gclient: Use proper time units in latency buckets chart
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "workqueue.h"
58 #include "lib/mountcheck.h"
59 #include "rate-submit.h"
60 #include "helper_thread.h"
61
62 static struct fio_mutex *startup_mutex;
63 static struct flist_head *cgroup_list;
64 static char *cgroup_mnt;
65 static int exit_value;
66 static volatile int fio_abort;
67 static unsigned int nr_process = 0;
68 static unsigned int nr_thread = 0;
69
70 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72 int groupid = 0;
73 unsigned int thread_number = 0;
74 unsigned int stat_number = 0;
75 int shm_id = 0;
76 int temp_stall_ts;
77 unsigned long done_secs = 0;
78
79 #define PAGE_ALIGN(buf) \
80         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
81
82 #define JOB_START_TIMEOUT       (5 * 1000)
83
84 static void sig_int(int sig)
85 {
86         if (threads) {
87                 if (is_backend)
88                         fio_server_got_signal(sig);
89                 else {
90                         log_info("\nfio: terminating on signal %d\n", sig);
91                         log_info_flush();
92                         exit_value = 128;
93                 }
94
95                 fio_terminate_threads(TERMINATE_ALL);
96         }
97 }
98
99 void sig_show_status(int sig)
100 {
101         show_running_run_stats();
102 }
103
104 static void set_sig_handlers(void)
105 {
106         struct sigaction act;
107
108         memset(&act, 0, sizeof(act));
109         act.sa_handler = sig_int;
110         act.sa_flags = SA_RESTART;
111         sigaction(SIGINT, &act, NULL);
112
113         memset(&act, 0, sizeof(act));
114         act.sa_handler = sig_int;
115         act.sa_flags = SA_RESTART;
116         sigaction(SIGTERM, &act, NULL);
117
118 /* Windows uses SIGBREAK as a quit signal from other applications */
119 #ifdef WIN32
120         memset(&act, 0, sizeof(act));
121         act.sa_handler = sig_int;
122         act.sa_flags = SA_RESTART;
123         sigaction(SIGBREAK, &act, NULL);
124 #endif
125
126         memset(&act, 0, sizeof(act));
127         act.sa_handler = sig_show_status;
128         act.sa_flags = SA_RESTART;
129         sigaction(SIGUSR1, &act, NULL);
130
131         if (is_backend) {
132                 memset(&act, 0, sizeof(act));
133                 act.sa_handler = sig_int;
134                 act.sa_flags = SA_RESTART;
135                 sigaction(SIGPIPE, &act, NULL);
136         }
137 }
138
139 /*
140  * Check if we are above the minimum rate given.
141  */
142 static bool __check_min_rate(struct thread_data *td, struct timeval *now,
143                              enum fio_ddir ddir)
144 {
145         unsigned long long bytes = 0;
146         unsigned long iops = 0;
147         unsigned long spent;
148         unsigned long rate;
149         unsigned int ratemin = 0;
150         unsigned int rate_iops = 0;
151         unsigned int rate_iops_min = 0;
152
153         assert(ddir_rw(ddir));
154
155         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
156                 return false;
157
158         /*
159          * allow a 2 second settle period in the beginning
160          */
161         if (mtime_since(&td->start, now) < 2000)
162                 return false;
163
164         iops += td->this_io_blocks[ddir];
165         bytes += td->this_io_bytes[ddir];
166         ratemin += td->o.ratemin[ddir];
167         rate_iops += td->o.rate_iops[ddir];
168         rate_iops_min += td->o.rate_iops_min[ddir];
169
170         /*
171          * if rate blocks is set, sample is running
172          */
173         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
174                 spent = mtime_since(&td->lastrate[ddir], now);
175                 if (spent < td->o.ratecycle)
176                         return false;
177
178                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
179                         /*
180                          * check bandwidth specified rate
181                          */
182                         if (bytes < td->rate_bytes[ddir]) {
183                                 log_err("%s: min rate %u not met\n", td->o.name,
184                                                                 ratemin);
185                                 return true;
186                         } else {
187                                 if (spent)
188                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
189                                 else
190                                         rate = 0;
191
192                                 if (rate < ratemin ||
193                                     bytes < td->rate_bytes[ddir]) {
194                                         log_err("%s: min rate %u not met, got"
195                                                 " %luKB/sec\n", td->o.name,
196                                                         ratemin, rate);
197                                         return true;
198                                 }
199                         }
200                 } else {
201                         /*
202                          * checks iops specified rate
203                          */
204                         if (iops < rate_iops) {
205                                 log_err("%s: min iops rate %u not met\n",
206                                                 td->o.name, rate_iops);
207                                 return true;
208                         } else {
209                                 if (spent)
210                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
211                                 else
212                                         rate = 0;
213
214                                 if (rate < rate_iops_min ||
215                                     iops < td->rate_blocks[ddir]) {
216                                         log_err("%s: min iops rate %u not met,"
217                                                 " got %lu\n", td->o.name,
218                                                         rate_iops_min, rate);
219                                         return true;
220                                 }
221                         }
222                 }
223         }
224
225         td->rate_bytes[ddir] = bytes;
226         td->rate_blocks[ddir] = iops;
227         memcpy(&td->lastrate[ddir], now, sizeof(*now));
228         return false;
229 }
230
231 static bool check_min_rate(struct thread_data *td, struct timeval *now)
232 {
233         bool ret = false;
234
235         if (td->bytes_done[DDIR_READ])
236                 ret |= __check_min_rate(td, now, DDIR_READ);
237         if (td->bytes_done[DDIR_WRITE])
238                 ret |= __check_min_rate(td, now, DDIR_WRITE);
239         if (td->bytes_done[DDIR_TRIM])
240                 ret |= __check_min_rate(td, now, DDIR_TRIM);
241
242         return ret;
243 }
244
245 /*
246  * When job exits, we can cancel the in-flight IO if we are using async
247  * io. Attempt to do so.
248  */
249 static void cleanup_pending_aio(struct thread_data *td)
250 {
251         int r;
252
253         /*
254          * get immediately available events, if any
255          */
256         r = io_u_queued_complete(td, 0);
257         if (r < 0)
258                 return;
259
260         /*
261          * now cancel remaining active events
262          */
263         if (td->io_ops->cancel) {
264                 struct io_u *io_u;
265                 int i;
266
267                 io_u_qiter(&td->io_u_all, io_u, i) {
268                         if (io_u->flags & IO_U_F_FLIGHT) {
269                                 r = td->io_ops->cancel(td, io_u);
270                                 if (!r)
271                                         put_io_u(td, io_u);
272                         }
273                 }
274         }
275
276         if (td->cur_depth)
277                 r = io_u_queued_complete(td, td->cur_depth);
278 }
279
280 /*
281  * Helper to handle the final sync of a file. Works just like the normal
282  * io path, just does everything sync.
283  */
284 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
285 {
286         struct io_u *io_u = __get_io_u(td);
287         int ret;
288
289         if (!io_u)
290                 return true;
291
292         io_u->ddir = DDIR_SYNC;
293         io_u->file = f;
294
295         if (td_io_prep(td, io_u)) {
296                 put_io_u(td, io_u);
297                 return true;
298         }
299
300 requeue:
301         ret = td_io_queue(td, io_u);
302         if (ret < 0) {
303                 td_verror(td, io_u->error, "td_io_queue");
304                 put_io_u(td, io_u);
305                 return true;
306         } else if (ret == FIO_Q_QUEUED) {
307                 if (td_io_commit(td))
308                         return true;
309                 if (io_u_queued_complete(td, 1) < 0)
310                         return true;
311         } else if (ret == FIO_Q_COMPLETED) {
312                 if (io_u->error) {
313                         td_verror(td, io_u->error, "td_io_queue");
314                         return true;
315                 }
316
317                 if (io_u_sync_complete(td, io_u) < 0)
318                         return true;
319         } else if (ret == FIO_Q_BUSY) {
320                 if (td_io_commit(td))
321                         return true;
322                 goto requeue;
323         }
324
325         return false;
326 }
327
328 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329 {
330         int ret;
331
332         if (fio_file_open(f))
333                 return fio_io_sync(td, f);
334
335         if (td_io_open_file(td, f))
336                 return 1;
337
338         ret = fio_io_sync(td, f);
339         td_io_close_file(td, f);
340         return ret;
341 }
342
343 static inline void __update_tv_cache(struct thread_data *td)
344 {
345         fio_gettime(&td->tv_cache, NULL);
346 }
347
348 static inline void update_tv_cache(struct thread_data *td)
349 {
350         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351                 __update_tv_cache(td);
352 }
353
354 static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
355 {
356         if (in_ramp_time(td))
357                 return false;
358         if (!td->o.timeout)
359                 return false;
360         if (utime_since(&td->epoch, t) >= td->o.timeout)
361                 return true;
362
363         return false;
364 }
365
366 /*
367  * We need to update the runtime consistently in ms, but keep a running
368  * tally of the current elapsed time in microseconds for sub millisecond
369  * updates.
370  */
371 static inline void update_runtime(struct thread_data *td,
372                                   unsigned long long *elapsed_us,
373                                   const enum fio_ddir ddir)
374 {
375         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
376                 return;
377
378         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
379         elapsed_us[ddir] += utime_since_now(&td->start);
380         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
381 }
382
383 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
384                                 int *retptr)
385 {
386         int ret = *retptr;
387
388         if (ret < 0 || td->error) {
389                 int err = td->error;
390                 enum error_type_bit eb;
391
392                 if (ret < 0)
393                         err = -ret;
394
395                 eb = td_error_type(ddir, err);
396                 if (!(td->o.continue_on_error & (1 << eb)))
397                         return true;
398
399                 if (td_non_fatal_error(td, eb, err)) {
400                         /*
401                          * Continue with the I/Os in case of
402                          * a non fatal error.
403                          */
404                         update_error_count(td, err);
405                         td_clear_error(td);
406                         *retptr = 0;
407                         return false;
408                 } else if (td->o.fill_device && err == ENOSPC) {
409                         /*
410                          * We expect to hit this error if
411                          * fill_device option is set.
412                          */
413                         td_clear_error(td);
414                         fio_mark_td_terminate(td);
415                         return true;
416                 } else {
417                         /*
418                          * Stop the I/O in case of a fatal
419                          * error.
420                          */
421                         update_error_count(td, err);
422                         return true;
423                 }
424         }
425
426         return false;
427 }
428
429 static void check_update_rusage(struct thread_data *td)
430 {
431         if (td->update_rusage) {
432                 td->update_rusage = 0;
433                 update_rusage_stat(td);
434                 fio_mutex_up(td->rusage_sem);
435         }
436 }
437
438 static int wait_for_completions(struct thread_data *td, struct timeval *time)
439 {
440         const int full = queue_full(td);
441         int min_evts = 0;
442         int ret;
443
444         if (td->flags & TD_F_REGROW_LOGS)
445                 return io_u_quiesce(td);
446
447         /*
448          * if the queue is full, we MUST reap at least 1 event
449          */
450         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
451         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
452                 min_evts = 1;
453
454         if (time && (__should_check_rate(td, DDIR_READ) ||
455             __should_check_rate(td, DDIR_WRITE) ||
456             __should_check_rate(td, DDIR_TRIM)))
457                 fio_gettime(time, NULL);
458
459         do {
460                 ret = io_u_queued_complete(td, min_evts);
461                 if (ret < 0)
462                         break;
463         } while (full && (td->cur_depth > td->o.iodepth_low));
464
465         return ret;
466 }
467
468 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
469                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
470                    struct timeval *comp_time)
471 {
472         int ret2;
473
474         switch (*ret) {
475         case FIO_Q_COMPLETED:
476                 if (io_u->error) {
477                         *ret = -io_u->error;
478                         clear_io_u(td, io_u);
479                 } else if (io_u->resid) {
480                         int bytes = io_u->xfer_buflen - io_u->resid;
481                         struct fio_file *f = io_u->file;
482
483                         if (bytes_issued)
484                                 *bytes_issued += bytes;
485
486                         if (!from_verify)
487                                 trim_io_piece(td, io_u);
488
489                         /*
490                          * zero read, fail
491                          */
492                         if (!bytes) {
493                                 if (!from_verify)
494                                         unlog_io_piece(td, io_u);
495                                 td_verror(td, EIO, "full resid");
496                                 put_io_u(td, io_u);
497                                 break;
498                         }
499
500                         io_u->xfer_buflen = io_u->resid;
501                         io_u->xfer_buf += bytes;
502                         io_u->offset += bytes;
503
504                         if (ddir_rw(io_u->ddir))
505                                 td->ts.short_io_u[io_u->ddir]++;
506
507                         f = io_u->file;
508                         if (io_u->offset == f->real_file_size)
509                                 goto sync_done;
510
511                         requeue_io_u(td, &io_u);
512                 } else {
513 sync_done:
514                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
515                             __should_check_rate(td, DDIR_WRITE) ||
516                             __should_check_rate(td, DDIR_TRIM)))
517                                 fio_gettime(comp_time, NULL);
518
519                         *ret = io_u_sync_complete(td, io_u);
520                         if (*ret < 0)
521                                 break;
522                 }
523
524                 if (td->flags & TD_F_REGROW_LOGS)
525                         regrow_logs(td);
526
527                 /*
528                  * when doing I/O (not when verifying),
529                  * check for any errors that are to be ignored
530                  */
531                 if (!from_verify)
532                         break;
533
534                 return 0;
535         case FIO_Q_QUEUED:
536                 /*
537                  * if the engine doesn't have a commit hook,
538                  * the io_u is really queued. if it does have such
539                  * a hook, it has to call io_u_queued() itself.
540                  */
541                 if (td->io_ops->commit == NULL)
542                         io_u_queued(td, io_u);
543                 if (bytes_issued)
544                         *bytes_issued += io_u->xfer_buflen;
545                 break;
546         case FIO_Q_BUSY:
547                 if (!from_verify)
548                         unlog_io_piece(td, io_u);
549                 requeue_io_u(td, &io_u);
550                 ret2 = td_io_commit(td);
551                 if (ret2 < 0)
552                         *ret = ret2;
553                 break;
554         default:
555                 assert(*ret < 0);
556                 td_verror(td, -(*ret), "td_io_queue");
557                 break;
558         }
559
560         if (break_on_this_error(td, ddir, ret))
561                 return 1;
562
563         return 0;
564 }
565
566 static inline bool io_in_polling(struct thread_data *td)
567 {
568         return !td->o.iodepth_batch_complete_min &&
569                    !td->o.iodepth_batch_complete_max;
570 }
571 /*
572  * Unlinks files from thread data fio_file structure
573  */
574 static int unlink_all_files(struct thread_data *td)
575 {
576         struct fio_file *f;
577         unsigned int i;
578         int ret = 0;
579
580         for_each_file(td, f, i) {
581                 if (f->filetype != FIO_TYPE_FILE)
582                         continue;
583                 ret = td_io_unlink_file(td, f);
584                 if (ret)
585                         break;
586         }
587
588         if (ret)
589                 td_verror(td, ret, "unlink_all_files");
590
591         return ret;
592 }
593
594 /*
595  * The main verify engine. Runs over the writes we previously submitted,
596  * reads the blocks back in, and checks the crc/md5 of the data.
597  */
598 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
599 {
600         struct fio_file *f;
601         struct io_u *io_u;
602         int ret, min_events;
603         unsigned int i;
604
605         dprint(FD_VERIFY, "starting loop\n");
606
607         /*
608          * sync io first and invalidate cache, to make sure we really
609          * read from disk.
610          */
611         for_each_file(td, f, i) {
612                 if (!fio_file_open(f))
613                         continue;
614                 if (fio_io_sync(td, f))
615                         break;
616                 if (file_invalidate_cache(td, f))
617                         break;
618         }
619
620         check_update_rusage(td);
621
622         if (td->error)
623                 return;
624
625         /*
626          * verify_state needs to be reset before verification
627          * proceeds so that expected random seeds match actual
628          * random seeds in headers. The main loop will reset
629          * all random number generators if randrepeat is set.
630          */
631         if (!td->o.rand_repeatable)
632                 td_fill_verify_state_seed(td);
633
634         td_set_runstate(td, TD_VERIFYING);
635
636         io_u = NULL;
637         while (!td->terminate) {
638                 enum fio_ddir ddir;
639                 int full;
640
641                 update_tv_cache(td);
642                 check_update_rusage(td);
643
644                 if (runtime_exceeded(td, &td->tv_cache)) {
645                         __update_tv_cache(td);
646                         if (runtime_exceeded(td, &td->tv_cache)) {
647                                 fio_mark_td_terminate(td);
648                                 break;
649                         }
650                 }
651
652                 if (flow_threshold_exceeded(td))
653                         continue;
654
655                 if (!td->o.experimental_verify) {
656                         io_u = __get_io_u(td);
657                         if (!io_u)
658                                 break;
659
660                         if (get_next_verify(td, io_u)) {
661                                 put_io_u(td, io_u);
662                                 break;
663                         }
664
665                         if (td_io_prep(td, io_u)) {
666                                 put_io_u(td, io_u);
667                                 break;
668                         }
669                 } else {
670                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
671                                 break;
672
673                         while ((io_u = get_io_u(td)) != NULL) {
674                                 if (IS_ERR_OR_NULL(io_u)) {
675                                         io_u = NULL;
676                                         ret = FIO_Q_BUSY;
677                                         goto reap;
678                                 }
679
680                                 /*
681                                  * We are only interested in the places where
682                                  * we wrote or trimmed IOs. Turn those into
683                                  * reads for verification purposes.
684                                  */
685                                 if (io_u->ddir == DDIR_READ) {
686                                         /*
687                                          * Pretend we issued it for rwmix
688                                          * accounting
689                                          */
690                                         td->io_issues[DDIR_READ]++;
691                                         put_io_u(td, io_u);
692                                         continue;
693                                 } else if (io_u->ddir == DDIR_TRIM) {
694                                         io_u->ddir = DDIR_READ;
695                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
696                                         break;
697                                 } else if (io_u->ddir == DDIR_WRITE) {
698                                         io_u->ddir = DDIR_READ;
699                                         break;
700                                 } else {
701                                         put_io_u(td, io_u);
702                                         continue;
703                                 }
704                         }
705
706                         if (!io_u)
707                                 break;
708                 }
709
710                 if (verify_state_should_stop(td, io_u)) {
711                         put_io_u(td, io_u);
712                         break;
713                 }
714
715                 if (td->o.verify_async)
716                         io_u->end_io = verify_io_u_async;
717                 else
718                         io_u->end_io = verify_io_u;
719
720                 ddir = io_u->ddir;
721                 if (!td->o.disable_slat)
722                         fio_gettime(&io_u->start_time, NULL);
723
724                 ret = td_io_queue(td, io_u);
725
726                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
727                         break;
728
729                 /*
730                  * if we can queue more, do so. but check if there are
731                  * completed io_u's first. Note that we can get BUSY even
732                  * without IO queued, if the system is resource starved.
733                  */
734 reap:
735                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
736                 if (full || io_in_polling(td))
737                         ret = wait_for_completions(td, NULL);
738
739                 if (ret < 0)
740                         break;
741         }
742
743         check_update_rusage(td);
744
745         if (!td->error) {
746                 min_events = td->cur_depth;
747
748                 if (min_events)
749                         ret = io_u_queued_complete(td, min_events);
750         } else
751                 cleanup_pending_aio(td);
752
753         td_set_runstate(td, TD_RUNNING);
754
755         dprint(FD_VERIFY, "exiting loop\n");
756 }
757
758 static bool exceeds_number_ios(struct thread_data *td)
759 {
760         unsigned long long number_ios;
761
762         if (!td->o.number_ios)
763                 return false;
764
765         number_ios = ddir_rw_sum(td->io_blocks);
766         number_ios += td->io_u_queued + td->io_u_in_flight;
767
768         return number_ios >= (td->o.number_ios * td->loops);
769 }
770
771 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
772 {
773         unsigned long long bytes, limit;
774
775         if (td_rw(td))
776                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
777         else if (td_write(td))
778                 bytes = this_bytes[DDIR_WRITE];
779         else if (td_read(td))
780                 bytes = this_bytes[DDIR_READ];
781         else
782                 bytes = this_bytes[DDIR_TRIM];
783
784         if (td->o.io_limit)
785                 limit = td->o.io_limit;
786         else
787                 limit = td->o.size;
788
789         limit *= td->loops;
790         return bytes >= limit || exceeds_number_ios(td);
791 }
792
793 static bool io_issue_bytes_exceeded(struct thread_data *td)
794 {
795         return io_bytes_exceeded(td, td->io_issue_bytes);
796 }
797
798 static bool io_complete_bytes_exceeded(struct thread_data *td)
799 {
800         return io_bytes_exceeded(td, td->this_io_bytes);
801 }
802
803 /*
804  * used to calculate the next io time for rate control
805  *
806  */
807 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
808 {
809         uint64_t secs, remainder, bps, bytes, iops;
810
811         assert(!(td->flags & TD_F_CHILD));
812         bytes = td->rate_io_issue_bytes[ddir];
813         bps = td->rate_bps[ddir];
814
815         if (td->o.rate_process == RATE_PROCESS_POISSON) {
816                 uint64_t val;
817                 iops = bps / td->o.bs[ddir];
818                 val = (int64_t) (1000000 / iops) *
819                                 -logf(__rand_0_1(&td->poisson_state));
820                 if (val) {
821                         dprint(FD_RATE, "poisson rate iops=%llu\n",
822                                         (unsigned long long) 1000000 / val);
823                 }
824                 td->last_usec += val;
825                 return td->last_usec;
826         } else if (bps) {
827                 secs = bytes / bps;
828                 remainder = bytes % bps;
829                 return remainder * 1000000 / bps + secs * 1000000;
830         }
831
832         return 0;
833 }
834
835 /*
836  * Main IO worker function. It retrieves io_u's to process and queues
837  * and reaps them, checking for rate and errors along the way.
838  *
839  * Returns number of bytes written and trimmed.
840  */
841 static void do_io(struct thread_data *td, uint64_t *bytes_done)
842 {
843         unsigned int i;
844         int ret = 0;
845         uint64_t total_bytes, bytes_issued = 0;
846
847         for (i = 0; i < DDIR_RWDIR_CNT; i++)
848                 bytes_done[i] = td->bytes_done[i];
849
850         if (in_ramp_time(td))
851                 td_set_runstate(td, TD_RAMP);
852         else
853                 td_set_runstate(td, TD_RUNNING);
854
855         lat_target_init(td);
856
857         total_bytes = td->o.size;
858         /*
859         * Allow random overwrite workloads to write up to io_limit
860         * before starting verification phase as 'size' doesn't apply.
861         */
862         if (td_write(td) && td_random(td) && td->o.norandommap)
863                 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
864         /*
865          * If verify_backlog is enabled, we'll run the verify in this
866          * handler as well. For that case, we may need up to twice the
867          * amount of bytes.
868          */
869         if (td->o.verify != VERIFY_NONE &&
870            (td_write(td) && td->o.verify_backlog))
871                 total_bytes += td->o.size;
872
873         /* In trimwrite mode, each byte is trimmed and then written, so
874          * allow total_bytes to be twice as big */
875         if (td_trimwrite(td))
876                 total_bytes += td->total_io_size;
877
878         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
879                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
880                 td->o.time_based) {
881                 struct timeval comp_time;
882                 struct io_u *io_u;
883                 int full;
884                 enum fio_ddir ddir;
885
886                 check_update_rusage(td);
887
888                 if (td->terminate || td->done)
889                         break;
890
891                 update_tv_cache(td);
892
893                 if (runtime_exceeded(td, &td->tv_cache)) {
894                         __update_tv_cache(td);
895                         if (runtime_exceeded(td, &td->tv_cache)) {
896                                 fio_mark_td_terminate(td);
897                                 break;
898                         }
899                 }
900
901                 if (flow_threshold_exceeded(td))
902                         continue;
903
904                 /*
905                  * Break if we exceeded the bytes. The exception is time
906                  * based runs, but we still need to break out of the loop
907                  * for those to run verification, if enabled.
908                  */
909                 if (bytes_issued >= total_bytes &&
910                     (!td->o.time_based ||
911                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
912                         break;
913
914                 io_u = get_io_u(td);
915                 if (IS_ERR_OR_NULL(io_u)) {
916                         int err = PTR_ERR(io_u);
917
918                         io_u = NULL;
919                         if (err == -EBUSY) {
920                                 ret = FIO_Q_BUSY;
921                                 goto reap;
922                         }
923                         if (td->o.latency_target)
924                                 goto reap;
925                         break;
926                 }
927
928                 ddir = io_u->ddir;
929
930                 /*
931                  * Add verification end_io handler if:
932                  *      - Asked to verify (!td_rw(td))
933                  *      - Or the io_u is from our verify list (mixed write/ver)
934                  */
935                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
936                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
937
938                         if (!td->o.verify_pattern_bytes) {
939                                 io_u->rand_seed = __rand(&td->verify_state);
940                                 if (sizeof(int) != sizeof(long *))
941                                         io_u->rand_seed *= __rand(&td->verify_state);
942                         }
943
944                         if (verify_state_should_stop(td, io_u)) {
945                                 put_io_u(td, io_u);
946                                 break;
947                         }
948
949                         if (td->o.verify_async)
950                                 io_u->end_io = verify_io_u_async;
951                         else
952                                 io_u->end_io = verify_io_u;
953                         td_set_runstate(td, TD_VERIFYING);
954                 } else if (in_ramp_time(td))
955                         td_set_runstate(td, TD_RAMP);
956                 else
957                         td_set_runstate(td, TD_RUNNING);
958
959                 /*
960                  * Always log IO before it's issued, so we know the specific
961                  * order of it. The logged unit will track when the IO has
962                  * completed.
963                  */
964                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
965                     td->o.do_verify &&
966                     td->o.verify != VERIFY_NONE &&
967                     !td->o.experimental_verify)
968                         log_io_piece(td, io_u);
969
970                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
971                         const unsigned long blen = io_u->xfer_buflen;
972                         const enum fio_ddir ddir = acct_ddir(io_u);
973
974                         if (td->error)
975                                 break;
976
977                         workqueue_enqueue(&td->io_wq, &io_u->work);
978                         ret = FIO_Q_QUEUED;
979
980                         if (ddir_rw(ddir)) {
981                                 td->io_issues[ddir]++;
982                                 td->io_issue_bytes[ddir] += blen;
983                                 td->rate_io_issue_bytes[ddir] += blen;
984                         }
985
986                         if (should_check_rate(td))
987                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
988
989                 } else {
990                         ret = td_io_queue(td, io_u);
991
992                         if (should_check_rate(td))
993                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
994
995                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
996                                 break;
997
998                         /*
999                          * See if we need to complete some commands. Note that
1000                          * we can get BUSY even without IO queued, if the
1001                          * system is resource starved.
1002                          */
1003 reap:
1004                         full = queue_full(td) ||
1005                                 (ret == FIO_Q_BUSY && td->cur_depth);
1006                         if (full || io_in_polling(td))
1007                                 ret = wait_for_completions(td, &comp_time);
1008                 }
1009                 if (ret < 0)
1010                         break;
1011                 if (!ddir_rw_sum(td->bytes_done) &&
1012                     !td_ioengine_flagged(td, FIO_NOIO))
1013                         continue;
1014
1015                 if (!in_ramp_time(td) && should_check_rate(td)) {
1016                         if (check_min_rate(td, &comp_time)) {
1017                                 if (exitall_on_terminate || td->o.exitall_error)
1018                                         fio_terminate_threads(td->groupid);
1019                                 td_verror(td, EIO, "check_min_rate");
1020                                 break;
1021                         }
1022                 }
1023                 if (!in_ramp_time(td) && td->o.latency_target)
1024                         lat_target_check(td);
1025
1026                 if (td->o.thinktime) {
1027                         unsigned long long b;
1028
1029                         b = ddir_rw_sum(td->io_blocks);
1030                         if (!(b % td->o.thinktime_blocks)) {
1031                                 int left;
1032
1033                                 io_u_quiesce(td);
1034
1035                                 if (td->o.thinktime_spin)
1036                                         usec_spin(td->o.thinktime_spin);
1037
1038                                 left = td->o.thinktime - td->o.thinktime_spin;
1039                                 if (left)
1040                                         usec_sleep(td, left);
1041                         }
1042                 }
1043         }
1044
1045         check_update_rusage(td);
1046
1047         if (td->trim_entries)
1048                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1049
1050         if (td->o.fill_device && td->error == ENOSPC) {
1051                 td->error = 0;
1052                 fio_mark_td_terminate(td);
1053         }
1054         if (!td->error) {
1055                 struct fio_file *f;
1056
1057                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1058                         workqueue_flush(&td->io_wq);
1059                         i = 0;
1060                 } else
1061                         i = td->cur_depth;
1062
1063                 if (i) {
1064                         ret = io_u_queued_complete(td, i);
1065                         if (td->o.fill_device && td->error == ENOSPC)
1066                                 td->error = 0;
1067                 }
1068
1069                 if (should_fsync(td) && td->o.end_fsync) {
1070                         td_set_runstate(td, TD_FSYNCING);
1071
1072                         for_each_file(td, f, i) {
1073                                 if (!fio_file_fsync(td, f))
1074                                         continue;
1075
1076                                 log_err("fio: end_fsync failed for file %s\n",
1077                                                                 f->file_name);
1078                         }
1079                 }
1080         } else
1081                 cleanup_pending_aio(td);
1082
1083         /*
1084          * stop job if we failed doing any IO
1085          */
1086         if (!ddir_rw_sum(td->this_io_bytes))
1087                 td->done = 1;
1088
1089         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1090                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1091 }
1092
1093 static void free_file_completion_logging(struct thread_data *td)
1094 {
1095         struct fio_file *f;
1096         unsigned int i;
1097
1098         for_each_file(td, f, i) {
1099                 if (!f->last_write_comp)
1100                         break;
1101                 sfree(f->last_write_comp);
1102         }
1103 }
1104
1105 static int init_file_completion_logging(struct thread_data *td,
1106                                         unsigned int depth)
1107 {
1108         struct fio_file *f;
1109         unsigned int i;
1110
1111         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1112                 return 0;
1113
1114         for_each_file(td, f, i) {
1115                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1116                 if (!f->last_write_comp)
1117                         goto cleanup;
1118         }
1119
1120         return 0;
1121
1122 cleanup:
1123         free_file_completion_logging(td);
1124         log_err("fio: failed to alloc write comp data\n");
1125         return 1;
1126 }
1127
1128 static void cleanup_io_u(struct thread_data *td)
1129 {
1130         struct io_u *io_u;
1131
1132         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1133
1134                 if (td->io_ops->io_u_free)
1135                         td->io_ops->io_u_free(td, io_u);
1136
1137                 fio_memfree(io_u, sizeof(*io_u));
1138         }
1139
1140         free_io_mem(td);
1141
1142         io_u_rexit(&td->io_u_requeues);
1143         io_u_qexit(&td->io_u_freelist);
1144         io_u_qexit(&td->io_u_all);
1145
1146         free_file_completion_logging(td);
1147 }
1148
1149 static int init_io_u(struct thread_data *td)
1150 {
1151         struct io_u *io_u;
1152         unsigned int max_bs, min_write;
1153         int cl_align, i, max_units;
1154         int data_xfer = 1, err;
1155         char *p;
1156
1157         max_units = td->o.iodepth;
1158         max_bs = td_max_bs(td);
1159         min_write = td->o.min_bs[DDIR_WRITE];
1160         td->orig_buffer_size = (unsigned long long) max_bs
1161                                         * (unsigned long long) max_units;
1162
1163         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1164                 data_xfer = 0;
1165
1166         err = 0;
1167         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1168         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1169         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1170
1171         if (err) {
1172                 log_err("fio: failed setting up IO queues\n");
1173                 return 1;
1174         }
1175
1176         /*
1177          * if we may later need to do address alignment, then add any
1178          * possible adjustment here so that we don't cause a buffer
1179          * overflow later. this adjustment may be too much if we get
1180          * lucky and the allocator gives us an aligned address.
1181          */
1182         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1183             td_ioengine_flagged(td, FIO_RAWIO))
1184                 td->orig_buffer_size += page_mask + td->o.mem_align;
1185
1186         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1187                 unsigned long bs;
1188
1189                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1190                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1191         }
1192
1193         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1194                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1195                 return 1;
1196         }
1197
1198         if (data_xfer && allocate_io_mem(td))
1199                 return 1;
1200
1201         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1202             td_ioengine_flagged(td, FIO_RAWIO))
1203                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1204         else
1205                 p = td->orig_buffer;
1206
1207         cl_align = os_cache_line_size();
1208
1209         for (i = 0; i < max_units; i++) {
1210                 void *ptr;
1211
1212                 if (td->terminate)
1213                         return 1;
1214
1215                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1216                 if (!ptr) {
1217                         log_err("fio: unable to allocate aligned memory\n");
1218                         break;
1219                 }
1220
1221                 io_u = ptr;
1222                 memset(io_u, 0, sizeof(*io_u));
1223                 INIT_FLIST_HEAD(&io_u->verify_list);
1224                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1225
1226                 if (data_xfer) {
1227                         io_u->buf = p;
1228                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1229
1230                         if (td_write(td))
1231                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1232                         if (td_write(td) && td->o.verify_pattern_bytes) {
1233                                 /*
1234                                  * Fill the buffer with the pattern if we are
1235                                  * going to be doing writes.
1236                                  */
1237                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1238                         }
1239                 }
1240
1241                 io_u->index = i;
1242                 io_u->flags = IO_U_F_FREE;
1243                 io_u_qpush(&td->io_u_freelist, io_u);
1244
1245                 /*
1246                  * io_u never leaves this stack, used for iteration of all
1247                  * io_u buffers.
1248                  */
1249                 io_u_qpush(&td->io_u_all, io_u);
1250
1251                 if (td->io_ops->io_u_init) {
1252                         int ret = td->io_ops->io_u_init(td, io_u);
1253
1254                         if (ret) {
1255                                 log_err("fio: failed to init engine data: %d\n", ret);
1256                                 return 1;
1257                         }
1258                 }
1259
1260                 p += max_bs;
1261         }
1262
1263         if (init_file_completion_logging(td, max_units))
1264                 return 1;
1265
1266         return 0;
1267 }
1268
1269 static int switch_ioscheduler(struct thread_data *td)
1270 {
1271 #ifdef FIO_HAVE_IOSCHED_SWITCH
1272         char tmp[256], tmp2[128];
1273         FILE *f;
1274         int ret;
1275
1276         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1277                 return 0;
1278
1279         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1280
1281         f = fopen(tmp, "r+");
1282         if (!f) {
1283                 if (errno == ENOENT) {
1284                         log_err("fio: os or kernel doesn't support IO scheduler"
1285                                 " switching\n");
1286                         return 0;
1287                 }
1288                 td_verror(td, errno, "fopen iosched");
1289                 return 1;
1290         }
1291
1292         /*
1293          * Set io scheduler.
1294          */
1295         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1296         if (ferror(f) || ret != 1) {
1297                 td_verror(td, errno, "fwrite");
1298                 fclose(f);
1299                 return 1;
1300         }
1301
1302         rewind(f);
1303
1304         /*
1305          * Read back and check that the selected scheduler is now the default.
1306          */
1307         memset(tmp, 0, sizeof(tmp));
1308         ret = fread(tmp, sizeof(tmp), 1, f);
1309         if (ferror(f) || ret < 0) {
1310                 td_verror(td, errno, "fread");
1311                 fclose(f);
1312                 return 1;
1313         }
1314         /*
1315          * either a list of io schedulers or "none\n" is expected.
1316          */
1317         tmp[strlen(tmp) - 1] = '\0';
1318
1319         /*
1320          * Write to "none" entry doesn't fail, so check the result here.
1321          */
1322         if (!strcmp(tmp, "none")) {
1323                 log_err("fio: io scheduler is not tunable\n");
1324                 fclose(f);
1325                 return 0;
1326         }
1327
1328         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1329         if (!strstr(tmp, tmp2)) {
1330                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1331                 td_verror(td, EINVAL, "iosched_switch");
1332                 fclose(f);
1333                 return 1;
1334         }
1335
1336         fclose(f);
1337         return 0;
1338 #else
1339         return 0;
1340 #endif
1341 }
1342
1343 static bool keep_running(struct thread_data *td)
1344 {
1345         unsigned long long limit;
1346
1347         if (td->done)
1348                 return false;
1349         if (td->o.time_based)
1350                 return true;
1351         if (td->o.loops) {
1352                 td->o.loops--;
1353                 return true;
1354         }
1355         if (exceeds_number_ios(td))
1356                 return false;
1357
1358         if (td->o.io_limit)
1359                 limit = td->o.io_limit;
1360         else
1361                 limit = td->o.size;
1362
1363         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1364                 uint64_t diff;
1365
1366                 /*
1367                  * If the difference is less than the minimum IO size, we
1368                  * are done.
1369                  */
1370                 diff = limit - ddir_rw_sum(td->io_bytes);
1371                 if (diff < td_max_bs(td))
1372                         return false;
1373
1374                 if (fio_files_done(td) && !td->o.io_limit)
1375                         return false;
1376
1377                 return true;
1378         }
1379
1380         return false;
1381 }
1382
1383 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1384 {
1385         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1386         int ret;
1387         char *str;
1388
1389         str = malloc(newlen);
1390         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1391
1392         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1393         ret = system(str);
1394         if (ret == -1)
1395                 log_err("fio: exec of cmd <%s> failed\n", str);
1396
1397         free(str);
1398         return ret;
1399 }
1400
1401 /*
1402  * Dry run to compute correct state of numberio for verification.
1403  */
1404 static uint64_t do_dry_run(struct thread_data *td)
1405 {
1406         td_set_runstate(td, TD_RUNNING);
1407
1408         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1409                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1410                 struct io_u *io_u;
1411                 int ret;
1412
1413                 if (td->terminate || td->done)
1414                         break;
1415
1416                 io_u = get_io_u(td);
1417                 if (IS_ERR_OR_NULL(io_u))
1418                         break;
1419
1420                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1421                 io_u->error = 0;
1422                 io_u->resid = 0;
1423                 if (ddir_rw(acct_ddir(io_u)))
1424                         td->io_issues[acct_ddir(io_u)]++;
1425                 if (ddir_rw(io_u->ddir)) {
1426                         io_u_mark_depth(td, 1);
1427                         td->ts.total_io_u[io_u->ddir]++;
1428                 }
1429
1430                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1431                     td->o.do_verify &&
1432                     td->o.verify != VERIFY_NONE &&
1433                     !td->o.experimental_verify)
1434                         log_io_piece(td, io_u);
1435
1436                 ret = io_u_sync_complete(td, io_u);
1437                 (void) ret;
1438         }
1439
1440         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1441 }
1442
1443 struct fork_data {
1444         struct thread_data *td;
1445         struct sk_out *sk_out;
1446 };
1447
1448 /*
1449  * Entry point for the thread based jobs. The process based jobs end up
1450  * here as well, after a little setup.
1451  */
1452 static void *thread_main(void *data)
1453 {
1454         struct fork_data *fd = data;
1455         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1456         struct thread_data *td = fd->td;
1457         struct thread_options *o = &td->o;
1458         struct sk_out *sk_out = fd->sk_out;
1459         int deadlock_loop_cnt;
1460         int clear_state;
1461         int ret;
1462
1463         sk_out_assign(sk_out);
1464         free(fd);
1465
1466         if (!o->use_thread) {
1467                 setsid();
1468                 td->pid = getpid();
1469         } else
1470                 td->pid = gettid();
1471
1472         fio_local_clock_init(o->use_thread);
1473
1474         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1475
1476         if (is_backend)
1477                 fio_server_send_start(td);
1478
1479         INIT_FLIST_HEAD(&td->io_log_list);
1480         INIT_FLIST_HEAD(&td->io_hist_list);
1481         INIT_FLIST_HEAD(&td->verify_list);
1482         INIT_FLIST_HEAD(&td->trim_list);
1483         INIT_FLIST_HEAD(&td->next_rand_list);
1484         td->io_hist_tree = RB_ROOT;
1485
1486         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1487         if (ret) {
1488                 td_verror(td, ret, "mutex_cond_init_pshared");
1489                 goto err;
1490         }
1491         ret = cond_init_pshared(&td->verify_cond);
1492         if (ret) {
1493                 td_verror(td, ret, "mutex_cond_pshared");
1494                 goto err;
1495         }
1496
1497         td_set_runstate(td, TD_INITIALIZED);
1498         dprint(FD_MUTEX, "up startup_mutex\n");
1499         fio_mutex_up(startup_mutex);
1500         dprint(FD_MUTEX, "wait on td->mutex\n");
1501         fio_mutex_down(td->mutex);
1502         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1503
1504         /*
1505          * A new gid requires privilege, so we need to do this before setting
1506          * the uid.
1507          */
1508         if (o->gid != -1U && setgid(o->gid)) {
1509                 td_verror(td, errno, "setgid");
1510                 goto err;
1511         }
1512         if (o->uid != -1U && setuid(o->uid)) {
1513                 td_verror(td, errno, "setuid");
1514                 goto err;
1515         }
1516
1517         /*
1518          * Do this early, we don't want the compress threads to be limited
1519          * to the same CPUs as the IO workers. So do this before we set
1520          * any potential CPU affinity
1521          */
1522         if (iolog_compress_init(td, sk_out))
1523                 goto err;
1524
1525         /*
1526          * If we have a gettimeofday() thread, make sure we exclude that
1527          * thread from this job
1528          */
1529         if (o->gtod_cpu)
1530                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1531
1532         /*
1533          * Set affinity first, in case it has an impact on the memory
1534          * allocations.
1535          */
1536         if (fio_option_is_set(o, cpumask)) {
1537                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1538                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1539                         if (!ret) {
1540                                 log_err("fio: no CPUs set\n");
1541                                 log_err("fio: Try increasing number of available CPUs\n");
1542                                 td_verror(td, EINVAL, "cpus_split");
1543                                 goto err;
1544                         }
1545                 }
1546                 ret = fio_setaffinity(td->pid, o->cpumask);
1547                 if (ret == -1) {
1548                         td_verror(td, errno, "cpu_set_affinity");
1549                         goto err;
1550                 }
1551         }
1552
1553 #ifdef CONFIG_LIBNUMA
1554         /* numa node setup */
1555         if (fio_option_is_set(o, numa_cpunodes) ||
1556             fio_option_is_set(o, numa_memnodes)) {
1557                 struct bitmask *mask;
1558
1559                 if (numa_available() < 0) {
1560                         td_verror(td, errno, "Does not support NUMA API\n");
1561                         goto err;
1562                 }
1563
1564                 if (fio_option_is_set(o, numa_cpunodes)) {
1565                         mask = numa_parse_nodestring(o->numa_cpunodes);
1566                         ret = numa_run_on_node_mask(mask);
1567                         numa_free_nodemask(mask);
1568                         if (ret == -1) {
1569                                 td_verror(td, errno, \
1570                                         "numa_run_on_node_mask failed\n");
1571                                 goto err;
1572                         }
1573                 }
1574
1575                 if (fio_option_is_set(o, numa_memnodes)) {
1576                         mask = NULL;
1577                         if (o->numa_memnodes)
1578                                 mask = numa_parse_nodestring(o->numa_memnodes);
1579
1580                         switch (o->numa_mem_mode) {
1581                         case MPOL_INTERLEAVE:
1582                                 numa_set_interleave_mask(mask);
1583                                 break;
1584                         case MPOL_BIND:
1585                                 numa_set_membind(mask);
1586                                 break;
1587                         case MPOL_LOCAL:
1588                                 numa_set_localalloc();
1589                                 break;
1590                         case MPOL_PREFERRED:
1591                                 numa_set_preferred(o->numa_mem_prefer_node);
1592                                 break;
1593                         case MPOL_DEFAULT:
1594                         default:
1595                                 break;
1596                         }
1597
1598                         if (mask)
1599                                 numa_free_nodemask(mask);
1600
1601                 }
1602         }
1603 #endif
1604
1605         if (fio_pin_memory(td))
1606                 goto err;
1607
1608         /*
1609          * May alter parameters that init_io_u() will use, so we need to
1610          * do this first.
1611          */
1612         if (init_iolog(td))
1613                 goto err;
1614
1615         if (init_io_u(td))
1616                 goto err;
1617
1618         if (o->verify_async && verify_async_init(td))
1619                 goto err;
1620
1621         if (fio_option_is_set(o, ioprio) ||
1622             fio_option_is_set(o, ioprio_class)) {
1623                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1624                 if (ret == -1) {
1625                         td_verror(td, errno, "ioprio_set");
1626                         goto err;
1627                 }
1628         }
1629
1630         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1631                 goto err;
1632
1633         errno = 0;
1634         if (nice(o->nice) == -1 && errno != 0) {
1635                 td_verror(td, errno, "nice");
1636                 goto err;
1637         }
1638
1639         if (o->ioscheduler && switch_ioscheduler(td))
1640                 goto err;
1641
1642         if (!o->create_serialize && setup_files(td))
1643                 goto err;
1644
1645         if (td_io_init(td))
1646                 goto err;
1647
1648         if (init_random_map(td))
1649                 goto err;
1650
1651         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1652                 goto err;
1653
1654         if (o->pre_read) {
1655                 if (pre_read_files(td) < 0)
1656                         goto err;
1657         }
1658
1659         fio_verify_init(td);
1660
1661         if (rate_submit_init(td, sk_out))
1662                 goto err;
1663
1664         set_epoch_time(td, o->log_unix_epoch);
1665         fio_getrusage(&td->ru_start);
1666         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1667         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1668         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1669
1670         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1671                         o->ratemin[DDIR_TRIM]) {
1672                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1673                                         sizeof(td->bw_sample_time));
1674                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1675                                         sizeof(td->bw_sample_time));
1676                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1677                                         sizeof(td->bw_sample_time));
1678         }
1679
1680         clear_state = 0;
1681         while (keep_running(td)) {
1682                 uint64_t verify_bytes;
1683
1684                 fio_gettime(&td->start, NULL);
1685                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1686
1687                 if (clear_state) {
1688                         clear_io_state(td, 0);
1689
1690                         if (o->unlink_each_loop && unlink_all_files(td))
1691                                 break;
1692                 }
1693
1694                 prune_io_piece_log(td);
1695
1696                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1697                         verify_bytes = do_dry_run(td);
1698                 else {
1699                         uint64_t bytes_done[DDIR_RWDIR_CNT];
1700
1701                         do_io(td, bytes_done);
1702
1703                         if (!ddir_rw_sum(bytes_done)) {
1704                                 fio_mark_td_terminate(td);
1705                                 verify_bytes = 0;
1706                         } else {
1707                                 verify_bytes = bytes_done[DDIR_WRITE] +
1708                                                 bytes_done[DDIR_TRIM];
1709                         }
1710                 }
1711
1712                 /*
1713                  * If we took too long to shut down, the main thread could
1714                  * already consider us reaped/exited. If that happens, break
1715                  * out and clean up.
1716                  */
1717                 if (td->runstate >= TD_EXITED)
1718                         break;
1719
1720                 clear_state = 1;
1721
1722                 /*
1723                  * Make sure we've successfully updated the rusage stats
1724                  * before waiting on the stat mutex. Otherwise we could have
1725                  * the stat thread holding stat mutex and waiting for
1726                  * the rusage_sem, which would never get upped because
1727                  * this thread is waiting for the stat mutex.
1728                  */
1729                 deadlock_loop_cnt = 0;
1730                 do {
1731                         check_update_rusage(td);
1732                         if (!fio_mutex_down_trylock(stat_mutex))
1733                                 break;
1734                         usleep(1000);
1735                         if (deadlock_loop_cnt++ > 5000) {
1736                                 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1737                                 td->error = EDEADLK;
1738                                 goto err;
1739                         }
1740                 } while (1);
1741
1742                 if (td_read(td) && td->io_bytes[DDIR_READ])
1743                         update_runtime(td, elapsed_us, DDIR_READ);
1744                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1745                         update_runtime(td, elapsed_us, DDIR_WRITE);
1746                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1747                         update_runtime(td, elapsed_us, DDIR_TRIM);
1748                 fio_gettime(&td->start, NULL);
1749                 fio_mutex_up(stat_mutex);
1750
1751                 if (td->error || td->terminate)
1752                         break;
1753
1754                 if (!o->do_verify ||
1755                     o->verify == VERIFY_NONE ||
1756                     td_ioengine_flagged(td, FIO_UNIDIR))
1757                         continue;
1758
1759                 clear_io_state(td, 0);
1760
1761                 fio_gettime(&td->start, NULL);
1762
1763                 do_verify(td, verify_bytes);
1764
1765                 /*
1766                  * See comment further up for why this is done here.
1767                  */
1768                 check_update_rusage(td);
1769
1770                 fio_mutex_down(stat_mutex);
1771                 update_runtime(td, elapsed_us, DDIR_READ);
1772                 fio_gettime(&td->start, NULL);
1773                 fio_mutex_up(stat_mutex);
1774
1775                 if (td->error || td->terminate)
1776                         break;
1777         }
1778
1779         td_set_runstate(td, TD_FINISHING);
1780
1781         update_rusage_stat(td);
1782         td->ts.total_run_time = mtime_since_now(&td->epoch);
1783         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1784         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1785         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1786
1787         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1788             (td->o.verify != VERIFY_NONE && td_write(td)))
1789                 verify_save_state(td->thread_number);
1790
1791         fio_unpin_memory(td);
1792
1793         td_writeout_logs(td, true);
1794
1795         iolog_compress_exit(td);
1796         rate_submit_exit(td);
1797
1798         if (o->exec_postrun)
1799                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1800
1801         if (exitall_on_terminate || (o->exitall_error && td->error))
1802                 fio_terminate_threads(td->groupid);
1803
1804 err:
1805         if (td->error)
1806                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1807                                                         td->verror);
1808
1809         if (o->verify_async)
1810                 verify_async_exit(td);
1811
1812         close_and_free_files(td);
1813         cleanup_io_u(td);
1814         close_ioengine(td);
1815         cgroup_shutdown(td, &cgroup_mnt);
1816         verify_free_state(td);
1817
1818         if (td->zone_state_index) {
1819                 int i;
1820
1821                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1822                         free(td->zone_state_index[i]);
1823                 free(td->zone_state_index);
1824                 td->zone_state_index = NULL;
1825         }
1826
1827         if (fio_option_is_set(o, cpumask)) {
1828                 ret = fio_cpuset_exit(&o->cpumask);
1829                 if (ret)
1830                         td_verror(td, ret, "fio_cpuset_exit");
1831         }
1832
1833         /*
1834          * do this very late, it will log file closing as well
1835          */
1836         if (o->write_iolog_file)
1837                 write_iolog_close(td);
1838
1839         fio_mutex_remove(td->mutex);
1840         td->mutex = NULL;
1841
1842         td_set_runstate(td, TD_EXITED);
1843
1844         /*
1845          * Do this last after setting our runstate to exited, so we
1846          * know that the stat thread is signaled.
1847          */
1848         check_update_rusage(td);
1849
1850         sk_out_drop();
1851         return (void *) (uintptr_t) td->error;
1852 }
1853
1854 static void dump_td_info(struct thread_data *td)
1855 {
1856         log_err("fio: job '%s' (state=%d) hasn't exited in %lu seconds, it "
1857                 "appears to be stuck. Doing forceful exit of this job.\n",
1858                         td->o.name, td->runstate,
1859                         (unsigned long) time_since_now(&td->terminate_time));
1860 }
1861
1862 /*
1863  * Run over the job map and reap the threads that have exited, if any.
1864  */
1865 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1866                          uint64_t *m_rate)
1867 {
1868         struct thread_data *td;
1869         unsigned int cputhreads, realthreads, pending;
1870         int i, status, ret;
1871
1872         /*
1873          * reap exited threads (TD_EXITED -> TD_REAPED)
1874          */
1875         realthreads = pending = cputhreads = 0;
1876         for_each_td(td, i) {
1877                 int flags = 0;
1878
1879                 /*
1880                  * ->io_ops is NULL for a thread that has closed its
1881                  * io engine
1882                  */
1883                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1884                         cputhreads++;
1885                 else
1886                         realthreads++;
1887
1888                 if (!td->pid) {
1889                         pending++;
1890                         continue;
1891                 }
1892                 if (td->runstate == TD_REAPED)
1893                         continue;
1894                 if (td->o.use_thread) {
1895                         if (td->runstate == TD_EXITED) {
1896                                 td_set_runstate(td, TD_REAPED);
1897                                 goto reaped;
1898                         }
1899                         continue;
1900                 }
1901
1902                 flags = WNOHANG;
1903                 if (td->runstate == TD_EXITED)
1904                         flags = 0;
1905
1906                 /*
1907                  * check if someone quit or got killed in an unusual way
1908                  */
1909                 ret = waitpid(td->pid, &status, flags);
1910                 if (ret < 0) {
1911                         if (errno == ECHILD) {
1912                                 log_err("fio: pid=%d disappeared %d\n",
1913                                                 (int) td->pid, td->runstate);
1914                                 td->sig = ECHILD;
1915                                 td_set_runstate(td, TD_REAPED);
1916                                 goto reaped;
1917                         }
1918                         perror("waitpid");
1919                 } else if (ret == td->pid) {
1920                         if (WIFSIGNALED(status)) {
1921                                 int sig = WTERMSIG(status);
1922
1923                                 if (sig != SIGTERM && sig != SIGUSR2)
1924                                         log_err("fio: pid=%d, got signal=%d\n",
1925                                                         (int) td->pid, sig);
1926                                 td->sig = sig;
1927                                 td_set_runstate(td, TD_REAPED);
1928                                 goto reaped;
1929                         }
1930                         if (WIFEXITED(status)) {
1931                                 if (WEXITSTATUS(status) && !td->error)
1932                                         td->error = WEXITSTATUS(status);
1933
1934                                 td_set_runstate(td, TD_REAPED);
1935                                 goto reaped;
1936                         }
1937                 }
1938
1939                 /*
1940                  * If the job is stuck, do a forceful timeout of it and
1941                  * move on.
1942                  */
1943                 if (td->terminate &&
1944                     td->runstate < TD_FSYNCING &&
1945                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1946                         dump_td_info(td);
1947                         td_set_runstate(td, TD_REAPED);
1948                         goto reaped;
1949                 }
1950
1951                 /*
1952                  * thread is not dead, continue
1953                  */
1954                 pending++;
1955                 continue;
1956 reaped:
1957                 (*nr_running)--;
1958                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1959                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1960                 if (!td->pid)
1961                         pending--;
1962
1963                 if (td->error)
1964                         exit_value++;
1965
1966                 done_secs += mtime_since_now(&td->epoch) / 1000;
1967                 profile_td_exit(td);
1968         }
1969
1970         if (*nr_running == cputhreads && !pending && realthreads)
1971                 fio_terminate_threads(TERMINATE_ALL);
1972 }
1973
1974 static bool __check_trigger_file(void)
1975 {
1976         struct stat sb;
1977
1978         if (!trigger_file)
1979                 return false;
1980
1981         if (stat(trigger_file, &sb))
1982                 return false;
1983
1984         if (unlink(trigger_file) < 0)
1985                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1986                                                         strerror(errno));
1987
1988         return true;
1989 }
1990
1991 static bool trigger_timedout(void)
1992 {
1993         if (trigger_timeout)
1994                 return time_since_genesis() >= trigger_timeout;
1995
1996         return false;
1997 }
1998
1999 void exec_trigger(const char *cmd)
2000 {
2001         int ret;
2002
2003         if (!cmd)
2004                 return;
2005
2006         ret = system(cmd);
2007         if (ret == -1)
2008                 log_err("fio: failed executing %s trigger\n", cmd);
2009 }
2010
2011 void check_trigger_file(void)
2012 {
2013         if (__check_trigger_file() || trigger_timedout()) {
2014                 if (nr_clients)
2015                         fio_clients_send_trigger(trigger_remote_cmd);
2016                 else {
2017                         verify_save_state(IO_LIST_ALL);
2018                         fio_terminate_threads(TERMINATE_ALL);
2019                         exec_trigger(trigger_cmd);
2020                 }
2021         }
2022 }
2023
2024 static int fio_verify_load_state(struct thread_data *td)
2025 {
2026         int ret;
2027
2028         if (!td->o.verify_state)
2029                 return 0;
2030
2031         if (is_backend) {
2032                 void *data;
2033
2034                 ret = fio_server_get_verify_state(td->o.name,
2035                                         td->thread_number - 1, &data);
2036                 if (!ret)
2037                         verify_assign_state(td, data);
2038         } else
2039                 ret = verify_load_state(td, "local");
2040
2041         return ret;
2042 }
2043
2044 static void do_usleep(unsigned int usecs)
2045 {
2046         check_for_running_stats();
2047         check_trigger_file();
2048         usleep(usecs);
2049 }
2050
2051 static bool check_mount_writes(struct thread_data *td)
2052 {
2053         struct fio_file *f;
2054         unsigned int i;
2055
2056         if (!td_write(td) || td->o.allow_mounted_write)
2057                 return false;
2058
2059         for_each_file(td, f, i) {
2060                 if (f->filetype != FIO_TYPE_BD)
2061                         continue;
2062                 if (device_is_mounted(f->file_name))
2063                         goto mounted;
2064         }
2065
2066         return false;
2067 mounted:
2068         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
2069         return true;
2070 }
2071
2072 static bool waitee_running(struct thread_data *me)
2073 {
2074         const char *waitee = me->o.wait_for;
2075         const char *self = me->o.name;
2076         struct thread_data *td;
2077         int i;
2078
2079         if (!waitee)
2080                 return false;
2081
2082         for_each_td(td, i) {
2083                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2084                         continue;
2085
2086                 if (td->runstate < TD_EXITED) {
2087                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2088                                         self, td->o.name,
2089                                         runstate_to_name(td->runstate));
2090                         return true;
2091                 }
2092         }
2093
2094         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2095         return false;
2096 }
2097
2098 /*
2099  * Main function for kicking off and reaping jobs, as needed.
2100  */
2101 static void run_threads(struct sk_out *sk_out)
2102 {
2103         struct thread_data *td;
2104         unsigned int i, todo, nr_running, nr_started;
2105         uint64_t m_rate, t_rate;
2106         uint64_t spent;
2107
2108         if (fio_gtod_offload && fio_start_gtod_thread())
2109                 return;
2110
2111         fio_idle_prof_init();
2112
2113         set_sig_handlers();
2114
2115         nr_thread = nr_process = 0;
2116         for_each_td(td, i) {
2117                 if (check_mount_writes(td))
2118                         return;
2119                 if (td->o.use_thread)
2120                         nr_thread++;
2121                 else
2122                         nr_process++;
2123         }
2124
2125         if (output_format & FIO_OUTPUT_NORMAL) {
2126                 log_info("Starting ");
2127                 if (nr_thread)
2128                         log_info("%d thread%s", nr_thread,
2129                                                 nr_thread > 1 ? "s" : "");
2130                 if (nr_process) {
2131                         if (nr_thread)
2132                                 log_info(" and ");
2133                         log_info("%d process%s", nr_process,
2134                                                 nr_process > 1 ? "es" : "");
2135                 }
2136                 log_info("\n");
2137                 log_info_flush();
2138         }
2139
2140         todo = thread_number;
2141         nr_running = 0;
2142         nr_started = 0;
2143         m_rate = t_rate = 0;
2144
2145         for_each_td(td, i) {
2146                 print_status_init(td->thread_number - 1);
2147
2148                 if (!td->o.create_serialize)
2149                         continue;
2150
2151                 if (fio_verify_load_state(td))
2152                         goto reap;
2153
2154                 /*
2155                  * do file setup here so it happens sequentially,
2156                  * we don't want X number of threads getting their
2157                  * client data interspersed on disk
2158                  */
2159                 if (setup_files(td)) {
2160 reap:
2161                         exit_value++;
2162                         if (td->error)
2163                                 log_err("fio: pid=%d, err=%d/%s\n",
2164                                         (int) td->pid, td->error, td->verror);
2165                         td_set_runstate(td, TD_REAPED);
2166                         todo--;
2167                 } else {
2168                         struct fio_file *f;
2169                         unsigned int j;
2170
2171                         /*
2172                          * for sharing to work, each job must always open
2173                          * its own files. so close them, if we opened them
2174                          * for creation
2175                          */
2176                         for_each_file(td, f, j) {
2177                                 if (fio_file_open(f))
2178                                         td_io_close_file(td, f);
2179                         }
2180                 }
2181         }
2182
2183         /* start idle threads before io threads start to run */
2184         fio_idle_prof_start();
2185
2186         set_genesis_time();
2187
2188         while (todo) {
2189                 struct thread_data *map[REAL_MAX_JOBS];
2190                 struct timeval this_start;
2191                 int this_jobs = 0, left;
2192                 struct fork_data *fd;
2193
2194                 /*
2195                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2196                  */
2197                 for_each_td(td, i) {
2198                         if (td->runstate != TD_NOT_CREATED)
2199                                 continue;
2200
2201                         /*
2202                          * never got a chance to start, killed by other
2203                          * thread for some reason
2204                          */
2205                         if (td->terminate) {
2206                                 todo--;
2207                                 continue;
2208                         }
2209
2210                         if (td->o.start_delay) {
2211                                 spent = utime_since_genesis();
2212
2213                                 if (td->o.start_delay > spent)
2214                                         continue;
2215                         }
2216
2217                         if (td->o.stonewall && (nr_started || nr_running)) {
2218                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2219                                                         td->o.name);
2220                                 break;
2221                         }
2222
2223                         if (waitee_running(td)) {
2224                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2225                                                 td->o.name, td->o.wait_for);
2226                                 continue;
2227                         }
2228
2229                         init_disk_util(td);
2230
2231                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2232                         td->update_rusage = 0;
2233
2234                         /*
2235                          * Set state to created. Thread will transition
2236                          * to TD_INITIALIZED when it's done setting up.
2237                          */
2238                         td_set_runstate(td, TD_CREATED);
2239                         map[this_jobs++] = td;
2240                         nr_started++;
2241
2242                         fd = calloc(1, sizeof(*fd));
2243                         fd->td = td;
2244                         fd->sk_out = sk_out;
2245
2246                         if (td->o.use_thread) {
2247                                 int ret;
2248
2249                                 dprint(FD_PROCESS, "will pthread_create\n");
2250                                 ret = pthread_create(&td->thread, NULL,
2251                                                         thread_main, fd);
2252                                 if (ret) {
2253                                         log_err("pthread_create: %s\n",
2254                                                         strerror(ret));
2255                                         free(fd);
2256                                         nr_started--;
2257                                         break;
2258                                 }
2259                                 ret = pthread_detach(td->thread);
2260                                 if (ret)
2261                                         log_err("pthread_detach: %s",
2262                                                         strerror(ret));
2263                         } else {
2264                                 pid_t pid;
2265                                 dprint(FD_PROCESS, "will fork\n");
2266                                 pid = fork();
2267                                 if (!pid) {
2268                                         int ret;
2269
2270                                         ret = (int)(uintptr_t)thread_main(fd);
2271                                         _exit(ret);
2272                                 } else if (i == fio_debug_jobno)
2273                                         *fio_debug_jobp = pid;
2274                         }
2275                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2276                         if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2277                                 log_err("fio: job startup hung? exiting.\n");
2278                                 fio_terminate_threads(TERMINATE_ALL);
2279                                 fio_abort = 1;
2280                                 nr_started--;
2281                                 break;
2282                         }
2283                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2284                 }
2285
2286                 /*
2287                  * Wait for the started threads to transition to
2288                  * TD_INITIALIZED.
2289                  */
2290                 fio_gettime(&this_start, NULL);
2291                 left = this_jobs;
2292                 while (left && !fio_abort) {
2293                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2294                                 break;
2295
2296                         do_usleep(100000);
2297
2298                         for (i = 0; i < this_jobs; i++) {
2299                                 td = map[i];
2300                                 if (!td)
2301                                         continue;
2302                                 if (td->runstate == TD_INITIALIZED) {
2303                                         map[i] = NULL;
2304                                         left--;
2305                                 } else if (td->runstate >= TD_EXITED) {
2306                                         map[i] = NULL;
2307                                         left--;
2308                                         todo--;
2309                                         nr_running++; /* work-around... */
2310                                 }
2311                         }
2312                 }
2313
2314                 if (left) {
2315                         log_err("fio: %d job%s failed to start\n", left,
2316                                         left > 1 ? "s" : "");
2317                         for (i = 0; i < this_jobs; i++) {
2318                                 td = map[i];
2319                                 if (!td)
2320                                         continue;
2321                                 kill(td->pid, SIGTERM);
2322                         }
2323                         break;
2324                 }
2325
2326                 /*
2327                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2328                  */
2329                 for_each_td(td, i) {
2330                         if (td->runstate != TD_INITIALIZED)
2331                                 continue;
2332
2333                         if (in_ramp_time(td))
2334                                 td_set_runstate(td, TD_RAMP);
2335                         else
2336                                 td_set_runstate(td, TD_RUNNING);
2337                         nr_running++;
2338                         nr_started--;
2339                         m_rate += ddir_rw_sum(td->o.ratemin);
2340                         t_rate += ddir_rw_sum(td->o.rate);
2341                         todo--;
2342                         fio_mutex_up(td->mutex);
2343                 }
2344
2345                 reap_threads(&nr_running, &t_rate, &m_rate);
2346
2347                 if (todo)
2348                         do_usleep(100000);
2349         }
2350
2351         while (nr_running) {
2352                 reap_threads(&nr_running, &t_rate, &m_rate);
2353                 do_usleep(10000);
2354         }
2355
2356         fio_idle_prof_stop();
2357
2358         update_io_ticks();
2359 }
2360
2361 static void free_disk_util(void)
2362 {
2363         disk_util_prune_entries();
2364         helper_thread_destroy();
2365 }
2366
2367 int fio_backend(struct sk_out *sk_out)
2368 {
2369         struct thread_data *td;
2370         int i;
2371
2372         if (exec_profile) {
2373                 if (load_profile(exec_profile))
2374                         return 1;
2375                 free(exec_profile);
2376                 exec_profile = NULL;
2377         }
2378         if (!thread_number)
2379                 return 0;
2380
2381         if (write_bw_log) {
2382                 struct log_params p = {
2383                         .log_type = IO_LOG_TYPE_BW,
2384                 };
2385
2386                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2387                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2388                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2389         }
2390
2391         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2392         if (startup_mutex == NULL)
2393                 return 1;
2394
2395         set_genesis_time();
2396         stat_init();
2397         helper_thread_create(startup_mutex, sk_out);
2398
2399         cgroup_list = smalloc(sizeof(*cgroup_list));
2400         INIT_FLIST_HEAD(cgroup_list);
2401
2402         run_threads(sk_out);
2403
2404         helper_thread_exit();
2405
2406         if (!fio_abort) {
2407                 __show_run_stats();
2408                 if (write_bw_log) {
2409                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2410                                 struct io_log *log = agg_io_log[i];
2411
2412                                 flush_log(log, false);
2413                                 free_log(log);
2414                         }
2415                 }
2416         }
2417
2418         for_each_td(td, i) {
2419                 if (td->ss.dur) {
2420                         if (td->ss.iops_data != NULL) {
2421                                 free(td->ss.iops_data);
2422                                 free(td->ss.bw_data);
2423                         }
2424                 }
2425                 fio_options_free(td);
2426                 if (td->rusage_sem) {
2427                         fio_mutex_remove(td->rusage_sem);
2428                         td->rusage_sem = NULL;
2429                 }
2430         }
2431
2432         free_disk_util();
2433         cgroup_kill(cgroup_list);
2434         sfree(cgroup_list);
2435         sfree(cgroup_mnt);
2436
2437         fio_mutex_remove(startup_mutex);
2438         stat_exit();
2439         return exit_value;
2440 }