workqueue: move private accounting to caller
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "lib/tp.h"
58 #include "workqueue.h"
59 #include "lib/mountcheck.h"
60
61 static pthread_t helper_thread;
62 static pthread_mutex_t helper_lock;
63 pthread_cond_t helper_cond;
64 int helper_do_stat = 0;
65
66 static struct fio_mutex *startup_mutex;
67 static struct flist_head *cgroup_list;
68 static char *cgroup_mnt;
69 static int exit_value;
70 static volatile int fio_abort;
71 static unsigned int nr_process = 0;
72 static unsigned int nr_thread = 0;
73
74 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
75
76 int groupid = 0;
77 unsigned int thread_number = 0;
78 unsigned int stat_number = 0;
79 int shm_id = 0;
80 int temp_stall_ts;
81 unsigned long done_secs = 0;
82 volatile int helper_exit = 0;
83
84 #define PAGE_ALIGN(buf) \
85         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
86
87 #define JOB_START_TIMEOUT       (5 * 1000)
88
89 static void sig_int(int sig)
90 {
91         if (threads) {
92                 if (is_backend)
93                         fio_server_got_signal(sig);
94                 else {
95                         log_info("\nfio: terminating on signal %d\n", sig);
96                         log_info_flush();
97                         exit_value = 128;
98                 }
99
100                 fio_terminate_threads(TERMINATE_ALL);
101         }
102 }
103
104 void sig_show_status(int sig)
105 {
106         show_running_run_stats();
107 }
108
109 static void set_sig_handlers(void)
110 {
111         struct sigaction act;
112
113         memset(&act, 0, sizeof(act));
114         act.sa_handler = sig_int;
115         act.sa_flags = SA_RESTART;
116         sigaction(SIGINT, &act, NULL);
117
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_int;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGTERM, &act, NULL);
122
123 /* Windows uses SIGBREAK as a quit signal from other applications */
124 #ifdef WIN32
125         memset(&act, 0, sizeof(act));
126         act.sa_handler = sig_int;
127         act.sa_flags = SA_RESTART;
128         sigaction(SIGBREAK, &act, NULL);
129 #endif
130
131         memset(&act, 0, sizeof(act));
132         act.sa_handler = sig_show_status;
133         act.sa_flags = SA_RESTART;
134         sigaction(SIGUSR1, &act, NULL);
135
136         if (is_backend) {
137                 memset(&act, 0, sizeof(act));
138                 act.sa_handler = sig_int;
139                 act.sa_flags = SA_RESTART;
140                 sigaction(SIGPIPE, &act, NULL);
141         }
142 }
143
144 /*
145  * Check if we are above the minimum rate given.
146  */
147 static bool __check_min_rate(struct thread_data *td, struct timeval *now,
148                              enum fio_ddir ddir)
149 {
150         unsigned long long bytes = 0;
151         unsigned long iops = 0;
152         unsigned long spent;
153         unsigned long rate;
154         unsigned int ratemin = 0;
155         unsigned int rate_iops = 0;
156         unsigned int rate_iops_min = 0;
157
158         assert(ddir_rw(ddir));
159
160         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
161                 return false;
162
163         /*
164          * allow a 2 second settle period in the beginning
165          */
166         if (mtime_since(&td->start, now) < 2000)
167                 return false;
168
169         iops += td->this_io_blocks[ddir];
170         bytes += td->this_io_bytes[ddir];
171         ratemin += td->o.ratemin[ddir];
172         rate_iops += td->o.rate_iops[ddir];
173         rate_iops_min += td->o.rate_iops_min[ddir];
174
175         /*
176          * if rate blocks is set, sample is running
177          */
178         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
179                 spent = mtime_since(&td->lastrate[ddir], now);
180                 if (spent < td->o.ratecycle)
181                         return false;
182
183                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
184                         /*
185                          * check bandwidth specified rate
186                          */
187                         if (bytes < td->rate_bytes[ddir]) {
188                                 log_err("%s: min rate %u not met\n", td->o.name,
189                                                                 ratemin);
190                                 return true;
191                         } else {
192                                 if (spent)
193                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
194                                 else
195                                         rate = 0;
196
197                                 if (rate < ratemin ||
198                                     bytes < td->rate_bytes[ddir]) {
199                                         log_err("%s: min rate %u not met, got"
200                                                 " %luKB/sec\n", td->o.name,
201                                                         ratemin, rate);
202                                         return true;
203                                 }
204                         }
205                 } else {
206                         /*
207                          * checks iops specified rate
208                          */
209                         if (iops < rate_iops) {
210                                 log_err("%s: min iops rate %u not met\n",
211                                                 td->o.name, rate_iops);
212                                 return true;
213                         } else {
214                                 if (spent)
215                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
216                                 else
217                                         rate = 0;
218
219                                 if (rate < rate_iops_min ||
220                                     iops < td->rate_blocks[ddir]) {
221                                         log_err("%s: min iops rate %u not met,"
222                                                 " got %lu\n", td->o.name,
223                                                         rate_iops_min, rate);
224                                         return true;
225                                 }
226                         }
227                 }
228         }
229
230         td->rate_bytes[ddir] = bytes;
231         td->rate_blocks[ddir] = iops;
232         memcpy(&td->lastrate[ddir], now, sizeof(*now));
233         return false;
234 }
235
236 static bool check_min_rate(struct thread_data *td, struct timeval *now)
237 {
238         bool ret = false;
239
240         if (td->bytes_done[DDIR_READ])
241                 ret |= __check_min_rate(td, now, DDIR_READ);
242         if (td->bytes_done[DDIR_WRITE])
243                 ret |= __check_min_rate(td, now, DDIR_WRITE);
244         if (td->bytes_done[DDIR_TRIM])
245                 ret |= __check_min_rate(td, now, DDIR_TRIM);
246
247         return ret;
248 }
249
250 /*
251  * When job exits, we can cancel the in-flight IO if we are using async
252  * io. Attempt to do so.
253  */
254 static void cleanup_pending_aio(struct thread_data *td)
255 {
256         int r;
257
258         /*
259          * get immediately available events, if any
260          */
261         r = io_u_queued_complete(td, 0);
262         if (r < 0)
263                 return;
264
265         /*
266          * now cancel remaining active events
267          */
268         if (td->io_ops->cancel) {
269                 struct io_u *io_u;
270                 int i;
271
272                 io_u_qiter(&td->io_u_all, io_u, i) {
273                         if (io_u->flags & IO_U_F_FLIGHT) {
274                                 r = td->io_ops->cancel(td, io_u);
275                                 if (!r)
276                                         put_io_u(td, io_u);
277                         }
278                 }
279         }
280
281         if (td->cur_depth)
282                 r = io_u_queued_complete(td, td->cur_depth);
283 }
284
285 /*
286  * Helper to handle the final sync of a file. Works just like the normal
287  * io path, just does everything sync.
288  */
289 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
290 {
291         struct io_u *io_u = __get_io_u(td);
292         int ret;
293
294         if (!io_u)
295                 return true;
296
297         io_u->ddir = DDIR_SYNC;
298         io_u->file = f;
299
300         if (td_io_prep(td, io_u)) {
301                 put_io_u(td, io_u);
302                 return true;
303         }
304
305 requeue:
306         ret = td_io_queue(td, io_u);
307         if (ret < 0) {
308                 td_verror(td, io_u->error, "td_io_queue");
309                 put_io_u(td, io_u);
310                 return true;
311         } else if (ret == FIO_Q_QUEUED) {
312                 if (io_u_queued_complete(td, 1) < 0)
313                         return true;
314         } else if (ret == FIO_Q_COMPLETED) {
315                 if (io_u->error) {
316                         td_verror(td, io_u->error, "td_io_queue");
317                         return true;
318                 }
319
320                 if (io_u_sync_complete(td, io_u) < 0)
321                         return true;
322         } else if (ret == FIO_Q_BUSY) {
323                 if (td_io_commit(td))
324                         return true;
325                 goto requeue;
326         }
327
328         return false;
329 }
330
331 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
332 {
333         int ret;
334
335         if (fio_file_open(f))
336                 return fio_io_sync(td, f);
337
338         if (td_io_open_file(td, f))
339                 return 1;
340
341         ret = fio_io_sync(td, f);
342         td_io_close_file(td, f);
343         return ret;
344 }
345
346 static inline void __update_tv_cache(struct thread_data *td)
347 {
348         fio_gettime(&td->tv_cache, NULL);
349 }
350
351 static inline void update_tv_cache(struct thread_data *td)
352 {
353         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
354                 __update_tv_cache(td);
355 }
356
357 static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
358 {
359         if (in_ramp_time(td))
360                 return false;
361         if (!td->o.timeout)
362                 return false;
363         if (utime_since(&td->epoch, t) >= td->o.timeout)
364                 return true;
365
366         return false;
367 }
368
369 /*
370  * We need to update the runtime consistently in ms, but keep a running
371  * tally of the current elapsed time in microseconds for sub millisecond
372  * updates.
373  */
374 static inline void update_runtime(struct thread_data *td,
375                                   unsigned long long *elapsed_us,
376                                   const enum fio_ddir ddir)
377 {
378         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
379                 return;
380
381         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
382         elapsed_us[ddir] += utime_since_now(&td->start);
383         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
384 }
385
386 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
387                                 int *retptr)
388 {
389         int ret = *retptr;
390
391         if (ret < 0 || td->error) {
392                 int err = td->error;
393                 enum error_type_bit eb;
394
395                 if (ret < 0)
396                         err = -ret;
397
398                 eb = td_error_type(ddir, err);
399                 if (!(td->o.continue_on_error & (1 << eb)))
400                         return true;
401
402                 if (td_non_fatal_error(td, eb, err)) {
403                         /*
404                          * Continue with the I/Os in case of
405                          * a non fatal error.
406                          */
407                         update_error_count(td, err);
408                         td_clear_error(td);
409                         *retptr = 0;
410                         return false;
411                 } else if (td->o.fill_device && err == ENOSPC) {
412                         /*
413                          * We expect to hit this error if
414                          * fill_device option is set.
415                          */
416                         td_clear_error(td);
417                         fio_mark_td_terminate(td);
418                         return true;
419                 } else {
420                         /*
421                          * Stop the I/O in case of a fatal
422                          * error.
423                          */
424                         update_error_count(td, err);
425                         return true;
426                 }
427         }
428
429         return false;
430 }
431
432 static void check_update_rusage(struct thread_data *td)
433 {
434         if (td->update_rusage) {
435                 td->update_rusage = 0;
436                 update_rusage_stat(td);
437                 fio_mutex_up(td->rusage_sem);
438         }
439 }
440
441 static int wait_for_completions(struct thread_data *td, struct timeval *time)
442 {
443         const int full = queue_full(td);
444         int min_evts = 0;
445         int ret;
446
447         /*
448          * if the queue is full, we MUST reap at least 1 event
449          */
450         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
451         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
452                 min_evts = 1;
453
454         if (time && (__should_check_rate(td, DDIR_READ) ||
455             __should_check_rate(td, DDIR_WRITE) ||
456             __should_check_rate(td, DDIR_TRIM)))
457                 fio_gettime(time, NULL);
458
459         do {
460                 ret = io_u_queued_complete(td, min_evts);
461                 if (ret < 0)
462                         break;
463         } while (full && (td->cur_depth > td->o.iodepth_low));
464
465         return ret;
466 }
467
468 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
469                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
470                    struct timeval *comp_time)
471 {
472         int ret2;
473
474         switch (*ret) {
475         case FIO_Q_COMPLETED:
476                 if (io_u->error) {
477                         *ret = -io_u->error;
478                         clear_io_u(td, io_u);
479                 } else if (io_u->resid) {
480                         int bytes = io_u->xfer_buflen - io_u->resid;
481                         struct fio_file *f = io_u->file;
482
483                         if (bytes_issued)
484                                 *bytes_issued += bytes;
485
486                         if (!from_verify)
487                                 trim_io_piece(td, io_u);
488
489                         /*
490                          * zero read, fail
491                          */
492                         if (!bytes) {
493                                 if (!from_verify)
494                                         unlog_io_piece(td, io_u);
495                                 td_verror(td, EIO, "full resid");
496                                 put_io_u(td, io_u);
497                                 break;
498                         }
499
500                         io_u->xfer_buflen = io_u->resid;
501                         io_u->xfer_buf += bytes;
502                         io_u->offset += bytes;
503
504                         if (ddir_rw(io_u->ddir))
505                                 td->ts.short_io_u[io_u->ddir]++;
506
507                         f = io_u->file;
508                         if (io_u->offset == f->real_file_size)
509                                 goto sync_done;
510
511                         requeue_io_u(td, &io_u);
512                 } else {
513 sync_done:
514                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
515                             __should_check_rate(td, DDIR_WRITE) ||
516                             __should_check_rate(td, DDIR_TRIM)))
517                                 fio_gettime(comp_time, NULL);
518
519                         *ret = io_u_sync_complete(td, io_u);
520                         if (*ret < 0)
521                                 break;
522                 }
523                 return 0;
524         case FIO_Q_QUEUED:
525                 /*
526                  * if the engine doesn't have a commit hook,
527                  * the io_u is really queued. if it does have such
528                  * a hook, it has to call io_u_queued() itself.
529                  */
530                 if (td->io_ops->commit == NULL)
531                         io_u_queued(td, io_u);
532                 if (bytes_issued)
533                         *bytes_issued += io_u->xfer_buflen;
534                 break;
535         case FIO_Q_BUSY:
536                 if (!from_verify)
537                         unlog_io_piece(td, io_u);
538                 requeue_io_u(td, &io_u);
539                 ret2 = td_io_commit(td);
540                 if (ret2 < 0)
541                         *ret = ret2;
542                 break;
543         default:
544                 assert(*ret < 0);
545                 td_verror(td, -(*ret), "td_io_queue");
546                 break;
547         }
548
549         if (break_on_this_error(td, ddir, ret))
550                 return 1;
551
552         return 0;
553 }
554
555 static inline bool io_in_polling(struct thread_data *td)
556 {
557         return !td->o.iodepth_batch_complete_min &&
558                    !td->o.iodepth_batch_complete_max;
559 }
560
561 /*
562  * The main verify engine. Runs over the writes we previously submitted,
563  * reads the blocks back in, and checks the crc/md5 of the data.
564  */
565 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
566 {
567         struct fio_file *f;
568         struct io_u *io_u;
569         int ret, min_events;
570         unsigned int i;
571
572         dprint(FD_VERIFY, "starting loop\n");
573
574         /*
575          * sync io first and invalidate cache, to make sure we really
576          * read from disk.
577          */
578         for_each_file(td, f, i) {
579                 if (!fio_file_open(f))
580                         continue;
581                 if (fio_io_sync(td, f))
582                         break;
583                 if (file_invalidate_cache(td, f))
584                         break;
585         }
586
587         check_update_rusage(td);
588
589         if (td->error)
590                 return;
591
592         td_set_runstate(td, TD_VERIFYING);
593
594         io_u = NULL;
595         while (!td->terminate) {
596                 enum fio_ddir ddir;
597                 int full;
598
599                 update_tv_cache(td);
600                 check_update_rusage(td);
601
602                 if (runtime_exceeded(td, &td->tv_cache)) {
603                         __update_tv_cache(td);
604                         if (runtime_exceeded(td, &td->tv_cache)) {
605                                 fio_mark_td_terminate(td);
606                                 break;
607                         }
608                 }
609
610                 if (flow_threshold_exceeded(td))
611                         continue;
612
613                 if (!td->o.experimental_verify) {
614                         io_u = __get_io_u(td);
615                         if (!io_u)
616                                 break;
617
618                         if (get_next_verify(td, io_u)) {
619                                 put_io_u(td, io_u);
620                                 break;
621                         }
622
623                         if (td_io_prep(td, io_u)) {
624                                 put_io_u(td, io_u);
625                                 break;
626                         }
627                 } else {
628                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
629                                 break;
630
631                         while ((io_u = get_io_u(td)) != NULL) {
632                                 if (IS_ERR(io_u)) {
633                                         io_u = NULL;
634                                         ret = FIO_Q_BUSY;
635                                         goto reap;
636                                 }
637
638                                 /*
639                                  * We are only interested in the places where
640                                  * we wrote or trimmed IOs. Turn those into
641                                  * reads for verification purposes.
642                                  */
643                                 if (io_u->ddir == DDIR_READ) {
644                                         /*
645                                          * Pretend we issued it for rwmix
646                                          * accounting
647                                          */
648                                         td->io_issues[DDIR_READ]++;
649                                         put_io_u(td, io_u);
650                                         continue;
651                                 } else if (io_u->ddir == DDIR_TRIM) {
652                                         io_u->ddir = DDIR_READ;
653                                         io_u_set(io_u, IO_U_F_TRIMMED);
654                                         break;
655                                 } else if (io_u->ddir == DDIR_WRITE) {
656                                         io_u->ddir = DDIR_READ;
657                                         break;
658                                 } else {
659                                         put_io_u(td, io_u);
660                                         continue;
661                                 }
662                         }
663
664                         if (!io_u)
665                                 break;
666                 }
667
668                 if (verify_state_should_stop(td, io_u)) {
669                         put_io_u(td, io_u);
670                         break;
671                 }
672
673                 if (td->o.verify_async)
674                         io_u->end_io = verify_io_u_async;
675                 else
676                         io_u->end_io = verify_io_u;
677
678                 ddir = io_u->ddir;
679                 if (!td->o.disable_slat)
680                         fio_gettime(&io_u->start_time, NULL);
681
682                 ret = td_io_queue(td, io_u);
683
684                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
685                         break;
686
687                 /*
688                  * if we can queue more, do so. but check if there are
689                  * completed io_u's first. Note that we can get BUSY even
690                  * without IO queued, if the system is resource starved.
691                  */
692 reap:
693                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
694                 if (full || io_in_polling(td))
695                         ret = wait_for_completions(td, NULL);
696
697                 if (ret < 0)
698                         break;
699         }
700
701         check_update_rusage(td);
702
703         if (!td->error) {
704                 min_events = td->cur_depth;
705
706                 if (min_events)
707                         ret = io_u_queued_complete(td, min_events);
708         } else
709                 cleanup_pending_aio(td);
710
711         td_set_runstate(td, TD_RUNNING);
712
713         dprint(FD_VERIFY, "exiting loop\n");
714 }
715
716 static bool exceeds_number_ios(struct thread_data *td)
717 {
718         unsigned long long number_ios;
719
720         if (!td->o.number_ios)
721                 return false;
722
723         number_ios = ddir_rw_sum(td->io_blocks);
724         number_ios += td->io_u_queued + td->io_u_in_flight;
725
726         return number_ios >= (td->o.number_ios * td->loops);
727 }
728
729 static bool io_issue_bytes_exceeded(struct thread_data *td)
730 {
731         unsigned long long bytes, limit;
732
733         if (td_rw(td))
734                 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
735         else if (td_write(td))
736                 bytes = td->io_issue_bytes[DDIR_WRITE];
737         else if (td_read(td))
738                 bytes = td->io_issue_bytes[DDIR_READ];
739         else
740                 bytes = td->io_issue_bytes[DDIR_TRIM];
741
742         if (td->o.io_limit)
743                 limit = td->o.io_limit;
744         else
745                 limit = td->o.size;
746
747         limit *= td->loops;
748         return bytes >= limit || exceeds_number_ios(td);
749 }
750
751 static bool io_complete_bytes_exceeded(struct thread_data *td)
752 {
753         unsigned long long bytes, limit;
754
755         if (td_rw(td))
756                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
757         else if (td_write(td))
758                 bytes = td->this_io_bytes[DDIR_WRITE];
759         else if (td_read(td))
760                 bytes = td->this_io_bytes[DDIR_READ];
761         else
762                 bytes = td->this_io_bytes[DDIR_TRIM];
763
764         if (td->o.io_limit)
765                 limit = td->o.io_limit;
766         else
767                 limit = td->o.size;
768
769         limit *= td->loops;
770         return bytes >= limit || exceeds_number_ios(td);
771 }
772
773 /*
774  * used to calculate the next io time for rate control
775  *
776  */
777 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
778 {
779         uint64_t secs, remainder, bps, bytes, iops;
780
781         assert(!(td->flags & TD_F_CHILD));
782         bytes = td->rate_io_issue_bytes[ddir];
783         bps = td->rate_bps[ddir];
784
785         if (td->o.rate_process == RATE_PROCESS_POISSON) {
786                 uint64_t val;
787                 iops = bps / td->o.bs[ddir];
788                 val = (int64_t) (1000000 / iops) *
789                                 -logf(__rand_0_1(&td->poisson_state));
790                 if (val) {
791                         dprint(FD_RATE, "poisson rate iops=%llu\n",
792                                         (unsigned long long) 1000000 / val);
793                 }
794                 td->last_usec += val;
795                 return td->last_usec;
796         } else if (bps) {
797                 secs = bytes / bps;
798                 remainder = bytes % bps;
799                 return remainder * 1000000 / bps + secs * 1000000;
800         }
801
802         return 0;
803 }
804
805 /*
806  * Main IO worker function. It retrieves io_u's to process and queues
807  * and reaps them, checking for rate and errors along the way.
808  *
809  * Returns number of bytes written and trimmed.
810  */
811 static uint64_t do_io(struct thread_data *td)
812 {
813         unsigned int i;
814         int ret = 0;
815         uint64_t total_bytes, bytes_issued = 0;
816
817         if (in_ramp_time(td))
818                 td_set_runstate(td, TD_RAMP);
819         else
820                 td_set_runstate(td, TD_RUNNING);
821
822         lat_target_init(td);
823
824         total_bytes = td->o.size;
825         /*
826         * Allow random overwrite workloads to write up to io_limit
827         * before starting verification phase as 'size' doesn't apply.
828         */
829         if (td_write(td) && td_random(td) && td->o.norandommap)
830                 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
831         /*
832          * If verify_backlog is enabled, we'll run the verify in this
833          * handler as well. For that case, we may need up to twice the
834          * amount of bytes.
835          */
836         if (td->o.verify != VERIFY_NONE &&
837            (td_write(td) && td->o.verify_backlog))
838                 total_bytes += td->o.size;
839
840         /* In trimwrite mode, each byte is trimmed and then written, so
841          * allow total_bytes to be twice as big */
842         if (td_trimwrite(td))
843                 total_bytes += td->total_io_size;
844
845         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
846                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
847                 td->o.time_based) {
848                 struct timeval comp_time;
849                 struct io_u *io_u;
850                 int full;
851                 enum fio_ddir ddir;
852
853                 check_update_rusage(td);
854
855                 if (td->terminate || td->done)
856                         break;
857
858                 update_tv_cache(td);
859
860                 if (runtime_exceeded(td, &td->tv_cache)) {
861                         __update_tv_cache(td);
862                         if (runtime_exceeded(td, &td->tv_cache)) {
863                                 fio_mark_td_terminate(td);
864                                 break;
865                         }
866                 }
867
868                 if (flow_threshold_exceeded(td))
869                         continue;
870
871                 if (!td->o.time_based && bytes_issued >= total_bytes)
872                         break;
873
874                 io_u = get_io_u(td);
875                 if (IS_ERR_OR_NULL(io_u)) {
876                         int err = PTR_ERR(io_u);
877
878                         io_u = NULL;
879                         if (err == -EBUSY) {
880                                 ret = FIO_Q_BUSY;
881                                 goto reap;
882                         }
883                         if (td->o.latency_target)
884                                 goto reap;
885                         break;
886                 }
887
888                 ddir = io_u->ddir;
889
890                 /*
891                  * Add verification end_io handler if:
892                  *      - Asked to verify (!td_rw(td))
893                  *      - Or the io_u is from our verify list (mixed write/ver)
894                  */
895                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
896                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
897
898                         if (!td->o.verify_pattern_bytes) {
899                                 io_u->rand_seed = __rand(&td->verify_state);
900                                 if (sizeof(int) != sizeof(long *))
901                                         io_u->rand_seed *= __rand(&td->verify_state);
902                         }
903
904                         if (verify_state_should_stop(td, io_u)) {
905                                 put_io_u(td, io_u);
906                                 break;
907                         }
908
909                         if (td->o.verify_async)
910                                 io_u->end_io = verify_io_u_async;
911                         else
912                                 io_u->end_io = verify_io_u;
913                         td_set_runstate(td, TD_VERIFYING);
914                 } else if (in_ramp_time(td))
915                         td_set_runstate(td, TD_RAMP);
916                 else
917                         td_set_runstate(td, TD_RUNNING);
918
919                 /*
920                  * Always log IO before it's issued, so we know the specific
921                  * order of it. The logged unit will track when the IO has
922                  * completed.
923                  */
924                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
925                     td->o.do_verify &&
926                     td->o.verify != VERIFY_NONE &&
927                     !td->o.experimental_verify)
928                         log_io_piece(td, io_u);
929
930                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
931                         const unsigned long blen = io_u->xfer_buflen;
932                         const enum fio_ddir ddir = acct_ddir(io_u);
933
934                         if (td->error)
935                                 break;
936
937                         ret = workqueue_enqueue(&td->io_wq, &io_u->work);
938                         if (ret)
939                                 ret = FIO_Q_QUEUED;
940                         else
941                                 ret = FIO_Q_BUSY;
942
943                         if (ret == FIO_Q_QUEUED && ddir_rw(ddir)) {
944                                 td->io_issues[ddir]++;
945                                 td->io_issue_bytes[ddir] += blen;
946                                 td->rate_io_issue_bytes[ddir] += blen;
947                         }
948
949                         if (should_check_rate(td))
950                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
951
952                 } else {
953                         ret = td_io_queue(td, io_u);
954
955                         if (should_check_rate(td))
956                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
957
958                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
959                                 break;
960
961                         /*
962                          * See if we need to complete some commands. Note that
963                          * we can get BUSY even without IO queued, if the
964                          * system is resource starved.
965                          */
966 reap:
967                         full = queue_full(td) ||
968                                 (ret == FIO_Q_BUSY && td->cur_depth);
969                         if (full || io_in_polling(td))
970                                 ret = wait_for_completions(td, &comp_time);
971                 }
972                 if (ret < 0)
973                         break;
974                 if (!ddir_rw_sum(td->bytes_done) &&
975                     !(td->io_ops->flags & FIO_NOIO))
976                         continue;
977
978                 if (!in_ramp_time(td) && should_check_rate(td)) {
979                         if (check_min_rate(td, &comp_time)) {
980                                 if (exitall_on_terminate)
981                                         fio_terminate_threads(td->groupid);
982                                 td_verror(td, EIO, "check_min_rate");
983                                 break;
984                         }
985                 }
986                 if (!in_ramp_time(td) && td->o.latency_target)
987                         lat_target_check(td);
988
989                 if (td->o.thinktime) {
990                         unsigned long long b;
991
992                         b = ddir_rw_sum(td->io_blocks);
993                         if (!(b % td->o.thinktime_blocks)) {
994                                 int left;
995
996                                 io_u_quiesce(td);
997
998                                 if (td->o.thinktime_spin)
999                                         usec_spin(td->o.thinktime_spin);
1000
1001                                 left = td->o.thinktime - td->o.thinktime_spin;
1002                                 if (left)
1003                                         usec_sleep(td, left);
1004                         }
1005                 }
1006         }
1007
1008         check_update_rusage(td);
1009
1010         if (td->trim_entries)
1011                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1012
1013         if (td->o.fill_device && td->error == ENOSPC) {
1014                 td->error = 0;
1015                 fio_mark_td_terminate(td);
1016         }
1017         if (!td->error) {
1018                 struct fio_file *f;
1019
1020                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1021                         workqueue_flush(&td->io_wq);
1022                         i = 0;
1023                 } else
1024                         i = td->cur_depth;
1025
1026                 if (i) {
1027                         ret = io_u_queued_complete(td, i);
1028                         if (td->o.fill_device && td->error == ENOSPC)
1029                                 td->error = 0;
1030                 }
1031
1032                 if (should_fsync(td) && td->o.end_fsync) {
1033                         td_set_runstate(td, TD_FSYNCING);
1034
1035                         for_each_file(td, f, i) {
1036                                 if (!fio_file_fsync(td, f))
1037                                         continue;
1038
1039                                 log_err("fio: end_fsync failed for file %s\n",
1040                                                                 f->file_name);
1041                         }
1042                 }
1043         } else
1044                 cleanup_pending_aio(td);
1045
1046         /*
1047          * stop job if we failed doing any IO
1048          */
1049         if (!ddir_rw_sum(td->this_io_bytes))
1050                 td->done = 1;
1051
1052         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1053 }
1054
1055 static void cleanup_io_u(struct thread_data *td)
1056 {
1057         struct io_u *io_u;
1058
1059         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1060
1061                 if (td->io_ops->io_u_free)
1062                         td->io_ops->io_u_free(td, io_u);
1063
1064                 fio_memfree(io_u, sizeof(*io_u));
1065         }
1066
1067         free_io_mem(td);
1068
1069         io_u_rexit(&td->io_u_requeues);
1070         io_u_qexit(&td->io_u_freelist);
1071         io_u_qexit(&td->io_u_all);
1072
1073         if (td->last_write_comp)
1074                 sfree(td->last_write_comp);
1075 }
1076
1077 static int init_io_u(struct thread_data *td)
1078 {
1079         struct io_u *io_u;
1080         unsigned int max_bs, min_write;
1081         int cl_align, i, max_units;
1082         int data_xfer = 1, err;
1083         char *p;
1084
1085         max_units = td->o.iodepth;
1086         max_bs = td_max_bs(td);
1087         min_write = td->o.min_bs[DDIR_WRITE];
1088         td->orig_buffer_size = (unsigned long long) max_bs
1089                                         * (unsigned long long) max_units;
1090
1091         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1092                 data_xfer = 0;
1093
1094         err = 0;
1095         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1096         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1097         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1098
1099         if (err) {
1100                 log_err("fio: failed setting up IO queues\n");
1101                 return 1;
1102         }
1103
1104         /*
1105          * if we may later need to do address alignment, then add any
1106          * possible adjustment here so that we don't cause a buffer
1107          * overflow later. this adjustment may be too much if we get
1108          * lucky and the allocator gives us an aligned address.
1109          */
1110         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1111             (td->io_ops->flags & FIO_RAWIO))
1112                 td->orig_buffer_size += page_mask + td->o.mem_align;
1113
1114         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1115                 unsigned long bs;
1116
1117                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1118                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1119         }
1120
1121         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1122                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1123                 return 1;
1124         }
1125
1126         if (data_xfer && allocate_io_mem(td))
1127                 return 1;
1128
1129         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1130             (td->io_ops->flags & FIO_RAWIO))
1131                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1132         else
1133                 p = td->orig_buffer;
1134
1135         cl_align = os_cache_line_size();
1136
1137         for (i = 0; i < max_units; i++) {
1138                 void *ptr;
1139
1140                 if (td->terminate)
1141                         return 1;
1142
1143                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1144                 if (!ptr) {
1145                         log_err("fio: unable to allocate aligned memory\n");
1146                         break;
1147                 }
1148
1149                 io_u = ptr;
1150                 memset(io_u, 0, sizeof(*io_u));
1151                 INIT_FLIST_HEAD(&io_u->verify_list);
1152                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1153
1154                 if (data_xfer) {
1155                         io_u->buf = p;
1156                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1157
1158                         if (td_write(td))
1159                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1160                         if (td_write(td) && td->o.verify_pattern_bytes) {
1161                                 /*
1162                                  * Fill the buffer with the pattern if we are
1163                                  * going to be doing writes.
1164                                  */
1165                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1166                         }
1167                 }
1168
1169                 io_u->index = i;
1170                 io_u->flags = IO_U_F_FREE;
1171                 io_u_qpush(&td->io_u_freelist, io_u);
1172
1173                 /*
1174                  * io_u never leaves this stack, used for iteration of all
1175                  * io_u buffers.
1176                  */
1177                 io_u_qpush(&td->io_u_all, io_u);
1178
1179                 if (td->io_ops->io_u_init) {
1180                         int ret = td->io_ops->io_u_init(td, io_u);
1181
1182                         if (ret) {
1183                                 log_err("fio: failed to init engine data: %d\n", ret);
1184                                 return 1;
1185                         }
1186                 }
1187
1188                 p += max_bs;
1189         }
1190
1191         if (td->o.verify != VERIFY_NONE) {
1192                 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1193                 if (!td->last_write_comp) {
1194                         log_err("fio: failed to alloc write comp data\n");
1195                         return 1;
1196                 }
1197         }
1198
1199         return 0;
1200 }
1201
1202 static int switch_ioscheduler(struct thread_data *td)
1203 {
1204         char tmp[256], tmp2[128];
1205         FILE *f;
1206         int ret;
1207
1208         if (td->io_ops->flags & FIO_DISKLESSIO)
1209                 return 0;
1210
1211         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1212
1213         f = fopen(tmp, "r+");
1214         if (!f) {
1215                 if (errno == ENOENT) {
1216                         log_err("fio: os or kernel doesn't support IO scheduler"
1217                                 " switching\n");
1218                         return 0;
1219                 }
1220                 td_verror(td, errno, "fopen iosched");
1221                 return 1;
1222         }
1223
1224         /*
1225          * Set io scheduler.
1226          */
1227         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1228         if (ferror(f) || ret != 1) {
1229                 td_verror(td, errno, "fwrite");
1230                 fclose(f);
1231                 return 1;
1232         }
1233
1234         rewind(f);
1235
1236         /*
1237          * Read back and check that the selected scheduler is now the default.
1238          */
1239         memset(tmp, 0, sizeof(tmp));
1240         ret = fread(tmp, sizeof(tmp), 1, f);
1241         if (ferror(f) || ret < 0) {
1242                 td_verror(td, errno, "fread");
1243                 fclose(f);
1244                 return 1;
1245         }
1246         /*
1247          * either a list of io schedulers or "none\n" is expected.
1248          */
1249         tmp[strlen(tmp) - 1] = '\0';
1250
1251
1252         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1253         if (!strstr(tmp, tmp2)) {
1254                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1255                 td_verror(td, EINVAL, "iosched_switch");
1256                 fclose(f);
1257                 return 1;
1258         }
1259
1260         fclose(f);
1261         return 0;
1262 }
1263
1264 static bool keep_running(struct thread_data *td)
1265 {
1266         unsigned long long limit;
1267
1268         if (td->done)
1269                 return false;
1270         if (td->o.time_based)
1271                 return true;
1272         if (td->o.loops) {
1273                 td->o.loops--;
1274                 return true;
1275         }
1276         if (exceeds_number_ios(td))
1277                 return false;
1278
1279         if (td->o.io_limit)
1280                 limit = td->o.io_limit;
1281         else
1282                 limit = td->o.size;
1283
1284         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1285                 uint64_t diff;
1286
1287                 /*
1288                  * If the difference is less than the minimum IO size, we
1289                  * are done.
1290                  */
1291                 diff = limit - ddir_rw_sum(td->io_bytes);
1292                 if (diff < td_max_bs(td))
1293                         return false;
1294
1295                 if (fio_files_done(td))
1296                         return false;
1297
1298                 return true;
1299         }
1300
1301         return false;
1302 }
1303
1304 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1305 {
1306         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1307         int ret;
1308         char *str;
1309
1310         str = malloc(newlen);
1311         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1312
1313         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1314         ret = system(str);
1315         if (ret == -1)
1316                 log_err("fio: exec of cmd <%s> failed\n", str);
1317
1318         free(str);
1319         return ret;
1320 }
1321
1322 /*
1323  * Dry run to compute correct state of numberio for verification.
1324  */
1325 static uint64_t do_dry_run(struct thread_data *td)
1326 {
1327         td_set_runstate(td, TD_RUNNING);
1328
1329         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1330                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1331                 struct io_u *io_u;
1332                 int ret;
1333
1334                 if (td->terminate || td->done)
1335                         break;
1336
1337                 io_u = get_io_u(td);
1338                 if (!io_u)
1339                         break;
1340
1341                 io_u_set(io_u, IO_U_F_FLIGHT);
1342                 io_u->error = 0;
1343                 io_u->resid = 0;
1344                 if (ddir_rw(acct_ddir(io_u)))
1345                         td->io_issues[acct_ddir(io_u)]++;
1346                 if (ddir_rw(io_u->ddir)) {
1347                         io_u_mark_depth(td, 1);
1348                         td->ts.total_io_u[io_u->ddir]++;
1349                 }
1350
1351                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1352                     td->o.do_verify &&
1353                     td->o.verify != VERIFY_NONE &&
1354                     !td->o.experimental_verify)
1355                         log_io_piece(td, io_u);
1356
1357                 ret = io_u_sync_complete(td, io_u);
1358                 (void) ret;
1359         }
1360
1361         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1362 }
1363
1364 static void io_workqueue_fn(struct submit_worker *sw,
1365                             struct workqueue_work *work)
1366 {
1367         struct io_u *io_u = container_of(work, struct io_u, work);
1368         const enum fio_ddir ddir = io_u->ddir;
1369         struct thread_data *td = sw->private;
1370         int ret;
1371
1372         dprint(FD_RATE, "io_u %p queued by %u\n", io_u, gettid());
1373
1374         io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1375
1376         td->cur_depth++;
1377
1378         do {
1379                 ret = td_io_queue(td, io_u);
1380                 if (ret != FIO_Q_BUSY)
1381                         break;
1382                 ret = io_u_queued_complete(td, 1);
1383                 if (ret > 0)
1384                         td->cur_depth -= ret;
1385                 io_u_clear(io_u, IO_U_F_FLIGHT);
1386         } while (1);
1387
1388         dprint(FD_RATE, "io_u %p ret %d by %u\n", io_u, ret, gettid());
1389
1390         io_queue_event(td, io_u, &ret, ddir, NULL, 0, NULL);
1391
1392         if (ret == FIO_Q_COMPLETED)
1393                 td->cur_depth--;
1394         else if (ret == FIO_Q_QUEUED) {
1395                 unsigned int min_evts;
1396
1397                 if (td->o.iodepth == 1)
1398                         min_evts = 1;
1399                 else
1400                         min_evts = 0;
1401
1402                 ret = io_u_queued_complete(td, min_evts);
1403                 if (ret > 0)
1404                         td->cur_depth -= ret;
1405         } else if (ret == FIO_Q_BUSY) {
1406                 ret = io_u_queued_complete(td, td->cur_depth);
1407                 if (ret > 0)
1408                         td->cur_depth -= ret;
1409         }
1410 }
1411
1412 static bool io_workqueue_pre_sleep_flush_fn(struct submit_worker *sw)
1413 {
1414         struct thread_data *td = sw->private;
1415
1416         if (td->io_u_queued || td->cur_depth || td->io_u_in_flight)
1417                 return true;
1418
1419         return false;
1420 }
1421
1422 static void io_workqueue_pre_sleep_fn(struct submit_worker *sw)
1423 {
1424         struct thread_data *td = sw->private;
1425         int ret;
1426
1427         ret = io_u_quiesce(td);
1428         if (ret > 0)
1429                 td->cur_depth -= ret;
1430 }
1431
1432 static int io_workqueue_alloc_fn(struct submit_worker *sw)
1433 {
1434         struct thread_data *td;
1435
1436         td = calloc(1, sizeof(*td));
1437         sw->private = td;
1438         return 0;
1439 }
1440
1441 static void io_workqueue_free_fn(struct submit_worker *sw)
1442 {
1443         free(sw->private);
1444         sw->private = NULL;
1445 }
1446
1447 static int io_workqueue_init_worker_fn(struct submit_worker *sw)
1448 {
1449         struct thread_data *parent = sw->wq->td;
1450         struct thread_data *td = sw->private;
1451         int fio_unused ret;
1452
1453         memcpy(&td->o, &parent->o, sizeof(td->o));
1454         memcpy(&td->ts, &parent->ts, sizeof(td->ts));
1455         td->o.uid = td->o.gid = -1U;
1456         dup_files(td, parent);
1457         td->eo = parent->eo;
1458         fio_options_mem_dupe(td);
1459
1460         if (ioengine_load(td))
1461                 goto err;
1462
1463         if (td->o.odirect)
1464                 td->io_ops->flags |= FIO_RAWIO;
1465
1466         td->pid = gettid();
1467
1468         INIT_FLIST_HEAD(&td->io_log_list);
1469         INIT_FLIST_HEAD(&td->io_hist_list);
1470         INIT_FLIST_HEAD(&td->verify_list);
1471         INIT_FLIST_HEAD(&td->trim_list);
1472         INIT_FLIST_HEAD(&td->next_rand_list);
1473         td->io_hist_tree = RB_ROOT;
1474
1475         td->o.iodepth = 1;
1476         if (td_io_init(td))
1477                 goto err_io_init;
1478
1479         fio_gettime(&td->epoch, NULL);
1480         fio_getrusage(&td->ru_start);
1481         clear_io_state(td, 1);
1482
1483         td_set_runstate(td, TD_RUNNING);
1484         td->flags |= TD_F_CHILD;
1485         td->parent = parent;
1486         return 0;
1487
1488 err_io_init:
1489         close_ioengine(td);
1490 err:
1491         return 1;
1492
1493 }
1494
1495 static void io_workqueue_exit_worker_fn(struct submit_worker *sw)
1496 {
1497         struct thread_data *td = sw->private;
1498
1499         fio_options_free(td);
1500         close_and_free_files(td);
1501         if (td->io_ops)
1502                 close_ioengine(td);
1503         td_set_runstate(td, TD_EXITED);
1504 }
1505
1506 #ifdef CONFIG_SFAA
1507 static void sum_val(uint64_t *dst, uint64_t *src)
1508 {
1509         if (*src) {
1510                 __sync_fetch_and_add(dst, *src);
1511                 *src = 0;
1512         }
1513 }
1514 #else
1515 static void sum_val(uint64_t *dst, uint64_t *src)
1516 {
1517         if (*src) {
1518                 *dst += *src;
1519                 *src = 0;
1520         }
1521 }
1522 #endif
1523
1524 static void pthread_double_unlock(pthread_mutex_t *lock1,
1525                                   pthread_mutex_t *lock2)
1526 {
1527 #ifndef CONFIG_SFAA
1528         pthread_mutex_unlock(lock1);
1529         pthread_mutex_unlock(lock2);
1530 #endif
1531 }
1532
1533 static void pthread_double_lock(pthread_mutex_t *lock1, pthread_mutex_t *lock2)
1534 {
1535 #ifndef CONFIG_SFAA
1536         if (lock1 < lock2) {
1537                 pthread_mutex_lock(lock1);
1538                 pthread_mutex_lock(lock2);
1539         } else {
1540                 pthread_mutex_lock(lock2);
1541                 pthread_mutex_lock(lock1);
1542         }
1543 #endif
1544 }
1545
1546 static void sum_ddir(struct thread_data *dst, struct thread_data *src,
1547                      enum fio_ddir ddir)
1548 {
1549         pthread_double_lock(&dst->io_wq.stat_lock, &src->io_wq.stat_lock);
1550
1551         sum_val(&dst->io_bytes[ddir], &src->io_bytes[ddir]);
1552         sum_val(&dst->io_blocks[ddir], &src->io_blocks[ddir]);
1553         sum_val(&dst->this_io_blocks[ddir], &src->this_io_blocks[ddir]);
1554         sum_val(&dst->this_io_bytes[ddir], &src->this_io_bytes[ddir]);
1555         sum_val(&dst->bytes_done[ddir], &src->bytes_done[ddir]);
1556
1557         pthread_double_unlock(&dst->io_wq.stat_lock, &src->io_wq.stat_lock);
1558 }
1559
1560 static void io_workqueue_update_acct_fn(struct submit_worker *sw)
1561 {
1562         struct thread_data *src = sw->private;
1563         struct thread_data *dst = sw->wq->td;
1564
1565         if (td_read(src))
1566                 sum_ddir(dst, src, DDIR_READ);
1567         if (td_write(src))
1568                 sum_ddir(dst, src, DDIR_WRITE);
1569         if (td_trim(src))
1570                 sum_ddir(dst, src, DDIR_TRIM);
1571
1572 }
1573
1574 struct workqueue_ops rated_wq_ops = {
1575         .fn                     = io_workqueue_fn,
1576         .pre_sleep_flush_fn     = io_workqueue_pre_sleep_flush_fn,
1577         .pre_sleep_fn           = io_workqueue_pre_sleep_fn,
1578         .update_acct_fn         = io_workqueue_update_acct_fn,
1579         .alloc_worker_fn        = io_workqueue_alloc_fn,
1580         .free_worker_fn         = io_workqueue_free_fn,
1581         .init_worker_fn         = io_workqueue_init_worker_fn,
1582         .exit_worker_fn         = io_workqueue_exit_worker_fn,
1583 };
1584
1585 /*
1586  * Entry point for the thread based jobs. The process based jobs end up
1587  * here as well, after a little setup.
1588  */
1589 static void *thread_main(void *data)
1590 {
1591         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1592         struct thread_data *td = data;
1593         struct thread_options *o = &td->o;
1594         pthread_condattr_t attr;
1595         int clear_state;
1596         int ret;
1597
1598         if (!o->use_thread) {
1599                 setsid();
1600                 td->pid = getpid();
1601         } else
1602                 td->pid = gettid();
1603
1604         fio_local_clock_init(o->use_thread);
1605
1606         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1607
1608         if (is_backend)
1609                 fio_server_send_start(td);
1610
1611         INIT_FLIST_HEAD(&td->io_log_list);
1612         INIT_FLIST_HEAD(&td->io_hist_list);
1613         INIT_FLIST_HEAD(&td->verify_list);
1614         INIT_FLIST_HEAD(&td->trim_list);
1615         INIT_FLIST_HEAD(&td->next_rand_list);
1616         pthread_mutex_init(&td->io_u_lock, NULL);
1617         td->io_hist_tree = RB_ROOT;
1618
1619         pthread_condattr_init(&attr);
1620         pthread_cond_init(&td->verify_cond, &attr);
1621         pthread_cond_init(&td->free_cond, &attr);
1622
1623         td_set_runstate(td, TD_INITIALIZED);
1624         dprint(FD_MUTEX, "up startup_mutex\n");
1625         fio_mutex_up(startup_mutex);
1626         dprint(FD_MUTEX, "wait on td->mutex\n");
1627         fio_mutex_down(td->mutex);
1628         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1629
1630         /*
1631          * A new gid requires privilege, so we need to do this before setting
1632          * the uid.
1633          */
1634         if (o->gid != -1U && setgid(o->gid)) {
1635                 td_verror(td, errno, "setgid");
1636                 goto err;
1637         }
1638         if (o->uid != -1U && setuid(o->uid)) {
1639                 td_verror(td, errno, "setuid");
1640                 goto err;
1641         }
1642
1643         /*
1644          * If we have a gettimeofday() thread, make sure we exclude that
1645          * thread from this job
1646          */
1647         if (o->gtod_cpu)
1648                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1649
1650         /*
1651          * Set affinity first, in case it has an impact on the memory
1652          * allocations.
1653          */
1654         if (fio_option_is_set(o, cpumask)) {
1655                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1656                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1657                         if (!ret) {
1658                                 log_err("fio: no CPUs set\n");
1659                                 log_err("fio: Try increasing number of available CPUs\n");
1660                                 td_verror(td, EINVAL, "cpus_split");
1661                                 goto err;
1662                         }
1663                 }
1664                 ret = fio_setaffinity(td->pid, o->cpumask);
1665                 if (ret == -1) {
1666                         td_verror(td, errno, "cpu_set_affinity");
1667                         goto err;
1668                 }
1669         }
1670
1671 #ifdef CONFIG_LIBNUMA
1672         /* numa node setup */
1673         if (fio_option_is_set(o, numa_cpunodes) ||
1674             fio_option_is_set(o, numa_memnodes)) {
1675                 struct bitmask *mask;
1676
1677                 if (numa_available() < 0) {
1678                         td_verror(td, errno, "Does not support NUMA API\n");
1679                         goto err;
1680                 }
1681
1682                 if (fio_option_is_set(o, numa_cpunodes)) {
1683                         mask = numa_parse_nodestring(o->numa_cpunodes);
1684                         ret = numa_run_on_node_mask(mask);
1685                         numa_free_nodemask(mask);
1686                         if (ret == -1) {
1687                                 td_verror(td, errno, \
1688                                         "numa_run_on_node_mask failed\n");
1689                                 goto err;
1690                         }
1691                 }
1692
1693                 if (fio_option_is_set(o, numa_memnodes)) {
1694                         mask = NULL;
1695                         if (o->numa_memnodes)
1696                                 mask = numa_parse_nodestring(o->numa_memnodes);
1697
1698                         switch (o->numa_mem_mode) {
1699                         case MPOL_INTERLEAVE:
1700                                 numa_set_interleave_mask(mask);
1701                                 break;
1702                         case MPOL_BIND:
1703                                 numa_set_membind(mask);
1704                                 break;
1705                         case MPOL_LOCAL:
1706                                 numa_set_localalloc();
1707                                 break;
1708                         case MPOL_PREFERRED:
1709                                 numa_set_preferred(o->numa_mem_prefer_node);
1710                                 break;
1711                         case MPOL_DEFAULT:
1712                         default:
1713                                 break;
1714                         }
1715
1716                         if (mask)
1717                                 numa_free_nodemask(mask);
1718
1719                 }
1720         }
1721 #endif
1722
1723         if (fio_pin_memory(td))
1724                 goto err;
1725
1726         /*
1727          * May alter parameters that init_io_u() will use, so we need to
1728          * do this first.
1729          */
1730         if (init_iolog(td))
1731                 goto err;
1732
1733         if (init_io_u(td))
1734                 goto err;
1735
1736         if (o->verify_async && verify_async_init(td))
1737                 goto err;
1738
1739         if (fio_option_is_set(o, ioprio) ||
1740             fio_option_is_set(o, ioprio_class)) {
1741                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1742                 if (ret == -1) {
1743                         td_verror(td, errno, "ioprio_set");
1744                         goto err;
1745                 }
1746         }
1747
1748         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1749                 goto err;
1750
1751         errno = 0;
1752         if (nice(o->nice) == -1 && errno != 0) {
1753                 td_verror(td, errno, "nice");
1754                 goto err;
1755         }
1756
1757         if (o->ioscheduler && switch_ioscheduler(td))
1758                 goto err;
1759
1760         if (!o->create_serialize && setup_files(td))
1761                 goto err;
1762
1763         if (td_io_init(td))
1764                 goto err;
1765
1766         if (init_random_map(td))
1767                 goto err;
1768
1769         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1770                 goto err;
1771
1772         if (o->pre_read) {
1773                 if (pre_read_files(td) < 0)
1774                         goto err;
1775         }
1776
1777         if (td->flags & TD_F_COMPRESS_LOG)
1778                 tp_init(&td->tp_data);
1779
1780         fio_verify_init(td);
1781
1782         if ((o->io_submit_mode == IO_MODE_OFFLOAD) &&
1783             workqueue_init(td, &td->io_wq, &rated_wq_ops, td->o.iodepth))
1784                 goto err;
1785
1786         fio_gettime(&td->epoch, NULL);
1787         fio_getrusage(&td->ru_start);
1788         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1789         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1790
1791         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1792                         o->ratemin[DDIR_TRIM]) {
1793                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1794                                         sizeof(td->bw_sample_time));
1795                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1796                                         sizeof(td->bw_sample_time));
1797                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1798                                         sizeof(td->bw_sample_time));
1799         }
1800
1801         clear_state = 0;
1802         while (keep_running(td)) {
1803                 uint64_t verify_bytes;
1804
1805                 fio_gettime(&td->start, NULL);
1806                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1807
1808                 if (clear_state)
1809                         clear_io_state(td, 0);
1810
1811                 prune_io_piece_log(td);
1812
1813                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1814                         verify_bytes = do_dry_run(td);
1815                 else
1816                         verify_bytes = do_io(td);
1817
1818                 clear_state = 1;
1819
1820                 /*
1821                  * Make sure we've successfully updated the rusage stats
1822                  * before waiting on the stat mutex. Otherwise we could have
1823                  * the stat thread holding stat mutex and waiting for
1824                  * the rusage_sem, which would never get upped because
1825                  * this thread is waiting for the stat mutex.
1826                  */
1827                 check_update_rusage(td);
1828
1829                 fio_mutex_down(stat_mutex);
1830                 if (td_read(td) && td->io_bytes[DDIR_READ])
1831                         update_runtime(td, elapsed_us, DDIR_READ);
1832                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1833                         update_runtime(td, elapsed_us, DDIR_WRITE);
1834                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1835                         update_runtime(td, elapsed_us, DDIR_TRIM);
1836                 fio_gettime(&td->start, NULL);
1837                 fio_mutex_up(stat_mutex);
1838
1839                 if (td->error || td->terminate)
1840                         break;
1841
1842                 if (!o->do_verify ||
1843                     o->verify == VERIFY_NONE ||
1844                     (td->io_ops->flags & FIO_UNIDIR))
1845                         continue;
1846
1847                 clear_io_state(td, 0);
1848
1849                 fio_gettime(&td->start, NULL);
1850
1851                 do_verify(td, verify_bytes);
1852
1853                 /*
1854                  * See comment further up for why this is done here.
1855                  */
1856                 check_update_rusage(td);
1857
1858                 fio_mutex_down(stat_mutex);
1859                 update_runtime(td, elapsed_us, DDIR_READ);
1860                 fio_gettime(&td->start, NULL);
1861                 fio_mutex_up(stat_mutex);
1862
1863                 if (td->error || td->terminate)
1864                         break;
1865         }
1866
1867         update_rusage_stat(td);
1868         td->ts.total_run_time = mtime_since_now(&td->epoch);
1869         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1870         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1871         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1872
1873         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1874             (td->o.verify != VERIFY_NONE && td_write(td)))
1875                 verify_save_state(td->thread_number);
1876
1877         fio_unpin_memory(td);
1878
1879         fio_writeout_logs(td);
1880
1881         if (o->io_submit_mode == IO_MODE_OFFLOAD)
1882                 workqueue_exit(&td->io_wq);
1883
1884         if (td->flags & TD_F_COMPRESS_LOG)
1885                 tp_exit(&td->tp_data);
1886
1887         if (o->exec_postrun)
1888                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1889
1890         if (exitall_on_terminate)
1891                 fio_terminate_threads(td->groupid);
1892
1893 err:
1894         if (td->error)
1895                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1896                                                         td->verror);
1897
1898         if (o->verify_async)
1899                 verify_async_exit(td);
1900
1901         close_and_free_files(td);
1902         cleanup_io_u(td);
1903         close_ioengine(td);
1904         cgroup_shutdown(td, &cgroup_mnt);
1905         verify_free_state(td);
1906
1907         if (fio_option_is_set(o, cpumask)) {
1908                 ret = fio_cpuset_exit(&o->cpumask);
1909                 if (ret)
1910                         td_verror(td, ret, "fio_cpuset_exit");
1911         }
1912
1913         /*
1914          * do this very late, it will log file closing as well
1915          */
1916         if (o->write_iolog_file)
1917                 write_iolog_close(td);
1918
1919         fio_mutex_remove(td->mutex);
1920         td->mutex = NULL;
1921
1922         td_set_runstate(td, TD_EXITED);
1923
1924         /*
1925          * Do this last after setting our runstate to exited, so we
1926          * know that the stat thread is signaled.
1927          */
1928         check_update_rusage(td);
1929
1930         return (void *) (uintptr_t) td->error;
1931 }
1932
1933
1934 /*
1935  * We cannot pass the td data into a forked process, so attach the td and
1936  * pass it to the thread worker.
1937  */
1938 static int fork_main(int shmid, int offset)
1939 {
1940         struct thread_data *td;
1941         void *data, *ret;
1942
1943 #if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1944         data = shmat(shmid, NULL, 0);
1945         if (data == (void *) -1) {
1946                 int __err = errno;
1947
1948                 perror("shmat");
1949                 return __err;
1950         }
1951 #else
1952         /*
1953          * HP-UX inherits shm mappings?
1954          */
1955         data = threads;
1956 #endif
1957
1958         td = data + offset * sizeof(struct thread_data);
1959         ret = thread_main(td);
1960         shmdt(data);
1961         return (int) (uintptr_t) ret;
1962 }
1963
1964 static void dump_td_info(struct thread_data *td)
1965 {
1966         log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1967                 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1968                         (unsigned long) time_since_now(&td->terminate_time));
1969 }
1970
1971 /*
1972  * Run over the job map and reap the threads that have exited, if any.
1973  */
1974 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1975                          unsigned int *m_rate)
1976 {
1977         struct thread_data *td;
1978         unsigned int cputhreads, realthreads, pending;
1979         int i, status, ret;
1980
1981         /*
1982          * reap exited threads (TD_EXITED -> TD_REAPED)
1983          */
1984         realthreads = pending = cputhreads = 0;
1985         for_each_td(td, i) {
1986                 int flags = 0;
1987
1988                 /*
1989                  * ->io_ops is NULL for a thread that has closed its
1990                  * io engine
1991                  */
1992                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1993                         cputhreads++;
1994                 else
1995                         realthreads++;
1996
1997                 if (!td->pid) {
1998                         pending++;
1999                         continue;
2000                 }
2001                 if (td->runstate == TD_REAPED)
2002                         continue;
2003                 if (td->o.use_thread) {
2004                         if (td->runstate == TD_EXITED) {
2005                                 td_set_runstate(td, TD_REAPED);
2006                                 goto reaped;
2007                         }
2008                         continue;
2009                 }
2010
2011                 flags = WNOHANG;
2012                 if (td->runstate == TD_EXITED)
2013                         flags = 0;
2014
2015                 /*
2016                  * check if someone quit or got killed in an unusual way
2017                  */
2018                 ret = waitpid(td->pid, &status, flags);
2019                 if (ret < 0) {
2020                         if (errno == ECHILD) {
2021                                 log_err("fio: pid=%d disappeared %d\n",
2022                                                 (int) td->pid, td->runstate);
2023                                 td->sig = ECHILD;
2024                                 td_set_runstate(td, TD_REAPED);
2025                                 goto reaped;
2026                         }
2027                         perror("waitpid");
2028                 } else if (ret == td->pid) {
2029                         if (WIFSIGNALED(status)) {
2030                                 int sig = WTERMSIG(status);
2031
2032                                 if (sig != SIGTERM && sig != SIGUSR2)
2033                                         log_err("fio: pid=%d, got signal=%d\n",
2034                                                         (int) td->pid, sig);
2035                                 td->sig = sig;
2036                                 td_set_runstate(td, TD_REAPED);
2037                                 goto reaped;
2038                         }
2039                         if (WIFEXITED(status)) {
2040                                 if (WEXITSTATUS(status) && !td->error)
2041                                         td->error = WEXITSTATUS(status);
2042
2043                                 td_set_runstate(td, TD_REAPED);
2044                                 goto reaped;
2045                         }
2046                 }
2047
2048                 /*
2049                  * If the job is stuck, do a forceful timeout of it and
2050                  * move on.
2051                  */
2052                 if (td->terminate &&
2053                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2054                         dump_td_info(td);
2055                         td_set_runstate(td, TD_REAPED);
2056                         goto reaped;
2057                 }
2058
2059                 /*
2060                  * thread is not dead, continue
2061                  */
2062                 pending++;
2063                 continue;
2064 reaped:
2065                 (*nr_running)--;
2066                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2067                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2068                 if (!td->pid)
2069                         pending--;
2070
2071                 if (td->error)
2072                         exit_value++;
2073
2074                 done_secs += mtime_since_now(&td->epoch) / 1000;
2075                 profile_td_exit(td);
2076         }
2077
2078         if (*nr_running == cputhreads && !pending && realthreads)
2079                 fio_terminate_threads(TERMINATE_ALL);
2080 }
2081
2082 static bool __check_trigger_file(void)
2083 {
2084         struct stat sb;
2085
2086         if (!trigger_file)
2087                 return false;
2088
2089         if (stat(trigger_file, &sb))
2090                 return false;
2091
2092         if (unlink(trigger_file) < 0)
2093                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2094                                                         strerror(errno));
2095
2096         return true;
2097 }
2098
2099 static bool trigger_timedout(void)
2100 {
2101         if (trigger_timeout)
2102                 return time_since_genesis() >= trigger_timeout;
2103
2104         return false;
2105 }
2106
2107 void exec_trigger(const char *cmd)
2108 {
2109         int ret;
2110
2111         if (!cmd)
2112                 return;
2113
2114         ret = system(cmd);
2115         if (ret == -1)
2116                 log_err("fio: failed executing %s trigger\n", cmd);
2117 }
2118
2119 void check_trigger_file(void)
2120 {
2121         if (__check_trigger_file() || trigger_timedout()) {
2122                 if (nr_clients)
2123                         fio_clients_send_trigger(trigger_remote_cmd);
2124                 else {
2125                         verify_save_state(IO_LIST_ALL);
2126                         fio_terminate_threads(TERMINATE_ALL);
2127                         exec_trigger(trigger_cmd);
2128                 }
2129         }
2130 }
2131
2132 static int fio_verify_load_state(struct thread_data *td)
2133 {
2134         int ret;
2135
2136         if (!td->o.verify_state)
2137                 return 0;
2138
2139         if (is_backend) {
2140                 void *data;
2141                 int ver;
2142
2143                 ret = fio_server_get_verify_state(td->o.name,
2144                                         td->thread_number - 1, &data, &ver);
2145                 if (!ret)
2146                         verify_convert_assign_state(td, data, ver);
2147         } else
2148                 ret = verify_load_state(td, "local");
2149
2150         return ret;
2151 }
2152
2153 static void do_usleep(unsigned int usecs)
2154 {
2155         check_for_running_stats();
2156         check_trigger_file();
2157         usleep(usecs);
2158 }
2159
2160 static bool check_mount_writes(struct thread_data *td)
2161 {
2162         struct fio_file *f;
2163         unsigned int i;
2164
2165         if (!td_write(td) || td->o.allow_mounted_write)
2166                 return false;
2167
2168         for_each_file(td, f, i) {
2169                 if (f->filetype != FIO_TYPE_BD)
2170                         continue;
2171                 if (device_is_mounted(f->file_name))
2172                         goto mounted;
2173         }
2174
2175         return false;
2176 mounted:
2177         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
2178         return true;
2179 }
2180
2181 /*
2182  * Main function for kicking off and reaping jobs, as needed.
2183  */
2184 static void run_threads(void)
2185 {
2186         struct thread_data *td;
2187         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2188         uint64_t spent;
2189
2190         if (fio_gtod_offload && fio_start_gtod_thread())
2191                 return;
2192
2193         fio_idle_prof_init();
2194
2195         set_sig_handlers();
2196
2197         nr_thread = nr_process = 0;
2198         for_each_td(td, i) {
2199                 if (check_mount_writes(td))
2200                         return;
2201                 if (td->o.use_thread)
2202                         nr_thread++;
2203                 else
2204                         nr_process++;
2205         }
2206
2207         if (output_format & FIO_OUTPUT_NORMAL) {
2208                 log_info("Starting ");
2209                 if (nr_thread)
2210                         log_info("%d thread%s", nr_thread,
2211                                                 nr_thread > 1 ? "s" : "");
2212                 if (nr_process) {
2213                         if (nr_thread)
2214                                 log_info(" and ");
2215                         log_info("%d process%s", nr_process,
2216                                                 nr_process > 1 ? "es" : "");
2217                 }
2218                 log_info("\n");
2219                 log_info_flush();
2220         }
2221
2222         todo = thread_number;
2223         nr_running = 0;
2224         nr_started = 0;
2225         m_rate = t_rate = 0;
2226
2227         for_each_td(td, i) {
2228                 print_status_init(td->thread_number - 1);
2229
2230                 if (!td->o.create_serialize)
2231                         continue;
2232
2233                 if (fio_verify_load_state(td))
2234                         goto reap;
2235
2236                 /*
2237                  * do file setup here so it happens sequentially,
2238                  * we don't want X number of threads getting their
2239                  * client data interspersed on disk
2240                  */
2241                 if (setup_files(td)) {
2242 reap:
2243                         exit_value++;
2244                         if (td->error)
2245                                 log_err("fio: pid=%d, err=%d/%s\n",
2246                                         (int) td->pid, td->error, td->verror);
2247                         td_set_runstate(td, TD_REAPED);
2248                         todo--;
2249                 } else {
2250                         struct fio_file *f;
2251                         unsigned int j;
2252
2253                         /*
2254                          * for sharing to work, each job must always open
2255                          * its own files. so close them, if we opened them
2256                          * for creation
2257                          */
2258                         for_each_file(td, f, j) {
2259                                 if (fio_file_open(f))
2260                                         td_io_close_file(td, f);
2261                         }
2262                 }
2263         }
2264
2265         /* start idle threads before io threads start to run */
2266         fio_idle_prof_start();
2267
2268         set_genesis_time();
2269
2270         while (todo) {
2271                 struct thread_data *map[REAL_MAX_JOBS];
2272                 struct timeval this_start;
2273                 int this_jobs = 0, left;
2274
2275                 /*
2276                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2277                  */
2278                 for_each_td(td, i) {
2279                         if (td->runstate != TD_NOT_CREATED)
2280                                 continue;
2281
2282                         /*
2283                          * never got a chance to start, killed by other
2284                          * thread for some reason
2285                          */
2286                         if (td->terminate) {
2287                                 todo--;
2288                                 continue;
2289                         }
2290
2291                         if (td->o.start_delay) {
2292                                 spent = utime_since_genesis();
2293
2294                                 if (td->o.start_delay > spent)
2295                                         continue;
2296                         }
2297
2298                         if (td->o.stonewall && (nr_started || nr_running)) {
2299                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2300                                                         td->o.name);
2301                                 break;
2302                         }
2303
2304                         init_disk_util(td);
2305
2306                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2307                         td->update_rusage = 0;
2308
2309                         /*
2310                          * Set state to created. Thread will transition
2311                          * to TD_INITIALIZED when it's done setting up.
2312                          */
2313                         td_set_runstate(td, TD_CREATED);
2314                         map[this_jobs++] = td;
2315                         nr_started++;
2316
2317                         if (td->o.use_thread) {
2318                                 int ret;
2319
2320                                 dprint(FD_PROCESS, "will pthread_create\n");
2321                                 ret = pthread_create(&td->thread, NULL,
2322                                                         thread_main, td);
2323                                 if (ret) {
2324                                         log_err("pthread_create: %s\n",
2325                                                         strerror(ret));
2326                                         nr_started--;
2327                                         break;
2328                                 }
2329                                 ret = pthread_detach(td->thread);
2330                                 if (ret)
2331                                         log_err("pthread_detach: %s",
2332                                                         strerror(ret));
2333                         } else {
2334                                 pid_t pid;
2335                                 dprint(FD_PROCESS, "will fork\n");
2336                                 pid = fork();
2337                                 if (!pid) {
2338                                         int ret = fork_main(shm_id, i);
2339
2340                                         _exit(ret);
2341                                 } else if (i == fio_debug_jobno)
2342                                         *fio_debug_jobp = pid;
2343                         }
2344                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2345                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
2346                                 log_err("fio: job startup hung? exiting.\n");
2347                                 fio_terminate_threads(TERMINATE_ALL);
2348                                 fio_abort = 1;
2349                                 nr_started--;
2350                                 break;
2351                         }
2352                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2353                 }
2354
2355                 /*
2356                  * Wait for the started threads to transition to
2357                  * TD_INITIALIZED.
2358                  */
2359                 fio_gettime(&this_start, NULL);
2360                 left = this_jobs;
2361                 while (left && !fio_abort) {
2362                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2363                                 break;
2364
2365                         do_usleep(100000);
2366
2367                         for (i = 0; i < this_jobs; i++) {
2368                                 td = map[i];
2369                                 if (!td)
2370                                         continue;
2371                                 if (td->runstate == TD_INITIALIZED) {
2372                                         map[i] = NULL;
2373                                         left--;
2374                                 } else if (td->runstate >= TD_EXITED) {
2375                                         map[i] = NULL;
2376                                         left--;
2377                                         todo--;
2378                                         nr_running++; /* work-around... */
2379                                 }
2380                         }
2381                 }
2382
2383                 if (left) {
2384                         log_err("fio: %d job%s failed to start\n", left,
2385                                         left > 1 ? "s" : "");
2386                         for (i = 0; i < this_jobs; i++) {
2387                                 td = map[i];
2388                                 if (!td)
2389                                         continue;
2390                                 kill(td->pid, SIGTERM);
2391                         }
2392                         break;
2393                 }
2394
2395                 /*
2396                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2397                  */
2398                 for_each_td(td, i) {
2399                         if (td->runstate != TD_INITIALIZED)
2400                                 continue;
2401
2402                         if (in_ramp_time(td))
2403                                 td_set_runstate(td, TD_RAMP);
2404                         else
2405                                 td_set_runstate(td, TD_RUNNING);
2406                         nr_running++;
2407                         nr_started--;
2408                         m_rate += ddir_rw_sum(td->o.ratemin);
2409                         t_rate += ddir_rw_sum(td->o.rate);
2410                         todo--;
2411                         fio_mutex_up(td->mutex);
2412                 }
2413
2414                 reap_threads(&nr_running, &t_rate, &m_rate);
2415
2416                 if (todo)
2417                         do_usleep(100000);
2418         }
2419
2420         while (nr_running) {
2421                 reap_threads(&nr_running, &t_rate, &m_rate);
2422                 do_usleep(10000);
2423         }
2424
2425         fio_idle_prof_stop();
2426
2427         update_io_ticks();
2428 }
2429
2430 static void wait_for_helper_thread_exit(void)
2431 {
2432         void *ret;
2433
2434         helper_exit = 1;
2435         pthread_cond_signal(&helper_cond);
2436         pthread_join(helper_thread, &ret);
2437 }
2438
2439 static void free_disk_util(void)
2440 {
2441         disk_util_prune_entries();
2442
2443         pthread_cond_destroy(&helper_cond);
2444 }
2445
2446 static void *helper_thread_main(void *data)
2447 {
2448         int ret = 0;
2449
2450         fio_mutex_up(startup_mutex);
2451
2452         while (!ret) {
2453                 uint64_t sec = DISK_UTIL_MSEC / 1000;
2454                 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2455                 struct timespec ts;
2456                 struct timeval tv;
2457
2458                 gettimeofday(&tv, NULL);
2459                 ts.tv_sec = tv.tv_sec + sec;
2460                 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2461
2462                 if (ts.tv_nsec >= 1000000000ULL) {
2463                         ts.tv_nsec -= 1000000000ULL;
2464                         ts.tv_sec++;
2465                 }
2466
2467                 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2468
2469                 ret = update_io_ticks();
2470
2471                 if (helper_do_stat) {
2472                         helper_do_stat = 0;
2473                         __show_running_run_stats();
2474                 }
2475
2476                 if (!is_backend)
2477                         print_thread_status();
2478         }
2479
2480         return NULL;
2481 }
2482
2483 static int create_helper_thread(void)
2484 {
2485         int ret;
2486
2487         setup_disk_util();
2488
2489         pthread_cond_init(&helper_cond, NULL);
2490         pthread_mutex_init(&helper_lock, NULL);
2491
2492         ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2493         if (ret) {
2494                 log_err("Can't create helper thread: %s\n", strerror(ret));
2495                 return 1;
2496         }
2497
2498         dprint(FD_MUTEX, "wait on startup_mutex\n");
2499         fio_mutex_down(startup_mutex);
2500         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2501         return 0;
2502 }
2503
2504 int fio_backend(void)
2505 {
2506         struct thread_data *td;
2507         int i;
2508
2509         if (exec_profile) {
2510                 if (load_profile(exec_profile))
2511                         return 1;
2512                 free(exec_profile);
2513                 exec_profile = NULL;
2514         }
2515         if (!thread_number)
2516                 return 0;
2517
2518         if (write_bw_log) {
2519                 struct log_params p = {
2520                         .log_type = IO_LOG_TYPE_BW,
2521                 };
2522
2523                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2524                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2525                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2526         }
2527
2528         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2529         if (startup_mutex == NULL)
2530                 return 1;
2531
2532         set_genesis_time();
2533         stat_init();
2534         create_helper_thread();
2535
2536         cgroup_list = smalloc(sizeof(*cgroup_list));
2537         INIT_FLIST_HEAD(cgroup_list);
2538
2539         run_threads();
2540
2541         wait_for_helper_thread_exit();
2542
2543         if (!fio_abort) {
2544                 __show_run_stats();
2545                 if (write_bw_log) {
2546                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2547                                 struct io_log *log = agg_io_log[i];
2548
2549                                 flush_log(log, 0);
2550                                 free_log(log);
2551                         }
2552                 }
2553         }
2554
2555         for_each_td(td, i) {
2556                 fio_options_free(td);
2557                 if (td->rusage_sem) {
2558                         fio_mutex_remove(td->rusage_sem);
2559                         td->rusage_sem = NULL;
2560                 }
2561         }
2562
2563         free_disk_util();
2564         cgroup_kill(cgroup_list);
2565         sfree(cgroup_list);
2566         sfree(cgroup_mnt);
2567
2568         fio_mutex_remove(startup_mutex);
2569         stat_exit();
2570         return exit_value;
2571 }