
643                                 io_u->xfer_buflen = io_u->resid;
644                                 io_u->xfer_buf += bytes;
645                                 io_u->offset += bytes;
646
647                                 if (ddir_rw(io_u->ddir))
648                                         td->ts.short_io_u[io_u->ddir]++;
649
650                                 if (io_u->offset == f->real_file_size)
651                                         goto sync_done;
652
653                                 requeue_io_u(td, &io_u);
654                         } else {
655 sync_done:
656                                 if (__should_check_rate(td, DDIR_READ) ||
657                                     __should_check_rate(td, DDIR_WRITE) ||
658                                     __should_check_rate(td, DDIR_TRIM))
659                                         fio_gettime(&comp_time, NULL);
660
661                                 ret = io_u_sync_complete(td, io_u, bytes_done);
662                                 if (ret < 0)
663                                         break;
664                         }
665                         break;
666                 case FIO_Q_QUEUED:
667                         /*
668                          * if the engine doesn't have a commit hook,
669                          * the io_u is really queued. if it does have such
670                          * a hook, it has to call io_u_queued() itself.
671                          */
672                         if (td->io_ops->commit == NULL)
673                                 io_u_queued(td, io_u);
674                         break;
675                 case FIO_Q_BUSY:
676                         requeue_io_u(td, &io_u);
677                         ret2 = td_io_commit(td);
678                         if (ret2 < 0)
679                                 ret = ret2;
680                         break;
681                 default:
682                         assert(ret < 0);
683                         put_io_u(td, io_u);
684                         break;
685                 }
686
687                 if (break_on_this_error(td, ddir, &ret))
688                         break;
689
690                 /*
691                  * See if we need to complete some commands. Note that we
692                  * can get BUSY even without IO queued, if the system is
693                  * resource starved.
694                  */
695                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
696                 if (full || !td->o.iodepth_batch_complete) {
697                         min_evts = min(td->o.iodepth_batch_complete,
698                                         td->cur_depth);
699                         /*
700                          * if the queue is full, we MUST reap at least 1 event
701                          */
702                         if (full && !min_evts)
703                                 min_evts = 1;
704
705                         if (__should_check_rate(td, DDIR_READ) ||
706                             __should_check_rate(td, DDIR_WRITE) ||
707                             __should_check_rate(td, DDIR_TRIM))
708                                 fio_gettime(&comp_time, NULL);
709
710                         do {
711                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
712                                 if (ret < 0)
713                                         break;
714
715                         } while (full && (td->cur_depth > td->o.iodepth_low));
716                 }
717
718                 if (ret < 0)
719                         break;
720                 if (!ddir_rw_sum(bytes_done))
721                         continue;
722
723                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
724                         if (check_min_rate(td, &comp_time, bytes_done)) {
725                                 if (exitall_on_terminate)
726                                         fio_terminate_threads(td->groupid);
727                                 td_verror(td, EIO, "check_min_rate");
728                                 break;
729                         }
730                 }
731
732                 if (td->o.thinktime) {
733                         unsigned long long b;
734
735                         b = ddir_rw_sum(td->io_blocks);
736                         if (!(b % td->o.thinktime_blocks)) {
737                                 int left;
738
739                                 if (td->o.thinktime_spin)
740                                         usec_spin(td->o.thinktime_spin);
741
742                                 left = td->o.thinktime - td->o.thinktime_spin;
743                                 if (left)
744                                         usec_sleep(td, left);
745                         }
746                 }
747         }
748
749         if (td->trim_entries)
750                 log_err("fio: %d trim entries leaked?\n", td->trim_entries);
751
752         if (td->o.fill_device && td->error == ENOSPC) {
753                 td->error = 0;
754                 td->terminate = 1;
755         }
756         if (!td->error) {
757                 struct fio_file *f;
758
759                 i = td->cur_depth;
760                 if (i) {
761                         ret = io_u_queued_complete(td, i, NULL);
762                         if (td->o.fill_device && td->error == ENOSPC)
763                                 td->error = 0;
764                 }
765
766                 if (should_fsync(td) && td->o.end_fsync) {
767                         td_set_runstate(td, TD_FSYNCING);
768
769                         for_each_file(td, f, i) {
770                                 if (!fio_file_open(f))
771                                         continue;
772                                 fio_io_sync(td, f);
773                         }
774                 }
775         } else
776                 cleanup_pending_aio(td);
777
778         /*
779          * stop job if we failed doing any IO
780          */
781         if (!ddir_rw_sum(td->this_io_bytes))
782                 td->done = 1;
783 }
784
785 static void cleanup_io_u(struct thread_data *td)
786 {
787         struct flist_head *entry, *n;
788         struct io_u *io_u;
789
790         flist_for_each_safe(entry, n, &td->io_u_freelist) {
791                 io_u = flist_entry(entry, struct io_u, list);
792
793                 flist_del(&io_u->list);
794                 fio_memfree(io_u, sizeof(*io_u));
795         }
796
797         free_io_mem(td);
798 }
799
800 static int init_io_u(struct thread_data *td)
801 {
802         struct io_u *io_u;
803         unsigned int max_bs, min_write;
804         int cl_align, i, max_units;
805         char *p;
806
807         max_units = td->o.iodepth;
808         max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
809         max_bs = max(td->o.max_bs[DDIR_TRIM], max_bs);
810         min_write = td->o.min_bs[DDIR_WRITE];
811         td->orig_buffer_size = (unsigned long long) max_bs
812                                         * (unsigned long long) max_units;
813
814         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
815                 unsigned long bs;
816
817                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
818                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
819         }
820
821         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
822                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
823                 return 1;
824         }
825
826         if (allocate_io_mem(td))
827                 return 1;
828
829         if (td->o.odirect || td->o.mem_align ||
830             (td->io_ops->flags & FIO_RAWIO))
831                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
832         else
833                 p = td->orig_buffer;
834
835         cl_align = os_cache_line_size();
836
837         for (i = 0; i < max_units; i++) {
838                 void *ptr;
839
840                 if (td->terminate)
841                         return 1;
842
843                 ptr = fio_memalign(cl_align, sizeof(*io_u));
844                 if (!ptr) {
845                         log_err("fio: unable to allocate aligned memory\n");
846                         break;
847                 }
848
849                 io_u = ptr;
850                 memset(io_u, 0, sizeof(*io_u));
851                 INIT_FLIST_HEAD(&io_u->list);
852                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
853
854                 if (!(td->io_ops->flags & FIO_NOIO)) {
855                         io_u->buf = p;
856                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
857
858                         if (td_write(td))
859                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
860                         if (td_write(td) && td->o.verify_pattern_bytes) {
861                                 /*
862                                  * Fill the buffer with the pattern if we are
863                                  * going to be doing writes.
864                                  */
865                                 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
866                         }
867                 }
868
869                 io_u->index = i;
870                 io_u->flags = IO_U_F_FREE;
871                 flist_add(&io_u->list, &td->io_u_freelist);
872                 p += max_bs;
873         }
874
875         return 0;
876 }
877
878 static int switch_ioscheduler(struct thread_data *td)
879 {
880         char tmp[256], tmp2[128];
881         FILE *f;
882         int ret;
883
884         if (td->io_ops->flags & FIO_DISKLESSIO)
885                 return 0;
886
887         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
888
889         f = fopen(tmp, "r+");
890         if (!f) {
891                 if (errno == ENOENT) {
892                         log_err("fio: os or kernel doesn't support IO scheduler"
893                                 " switching\n");
894                         return 0;
895                 }
896                 td_verror(td, errno, "fopen iosched");
897                 return 1;
898         }
899
900         /*
901          * Set io scheduler.
902          */
903         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
904         if (ferror(f) || ret != 1) {
905                 td_verror(td, errno, "fwrite");
906                 fclose(f);
907                 return 1;
908         }
909
910         rewind(f);
911
912         /*
913          * Read back and check that the selected scheduler is now the default.
914          */
915         ret = fread(tmp, 1, sizeof(tmp), f);
916         if (ferror(f) || ret < 0) {
917                 td_verror(td, errno, "fread");
918                 fclose(f);
919                 return 1;
920         }
921
922         sprintf(tmp2, "[%s]", td->o.ioscheduler);
923         if (!strstr(tmp, tmp2)) {
924                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
925                 td_verror(td, EINVAL, "iosched_switch");
926                 fclose(f);
927                 return 1;
928         }
929
930         fclose(f);
931         return 0;
932 }
933
934 static int keep_running(struct thread_data *td)
935 {
936         if (td->done)
937                 return 0;
938         if (td->o.time_based)
939                 return 1;
940         if (td->o.loops) {
941                 td->o.loops--;
942                 return 1;
943         }
944
945         if (ddir_rw_sum(td->io_bytes) < td->o.size)
946                 return 1;
947
948         return 0;
949 }
950
951 static int exec_string(const char *string)
952 {
953         int ret, newlen = strlen(string) + 1 + 8;
954         char *str;
955
956         str = malloc(newlen);
957         sprintf(str, "sh -c %s", string);
958
959         ret = system(str);
960         if (ret == -1)
961                 log_err("fio: exec of cmd <%s> failed\n", str);
962
963         free(str);
964         return ret;
965 }
966
967 /*
968  * Entry point for the thread based jobs. The process based jobs end up
969  * here as well, after a little setup.
970  */
971 static void *thread_main(void *data)
972 {
973         unsigned long long elapsed;
974         struct thread_data *td = data;
975         pthread_condattr_t attr;
976         int clear_state;
977
978         if (!td->o.use_thread) {
979                 setsid();
980                 td->pid = getpid();
981         } else
982                 td->pid = gettid();
983
984         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
985
986         INIT_FLIST_HEAD(&td->io_u_freelist);
987         INIT_FLIST_HEAD(&td->io_u_busylist);
988         INIT_FLIST_HEAD(&td->io_u_requeues);
989         INIT_FLIST_HEAD(&td->io_log_list);
990         INIT_FLIST_HEAD(&td->io_hist_list);
991         INIT_FLIST_HEAD(&td->verify_list);
992         INIT_FLIST_HEAD(&td->trim_list);
993         pthread_mutex_init(&td->io_u_lock, NULL);
994         td->io_hist_tree = RB_ROOT;
995
996         pthread_condattr_init(&attr);
997         pthread_cond_init(&td->verify_cond, &attr);
998         pthread_cond_init(&td->free_cond, &attr);
999
1000         td_set_runstate(td, TD_INITIALIZED);
1001         dprint(FD_MUTEX, "up startup_mutex\n");
1002         fio_mutex_up(startup_mutex);
1003         dprint(FD_MUTEX, "wait on td->mutex\n");
1004         fio_mutex_down(td->mutex);
1005         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1006
1007         /*
1008          * the ->mutex mutex is now no longer used, close it to avoid
1009          * eating a file descriptor
1010          */
1011         fio_mutex_remove(td->mutex);
1012
1013         /*
1014          * A new gid requires privilege, so we need to do this before setting
1015          * the uid.
1016          */
1017         if (td->o.gid != -1U && setgid(td->o.gid)) {
1018                 td_verror(td, errno, "setgid");
1019                 goto err;
1020         }
1021         if (td->o.uid != -1U && setuid(td->o.uid)) {
1022                 td_verror(td, errno, "setuid");
1023                 goto err;
1024         }
1025
1026         /*
1027          * If we have a gettimeofday() thread, make sure we exclude that
1028          * thread from this job
1029          */
1030         if (td->o.gtod_cpu)
1031                 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1032
1033         /*
1034          * Set affinity first, in case it has an impact on the memory
1035          * allocations.
1036          */
1037         if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1038                 td_verror(td, errno, "cpu_set_affinity");
1039                 goto err;
1040         }
1041
1042         /*
1043          * May alter parameters that init_io_u() will use, so we need to
1044          * do this first.
1045          */
1046         if (init_iolog(td))
1047                 goto err;
1048
1049         if (init_io_u(td))
1050                 goto err;
1051
1052         if (td->o.verify_async && verify_async_init(td))
1053                 goto err;
1054
1055         if (td->ioprio_set) {
1056                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1057                         td_verror(td, errno, "ioprio_set");
1058                         goto err;
1059                 }
1060         }
1061
1062         if (td->o.cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1063                 goto err;
1064
1065         errno = 0;
1066         if (nice(td->o.nice) == -1 && errno != 0) {
1067                 td_verror(td, errno, "nice");
1068                 goto err;
1069         }
1070
1071         if (td->o.ioscheduler && switch_ioscheduler(td))
1072                 goto err;
1073
1074         if (!td->o.create_serialize && setup_files(td))
1075                 goto err;
1076
1077         if (td_io_init(td))
1078                 goto err;
1079
1080         if (init_random_map(td))
1081                 goto err;
1082
1083         if (td->o.exec_prerun) {
1084                 if (exec_string(td->o.exec_prerun))
1085                         goto err;
1086         }
1087
1088         if (td->o.pre_read) {
1089                 if (pre_read_files(td) < 0)
1090                         goto err;
1091         }
1092
1093         fio_gettime(&td->epoch, NULL);
1094         getrusage(RUSAGE_SELF, &td->ru_start);
1095
1096         clear_state = 0;
1097         while (keep_running(td)) {
1098                 fio_gettime(&td->start, NULL);
1099                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1100                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1101                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1102
1103                 if (td->o.ratemin[DDIR_READ] || td->o.ratemin[DDIR_WRITE] ||
1104                                 td->o.ratemin[DDIR_TRIM]) {
1105                         memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1106                                                 sizeof(td->bw_sample_time));
1107                         memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1108                                                 sizeof(td->bw_sample_time));
1109                         memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1110                                                 sizeof(td->bw_sample_time));
1111                 }
1112
1113                 if (clear_state)
1114                         clear_io_state(td);
1115
1116                 prune_io_piece_log(td);
1117
1118                 do_io(td);
1119
1120                 clear_state = 1;
1121
1122                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1123                         elapsed = utime_since_now(&td->start);
1124                         td->ts.runtime[DDIR_READ] += elapsed;
1125                 }
1126                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1127                         elapsed = utime_since_now(&td->start);
1128                         td->ts.runtime[DDIR_WRITE] += elapsed;
1129                 }
1130                 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1131                         elapsed = utime_since_now(&td->start);
1132                         td->ts.runtime[DDIR_TRIM] += elapsed;
1133                 }
1134
1135                 if (td->error || td->terminate)
1136                         break;
1137
1138                 if (!td->o.do_verify ||
1139                     td->o.verify == VERIFY_NONE ||
1140                     (td->io_ops->flags & FIO_UNIDIR))
1141                         continue;
1142
1143                 clear_io_state(td);
1144
1145                 fio_gettime(&td->start, NULL);
1146
1147                 do_verify(td);
1148
1149                 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1150
1151                 if (td->error || td->terminate)
1152                         break;
1153         }
1154
1155         update_rusage_stat(td);
1156         td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1157         td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1158         td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1159         td->ts.total_run_time = mtime_since_now(&td->epoch);
1160         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1161         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1162         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1163
1164         fio_mutex_down(writeout_mutex);
1165         if (td->bw_log) {
1166                 if (td->o.bw_log_file) {
1167                         finish_log_named(td, td->bw_log,
1168                                                 td->o.bw_log_file, "bw");
1169                 } else
1170                         finish_log(td, td->bw_log, "bw");
1171         }
1172         if (td->lat_log) {
1173                 if (td->o.lat_log_file) {
1174                         finish_log_named(td, td->lat_log,
1175                                                 td->o.lat_log_file, "lat");
1176                 } else
1177                         finish_log(td, td->lat_log, "lat");
1178         }
1179         if (td->slat_log) {
1180                 if (td->o.lat_log_file) {
1181                         finish_log_named(td, td->slat_log,
1182                                                 td->o.lat_log_file, "slat");
1183                 } else
1184                         finish_log(td, td->slat_log, "slat");
1185         }
1186         if (td->clat_log) {
1187                 if (td->o.lat_log_file) {
1188                         finish_log_named(td, td->clat_log,
1189                                                 td->o.lat_log_file, "clat");
1190                 } else
1191                         finish_log(td, td->clat_log, "clat");
1192         }
1193         if (td->iops_log) {
1194                 if (td->o.iops_log_file) {
1195                         finish_log_named(td, td->iops_log,
1196                                                 td->o.iops_log_file, "iops");
1197                 } else
1198                         finish_log(td, td->iops_log, "iops");
1199         }
1200
1201         fio_mutex_up(writeout_mutex);
1202         if (td->o.exec_postrun)
1203                 exec_string(td->o.exec_postrun);
1204
1205         if (exitall_on_terminate)
1206                 fio_terminate_threads(td->groupid);
1207
1208 err:
1209         if (td->error)
1210                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1211                                                         td->verror);
1212
1213         if (td->o.verify_async)
1214                 verify_async_exit(td);
1215
1216         close_and_free_files(td);
1217         close_ioengine(td);
1218         cleanup_io_u(td);
1219         cgroup_shutdown(td, &cgroup_mnt);
1220
1221         if (td->o.cpumask_set) {
1222                 int ret = fio_cpuset_exit(&td->o.cpumask);
1223
1224                 td_verror(td, ret, "fio_cpuset_exit");
1225         }
1226
1227         /*
1228          * do this very late, it will log file closing as well
1229          */
1230         if (td->o.write_iolog_file)
1231                 write_iolog_close(td);
1232
1233         td_set_runstate(td, TD_EXITED);
1234         return (void *) (uintptr_t) td->error;
1235 }
1236
1237
1238 /*
1239  * We cannot pass the td data into a forked process, so attach the td and
1240  * pass it to the thread worker.
1241  */
1242 static int fork_main(int shmid, int offset)
1243 {
1244         struct thread_data *td;
1245         void *data, *ret;
1246
1247 #ifndef __hpux
1248         data = shmat(shmid, NULL, 0);
1249         if (data == (void *) -1) {
1250                 int __err = errno;
1251
1252                 perror("shmat");
1253                 return __err;
1254         }
1255 #else
1256         /*
1257          * HP-UX inherits shm mappings?
1258          */
1259         data = threads;
1260 #endif
1261
1262         td = data + offset * sizeof(struct thread_data);
1263         ret = thread_main(td);
1264         shmdt(data);
1265         return (int) (uintptr_t) ret;
1266 }
1267
1268 /*
1269  * Run over the job map and reap the threads that have exited, if any.
1270  */
1271 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1272                          unsigned int *m_rate)
1273 {
1274         struct thread_data *td;
1275         unsigned int cputhreads, realthreads, pending;
1276         int i, status, ret;
1277
1278         /*
1279          * reap exited threads (TD_EXITED -> TD_REAPED)
1280          */
1281         realthreads = pending = cputhreads = 0;
1282         for_each_td(td, i) {
1283                 int flags = 0;
1284
1285                 /*
1286                  * ->io_ops is NULL for a thread that has closed its
1287                  * io engine
1288                  */
1289                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1290                         cputhreads++;
1291                 else
1292                         realthreads++;
1293
1294                 if (!td->pid) {
1295                         pending++;
1296                         continue;
1297                 }
1298                 if (td->runstate == TD_REAPED)
1299                         continue;
1300                 if (td->o.use_thread) {
1301                         if (td->runstate == TD_EXITED) {
1302                                 td_set_runstate(td, TD_REAPED);
1303                                 goto reaped;
1304                         }
1305                         continue;
1306                 }
1307
1308                 flags = WNOHANG;
1309                 if (td->runstate == TD_EXITED)
1310                         flags = 0;
1311
1312                 /*
1313                  * check if someone quit or got killed in an unusual way
1314                  */
1315                 ret = waitpid(td->pid, &status, flags);
1316                 if (ret < 0) {
1317                         if (errno == ECHILD) {
1318                                 log_err("fio: pid=%d disappeared %d\n",
1319                                                 (int) td->pid, td->runstate);
1320                                 td->sig = ECHILD;
1321                                 td_set_runstate(td, TD_REAPED);
1322                                 goto reaped;
1323                         }
1324                         perror("waitpid");
1325                 } else if (ret == td->pid) {
1326                         if (WIFSIGNALED(status)) {
1327                                 int sig = WTERMSIG(status);
1328
1329                                 if (sig != SIGTERM)
1330                                         log_err("fio: pid=%d, got signal=%d\n",
1331                                                         (int) td->pid, sig);
1332                                 td->sig = sig;
1333                                 td_set_runstate(td, TD_REAPED);
1334                                 goto reaped;
1335                         }
1336                         if (WIFEXITED(status)) {
1337                                 if (WEXITSTATUS(status) && !td->error)
1338                                         td->error = WEXITSTATUS(status);
1339
1340                                 td_set_runstate(td, TD_REAPED);
1341                                 goto reaped;
1342                         }
1343                 }
1344
1345                 /*
1346                  * thread is not dead, continue
1347                  */
1348                 pending++;
1349                 continue;
1350 reaped:
1351                 (*nr_running)--;
1352                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1353                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1354                 if (!td->pid)
1355                         pending--;
1356
1357                 if (td->error)
1358                         exit_value++;
1359
1360                 done_secs += mtime_since_now(&td->epoch) / 1000;
1361         }
1362
1363         if (*nr_running == cputhreads && !pending && realthreads)
1364                 fio_terminate_threads(TERMINATE_ALL);
1365 }
1366
1367 /*
1368  * Main function for kicking off and reaping jobs, as needed.
1369  */
1370 static void run_threads(void)
1371 {
1372         struct thread_data *td;
1373         unsigned long spent;
1374         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1375
1376         if (fio_pin_memory())
1377                 return;
1378
1379         if (fio_gtod_offload && fio_start_gtod_thread())
1380                 return;
1381
1382         set_sig_handlers();
1383
1384         if (output_format == FIO_OUTPUT_NORMAL) {
1385                 log_info("Starting ");
1386                 if (nr_thread)
1387                         log_info("%d thread%s", nr_thread,
1388                                                 nr_thread > 1 ? "s" : "");
1389                 if (nr_process) {
1390                         if (nr_thread)
1391                                 log_info(" and ");
1392                         log_info("%d process%s", nr_process,
1393                                                 nr_process > 1 ? "es" : "");
1394                 }
1395                 log_info("\n");
1396                 fflush(stdout);
1397         }
1398
1399         todo = thread_number;
1400         nr_running = 0;
1401         nr_started = 0;
1402         m_rate = t_rate = 0;
1403
1404         for_each_td(td, i) {
1405                 print_status_init(td->thread_number - 1);
1406
1407                 if (!td->o.create_serialize)
1408                         continue;
1409
1410                 /*
1411                  * do file setup here so it happens sequentially,
1412                  * we don't want X number of threads getting their
1413                  * client data interspersed on disk
1414                  */
1415                 if (setup_files(td)) {
1416                         exit_value++;
1417                         if (td->error)
1418                                 log_err("fio: pid=%d, err=%d/%s\n",
1419                                         (int) td->pid, td->error, td->verror);
1420                         td_set_runstate(td, TD_REAPED);
1421                         todo--;
1422                 } else {
1423                         struct fio_file *f;
1424                         unsigned int j;
1425
1426                         /*
1427                          * for sharing to work, each job must always open
1428                          * its own files. so close them, if we opened them
1429                          * for creation
1430                          */
1431                         for_each_file(td, f, j) {
1432                                 if (fio_file_open(f))
1433                                         td_io_close_file(td, f);
1434                         }
1435                 }
1436         }
1437
1438         set_genesis_time();
1439
1440         while (todo) {
1441                 struct thread_data *map[REAL_MAX_JOBS];
1442                 struct timeval this_start;
1443                 int this_jobs = 0, left;
1444
1445                 /*
1446                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1447                  */
1448                 for_each_td(td, i) {
1449                         if (td->runstate != TD_NOT_CREATED)
1450                                 continue;
1451
1452                         /*
1453                          * never got a chance to start, killed by other
1454                          * thread for some reason
1455                          */
1456                         if (td->terminate) {
1457                                 todo--;
1458                                 continue;
1459                         }
1460
1461                         if (td->o.start_delay) {
1462                                 spent = mtime_since_genesis();
1463
1464                                 if (td->o.start_delay * 1000 > spent)
1465                                         continue;
1466                         }
1467
1468                         if (td->o.stonewall && (nr_started || nr_running)) {
1469                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1470                                                         td->o.name);
1471                                 break;
1472                         }
1473
1474                         init_disk_util(td);
1475
1476                         /*
1477                          * Set state to created. Thread will transition
1478                          * to TD_INITIALIZED when it's done setting up.
1479                          */
1480                         td_set_runstate(td, TD_CREATED);
1481                         map[this_jobs++] = td;
1482                         nr_started++;
1483
1484                         if (td->o.use_thread) {
1485                                 int ret;
1486
1487                                 dprint(FD_PROCESS, "will pthread_create\n");
1488                                 ret = pthread_create(&td->thread, NULL,
1489                                                         thread_main, td);
1490                                 if (ret) {
1491                                         log_err("pthread_create: %s\n",
1492                                                         strerror(ret));
1493                                         nr_started--;
1494                                         break;
1495                                 }
1496                                 ret = pthread_detach(td->thread);
1497                                 if (ret)
1498                                         log_err("pthread_detach: %s",
1499                                                         strerror(ret));
1500                         } else {
1501                                 pid_t pid;
1502                                 dprint(FD_PROCESS, "will fork\n");
1503                                 pid = fork();
1504                                 if (!pid) {
1505                                         int ret = fork_main(shm_id, i);
1506
1507                                         _exit(ret);
1508                                 } else if (i == fio_debug_jobno)
1509                                         *fio_debug_jobp = pid;
1510                         }
1511                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1512                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
1513                                 log_err("fio: job startup hung? exiting.\n");
1514                                 fio_terminate_threads(TERMINATE_ALL);
1515                                 fio_abort = 1;
1516                                 nr_started--;
1517                                 break;
1518                         }
1519                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1520                 }
1521
1522                 /*
1523                  * Wait for the started threads to transition to
1524                  * TD_INITIALIZED.
1525                  */
1526                 fio_gettime(&this_start, NULL);
1527                 left = this_jobs;
1528                 while (left && !fio_abort) {
1529                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1530                                 break;
1531
1532                         usleep(100000);
1533
1534                         for (i = 0; i < this_jobs; i++) {
1535                                 td = map[i];
1536                                 if (!td)
1537                                         continue;
1538                                 if (td->runstate == TD_INITIALIZED) {
1539                                         map[i] = NULL;
1540                                         left--;
1541                                 } else if (td->runstate >= TD_EXITED) {
1542                                         map[i] = NULL;
1543                                         left--;
1544                                         todo--;
1545                                         nr_running++; /* work-around... */
1546                                 }
1547                         }
1548                 }
1549
1550                 if (left) {
1551                         log_err("fio: %d job%s failed to start\n", left,
1552                                         left > 1 ? "s" : "");
1553                         for (i = 0; i < this_jobs; i++) {
1554                                 td = map[i];
1555                                 if (!td)
1556                                         continue;
1557                                 kill(td->pid, SIGTERM);
1558                         }
1559                         break;
1560                 }
1561
1562                 /*
1563                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1564                  */
1565                 for_each_td(td, i) {
1566                         if (td->runstate != TD_INITIALIZED)
1567                                 continue;
1568
1569                         if (in_ramp_time(td))
1570                                 td_set_runstate(td, TD_RAMP);
1571                         else
1572                                 td_set_runstate(td, TD_RUNNING);
1573                         nr_running++;
1574                         nr_started--;
1575                         m_rate += ddir_rw_sum(td->o.ratemin);
1576                         t_rate += ddir_rw_sum(td->o.rate);
1577                         todo--;
1578                         fio_mutex_up(td->mutex);
1579                 }
1580
1581                 reap_threads(&nr_running, &t_rate, &m_rate);
1582
1583                 if (todo) {
1584                         if (is_backend)
1585                                 fio_server_idle_loop();
1586                         else
1587                                 usleep(100000);
1588                 }
1589         }
1590
1591         while (nr_running) {
1592                 reap_threads(&nr_running, &t_rate, &m_rate);
1593
1594                 if (is_backend)
1595                         fio_server_idle_loop();
1596                 else
1597                         usleep(10000);
1598         }
1599
1600         update_io_ticks();
1601         fio_unpin_memory();
1602 }
1603
1604 void wait_for_disk_thread_exit(void)
1605 {
1606         fio_mutex_down(disk_thread_mutex);
1607 }
1608
1609 static void *disk_thread_main(void *data)
1610 {
1611         int ret = 0;
1612
1613         fio_mutex_up(startup_mutex);
1614
1615         while (threads && !ret) {
1616                 usleep(DISK_UTIL_MSEC * 1000);
1617                 if (!threads)
1618                         break;
1619                 ret = update_io_ticks();
1620
1621                 if (!is_backend)
1622                         print_thread_status();
1623         }
1624
1625         fio_mutex_up(disk_thread_mutex);
1626         return NULL;
1627 }
1628
1629 static int create_disk_util_thread(void)
1630 {
1631         int ret;
1632
1633         setup_disk_util();
1634
1635         disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1636
1637         ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1638         if (ret) {
1639                 fio_mutex_remove(disk_thread_mutex);
1640                 log_err("Can't create disk util thread: %s\n", strerror(ret));
1641                 return 1;
1642         }
1643
1644         ret = pthread_detach(disk_util_thread);
1645         if (ret) {
1646                 fio_mutex_remove(disk_thread_mutex);
1647                 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1648                 return 1;
1649         }
1650
1651         dprint(FD_MUTEX, "wait on startup_mutex\n");
1652         fio_mutex_down(startup_mutex);
1653         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1654         return 0;
1655 }
1656
1657 int fio_backend(void)
1658 {
1659         struct thread_data *td;
1660         int i;
1661
1662         if (exec_profile) {
1663                 if (load_profile(exec_profile))
1664                         return 1;
1665                 free(exec_profile);
1666                 exec_profile = NULL;
1667         }
1668         if (!thread_number)
1669                 return 0;
1670
1671         if (write_bw_log) {
1672                 setup_log(&agg_io_log[DDIR_READ], 0);
1673                 setup_log(&agg_io_log[DDIR_WRITE], 0);
1674                 setup_log(&agg_io_log[DDIR_TRIM], 0);
1675         }
1676
1677         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1678         if (startup_mutex == NULL)
1679                 return 1;
1680         writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
1681         if (writeout_mutex == NULL)
1682                 return 1;
1683
1684         set_genesis_time();
1685         create_disk_util_thread();
1686
1687         cgroup_list = smalloc(sizeof(*cgroup_list));
1688         INIT_FLIST_HEAD(cgroup_list);
1689
1690         run_threads();
1691
1692         if (!fio_abort) {
1693                 show_run_stats();
1694                 if (write_bw_log) {
1695                         __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1696                         __finish_log(agg_io_log[DDIR_WRITE],
1697                                         "agg-write_bw.log");
1698                         __finish_log(agg_io_log[DDIR_TRIM],
1699                                         "agg-write_bw.log");
1700                 }
1701         }
1702
1703         for_each_td(td, i)
1704                 fio_options_free(td);
1705
1706         free_disk_util();
1707         cgroup_kill(cgroup_list);
1708         sfree(cgroup_list);
1709         sfree(cgroup_mnt);
1710
1711         fio_mutex_remove(startup_mutex);
1712         fio_mutex_remove(writeout_mutex);
1713         fio_mutex_remove(disk_thread_mutex);
1714         return exit_value;
1715 }