fio: fix some struct alignment issues
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "workqueue.h"
58 #include "lib/mountcheck.h"
59 #include "rate-submit.h"
60 #include "helper_thread.h"
61
62 static struct fio_mutex *startup_mutex;
63 static struct flist_head *cgroup_list;
64 static char *cgroup_mnt;
65 static int exit_value;
66 static volatile int fio_abort;
67 static unsigned int nr_process = 0;
68 static unsigned int nr_thread = 0;
69
70 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72 int groupid = 0;
73 unsigned int thread_number = 0;
74 unsigned int stat_number = 0;
75 int shm_id = 0;
76 int temp_stall_ts;
77 unsigned long done_secs = 0;
78
79 #define JOB_START_TIMEOUT       (5 * 1000)
80
81 static void sig_int(int sig)
82 {
83         if (threads) {
84                 if (is_backend)
85                         fio_server_got_signal(sig);
86                 else {
87                         log_info("\nfio: terminating on signal %d\n", sig);
88                         log_info_flush();
89                         exit_value = 128;
90                 }
91
92                 fio_terminate_threads(TERMINATE_ALL);
93         }
94 }
95
96 void sig_show_status(int sig)
97 {
98         show_running_run_stats();
99 }
100
101 static void set_sig_handlers(void)
102 {
103         struct sigaction act;
104
105         memset(&act, 0, sizeof(act));
106         act.sa_handler = sig_int;
107         act.sa_flags = SA_RESTART;
108         sigaction(SIGINT, &act, NULL);
109
110         memset(&act, 0, sizeof(act));
111         act.sa_handler = sig_int;
112         act.sa_flags = SA_RESTART;
113         sigaction(SIGTERM, &act, NULL);
114
115 /* Windows uses SIGBREAK as a quit signal from other applications */
116 #ifdef WIN32
117         memset(&act, 0, sizeof(act));
118         act.sa_handler = sig_int;
119         act.sa_flags = SA_RESTART;
120         sigaction(SIGBREAK, &act, NULL);
121 #endif
122
123         memset(&act, 0, sizeof(act));
124         act.sa_handler = sig_show_status;
125         act.sa_flags = SA_RESTART;
126         sigaction(SIGUSR1, &act, NULL);
127
128         if (is_backend) {
129                 memset(&act, 0, sizeof(act));
130                 act.sa_handler = sig_int;
131                 act.sa_flags = SA_RESTART;
132                 sigaction(SIGPIPE, &act, NULL);
133         }
134 }
135
136 /*
137  * Check if we are above the minimum rate given.
138  */
139 static bool __check_min_rate(struct thread_data *td, struct timeval *now,
140                              enum fio_ddir ddir)
141 {
142         unsigned long long bytes = 0;
143         unsigned long iops = 0;
144         unsigned long spent;
145         unsigned long rate;
146         unsigned int ratemin = 0;
147         unsigned int rate_iops = 0;
148         unsigned int rate_iops_min = 0;
149
150         assert(ddir_rw(ddir));
151
152         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153                 return false;
154
155         /*
156          * allow a 2 second settle period in the beginning
157          */
158         if (mtime_since(&td->start, now) < 2000)
159                 return false;
160
161         iops += td->this_io_blocks[ddir];
162         bytes += td->this_io_bytes[ddir];
163         ratemin += td->o.ratemin[ddir];
164         rate_iops += td->o.rate_iops[ddir];
165         rate_iops_min += td->o.rate_iops_min[ddir];
166
167         /*
168          * if rate blocks is set, sample is running
169          */
170         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171                 spent = mtime_since(&td->lastrate[ddir], now);
172                 if (spent < td->o.ratecycle)
173                         return false;
174
175                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176                         /*
177                          * check bandwidth specified rate
178                          */
179                         if (bytes < td->rate_bytes[ddir]) {
180                                 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181                                         td->o.name, ratemin, bytes);
182                                 return true;
183                         } else {
184                                 if (spent)
185                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186                                 else
187                                         rate = 0;
188
189                                 if (rate < ratemin ||
190                                     bytes < td->rate_bytes[ddir]) {
191                                         log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192                                                 td->o.name, ratemin, rate);
193                                         return true;
194                                 }
195                         }
196                 } else {
197                         /*
198                          * checks iops specified rate
199                          */
200                         if (iops < rate_iops) {
201                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202                                                 td->o.name, rate_iops, iops);
203                                 return true;
204                         } else {
205                                 if (spent)
206                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207                                 else
208                                         rate = 0;
209
210                                 if (rate < rate_iops_min ||
211                                     iops < td->rate_blocks[ddir]) {
212                                         log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213                                                 td->o.name, rate_iops_min, rate);
214                                         return true;
215                                 }
216                         }
217                 }
218         }
219
220         td->rate_bytes[ddir] = bytes;
221         td->rate_blocks[ddir] = iops;
222         memcpy(&td->lastrate[ddir], now, sizeof(*now));
223         return false;
224 }
225
226 static bool check_min_rate(struct thread_data *td, struct timeval *now)
227 {
228         bool ret = false;
229
230         if (td->bytes_done[DDIR_READ])
231                 ret |= __check_min_rate(td, now, DDIR_READ);
232         if (td->bytes_done[DDIR_WRITE])
233                 ret |= __check_min_rate(td, now, DDIR_WRITE);
234         if (td->bytes_done[DDIR_TRIM])
235                 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237         return ret;
238 }
239
240 /*
241  * When job exits, we can cancel the in-flight IO if we are using async
242  * io. Attempt to do so.
243  */
244 static void cleanup_pending_aio(struct thread_data *td)
245 {
246         int r;
247
248         /*
249          * get immediately available events, if any
250          */
251         r = io_u_queued_complete(td, 0);
252         if (r < 0)
253                 return;
254
255         /*
256          * now cancel remaining active events
257          */
258         if (td->io_ops->cancel) {
259                 struct io_u *io_u;
260                 int i;
261
262                 io_u_qiter(&td->io_u_all, io_u, i) {
263                         if (io_u->flags & IO_U_F_FLIGHT) {
264                                 r = td->io_ops->cancel(td, io_u);
265                                 if (!r)
266                                         put_io_u(td, io_u);
267                         }
268                 }
269         }
270
271         if (td->cur_depth)
272                 r = io_u_queued_complete(td, td->cur_depth);
273 }
274
275 /*
276  * Helper to handle the final sync of a file. Works just like the normal
277  * io path, just does everything sync.
278  */
279 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280 {
281         struct io_u *io_u = __get_io_u(td);
282         int ret;
283
284         if (!io_u)
285                 return true;
286
287         io_u->ddir = DDIR_SYNC;
288         io_u->file = f;
289
290         if (td_io_prep(td, io_u)) {
291                 put_io_u(td, io_u);
292                 return true;
293         }
294
295 requeue:
296         ret = td_io_queue(td, io_u);
297         if (ret < 0) {
298                 td_verror(td, io_u->error, "td_io_queue");
299                 put_io_u(td, io_u);
300                 return true;
301         } else if (ret == FIO_Q_QUEUED) {
302                 if (td_io_commit(td))
303                         return true;
304                 if (io_u_queued_complete(td, 1) < 0)
305                         return true;
306         } else if (ret == FIO_Q_COMPLETED) {
307                 if (io_u->error) {
308                         td_verror(td, io_u->error, "td_io_queue");
309                         return true;
310                 }
311
312                 if (io_u_sync_complete(td, io_u) < 0)
313                         return true;
314         } else if (ret == FIO_Q_BUSY) {
315                 if (td_io_commit(td))
316                         return true;
317                 goto requeue;
318         }
319
320         return false;
321 }
322
323 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324 {
325         int ret;
326
327         if (fio_file_open(f))
328                 return fio_io_sync(td, f);
329
330         if (td_io_open_file(td, f))
331                 return 1;
332
333         ret = fio_io_sync(td, f);
334         td_io_close_file(td, f);
335         return ret;
336 }
337
338 static inline void __update_tv_cache(struct thread_data *td)
339 {
340         fio_gettime(&td->tv_cache, NULL);
341 }
342
343 static inline void update_tv_cache(struct thread_data *td)
344 {
345         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
346                 __update_tv_cache(td);
347 }
348
349 static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
350 {
351         if (in_ramp_time(td))
352                 return false;
353         if (!td->o.timeout)
354                 return false;
355         if (utime_since(&td->epoch, t) >= td->o.timeout)
356                 return true;
357
358         return false;
359 }
360
361 /*
362  * We need to update the runtime consistently in ms, but keep a running
363  * tally of the current elapsed time in microseconds for sub millisecond
364  * updates.
365  */
366 static inline void update_runtime(struct thread_data *td,
367                                   unsigned long long *elapsed_us,
368                                   const enum fio_ddir ddir)
369 {
370         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371                 return;
372
373         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374         elapsed_us[ddir] += utime_since_now(&td->start);
375         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376 }
377
378 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379                                 int *retptr)
380 {
381         int ret = *retptr;
382
383         if (ret < 0 || td->error) {
384                 int err = td->error;
385                 enum error_type_bit eb;
386
387                 if (ret < 0)
388                         err = -ret;
389
390                 eb = td_error_type(ddir, err);
391                 if (!(td->o.continue_on_error & (1 << eb)))
392                         return true;
393
394                 if (td_non_fatal_error(td, eb, err)) {
395                         /*
396                          * Continue with the I/Os in case of
397                          * a non fatal error.
398                          */
399                         update_error_count(td, err);
400                         td_clear_error(td);
401                         *retptr = 0;
402                         return false;
403                 } else if (td->o.fill_device && err == ENOSPC) {
404                         /*
405                          * We expect to hit this error if
406                          * fill_device option is set.
407                          */
408                         td_clear_error(td);
409                         fio_mark_td_terminate(td);
410                         return true;
411                 } else {
412                         /*
413                          * Stop the I/O in case of a fatal
414                          * error.
415                          */
416                         update_error_count(td, err);
417                         return true;
418                 }
419         }
420
421         return false;
422 }
423
424 static void check_update_rusage(struct thread_data *td)
425 {
426         if (td->update_rusage) {
427                 td->update_rusage = 0;
428                 update_rusage_stat(td);
429                 fio_mutex_up(td->rusage_sem);
430         }
431 }
432
433 static int wait_for_completions(struct thread_data *td, struct timeval *time)
434 {
435         const int full = queue_full(td);
436         int min_evts = 0;
437         int ret;
438
439         if (td->flags & TD_F_REGROW_LOGS)
440                 return io_u_quiesce(td);
441
442         /*
443          * if the queue is full, we MUST reap at least 1 event
444          */
445         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447                 min_evts = 1;
448
449         if (time && (__should_check_rate(td, DDIR_READ) ||
450             __should_check_rate(td, DDIR_WRITE) ||
451             __should_check_rate(td, DDIR_TRIM)))
452                 fio_gettime(time, NULL);
453
454         do {
455                 ret = io_u_queued_complete(td, min_evts);
456                 if (ret < 0)
457                         break;
458         } while (full && (td->cur_depth > td->o.iodepth_low));
459
460         return ret;
461 }
462
463 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465                    struct timeval *comp_time)
466 {
467         int ret2;
468
469         switch (*ret) {
470         case FIO_Q_COMPLETED:
471                 if (io_u->error) {
472                         *ret = -io_u->error;
473                         clear_io_u(td, io_u);
474                 } else if (io_u->resid) {
475                         int bytes = io_u->xfer_buflen - io_u->resid;
476                         struct fio_file *f = io_u->file;
477
478                         if (bytes_issued)
479                                 *bytes_issued += bytes;
480
481                         if (!from_verify)
482                                 trim_io_piece(td, io_u);
483
484                         /*
485                          * zero read, fail
486                          */
487                         if (!bytes) {
488                                 if (!from_verify)
489                                         unlog_io_piece(td, io_u);
490                                 td_verror(td, EIO, "full resid");
491                                 put_io_u(td, io_u);
492                                 break;
493                         }
494
495                         io_u->xfer_buflen = io_u->resid;
496                         io_u->xfer_buf += bytes;
497                         io_u->offset += bytes;
498
499                         if (ddir_rw(io_u->ddir))
500                                 td->ts.short_io_u[io_u->ddir]++;
501
502                         f = io_u->file;
503                         if (io_u->offset == f->real_file_size)
504                                 goto sync_done;
505
506                         requeue_io_u(td, &io_u);
507                 } else {
508 sync_done:
509                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
510                             __should_check_rate(td, DDIR_WRITE) ||
511                             __should_check_rate(td, DDIR_TRIM)))
512                                 fio_gettime(comp_time, NULL);
513
514                         *ret = io_u_sync_complete(td, io_u);
515                         if (*ret < 0)
516                                 break;
517                 }
518
519                 if (td->flags & TD_F_REGROW_LOGS)
520                         regrow_logs(td);
521
522                 /*
523                  * when doing I/O (not when verifying),
524                  * check for any errors that are to be ignored
525                  */
526                 if (!from_verify)
527                         break;
528
529                 return 0;
530         case FIO_Q_QUEUED:
531                 /*
532                  * if the engine doesn't have a commit hook,
533                  * the io_u is really queued. if it does have such
534                  * a hook, it has to call io_u_queued() itself.
535                  */
536                 if (td->io_ops->commit == NULL)
537                         io_u_queued(td, io_u);
538                 if (bytes_issued)
539                         *bytes_issued += io_u->xfer_buflen;
540                 break;
541         case FIO_Q_BUSY:
542                 if (!from_verify)
543                         unlog_io_piece(td, io_u);
544                 requeue_io_u(td, &io_u);
545                 ret2 = td_io_commit(td);
546                 if (ret2 < 0)
547                         *ret = ret2;
548                 break;
549         default:
550                 assert(*ret < 0);
551                 td_verror(td, -(*ret), "td_io_queue");
552                 break;
553         }
554
555         if (break_on_this_error(td, ddir, ret))
556                 return 1;
557
558         return 0;
559 }
560
561 static inline bool io_in_polling(struct thread_data *td)
562 {
563         return !td->o.iodepth_batch_complete_min &&
564                    !td->o.iodepth_batch_complete_max;
565 }
566 /*
567  * Unlinks files from thread data fio_file structure
568  */
569 static int unlink_all_files(struct thread_data *td)
570 {
571         struct fio_file *f;
572         unsigned int i;
573         int ret = 0;
574
575         for_each_file(td, f, i) {
576                 if (f->filetype != FIO_TYPE_FILE)
577                         continue;
578                 ret = td_io_unlink_file(td, f);
579                 if (ret)
580                         break;
581         }
582
583         if (ret)
584                 td_verror(td, ret, "unlink_all_files");
585
586         return ret;
587 }
588
589 /*
590  * The main verify engine. Runs over the writes we previously submitted,
591  * reads the blocks back in, and checks the crc/md5 of the data.
592  */
593 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
594 {
595         struct fio_file *f;
596         struct io_u *io_u;
597         int ret, min_events;
598         unsigned int i;
599
600         dprint(FD_VERIFY, "starting loop\n");
601
602         /*
603          * sync io first and invalidate cache, to make sure we really
604          * read from disk.
605          */
606         for_each_file(td, f, i) {
607                 if (!fio_file_open(f))
608                         continue;
609                 if (fio_io_sync(td, f))
610                         break;
611                 if (file_invalidate_cache(td, f))
612                         break;
613         }
614
615         check_update_rusage(td);
616
617         if (td->error)
618                 return;
619
620         /*
621          * verify_state needs to be reset before verification
622          * proceeds so that expected random seeds match actual
623          * random seeds in headers. The main loop will reset
624          * all random number generators if randrepeat is set.
625          */
626         if (!td->o.rand_repeatable)
627                 td_fill_verify_state_seed(td);
628
629         td_set_runstate(td, TD_VERIFYING);
630
631         io_u = NULL;
632         while (!td->terminate) {
633                 enum fio_ddir ddir;
634                 int full;
635
636                 update_tv_cache(td);
637                 check_update_rusage(td);
638
639                 if (runtime_exceeded(td, &td->tv_cache)) {
640                         __update_tv_cache(td);
641                         if (runtime_exceeded(td, &td->tv_cache)) {
642                                 fio_mark_td_terminate(td);
643                                 break;
644                         }
645                 }
646
647                 if (flow_threshold_exceeded(td))
648                         continue;
649
650                 if (!td->o.experimental_verify) {
651                         io_u = __get_io_u(td);
652                         if (!io_u)
653                                 break;
654
655                         if (get_next_verify(td, io_u)) {
656                                 put_io_u(td, io_u);
657                                 break;
658                         }
659
660                         if (td_io_prep(td, io_u)) {
661                                 put_io_u(td, io_u);
662                                 break;
663                         }
664                 } else {
665                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
666                                 break;
667
668                         while ((io_u = get_io_u(td)) != NULL) {
669                                 if (IS_ERR_OR_NULL(io_u)) {
670                                         io_u = NULL;
671                                         ret = FIO_Q_BUSY;
672                                         goto reap;
673                                 }
674
675                                 /*
676                                  * We are only interested in the places where
677                                  * we wrote or trimmed IOs. Turn those into
678                                  * reads for verification purposes.
679                                  */
680                                 if (io_u->ddir == DDIR_READ) {
681                                         /*
682                                          * Pretend we issued it for rwmix
683                                          * accounting
684                                          */
685                                         td->io_issues[DDIR_READ]++;
686                                         put_io_u(td, io_u);
687                                         continue;
688                                 } else if (io_u->ddir == DDIR_TRIM) {
689                                         io_u->ddir = DDIR_READ;
690                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
691                                         break;
692                                 } else if (io_u->ddir == DDIR_WRITE) {
693                                         io_u->ddir = DDIR_READ;
694                                         break;
695                                 } else {
696                                         put_io_u(td, io_u);
697                                         continue;
698                                 }
699                         }
700
701                         if (!io_u)
702                                 break;
703                 }
704
705                 if (verify_state_should_stop(td, io_u)) {
706                         put_io_u(td, io_u);
707                         break;
708                 }
709
710                 if (td->o.verify_async)
711                         io_u->end_io = verify_io_u_async;
712                 else
713                         io_u->end_io = verify_io_u;
714
715                 ddir = io_u->ddir;
716                 if (!td->o.disable_slat)
717                         fio_gettime(&io_u->start_time, NULL);
718
719                 ret = td_io_queue(td, io_u);
720
721                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
722                         break;
723
724                 /*
725                  * if we can queue more, do so. but check if there are
726                  * completed io_u's first. Note that we can get BUSY even
727                  * without IO queued, if the system is resource starved.
728                  */
729 reap:
730                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
731                 if (full || io_in_polling(td))
732                         ret = wait_for_completions(td, NULL);
733
734                 if (ret < 0)
735                         break;
736         }
737
738         check_update_rusage(td);
739
740         if (!td->error) {
741                 min_events = td->cur_depth;
742
743                 if (min_events)
744                         ret = io_u_queued_complete(td, min_events);
745         } else
746                 cleanup_pending_aio(td);
747
748         td_set_runstate(td, TD_RUNNING);
749
750         dprint(FD_VERIFY, "exiting loop\n");
751 }
752
753 static bool exceeds_number_ios(struct thread_data *td)
754 {
755         unsigned long long number_ios;
756
757         if (!td->o.number_ios)
758                 return false;
759
760         number_ios = ddir_rw_sum(td->io_blocks);
761         number_ios += td->io_u_queued + td->io_u_in_flight;
762
763         return number_ios >= (td->o.number_ios * td->loops);
764 }
765
766 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
767 {
768         unsigned long long bytes, limit;
769
770         if (td_rw(td))
771                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
772         else if (td_write(td))
773                 bytes = this_bytes[DDIR_WRITE];
774         else if (td_read(td))
775                 bytes = this_bytes[DDIR_READ];
776         else
777                 bytes = this_bytes[DDIR_TRIM];
778
779         if (td->o.io_size)
780                 limit = td->o.io_size;
781         else
782                 limit = td->o.size;
783
784         limit *= td->loops;
785         return bytes >= limit || exceeds_number_ios(td);
786 }
787
788 static bool io_issue_bytes_exceeded(struct thread_data *td)
789 {
790         return io_bytes_exceeded(td, td->io_issue_bytes);
791 }
792
793 static bool io_complete_bytes_exceeded(struct thread_data *td)
794 {
795         return io_bytes_exceeded(td, td->this_io_bytes);
796 }
797
798 /*
799  * used to calculate the next io time for rate control
800  *
801  */
802 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
803 {
804         uint64_t secs, remainder, bps, bytes, iops;
805
806         assert(!(td->flags & TD_F_CHILD));
807         bytes = td->rate_io_issue_bytes[ddir];
808         bps = td->rate_bps[ddir];
809
810         if (td->o.rate_process == RATE_PROCESS_POISSON) {
811                 uint64_t val;
812                 iops = bps / td->o.bs[ddir];
813                 val = (int64_t) (1000000 / iops) *
814                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
815                 if (val) {
816                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
817                                         (unsigned long long) 1000000 / val,
818                                         ddir);
819                 }
820                 td->last_usec[ddir] += val;
821                 return td->last_usec[ddir];
822         } else if (bps) {
823                 secs = bytes / bps;
824                 remainder = bytes % bps;
825                 return remainder * 1000000 / bps + secs * 1000000;
826         }
827
828         return 0;
829 }
830
831 /*
832  * Main IO worker function. It retrieves io_u's to process and queues
833  * and reaps them, checking for rate and errors along the way.
834  *
835  * Returns number of bytes written and trimmed.
836  */
837 static void do_io(struct thread_data *td, uint64_t *bytes_done)
838 {
839         unsigned int i;
840         int ret = 0;
841         uint64_t total_bytes, bytes_issued = 0;
842
843         for (i = 0; i < DDIR_RWDIR_CNT; i++)
844                 bytes_done[i] = td->bytes_done[i];
845
846         if (in_ramp_time(td))
847                 td_set_runstate(td, TD_RAMP);
848         else
849                 td_set_runstate(td, TD_RUNNING);
850
851         lat_target_init(td);
852
853         total_bytes = td->o.size;
854         /*
855         * Allow random overwrite workloads to write up to io_size
856         * before starting verification phase as 'size' doesn't apply.
857         */
858         if (td_write(td) && td_random(td) && td->o.norandommap)
859                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
860         /*
861          * If verify_backlog is enabled, we'll run the verify in this
862          * handler as well. For that case, we may need up to twice the
863          * amount of bytes.
864          */
865         if (td->o.verify != VERIFY_NONE &&
866            (td_write(td) && td->o.verify_backlog))
867                 total_bytes += td->o.size;
868
869         /* In trimwrite mode, each byte is trimmed and then written, so
870          * allow total_bytes to be twice as big */
871         if (td_trimwrite(td))
872                 total_bytes += td->total_io_size;
873
874         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
875                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
876                 td->o.time_based) {
877                 struct timeval comp_time;
878                 struct io_u *io_u;
879                 int full;
880                 enum fio_ddir ddir;
881
882                 check_update_rusage(td);
883
884                 if (td->terminate || td->done)
885                         break;
886
887                 update_tv_cache(td);
888
889                 if (runtime_exceeded(td, &td->tv_cache)) {
890                         __update_tv_cache(td);
891                         if (runtime_exceeded(td, &td->tv_cache)) {
892                                 fio_mark_td_terminate(td);
893                                 break;
894                         }
895                 }
896
897                 if (flow_threshold_exceeded(td))
898                         continue;
899
900                 /*
901                  * Break if we exceeded the bytes. The exception is time
902                  * based runs, but we still need to break out of the loop
903                  * for those to run verification, if enabled.
904                  */
905                 if (bytes_issued >= total_bytes &&
906                     (!td->o.time_based ||
907                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
908                         break;
909
910                 io_u = get_io_u(td);
911                 if (IS_ERR_OR_NULL(io_u)) {
912                         int err = PTR_ERR(io_u);
913
914                         io_u = NULL;
915                         if (err == -EBUSY) {
916                                 ret = FIO_Q_BUSY;
917                                 goto reap;
918                         }
919                         if (td->o.latency_target)
920                                 goto reap;
921                         break;
922                 }
923
924                 ddir = io_u->ddir;
925
926                 /*
927                  * Add verification end_io handler if:
928                  *      - Asked to verify (!td_rw(td))
929                  *      - Or the io_u is from our verify list (mixed write/ver)
930                  */
931                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
932                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
933
934                         if (!td->o.verify_pattern_bytes) {
935                                 io_u->rand_seed = __rand(&td->verify_state);
936                                 if (sizeof(int) != sizeof(long *))
937                                         io_u->rand_seed *= __rand(&td->verify_state);
938                         }
939
940                         if (verify_state_should_stop(td, io_u)) {
941                                 put_io_u(td, io_u);
942                                 break;
943                         }
944
945                         if (td->o.verify_async)
946                                 io_u->end_io = verify_io_u_async;
947                         else
948                                 io_u->end_io = verify_io_u;
949                         td_set_runstate(td, TD_VERIFYING);
950                 } else if (in_ramp_time(td))
951                         td_set_runstate(td, TD_RAMP);
952                 else
953                         td_set_runstate(td, TD_RUNNING);
954
955                 /*
956                  * Always log IO before it's issued, so we know the specific
957                  * order of it. The logged unit will track when the IO has
958                  * completed.
959                  */
960                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
961                     td->o.do_verify &&
962                     td->o.verify != VERIFY_NONE &&
963                     !td->o.experimental_verify)
964                         log_io_piece(td, io_u);
965
966                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
967                         const unsigned long blen = io_u->xfer_buflen;
968                         const enum fio_ddir ddir = acct_ddir(io_u);
969
970                         if (td->error)
971                                 break;
972
973                         workqueue_enqueue(&td->io_wq, &io_u->work);
974                         ret = FIO_Q_QUEUED;
975
976                         if (ddir_rw(ddir)) {
977                                 td->io_issues[ddir]++;
978                                 td->io_issue_bytes[ddir] += blen;
979                                 td->rate_io_issue_bytes[ddir] += blen;
980                         }
981
982                         if (should_check_rate(td))
983                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
984
985                 } else {
986                         ret = td_io_queue(td, io_u);
987
988                         if (should_check_rate(td))
989                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
990
991                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
992                                 break;
993
994                         /*
995                          * See if we need to complete some commands. Note that
996                          * we can get BUSY even without IO queued, if the
997                          * system is resource starved.
998                          */
999 reap:
1000                         full = queue_full(td) ||
1001                                 (ret == FIO_Q_BUSY && td->cur_depth);
1002                         if (full || io_in_polling(td))
1003                                 ret = wait_for_completions(td, &comp_time);
1004                 }
1005                 if (ret < 0)
1006                         break;
1007                 if (!ddir_rw_sum(td->bytes_done) &&
1008                     !td_ioengine_flagged(td, FIO_NOIO))
1009                         continue;
1010
1011                 if (!in_ramp_time(td) && should_check_rate(td)) {
1012                         if (check_min_rate(td, &comp_time)) {
1013                                 if (exitall_on_terminate || td->o.exitall_error)
1014                                         fio_terminate_threads(td->groupid);
1015                                 td_verror(td, EIO, "check_min_rate");
1016                                 break;
1017                         }
1018                 }
1019                 if (!in_ramp_time(td) && td->o.latency_target)
1020                         lat_target_check(td);
1021
1022                 if (td->o.thinktime) {
1023                         unsigned long long b;
1024
1025                         b = ddir_rw_sum(td->io_blocks);
1026                         if (!(b % td->o.thinktime_blocks)) {
1027                                 int left;
1028
1029                                 io_u_quiesce(td);
1030
1031                                 if (td->o.thinktime_spin)
1032                                         usec_spin(td->o.thinktime_spin);
1033
1034                                 left = td->o.thinktime - td->o.thinktime_spin;
1035                                 if (left)
1036                                         usec_sleep(td, left);
1037                         }
1038                 }
1039         }
1040
1041         check_update_rusage(td);
1042
1043         if (td->trim_entries)
1044                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1045
1046         if (td->o.fill_device && td->error == ENOSPC) {
1047                 td->error = 0;
1048                 fio_mark_td_terminate(td);
1049         }
1050         if (!td->error) {
1051                 struct fio_file *f;
1052
1053                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1054                         workqueue_flush(&td->io_wq);
1055                         i = 0;
1056                 } else
1057                         i = td->cur_depth;
1058
1059                 if (i) {
1060                         ret = io_u_queued_complete(td, i);
1061                         if (td->o.fill_device && td->error == ENOSPC)
1062                                 td->error = 0;
1063                 }
1064
1065                 if (should_fsync(td) && td->o.end_fsync) {
1066                         td_set_runstate(td, TD_FSYNCING);
1067
1068                         for_each_file(td, f, i) {
1069                                 if (!fio_file_fsync(td, f))
1070                                         continue;
1071
1072                                 log_err("fio: end_fsync failed for file %s\n",
1073                                                                 f->file_name);
1074                         }
1075                 }
1076         } else
1077                 cleanup_pending_aio(td);
1078
1079         /*
1080          * stop job if we failed doing any IO
1081          */
1082         if (!ddir_rw_sum(td->this_io_bytes))
1083                 td->done = 1;
1084
1085         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1086                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1087 }
1088
1089 static void free_file_completion_logging(struct thread_data *td)
1090 {
1091         struct fio_file *f;
1092         unsigned int i;
1093
1094         for_each_file(td, f, i) {
1095                 if (!f->last_write_comp)
1096                         break;
1097                 sfree(f->last_write_comp);
1098         }
1099 }
1100
1101 static int init_file_completion_logging(struct thread_data *td,
1102                                         unsigned int depth)
1103 {
1104         struct fio_file *f;
1105         unsigned int i;
1106
1107         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1108                 return 0;
1109
1110         for_each_file(td, f, i) {
1111                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1112                 if (!f->last_write_comp)
1113                         goto cleanup;
1114         }
1115
1116         return 0;
1117
1118 cleanup:
1119         free_file_completion_logging(td);
1120         log_err("fio: failed to alloc write comp data\n");
1121         return 1;
1122 }
1123
1124 static void cleanup_io_u(struct thread_data *td)
1125 {
1126         struct io_u *io_u;
1127
1128         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1129
1130                 if (td->io_ops->io_u_free)
1131                         td->io_ops->io_u_free(td, io_u);
1132
1133                 fio_memfree(io_u, sizeof(*io_u));
1134         }
1135
1136         free_io_mem(td);
1137
1138         io_u_rexit(&td->io_u_requeues);
1139         io_u_qexit(&td->io_u_freelist);
1140         io_u_qexit(&td->io_u_all);
1141
1142         free_file_completion_logging(td);
1143 }
1144
1145 static int init_io_u(struct thread_data *td)
1146 {
1147         struct io_u *io_u;
1148         unsigned int max_bs, min_write;
1149         int cl_align, i, max_units;
1150         int data_xfer = 1, err;
1151         char *p;
1152
1153         max_units = td->o.iodepth;
1154         max_bs = td_max_bs(td);
1155         min_write = td->o.min_bs[DDIR_WRITE];
1156         td->orig_buffer_size = (unsigned long long) max_bs
1157                                         * (unsigned long long) max_units;
1158
1159         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1160                 data_xfer = 0;
1161
1162         err = 0;
1163         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1164         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1165         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1166
1167         if (err) {
1168                 log_err("fio: failed setting up IO queues\n");
1169                 return 1;
1170         }
1171
1172         /*
1173          * if we may later need to do address alignment, then add any
1174          * possible adjustment here so that we don't cause a buffer
1175          * overflow later. this adjustment may be too much if we get
1176          * lucky and the allocator gives us an aligned address.
1177          */
1178         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1179             td_ioengine_flagged(td, FIO_RAWIO))
1180                 td->orig_buffer_size += page_mask + td->o.mem_align;
1181
1182         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1183                 unsigned long bs;
1184
1185                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1186                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1187         }
1188
1189         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1190                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1191                 return 1;
1192         }
1193
1194         if (data_xfer && allocate_io_mem(td))
1195                 return 1;
1196
1197         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1198             td_ioengine_flagged(td, FIO_RAWIO))
1199                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1200         else
1201                 p = td->orig_buffer;
1202
1203         cl_align = os_cache_line_size();
1204
1205         for (i = 0; i < max_units; i++) {
1206                 void *ptr;
1207
1208                 if (td->terminate)
1209                         return 1;
1210
1211                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1212                 if (!ptr) {
1213                         log_err("fio: unable to allocate aligned memory\n");
1214                         break;
1215                 }
1216
1217                 io_u = ptr;
1218                 memset(io_u, 0, sizeof(*io_u));
1219                 INIT_FLIST_HEAD(&io_u->verify_list);
1220                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1221
1222                 if (data_xfer) {
1223                         io_u->buf = p;
1224                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1225
1226                         if (td_write(td))
1227                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1228                         if (td_write(td) && td->o.verify_pattern_bytes) {
1229                                 /*
1230                                  * Fill the buffer with the pattern if we are
1231                                  * going to be doing writes.
1232                                  */
1233                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1234                         }
1235                 }
1236
1237                 io_u->index = i;
1238                 io_u->flags = IO_U_F_FREE;
1239                 io_u_qpush(&td->io_u_freelist, io_u);
1240
1241                 /*
1242                  * io_u never leaves this stack, used for iteration of all
1243                  * io_u buffers.
1244                  */
1245                 io_u_qpush(&td->io_u_all, io_u);
1246
1247                 if (td->io_ops->io_u_init) {
1248                         int ret = td->io_ops->io_u_init(td, io_u);
1249
1250                         if (ret) {
1251                                 log_err("fio: failed to init engine data: %d\n", ret);
1252                                 return 1;
1253                         }
1254                 }
1255
1256                 p += max_bs;
1257         }
1258
1259         if (init_file_completion_logging(td, max_units))
1260                 return 1;
1261
1262         return 0;
1263 }
1264
1265 /*
1266  * This function is Linux specific.
1267  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1268  */
1269 static int switch_ioscheduler(struct thread_data *td)
1270 {
1271 #ifdef FIO_HAVE_IOSCHED_SWITCH
1272         char tmp[256], tmp2[128];
1273         FILE *f;
1274         int ret;
1275
1276         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1277                 return 0;
1278
1279         assert(td->files && td->files[0]);
1280         sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1281
1282         f = fopen(tmp, "r+");
1283         if (!f) {
1284                 if (errno == ENOENT) {
1285                         log_err("fio: os or kernel doesn't support IO scheduler"
1286                                 " switching\n");
1287                         return 0;
1288                 }
1289                 td_verror(td, errno, "fopen iosched");
1290                 return 1;
1291         }
1292
1293         /*
1294          * Set io scheduler.
1295          */
1296         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1297         if (ferror(f) || ret != 1) {
1298                 td_verror(td, errno, "fwrite");
1299                 fclose(f);
1300                 return 1;
1301         }
1302
1303         rewind(f);
1304
1305         /*
1306          * Read back and check that the selected scheduler is now the default.
1307          */
1308         memset(tmp, 0, sizeof(tmp));
1309         ret = fread(tmp, sizeof(tmp), 1, f);
1310         if (ferror(f) || ret < 0) {
1311                 td_verror(td, errno, "fread");
1312                 fclose(f);
1313                 return 1;
1314         }
1315         /*
1316          * either a list of io schedulers or "none\n" is expected.
1317          */
1318         tmp[strlen(tmp) - 1] = '\0';
1319
1320         /*
1321          * Write to "none" entry doesn't fail, so check the result here.
1322          */
1323         if (!strcmp(tmp, "none")) {
1324                 log_err("fio: io scheduler is not tunable\n");
1325                 fclose(f);
1326                 return 0;
1327         }
1328
1329         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1330         if (!strstr(tmp, tmp2)) {
1331                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1332                 td_verror(td, EINVAL, "iosched_switch");
1333                 fclose(f);
1334                 return 1;
1335         }
1336
1337         fclose(f);
1338         return 0;
1339 #else
1340         return 0;
1341 #endif
1342 }
1343
1344 static bool keep_running(struct thread_data *td)
1345 {
1346         unsigned long long limit;
1347
1348         if (td->done)
1349                 return false;
1350         if (td->o.time_based)
1351                 return true;
1352         if (td->o.loops) {
1353                 td->o.loops--;
1354                 return true;
1355         }
1356         if (exceeds_number_ios(td))
1357                 return false;
1358
1359         if (td->o.io_size)
1360                 limit = td->o.io_size;
1361         else
1362                 limit = td->o.size;
1363
1364         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1365                 uint64_t diff;
1366
1367                 /*
1368                  * If the difference is less than the maximum IO size, we
1369                  * are done.
1370                  */
1371                 diff = limit - ddir_rw_sum(td->io_bytes);
1372                 if (diff < td_max_bs(td))
1373                         return false;
1374
1375                 if (fio_files_done(td) && !td->o.io_size)
1376                         return false;
1377
1378                 return true;
1379         }
1380
1381         return false;
1382 }
1383
1384 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1385 {
1386         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1387         int ret;
1388         char *str;
1389
1390         str = malloc(newlen);
1391         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1392
1393         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1394         ret = system(str);
1395         if (ret == -1)
1396                 log_err("fio: exec of cmd <%s> failed\n", str);
1397
1398         free(str);
1399         return ret;
1400 }
1401
1402 /*
1403  * Dry run to compute correct state of numberio for verification.
1404  */
1405 static uint64_t do_dry_run(struct thread_data *td)
1406 {
1407         td_set_runstate(td, TD_RUNNING);
1408
1409         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1410                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1411                 struct io_u *io_u;
1412                 int ret;
1413
1414                 if (td->terminate || td->done)
1415                         break;
1416
1417                 io_u = get_io_u(td);
1418                 if (IS_ERR_OR_NULL(io_u))
1419                         break;
1420
1421                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1422                 io_u->error = 0;
1423                 io_u->resid = 0;
1424                 if (ddir_rw(acct_ddir(io_u)))
1425                         td->io_issues[acct_ddir(io_u)]++;
1426                 if (ddir_rw(io_u->ddir)) {
1427                         io_u_mark_depth(td, 1);
1428                         td->ts.total_io_u[io_u->ddir]++;
1429                 }
1430
1431                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1432                     td->o.do_verify &&
1433                     td->o.verify != VERIFY_NONE &&
1434                     !td->o.experimental_verify)
1435                         log_io_piece(td, io_u);
1436
1437                 ret = io_u_sync_complete(td, io_u);
1438                 (void) ret;
1439         }
1440
1441         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1442 }
1443
1444 struct fork_data {
1445         struct thread_data *td;
1446         struct sk_out *sk_out;
1447 };
1448
1449 /*
1450  * Entry point for the thread based jobs. The process based jobs end up
1451  * here as well, after a little setup.
1452  */
1453 static void *thread_main(void *data)
1454 {
1455         struct fork_data *fd = data;
1456         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1457         struct thread_data *td = fd->td;
1458         struct thread_options *o = &td->o;
1459         struct sk_out *sk_out = fd->sk_out;
1460         uint64_t bytes_done[DDIR_RWDIR_CNT];
1461         int deadlock_loop_cnt;
1462         int clear_state;
1463         int ret;
1464
1465         sk_out_assign(sk_out);
1466         free(fd);
1467
1468         if (!o->use_thread) {
1469                 setsid();
1470                 td->pid = getpid();
1471         } else
1472                 td->pid = gettid();
1473
1474         fio_local_clock_init(o->use_thread);
1475
1476         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1477
1478         if (is_backend)
1479                 fio_server_send_start(td);
1480
1481         INIT_FLIST_HEAD(&td->io_log_list);
1482         INIT_FLIST_HEAD(&td->io_hist_list);
1483         INIT_FLIST_HEAD(&td->verify_list);
1484         INIT_FLIST_HEAD(&td->trim_list);
1485         INIT_FLIST_HEAD(&td->next_rand_list);
1486         td->io_hist_tree = RB_ROOT;
1487
1488         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1489         if (ret) {
1490                 td_verror(td, ret, "mutex_cond_init_pshared");
1491                 goto err;
1492         }
1493         ret = cond_init_pshared(&td->verify_cond);
1494         if (ret) {
1495                 td_verror(td, ret, "mutex_cond_pshared");
1496                 goto err;
1497         }
1498
1499         td_set_runstate(td, TD_INITIALIZED);
1500         dprint(FD_MUTEX, "up startup_mutex\n");
1501         fio_mutex_up(startup_mutex);
1502         dprint(FD_MUTEX, "wait on td->mutex\n");
1503         fio_mutex_down(td->mutex);
1504         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1505
1506         /*
1507          * A new gid requires privilege, so we need to do this before setting
1508          * the uid.
1509          */
1510         if (o->gid != -1U && setgid(o->gid)) {
1511                 td_verror(td, errno, "setgid");
1512                 goto err;
1513         }
1514         if (o->uid != -1U && setuid(o->uid)) {
1515                 td_verror(td, errno, "setuid");
1516                 goto err;
1517         }
1518
1519         /*
1520          * Do this early, we don't want the compress threads to be limited
1521          * to the same CPUs as the IO workers. So do this before we set
1522          * any potential CPU affinity
1523          */
1524         if (iolog_compress_init(td, sk_out))
1525                 goto err;
1526
1527         /*
1528          * If we have a gettimeofday() thread, make sure we exclude that
1529          * thread from this job
1530          */
1531         if (o->gtod_cpu)
1532                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1533
1534         /*
1535          * Set affinity first, in case it has an impact on the memory
1536          * allocations.
1537          */
1538         if (fio_option_is_set(o, cpumask)) {
1539                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1540                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1541                         if (!ret) {
1542                                 log_err("fio: no CPUs set\n");
1543                                 log_err("fio: Try increasing number of available CPUs\n");
1544                                 td_verror(td, EINVAL, "cpus_split");
1545                                 goto err;
1546                         }
1547                 }
1548                 ret = fio_setaffinity(td->pid, o->cpumask);
1549                 if (ret == -1) {
1550                         td_verror(td, errno, "cpu_set_affinity");
1551                         goto err;
1552                 }
1553         }
1554
1555 #ifdef CONFIG_LIBNUMA
1556         /* numa node setup */
1557         if (fio_option_is_set(o, numa_cpunodes) ||
1558             fio_option_is_set(o, numa_memnodes)) {
1559                 struct bitmask *mask;
1560
1561                 if (numa_available() < 0) {
1562                         td_verror(td, errno, "Does not support NUMA API\n");
1563                         goto err;
1564                 }
1565
1566                 if (fio_option_is_set(o, numa_cpunodes)) {
1567                         mask = numa_parse_nodestring(o->numa_cpunodes);
1568                         ret = numa_run_on_node_mask(mask);
1569                         numa_free_nodemask(mask);
1570                         if (ret == -1) {
1571                                 td_verror(td, errno, \
1572                                         "numa_run_on_node_mask failed\n");
1573                                 goto err;
1574                         }
1575                 }
1576
1577                 if (fio_option_is_set(o, numa_memnodes)) {
1578                         mask = NULL;
1579                         if (o->numa_memnodes)
1580                                 mask = numa_parse_nodestring(o->numa_memnodes);
1581
1582                         switch (o->numa_mem_mode) {
1583                         case MPOL_INTERLEAVE:
1584                                 numa_set_interleave_mask(mask);
1585                                 break;
1586                         case MPOL_BIND:
1587                                 numa_set_membind(mask);
1588                                 break;
1589                         case MPOL_LOCAL:
1590                                 numa_set_localalloc();
1591                                 break;
1592                         case MPOL_PREFERRED:
1593                                 numa_set_preferred(o->numa_mem_prefer_node);
1594                                 break;
1595                         case MPOL_DEFAULT:
1596                         default:
1597                                 break;
1598                         }
1599
1600                         if (mask)
1601                                 numa_free_nodemask(mask);
1602
1603                 }
1604         }
1605 #endif
1606
1607         if (fio_pin_memory(td))
1608                 goto err;
1609
1610         /*
1611          * May alter parameters that init_io_u() will use, so we need to
1612          * do this first.
1613          */
1614         if (init_iolog(td))
1615                 goto err;
1616
1617         if (init_io_u(td))
1618                 goto err;
1619
1620         if (o->verify_async && verify_async_init(td))
1621                 goto err;
1622
1623         if (fio_option_is_set(o, ioprio) ||
1624             fio_option_is_set(o, ioprio_class)) {
1625                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1626                 if (ret == -1) {
1627                         td_verror(td, errno, "ioprio_set");
1628                         goto err;
1629                 }
1630         }
1631
1632         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1633                 goto err;
1634
1635         errno = 0;
1636         if (nice(o->nice) == -1 && errno != 0) {
1637                 td_verror(td, errno, "nice");
1638                 goto err;
1639         }
1640
1641         if (o->ioscheduler && switch_ioscheduler(td))
1642                 goto err;
1643
1644         if (!o->create_serialize && setup_files(td))
1645                 goto err;
1646
1647         if (td_io_init(td))
1648                 goto err;
1649
1650         if (init_random_map(td))
1651                 goto err;
1652
1653         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1654                 goto err;
1655
1656         if (o->pre_read) {
1657                 if (pre_read_files(td) < 0)
1658                         goto err;
1659         }
1660
1661         fio_verify_init(td);
1662
1663         if (rate_submit_init(td, sk_out))
1664                 goto err;
1665
1666         set_epoch_time(td, o->log_unix_epoch);
1667         fio_getrusage(&td->ru_start);
1668         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1669         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1670         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1671
1672         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1673                         o->ratemin[DDIR_TRIM]) {
1674                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1675                                         sizeof(td->bw_sample_time));
1676                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1677                                         sizeof(td->bw_sample_time));
1678                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1679                                         sizeof(td->bw_sample_time));
1680         }
1681
1682         memset(bytes_done, 0, sizeof(bytes_done));
1683         clear_state = 0;
1684
1685         while (keep_running(td)) {
1686                 uint64_t verify_bytes;
1687
1688                 fio_gettime(&td->start, NULL);
1689                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1690
1691                 if (clear_state) {
1692                         clear_io_state(td, 0);
1693
1694                         if (o->unlink_each_loop && unlink_all_files(td))
1695                                 break;
1696                 }
1697
1698                 prune_io_piece_log(td);
1699
1700                 if (td->o.verify_only && td_write(td))
1701                         verify_bytes = do_dry_run(td);
1702                 else {
1703                         do_io(td, bytes_done);
1704
1705                         if (!ddir_rw_sum(bytes_done)) {
1706                                 fio_mark_td_terminate(td);
1707                                 verify_bytes = 0;
1708                         } else {
1709                                 verify_bytes = bytes_done[DDIR_WRITE] +
1710                                                 bytes_done[DDIR_TRIM];
1711                         }
1712                 }
1713
1714                 /*
1715                  * If we took too long to shut down, the main thread could
1716                  * already consider us reaped/exited. If that happens, break
1717                  * out and clean up.
1718                  */
1719                 if (td->runstate >= TD_EXITED)
1720                         break;
1721
1722                 clear_state = 1;
1723
1724                 /*
1725                  * Make sure we've successfully updated the rusage stats
1726                  * before waiting on the stat mutex. Otherwise we could have
1727                  * the stat thread holding stat mutex and waiting for
1728                  * the rusage_sem, which would never get upped because
1729                  * this thread is waiting for the stat mutex.
1730                  */
1731                 deadlock_loop_cnt = 0;
1732                 do {
1733                         check_update_rusage(td);
1734                         if (!fio_mutex_down_trylock(stat_mutex))
1735                                 break;
1736                         usleep(1000);
1737                         if (deadlock_loop_cnt++ > 5000) {
1738                                 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1739                                 td->error = EDEADLK;
1740                                 goto err;
1741                         }
1742                 } while (1);
1743
1744                 if (td_read(td) && td->io_bytes[DDIR_READ])
1745                         update_runtime(td, elapsed_us, DDIR_READ);
1746                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1747                         update_runtime(td, elapsed_us, DDIR_WRITE);
1748                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1749                         update_runtime(td, elapsed_us, DDIR_TRIM);
1750                 fio_gettime(&td->start, NULL);
1751                 fio_mutex_up(stat_mutex);
1752
1753                 if (td->error || td->terminate)
1754                         break;
1755
1756                 if (!o->do_verify ||
1757                     o->verify == VERIFY_NONE ||
1758                     td_ioengine_flagged(td, FIO_UNIDIR))
1759                         continue;
1760
1761                 clear_io_state(td, 0);
1762
1763                 fio_gettime(&td->start, NULL);
1764
1765                 do_verify(td, verify_bytes);
1766
1767                 /*
1768                  * See comment further up for why this is done here.
1769                  */
1770                 check_update_rusage(td);
1771
1772                 fio_mutex_down(stat_mutex);
1773                 update_runtime(td, elapsed_us, DDIR_READ);
1774                 fio_gettime(&td->start, NULL);
1775                 fio_mutex_up(stat_mutex);
1776
1777                 if (td->error || td->terminate)
1778                         break;
1779         }
1780
1781         /*
1782          * If td ended up with no I/O when it should have had,
1783          * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1784          * (Are we not missing other flags that can be ignored ?)
1785          */
1786         if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1787             !(td_ioengine_flagged(td, FIO_NOIO) ||
1788               td_ioengine_flagged(td, FIO_DISKLESSIO)))
1789                 log_err("%s: No I/O performed by %s, "
1790                          "perhaps try --debug=io option for details?\n",
1791                          td->o.name, td->io_ops->name);
1792
1793         td_set_runstate(td, TD_FINISHING);
1794
1795         update_rusage_stat(td);
1796         td->ts.total_run_time = mtime_since_now(&td->epoch);
1797         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1798         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1799         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1800
1801         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1802             (td->o.verify != VERIFY_NONE && td_write(td)))
1803                 verify_save_state(td->thread_number);
1804
1805         fio_unpin_memory(td);
1806
1807         td_writeout_logs(td, true);
1808
1809         iolog_compress_exit(td);
1810         rate_submit_exit(td);
1811
1812         if (o->exec_postrun)
1813                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1814
1815         if (exitall_on_terminate || (o->exitall_error && td->error))
1816                 fio_terminate_threads(td->groupid);
1817
1818 err:
1819         if (td->error)
1820                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1821                                                         td->verror);
1822
1823         if (o->verify_async)
1824                 verify_async_exit(td);
1825
1826         close_and_free_files(td);
1827         cleanup_io_u(td);
1828         close_ioengine(td);
1829         cgroup_shutdown(td, &cgroup_mnt);
1830         verify_free_state(td);
1831
1832         if (td->zone_state_index) {
1833                 int i;
1834
1835                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1836                         free(td->zone_state_index[i]);
1837                 free(td->zone_state_index);
1838                 td->zone_state_index = NULL;
1839         }
1840
1841         if (fio_option_is_set(o, cpumask)) {
1842                 ret = fio_cpuset_exit(&o->cpumask);
1843                 if (ret)
1844                         td_verror(td, ret, "fio_cpuset_exit");
1845         }
1846
1847         /*
1848          * do this very late, it will log file closing as well
1849          */
1850         if (o->write_iolog_file)
1851                 write_iolog_close(td);
1852
1853         td_set_runstate(td, TD_EXITED);
1854
1855         /*
1856          * Do this last after setting our runstate to exited, so we
1857          * know that the stat thread is signaled.
1858          */
1859         check_update_rusage(td);
1860
1861         sk_out_drop();
1862         return (void *) (uintptr_t) td->error;
1863 }
1864
1865 /*
1866  * Run over the job map and reap the threads that have exited, if any.
1867  */
1868 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1869                          uint64_t *m_rate)
1870 {
1871         struct thread_data *td;
1872         unsigned int cputhreads, realthreads, pending;
1873         int i, status, ret;
1874
1875         /*
1876          * reap exited threads (TD_EXITED -> TD_REAPED)
1877          */
1878         realthreads = pending = cputhreads = 0;
1879         for_each_td(td, i) {
1880                 int flags = 0;
1881
1882                 /*
1883                  * ->io_ops is NULL for a thread that has closed its
1884                  * io engine
1885                  */
1886                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1887                         cputhreads++;
1888                 else
1889                         realthreads++;
1890
1891                 if (!td->pid) {
1892                         pending++;
1893                         continue;
1894                 }
1895                 if (td->runstate == TD_REAPED)
1896                         continue;
1897                 if (td->o.use_thread) {
1898                         if (td->runstate == TD_EXITED) {
1899                                 td_set_runstate(td, TD_REAPED);
1900                                 goto reaped;
1901                         }
1902                         continue;
1903                 }
1904
1905                 flags = WNOHANG;
1906                 if (td->runstate == TD_EXITED)
1907                         flags = 0;
1908
1909                 /*
1910                  * check if someone quit or got killed in an unusual way
1911                  */
1912                 ret = waitpid(td->pid, &status, flags);
1913                 if (ret < 0) {
1914                         if (errno == ECHILD) {
1915                                 log_err("fio: pid=%d disappeared %d\n",
1916                                                 (int) td->pid, td->runstate);
1917                                 td->sig = ECHILD;
1918                                 td_set_runstate(td, TD_REAPED);
1919                                 goto reaped;
1920                         }
1921                         perror("waitpid");
1922                 } else if (ret == td->pid) {
1923                         if (WIFSIGNALED(status)) {
1924                                 int sig = WTERMSIG(status);
1925
1926                                 if (sig != SIGTERM && sig != SIGUSR2)
1927                                         log_err("fio: pid=%d, got signal=%d\n",
1928                                                         (int) td->pid, sig);
1929                                 td->sig = sig;
1930                                 td_set_runstate(td, TD_REAPED);
1931                                 goto reaped;
1932                         }
1933                         if (WIFEXITED(status)) {
1934                                 if (WEXITSTATUS(status) && !td->error)
1935                                         td->error = WEXITSTATUS(status);
1936
1937                                 td_set_runstate(td, TD_REAPED);
1938                                 goto reaped;
1939                         }
1940                 }
1941
1942                 /*
1943                  * If the job is stuck, do a forceful timeout of it and
1944                  * move on.
1945                  */
1946                 if (td->terminate &&
1947                     td->runstate < TD_FSYNCING &&
1948                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1949                         log_err("fio: job '%s' (state=%d) hasn't exited in "
1950                                 "%lu seconds, it appears to be stuck. Doing "
1951                                 "forceful exit of this job.\n",
1952                                 td->o.name, td->runstate,
1953                                 (unsigned long) time_since_now(&td->terminate_time));
1954                         td_set_runstate(td, TD_REAPED);
1955                         goto reaped;
1956                 }
1957
1958                 /*
1959                  * thread is not dead, continue
1960                  */
1961                 pending++;
1962                 continue;
1963 reaped:
1964                 (*nr_running)--;
1965                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1966                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1967                 if (!td->pid)
1968                         pending--;
1969
1970                 if (td->error)
1971                         exit_value++;
1972
1973                 done_secs += mtime_since_now(&td->epoch) / 1000;
1974                 profile_td_exit(td);
1975         }
1976
1977         if (*nr_running == cputhreads && !pending && realthreads)
1978                 fio_terminate_threads(TERMINATE_ALL);
1979 }
1980
1981 static bool __check_trigger_file(void)
1982 {
1983         struct stat sb;
1984
1985         if (!trigger_file)
1986                 return false;
1987
1988         if (stat(trigger_file, &sb))
1989                 return false;
1990
1991         if (unlink(trigger_file) < 0)
1992                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1993                                                         strerror(errno));
1994
1995         return true;
1996 }
1997
1998 static bool trigger_timedout(void)
1999 {
2000         if (trigger_timeout)
2001                 return time_since_genesis() >= trigger_timeout;
2002
2003         return false;
2004 }
2005
2006 void exec_trigger(const char *cmd)
2007 {
2008         int ret;
2009
2010         if (!cmd)
2011                 return;
2012
2013         ret = system(cmd);
2014         if (ret == -1)
2015                 log_err("fio: failed executing %s trigger\n", cmd);
2016 }
2017
2018 void check_trigger_file(void)
2019 {
2020         if (__check_trigger_file() || trigger_timedout()) {
2021                 if (nr_clients)
2022                         fio_clients_send_trigger(trigger_remote_cmd);
2023                 else {
2024                         verify_save_state(IO_LIST_ALL);
2025                         fio_terminate_threads(TERMINATE_ALL);
2026                         exec_trigger(trigger_cmd);
2027                 }
2028         }
2029 }
2030
2031 static int fio_verify_load_state(struct thread_data *td)
2032 {
2033         int ret;
2034
2035         if (!td->o.verify_state)
2036                 return 0;
2037
2038         if (is_backend) {
2039                 void *data;
2040
2041                 ret = fio_server_get_verify_state(td->o.name,
2042                                         td->thread_number - 1, &data);
2043                 if (!ret)
2044                         verify_assign_state(td, data);
2045         } else
2046                 ret = verify_load_state(td, "local");
2047
2048         return ret;
2049 }
2050
2051 static void do_usleep(unsigned int usecs)
2052 {
2053         check_for_running_stats();
2054         check_trigger_file();
2055         usleep(usecs);
2056 }
2057
2058 static bool check_mount_writes(struct thread_data *td)
2059 {
2060         struct fio_file *f;
2061         unsigned int i;
2062
2063         if (!td_write(td) || td->o.allow_mounted_write)
2064                 return false;
2065
2066         /*
2067          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2068          * are mkfs'd and mounted.
2069          */
2070         for_each_file(td, f, i) {
2071 #ifdef FIO_HAVE_CHARDEV_SIZE
2072                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2073 #else
2074                 if (f->filetype != FIO_TYPE_BLOCK)
2075 #endif
2076                         continue;
2077                 if (device_is_mounted(f->file_name))
2078                         goto mounted;
2079         }
2080
2081         return false;
2082 mounted:
2083         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2084         return true;
2085 }
2086
2087 static bool waitee_running(struct thread_data *me)
2088 {
2089         const char *waitee = me->o.wait_for;
2090         const char *self = me->o.name;
2091         struct thread_data *td;
2092         int i;
2093
2094         if (!waitee)
2095                 return false;
2096
2097         for_each_td(td, i) {
2098                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2099                         continue;
2100
2101                 if (td->runstate < TD_EXITED) {
2102                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2103                                         self, td->o.name,
2104                                         runstate_to_name(td->runstate));
2105                         return true;
2106                 }
2107         }
2108
2109         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2110         return false;
2111 }
2112
2113 /*
2114  * Main function for kicking off and reaping jobs, as needed.
2115  */
2116 static void run_threads(struct sk_out *sk_out)
2117 {
2118         struct thread_data *td;
2119         unsigned int i, todo, nr_running, nr_started;
2120         uint64_t m_rate, t_rate;
2121         uint64_t spent;
2122
2123         if (fio_gtod_offload && fio_start_gtod_thread())
2124                 return;
2125
2126         fio_idle_prof_init();
2127
2128         set_sig_handlers();
2129
2130         nr_thread = nr_process = 0;
2131         for_each_td(td, i) {
2132                 if (check_mount_writes(td))
2133                         return;
2134                 if (td->o.use_thread)
2135                         nr_thread++;
2136                 else
2137                         nr_process++;
2138         }
2139
2140         if (output_format & FIO_OUTPUT_NORMAL) {
2141                 log_info("Starting ");
2142                 if (nr_thread)
2143                         log_info("%d thread%s", nr_thread,
2144                                                 nr_thread > 1 ? "s" : "");
2145                 if (nr_process) {
2146                         if (nr_thread)
2147                                 log_info(" and ");
2148                         log_info("%d process%s", nr_process,
2149                                                 nr_process > 1 ? "es" : "");
2150                 }
2151                 log_info("\n");
2152                 log_info_flush();
2153         }
2154
2155         todo = thread_number;
2156         nr_running = 0;
2157         nr_started = 0;
2158         m_rate = t_rate = 0;
2159
2160         for_each_td(td, i) {
2161                 print_status_init(td->thread_number - 1);
2162
2163                 if (!td->o.create_serialize)
2164                         continue;
2165
2166                 if (fio_verify_load_state(td))
2167                         goto reap;
2168
2169                 /*
2170                  * do file setup here so it happens sequentially,
2171                  * we don't want X number of threads getting their
2172                  * client data interspersed on disk
2173                  */
2174                 if (setup_files(td)) {
2175 reap:
2176                         exit_value++;
2177                         if (td->error)
2178                                 log_err("fio: pid=%d, err=%d/%s\n",
2179                                         (int) td->pid, td->error, td->verror);
2180                         td_set_runstate(td, TD_REAPED);
2181                         todo--;
2182                 } else {
2183                         struct fio_file *f;
2184                         unsigned int j;
2185
2186                         /*
2187                          * for sharing to work, each job must always open
2188                          * its own files. so close them, if we opened them
2189                          * for creation
2190                          */
2191                         for_each_file(td, f, j) {
2192                                 if (fio_file_open(f))
2193                                         td_io_close_file(td, f);
2194                         }
2195                 }
2196         }
2197
2198         /* start idle threads before io threads start to run */
2199         fio_idle_prof_start();
2200
2201         set_genesis_time();
2202
2203         while (todo) {
2204                 struct thread_data *map[REAL_MAX_JOBS];
2205                 struct timeval this_start;
2206                 int this_jobs = 0, left;
2207                 struct fork_data *fd;
2208
2209                 /*
2210                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2211                  */
2212                 for_each_td(td, i) {
2213                         if (td->runstate != TD_NOT_CREATED)
2214                                 continue;
2215
2216                         /*
2217                          * never got a chance to start, killed by other
2218                          * thread for some reason
2219                          */
2220                         if (td->terminate) {
2221                                 todo--;
2222                                 continue;
2223                         }
2224
2225                         if (td->o.start_delay) {
2226                                 spent = utime_since_genesis();
2227
2228                                 if (td->o.start_delay > spent)
2229                                         continue;
2230                         }
2231
2232                         if (td->o.stonewall && (nr_started || nr_running)) {
2233                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2234                                                         td->o.name);
2235                                 break;
2236                         }
2237
2238                         if (waitee_running(td)) {
2239                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2240                                                 td->o.name, td->o.wait_for);
2241                                 continue;
2242                         }
2243
2244                         init_disk_util(td);
2245
2246                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2247                         td->update_rusage = 0;
2248
2249                         /*
2250                          * Set state to created. Thread will transition
2251                          * to TD_INITIALIZED when it's done setting up.
2252                          */
2253                         td_set_runstate(td, TD_CREATED);
2254                         map[this_jobs++] = td;
2255                         nr_started++;
2256
2257                         fd = calloc(1, sizeof(*fd));
2258                         fd->td = td;
2259                         fd->sk_out = sk_out;
2260
2261                         if (td->o.use_thread) {
2262                                 int ret;
2263
2264                                 dprint(FD_PROCESS, "will pthread_create\n");
2265                                 ret = pthread_create(&td->thread, NULL,
2266                                                         thread_main, fd);
2267                                 if (ret) {
2268                                         log_err("pthread_create: %s\n",
2269                                                         strerror(ret));
2270                                         free(fd);
2271                                         nr_started--;
2272                                         break;
2273                                 }
2274                                 ret = pthread_detach(td->thread);
2275                                 if (ret)
2276                                         log_err("pthread_detach: %s",
2277                                                         strerror(ret));
2278                         } else {
2279                                 pid_t pid;
2280                                 dprint(FD_PROCESS, "will fork\n");
2281                                 pid = fork();
2282                                 if (!pid) {
2283                                         int ret;
2284
2285                                         ret = (int)(uintptr_t)thread_main(fd);
2286                                         _exit(ret);
2287                                 } else if (i == fio_debug_jobno)
2288                                         *fio_debug_jobp = pid;
2289                         }
2290                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2291                         if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2292                                 log_err("fio: job startup hung? exiting.\n");
2293                                 fio_terminate_threads(TERMINATE_ALL);
2294                                 fio_abort = 1;
2295                                 nr_started--;
2296                                 break;
2297                         }
2298                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2299                 }
2300
2301                 /*
2302                  * Wait for the started threads to transition to
2303                  * TD_INITIALIZED.
2304                  */
2305                 fio_gettime(&this_start, NULL);
2306                 left = this_jobs;
2307                 while (left && !fio_abort) {
2308                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2309                                 break;
2310
2311                         do_usleep(100000);
2312
2313                         for (i = 0; i < this_jobs; i++) {
2314                                 td = map[i];
2315                                 if (!td)
2316                                         continue;
2317                                 if (td->runstate == TD_INITIALIZED) {
2318                                         map[i] = NULL;
2319                                         left--;
2320                                 } else if (td->runstate >= TD_EXITED) {
2321                                         map[i] = NULL;
2322                                         left--;
2323                                         todo--;
2324                                         nr_running++; /* work-around... */
2325                                 }
2326                         }
2327                 }
2328
2329                 if (left) {
2330                         log_err("fio: %d job%s failed to start\n", left,
2331                                         left > 1 ? "s" : "");
2332                         for (i = 0; i < this_jobs; i++) {
2333                                 td = map[i];
2334                                 if (!td)
2335                                         continue;
2336                                 kill(td->pid, SIGTERM);
2337                         }
2338                         break;
2339                 }
2340
2341                 /*
2342                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2343                  */
2344                 for_each_td(td, i) {
2345                         if (td->runstate != TD_INITIALIZED)
2346                                 continue;
2347
2348                         if (in_ramp_time(td))
2349                                 td_set_runstate(td, TD_RAMP);
2350                         else
2351                                 td_set_runstate(td, TD_RUNNING);
2352                         nr_running++;
2353                         nr_started--;
2354                         m_rate += ddir_rw_sum(td->o.ratemin);
2355                         t_rate += ddir_rw_sum(td->o.rate);
2356                         todo--;
2357                         fio_mutex_up(td->mutex);
2358                 }
2359
2360                 reap_threads(&nr_running, &t_rate, &m_rate);
2361
2362                 if (todo)
2363                         do_usleep(100000);
2364         }
2365
2366         while (nr_running) {
2367                 reap_threads(&nr_running, &t_rate, &m_rate);
2368                 do_usleep(10000);
2369         }
2370
2371         fio_idle_prof_stop();
2372
2373         update_io_ticks();
2374 }
2375
2376 static void free_disk_util(void)
2377 {
2378         disk_util_prune_entries();
2379         helper_thread_destroy();
2380 }
2381
2382 int fio_backend(struct sk_out *sk_out)
2383 {
2384         struct thread_data *td;
2385         int i;
2386
2387         if (exec_profile) {
2388                 if (load_profile(exec_profile))
2389                         return 1;
2390                 free(exec_profile);
2391                 exec_profile = NULL;
2392         }
2393         if (!thread_number)
2394                 return 0;
2395
2396         if (write_bw_log) {
2397                 struct log_params p = {
2398                         .log_type = IO_LOG_TYPE_BW,
2399                 };
2400
2401                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2402                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2403                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2404         }
2405
2406         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2407         if (startup_mutex == NULL)
2408                 return 1;
2409
2410         set_genesis_time();
2411         stat_init();
2412         helper_thread_create(startup_mutex, sk_out);
2413
2414         cgroup_list = smalloc(sizeof(*cgroup_list));
2415         INIT_FLIST_HEAD(cgroup_list);
2416
2417         run_threads(sk_out);
2418
2419         helper_thread_exit();
2420
2421         if (!fio_abort) {
2422                 __show_run_stats();
2423                 if (write_bw_log) {
2424                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2425                                 struct io_log *log = agg_io_log[i];
2426
2427                                 flush_log(log, false);
2428                                 free_log(log);
2429                         }
2430                 }
2431         }
2432
2433         for_each_td(td, i) {
2434                 if (td->ss.dur) {
2435                         if (td->ss.iops_data != NULL) {
2436                                 free(td->ss.iops_data);
2437                                 free(td->ss.bw_data);
2438                         }
2439                 }
2440                 fio_options_free(td);
2441                 if (td->rusage_sem) {
2442                         fio_mutex_remove(td->rusage_sem);
2443                         td->rusage_sem = NULL;
2444                 }
2445                 fio_mutex_remove(td->mutex);
2446                 td->mutex = NULL;
2447         }
2448
2449         free_disk_util();
2450         cgroup_kill(cgroup_list);
2451         sfree(cgroup_list);
2452         sfree(cgroup_mnt);
2453
2454         fio_mutex_remove(startup_mutex);
2455         stat_exit();
2456         return exit_value;
2457 }