Ensure that stat outputs are serialized
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38
39 #include "fio.h"
40 #ifndef FIO_NO_HAVE_SHM_H
41 #include <sys/shm.h>
42 #endif
43 #include "hash.h"
44 #include "smalloc.h"
45 #include "verify.h"
46 #include "trim.h"
47 #include "diskutil.h"
48 #include "cgroup.h"
49 #include "profile.h"
50 #include "lib/rand.h"
51 #include "memalign.h"
52 #include "server.h"
53 #include "lib/getrusage.h"
54 #include "idletime.h"
55
56 static pthread_t disk_util_thread;
57 static struct fio_mutex *disk_thread_mutex;
58 static struct fio_mutex *startup_mutex;
59 static struct fio_mutex *writeout_mutex;
60 static struct flist_head *cgroup_list;
61 static char *cgroup_mnt;
62 static int exit_value;
63 static volatile int fio_abort;
64 static unsigned int nr_process = 0;
65 static unsigned int nr_thread = 0;
66
67 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69 int groupid = 0;
70 unsigned int thread_number = 0;
71 unsigned int stat_number = 0;
72 int shm_id = 0;
73 int temp_stall_ts;
74 unsigned long done_secs = 0;
75 volatile int disk_util_exit = 0;
76
77 #define PAGE_ALIGN(buf) \
78         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80 #define JOB_START_TIMEOUT       (5 * 1000)
81
82 static void sig_int(int sig)
83 {
84         if (threads) {
85                 if (is_backend)
86                         fio_server_got_signal(sig);
87                 else {
88                         log_info("\nfio: terminating on signal %d\n", sig);
89                         fflush(stdout);
90                         exit_value = 128;
91                 }
92
93                 fio_terminate_threads(TERMINATE_ALL);
94         }
95 }
96
97 static void sig_show_status(int sig)
98 {
99         show_running_run_stats();
100 }
101
102 static void set_sig_handlers(void)
103 {
104         struct sigaction act;
105
106         memset(&act, 0, sizeof(act));
107         act.sa_handler = sig_int;
108         act.sa_flags = SA_RESTART;
109         sigaction(SIGINT, &act, NULL);
110
111         memset(&act, 0, sizeof(act));
112         act.sa_handler = sig_int;
113         act.sa_flags = SA_RESTART;
114         sigaction(SIGTERM, &act, NULL);
115
116 /* Windows uses SIGBREAK as a quit signal from other applications */
117 #ifdef WIN32
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_int;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGBREAK, &act, NULL);
122 #endif
123
124         memset(&act, 0, sizeof(act));
125         act.sa_handler = sig_show_status;
126         act.sa_flags = SA_RESTART;
127         sigaction(SIGUSR1, &act, NULL);
128
129         if (is_backend) {
130                 memset(&act, 0, sizeof(act));
131                 act.sa_handler = sig_int;
132                 act.sa_flags = SA_RESTART;
133                 sigaction(SIGPIPE, &act, NULL);
134         }
135 }
136
137 /*
138  * Check if we are above the minimum rate given.
139  */
140 static int __check_min_rate(struct thread_data *td, struct timeval *now,
141                             enum fio_ddir ddir)
142 {
143         unsigned long long bytes = 0;
144         unsigned long iops = 0;
145         unsigned long spent;
146         unsigned long rate;
147         unsigned int ratemin = 0;
148         unsigned int rate_iops = 0;
149         unsigned int rate_iops_min = 0;
150
151         assert(ddir_rw(ddir));
152
153         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154                 return 0;
155
156         /*
157          * allow a 2 second settle period in the beginning
158          */
159         if (mtime_since(&td->start, now) < 2000)
160                 return 0;
161
162         iops += td->this_io_blocks[ddir];
163         bytes += td->this_io_bytes[ddir];
164         ratemin += td->o.ratemin[ddir];
165         rate_iops += td->o.rate_iops[ddir];
166         rate_iops_min += td->o.rate_iops_min[ddir];
167
168         /*
169          * if rate blocks is set, sample is running
170          */
171         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172                 spent = mtime_since(&td->lastrate[ddir], now);
173                 if (spent < td->o.ratecycle)
174                         return 0;
175
176                 if (td->o.rate[ddir]) {
177                         /*
178                          * check bandwidth specified rate
179                          */
180                         if (bytes < td->rate_bytes[ddir]) {
181                                 log_err("%s: min rate %u not met\n", td->o.name,
182                                                                 ratemin);
183                                 return 1;
184                         } else {
185                                 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186                                 if (rate < ratemin ||
187                                     bytes < td->rate_bytes[ddir]) {
188                                         log_err("%s: min rate %u not met, got"
189                                                 " %luKB/sec\n", td->o.name,
190                                                         ratemin, rate);
191                                         return 1;
192                                 }
193                         }
194                 } else {
195                         /*
196                          * checks iops specified rate
197                          */
198                         if (iops < rate_iops) {
199                                 log_err("%s: min iops rate %u not met\n",
200                                                 td->o.name, rate_iops);
201                                 return 1;
202                         } else {
203                                 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204                                 if (rate < rate_iops_min ||
205                                     iops < td->rate_blocks[ddir]) {
206                                         log_err("%s: min iops rate %u not met,"
207                                                 " got %lu\n", td->o.name,
208                                                         rate_iops_min, rate);
209                                 }
210                         }
211                 }
212         }
213
214         td->rate_bytes[ddir] = bytes;
215         td->rate_blocks[ddir] = iops;
216         memcpy(&td->lastrate[ddir], now, sizeof(*now));
217         return 0;
218 }
219
220 static int check_min_rate(struct thread_data *td, struct timeval *now,
221                           uint64_t *bytes_done)
222 {
223         int ret = 0;
224
225         if (bytes_done[DDIR_READ])
226                 ret |= __check_min_rate(td, now, DDIR_READ);
227         if (bytes_done[DDIR_WRITE])
228                 ret |= __check_min_rate(td, now, DDIR_WRITE);
229         if (bytes_done[DDIR_TRIM])
230                 ret |= __check_min_rate(td, now, DDIR_TRIM);
231
232         return ret;
233 }
234
235 /*
236  * When job exits, we can cancel the in-flight IO if we are using async
237  * io. Attempt to do so.
238  */
239 static void cleanup_pending_aio(struct thread_data *td)
240 {
241         struct flist_head *entry, *n;
242         struct io_u *io_u;
243         int r;
244
245         /*
246          * get immediately available events, if any
247          */
248         r = io_u_queued_complete(td, 0, NULL);
249         if (r < 0)
250                 return;
251
252         /*
253          * now cancel remaining active events
254          */
255         if (td->io_ops->cancel) {
256                 flist_for_each_safe(entry, n, &td->io_u_busylist) {
257                         io_u = flist_entry(entry, struct io_u, list);
258
259                         /*
260                          * if the io_u isn't in flight, then that generally
261                          * means someone leaked an io_u. complain but fix
262                          * it up, so we don't stall here.
263                          */
264                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
265                                 log_err("fio: non-busy IO on busy list\n");
266                                 put_io_u(td, io_u);
267                         } else {
268                                 r = td->io_ops->cancel(td, io_u);
269                                 if (!r)
270                                         put_io_u(td, io_u);
271                         }
272                 }
273         }
274
275         if (td->cur_depth)
276                 r = io_u_queued_complete(td, td->cur_depth, NULL);
277 }
278
279 /*
280  * Helper to handle the final sync of a file. Works just like the normal
281  * io path, just does everything sync.
282  */
283 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
284 {
285         struct io_u *io_u = __get_io_u(td);
286         int ret;
287
288         if (!io_u)
289                 return 1;
290
291         io_u->ddir = DDIR_SYNC;
292         io_u->file = f;
293
294         if (td_io_prep(td, io_u)) {
295                 put_io_u(td, io_u);
296                 return 1;
297         }
298
299 requeue:
300         ret = td_io_queue(td, io_u);
301         if (ret < 0) {
302                 td_verror(td, io_u->error, "td_io_queue");
303                 put_io_u(td, io_u);
304                 return 1;
305         } else if (ret == FIO_Q_QUEUED) {
306                 if (io_u_queued_complete(td, 1, NULL) < 0)
307                         return 1;
308         } else if (ret == FIO_Q_COMPLETED) {
309                 if (io_u->error) {
310                         td_verror(td, io_u->error, "td_io_queue");
311                         return 1;
312                 }
313
314                 if (io_u_sync_complete(td, io_u, NULL) < 0)
315                         return 1;
316         } else if (ret == FIO_Q_BUSY) {
317                 if (td_io_commit(td))
318                         return 1;
319                 goto requeue;
320         }
321
322         return 0;
323 }
324
325 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
326 {
327         int ret;
328
329         if (fio_file_open(f))
330                 return fio_io_sync(td, f);
331
332         if (td_io_open_file(td, f))
333                 return 1;
334
335         ret = fio_io_sync(td, f);
336         td_io_close_file(td, f);
337         return ret;
338 }
339
340 static inline void __update_tv_cache(struct thread_data *td)
341 {
342         fio_gettime(&td->tv_cache, NULL);
343 }
344
345 static inline void update_tv_cache(struct thread_data *td)
346 {
347         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
348                 __update_tv_cache(td);
349 }
350
351 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
352 {
353         if (in_ramp_time(td))
354                 return 0;
355         if (!td->o.timeout)
356                 return 0;
357         if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
358                 return 1;
359
360         return 0;
361 }
362
363 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
364                                int *retptr)
365 {
366         int ret = *retptr;
367
368         if (ret < 0 || td->error) {
369                 int err = td->error;
370                 enum error_type_bit eb;
371
372                 if (ret < 0)
373                         err = -ret;
374
375                 eb = td_error_type(ddir, err);
376                 if (!(td->o.continue_on_error & (1 << eb)))
377                         return 1;
378
379                 if (td_non_fatal_error(td, eb, err)) {
380                         /*
381                          * Continue with the I/Os in case of
382                          * a non fatal error.
383                          */
384                         update_error_count(td, err);
385                         td_clear_error(td);
386                         *retptr = 0;
387                         return 0;
388                 } else if (td->o.fill_device && err == ENOSPC) {
389                         /*
390                          * We expect to hit this error if
391                          * fill_device option is set.
392                          */
393                         td_clear_error(td);
394                         td->terminate = 1;
395                         return 1;
396                 } else {
397                         /*
398                          * Stop the I/O in case of a fatal
399                          * error.
400                          */
401                         update_error_count(td, err);
402                         return 1;
403                 }
404         }
405
406         return 0;
407 }
408
409 static void check_update_rusage(struct thread_data *td)
410 {
411         if (td->update_rusage) {
412                 td->update_rusage = 0;
413                 update_rusage_stat(td);
414                 fio_mutex_up(td->rusage_sem);
415         }
416 }
417
418 /*
419  * The main verify engine. Runs over the writes we previously submitted,
420  * reads the blocks back in, and checks the crc/md5 of the data.
421  */
422 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
423 {
424         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
425         struct fio_file *f;
426         struct io_u *io_u;
427         int ret, min_events;
428         unsigned int i;
429
430         dprint(FD_VERIFY, "starting loop\n");
431
432         /*
433          * sync io first and invalidate cache, to make sure we really
434          * read from disk.
435          */
436         for_each_file(td, f, i) {
437                 if (!fio_file_open(f))
438                         continue;
439                 if (fio_io_sync(td, f))
440                         break;
441                 if (file_invalidate_cache(td, f))
442                         break;
443         }
444
445         check_update_rusage(td);
446
447         if (td->error)
448                 return;
449
450         td_set_runstate(td, TD_VERIFYING);
451
452         io_u = NULL;
453         while (!td->terminate) {
454                 enum fio_ddir ddir;
455                 int ret2, full;
456
457                 update_tv_cache(td);
458                 check_update_rusage(td);
459
460                 if (runtime_exceeded(td, &td->tv_cache)) {
461                         __update_tv_cache(td);
462                         if (runtime_exceeded(td, &td->tv_cache)) {
463                                 td->terminate = 1;
464                                 break;
465                         }
466                 }
467
468                 if (flow_threshold_exceeded(td))
469                         continue;
470
471                 if (!td->o.experimental_verify) {
472                         io_u = __get_io_u(td);
473                         if (!io_u)
474                                 break;
475
476                         if (get_next_verify(td, io_u)) {
477                                 put_io_u(td, io_u);
478                                 break;
479                         }
480
481                         if (td_io_prep(td, io_u)) {
482                                 put_io_u(td, io_u);
483                                 break;
484                         }
485                 } else {
486                         if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
487                                 break;
488
489                         while ((io_u = get_io_u(td)) != NULL) {
490                                 /*
491                                  * We are only interested in the places where
492                                  * we wrote or trimmed IOs. Turn those into
493                                  * reads for verification purposes.
494                                  */
495                                 if (io_u->ddir == DDIR_READ) {
496                                         /*
497                                          * Pretend we issued it for rwmix
498                                          * accounting
499                                          */
500                                         td->io_issues[DDIR_READ]++;
501                                         put_io_u(td, io_u);
502                                         continue;
503                                 } else if (io_u->ddir == DDIR_TRIM) {
504                                         io_u->ddir = DDIR_READ;
505                                         io_u->flags |= IO_U_F_TRIMMED;
506                                         break;
507                                 } else if (io_u->ddir == DDIR_WRITE) {
508                                         io_u->ddir = DDIR_READ;
509                                         break;
510                                 } else {
511                                         put_io_u(td, io_u);
512                                         continue;
513                                 }
514                         }
515
516                         if (!io_u)
517                                 break;
518                 }
519
520                 if (td->o.verify_async)
521                         io_u->end_io = verify_io_u_async;
522                 else
523                         io_u->end_io = verify_io_u;
524
525                 ddir = io_u->ddir;
526
527                 ret = td_io_queue(td, io_u);
528                 switch (ret) {
529                 case FIO_Q_COMPLETED:
530                         if (io_u->error) {
531                                 ret = -io_u->error;
532                                 clear_io_u(td, io_u);
533                         } else if (io_u->resid) {
534                                 int bytes = io_u->xfer_buflen - io_u->resid;
535
536                                 /*
537                                  * zero read, fail
538                                  */
539                                 if (!bytes) {
540                                         td_verror(td, EIO, "full resid");
541                                         put_io_u(td, io_u);
542                                         break;
543                                 }
544
545                                 io_u->xfer_buflen = io_u->resid;
546                                 io_u->xfer_buf += bytes;
547                                 io_u->offset += bytes;
548
549                                 if (ddir_rw(io_u->ddir))
550                                         td->ts.short_io_u[io_u->ddir]++;
551
552                                 f = io_u->file;
553                                 if (io_u->offset == f->real_file_size)
554                                         goto sync_done;
555
556                                 requeue_io_u(td, &io_u);
557                         } else {
558 sync_done:
559                                 ret = io_u_sync_complete(td, io_u, bytes_done);
560                                 if (ret < 0)
561                                         break;
562                         }
563                         continue;
564                 case FIO_Q_QUEUED:
565                         break;
566                 case FIO_Q_BUSY:
567                         requeue_io_u(td, &io_u);
568                         ret2 = td_io_commit(td);
569                         if (ret2 < 0)
570                                 ret = ret2;
571                         break;
572                 default:
573                         assert(ret < 0);
574                         td_verror(td, -ret, "td_io_queue");
575                         break;
576                 }
577
578                 if (break_on_this_error(td, ddir, &ret))
579                         break;
580
581                 /*
582                  * if we can queue more, do so. but check if there are
583                  * completed io_u's first. Note that we can get BUSY even
584                  * without IO queued, if the system is resource starved.
585                  */
586                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
587                 if (full || !td->o.iodepth_batch_complete) {
588                         min_events = min(td->o.iodepth_batch_complete,
589                                          td->cur_depth);
590                         /*
591                          * if the queue is full, we MUST reap at least 1 event
592                          */
593                         if (full && !min_events)
594                                 min_events = 1;
595
596                         do {
597                                 /*
598                                  * Reap required number of io units, if any,
599                                  * and do the verification on them through
600                                  * the callback handler
601                                  */
602                                 if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
603                                         ret = -1;
604                                         break;
605                                 }
606                         } while (full && (td->cur_depth > td->o.iodepth_low));
607                 }
608                 if (ret < 0)
609                         break;
610         }
611
612         check_update_rusage(td);
613
614         if (!td->error) {
615                 min_events = td->cur_depth;
616
617                 if (min_events)
618                         ret = io_u_queued_complete(td, min_events, NULL);
619         } else
620                 cleanup_pending_aio(td);
621
622         td_set_runstate(td, TD_RUNNING);
623
624         dprint(FD_VERIFY, "exiting loop\n");
625 }
626
627 static int io_bytes_exceeded(struct thread_data *td)
628 {
629         unsigned long long bytes;
630
631         if (td_rw(td))
632                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
633         else if (td_write(td))
634                 bytes = td->this_io_bytes[DDIR_WRITE];
635         else if (td_read(td))
636                 bytes = td->this_io_bytes[DDIR_READ];
637         else
638                 bytes = td->this_io_bytes[DDIR_TRIM];
639
640         return bytes >= td->o.size;
641 }
642
643 /*
644  * Main IO worker function. It retrieves io_u's to process and queues
645  * and reaps them, checking for rate and errors along the way.
646  *
647  * Returns number of bytes written and trimmed.
648  */
649 static uint64_t do_io(struct thread_data *td)
650 {
651         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
652         unsigned int i;
653         int ret = 0;
654
655         if (in_ramp_time(td))
656                 td_set_runstate(td, TD_RAMP);
657         else
658                 td_set_runstate(td, TD_RUNNING);
659
660         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
661                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
662                 td->o.time_based) {
663                 struct timeval comp_time;
664                 int min_evts = 0;
665                 struct io_u *io_u;
666                 int ret2, full;
667                 enum fio_ddir ddir;
668
669                 check_update_rusage(td);
670
671                 if (td->terminate || td->done)
672                         break;
673
674                 update_tv_cache(td);
675
676                 if (runtime_exceeded(td, &td->tv_cache)) {
677                         __update_tv_cache(td);
678                         if (runtime_exceeded(td, &td->tv_cache)) {
679                                 td->terminate = 1;
680                                 break;
681                         }
682                 }
683
684                 if (flow_threshold_exceeded(td))
685                         continue;
686
687                 io_u = get_io_u(td);
688                 if (!io_u)
689                         break;
690
691                 ddir = io_u->ddir;
692
693                 /*
694                  * Add verification end_io handler if:
695                  *      - Asked to verify (!td_rw(td))
696                  *      - Or the io_u is from our verify list (mixed write/ver)
697                  */
698                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
699                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
700                         if (td->o.verify_async)
701                                 io_u->end_io = verify_io_u_async;
702                         else
703                                 io_u->end_io = verify_io_u;
704                         td_set_runstate(td, TD_VERIFYING);
705                 } else if (in_ramp_time(td))
706                         td_set_runstate(td, TD_RAMP);
707                 else
708                         td_set_runstate(td, TD_RUNNING);
709
710                 ret = td_io_queue(td, io_u);
711                 switch (ret) {
712                 case FIO_Q_COMPLETED:
713                         if (io_u->error) {
714                                 ret = -io_u->error;
715                                 clear_io_u(td, io_u);
716                         } else if (io_u->resid) {
717                                 int bytes = io_u->xfer_buflen - io_u->resid;
718                                 struct fio_file *f = io_u->file;
719
720                                 /*
721                                  * zero read, fail
722                                  */
723                                 if (!bytes) {
724                                         td_verror(td, EIO, "full resid");
725                                         put_io_u(td, io_u);
726                                         break;
727                                 }
728
729                                 io_u->xfer_buflen = io_u->resid;
730                                 io_u->xfer_buf += bytes;
731                                 io_u->offset += bytes;
732
733                                 if (ddir_rw(io_u->ddir))
734                                         td->ts.short_io_u[io_u->ddir]++;
735
736                                 if (io_u->offset == f->real_file_size)
737                                         goto sync_done;
738
739                                 requeue_io_u(td, &io_u);
740                         } else {
741 sync_done:
742                                 if (__should_check_rate(td, DDIR_READ) ||
743                                     __should_check_rate(td, DDIR_WRITE) ||
744                                     __should_check_rate(td, DDIR_TRIM))
745                                         fio_gettime(&comp_time, NULL);
746
747                                 ret = io_u_sync_complete(td, io_u, bytes_done);
748                                 if (ret < 0)
749                                         break;
750                         }
751                         break;
752                 case FIO_Q_QUEUED:
753                         /*
754                          * if the engine doesn't have a commit hook,
755                          * the io_u is really queued. if it does have such
756                          * a hook, it has to call io_u_queued() itself.
757                          */
758                         if (td->io_ops->commit == NULL)
759                                 io_u_queued(td, io_u);
760                         break;
761                 case FIO_Q_BUSY:
762                         requeue_io_u(td, &io_u);
763                         ret2 = td_io_commit(td);
764                         if (ret2 < 0)
765                                 ret = ret2;
766                         break;
767                 default:
768                         assert(ret < 0);
769                         put_io_u(td, io_u);
770                         break;
771                 }
772
773                 if (break_on_this_error(td, ddir, &ret))
774                         break;
775
776                 /*
777                  * See if we need to complete some commands. Note that we
778                  * can get BUSY even without IO queued, if the system is
779                  * resource starved.
780                  */
781                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
782                 if (full || !td->o.iodepth_batch_complete) {
783                         min_evts = min(td->o.iodepth_batch_complete,
784                                         td->cur_depth);
785                         /*
786                          * if the queue is full, we MUST reap at least 1 event
787                          */
788                         if (full && !min_evts)
789                                 min_evts = 1;
790
791                         if (__should_check_rate(td, DDIR_READ) ||
792                             __should_check_rate(td, DDIR_WRITE) ||
793                             __should_check_rate(td, DDIR_TRIM))
794                                 fio_gettime(&comp_time, NULL);
795
796                         do {
797                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
798                                 if (ret < 0)
799                                         break;
800
801                         } while (full && (td->cur_depth > td->o.iodepth_low));
802                 }
803
804                 if (ret < 0)
805                         break;
806                 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
807                         continue;
808
809                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
810                         if (check_min_rate(td, &comp_time, bytes_done)) {
811                                 if (exitall_on_terminate)
812                                         fio_terminate_threads(td->groupid);
813                                 td_verror(td, EIO, "check_min_rate");
814                                 break;
815                         }
816                 }
817
818                 if (td->o.thinktime) {
819                         unsigned long long b;
820
821                         b = ddir_rw_sum(td->io_blocks);
822                         if (!(b % td->o.thinktime_blocks)) {
823                                 int left;
824
825                                 if (td->o.thinktime_spin)
826                                         usec_spin(td->o.thinktime_spin);
827
828                                 left = td->o.thinktime - td->o.thinktime_spin;
829                                 if (left)
830                                         usec_sleep(td, left);
831                         }
832                 }
833         }
834
835         check_update_rusage(td);
836
837         if (td->trim_entries)
838                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
839
840         if (td->o.fill_device && td->error == ENOSPC) {
841                 td->error = 0;
842                 td->terminate = 1;
843         }
844         if (!td->error) {
845                 struct fio_file *f;
846
847                 i = td->cur_depth;
848                 if (i) {
849                         ret = io_u_queued_complete(td, i, bytes_done);
850                         if (td->o.fill_device && td->error == ENOSPC)
851                                 td->error = 0;
852                 }
853
854                 if (should_fsync(td) && td->o.end_fsync) {
855                         td_set_runstate(td, TD_FSYNCING);
856
857                         for_each_file(td, f, i) {
858                                 if (!fio_file_fsync(td, f))
859                                         continue;
860
861                                 log_err("fio: end_fsync failed for file %s\n",
862                                                                 f->file_name);
863                         }
864                 }
865         } else
866                 cleanup_pending_aio(td);
867
868         /*
869          * stop job if we failed doing any IO
870          */
871         if (!ddir_rw_sum(td->this_io_bytes))
872                 td->done = 1;
873
874         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
875 }
876
877 static void cleanup_io_u(struct thread_data *td)
878 {
879         struct flist_head *entry, *n;
880         struct io_u *io_u;
881
882         flist_for_each_safe(entry, n, &td->io_u_freelist) {
883                 io_u = flist_entry(entry, struct io_u, list);
884
885                 flist_del(&io_u->list);
886
887                 if (td->io_ops->io_u_free)
888                         td->io_ops->io_u_free(td, io_u);
889
890                 fio_memfree(io_u, sizeof(*io_u));
891         }
892
893         free_io_mem(td);
894 }
895
896 static int init_io_u(struct thread_data *td)
897 {
898         struct io_u *io_u;
899         unsigned int max_bs, min_write;
900         int cl_align, i, max_units;
901         int data_xfer = 1;
902         char *p;
903
904         max_units = td->o.iodepth;
905         max_bs = td_max_bs(td);
906         min_write = td->o.min_bs[DDIR_WRITE];
907         td->orig_buffer_size = (unsigned long long) max_bs
908                                         * (unsigned long long) max_units;
909
910         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
911                 data_xfer = 0;
912
913         /*
914          * if we may later need to do address alignment, then add any
915          * possible adjustment here so that we don't cause a buffer
916          * overflow later. this adjustment may be too much if we get
917          * lucky and the allocator gives us an aligned address.
918          */
919         if (td->o.odirect || td->o.mem_align || (td->io_ops->flags & FIO_RAWIO))
920                 td->orig_buffer_size += page_mask + td->o.mem_align;
921
922         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
923                 unsigned long bs;
924
925                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
926                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
927         }
928
929         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
930                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
931                 return 1;
932         }
933
934         if (data_xfer && allocate_io_mem(td))
935                 return 1;
936
937         if (td->o.odirect || td->o.mem_align ||
938             (td->io_ops->flags & FIO_RAWIO))
939                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
940         else
941                 p = td->orig_buffer;
942
943         cl_align = os_cache_line_size();
944
945         for (i = 0; i < max_units; i++) {
946                 void *ptr;
947
948                 if (td->terminate)
949                         return 1;
950
951                 ptr = fio_memalign(cl_align, sizeof(*io_u));
952                 if (!ptr) {
953                         log_err("fio: unable to allocate aligned memory\n");
954                         break;
955                 }
956
957                 io_u = ptr;
958                 memset(io_u, 0, sizeof(*io_u));
959                 INIT_FLIST_HEAD(&io_u->list);
960                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
961
962                 if (data_xfer) {
963                         io_u->buf = p;
964                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
965
966                         if (td_write(td))
967                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
968                         if (td_write(td) && td->o.verify_pattern_bytes) {
969                                 /*
970                                  * Fill the buffer with the pattern if we are
971                                  * going to be doing writes.
972                                  */
973                                 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
974                         }
975                 }
976
977                 io_u->index = i;
978                 io_u->flags = IO_U_F_FREE;
979                 flist_add(&io_u->list, &td->io_u_freelist);
980
981                 if (td->io_ops->io_u_init) {
982                         int ret = td->io_ops->io_u_init(td, io_u);
983
984                         if (ret) {
985                                 log_err("fio: failed to init engine data: %d\n", ret);
986                                 return 1;
987                         }
988                 }
989
990                 p += max_bs;
991         }
992
993         return 0;
994 }
995
996 static int switch_ioscheduler(struct thread_data *td)
997 {
998         char tmp[256], tmp2[128];
999         FILE *f;
1000         int ret;
1001
1002         if (td->io_ops->flags & FIO_DISKLESSIO)
1003                 return 0;
1004
1005         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1006
1007         f = fopen(tmp, "r+");
1008         if (!f) {
1009                 if (errno == ENOENT) {
1010                         log_err("fio: os or kernel doesn't support IO scheduler"
1011                                 " switching\n");
1012                         return 0;
1013                 }
1014                 td_verror(td, errno, "fopen iosched");
1015                 return 1;
1016         }
1017
1018         /*
1019          * Set io scheduler.
1020          */
1021         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1022         if (ferror(f) || ret != 1) {
1023                 td_verror(td, errno, "fwrite");
1024                 fclose(f);
1025                 return 1;
1026         }
1027
1028         rewind(f);
1029
1030         /*
1031          * Read back and check that the selected scheduler is now the default.
1032          */
1033         ret = fread(tmp, 1, sizeof(tmp), f);
1034         if (ferror(f) || ret < 0) {
1035                 td_verror(td, errno, "fread");
1036                 fclose(f);
1037                 return 1;
1038         }
1039
1040         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1041         if (!strstr(tmp, tmp2)) {
1042                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1043                 td_verror(td, EINVAL, "iosched_switch");
1044                 fclose(f);
1045                 return 1;
1046         }
1047
1048         fclose(f);
1049         return 0;
1050 }
1051
1052 static int keep_running(struct thread_data *td)
1053 {
1054         if (td->done)
1055                 return 0;
1056         if (td->o.time_based)
1057                 return 1;
1058         if (td->o.loops) {
1059                 td->o.loops--;
1060                 return 1;
1061         }
1062
1063         if (td->o.size != -1ULL && ddir_rw_sum(td->io_bytes) < td->o.size) {
1064                 uint64_t diff;
1065
1066                 /*
1067                  * If the difference is less than the minimum IO size, we
1068                  * are done.
1069                  */
1070                 diff = td->o.size - ddir_rw_sum(td->io_bytes);
1071                 if (diff < td_max_bs(td))
1072                         return 0;
1073
1074                 return 1;
1075         }
1076
1077         return 0;
1078 }
1079
1080 static int exec_string(const char *string)
1081 {
1082         int ret, newlen = strlen(string) + 1 + 8;
1083         char *str;
1084
1085         str = malloc(newlen);
1086         sprintf(str, "sh -c %s", string);
1087
1088         ret = system(str);
1089         if (ret == -1)
1090                 log_err("fio: exec of cmd <%s> failed\n", str);
1091
1092         free(str);
1093         return ret;
1094 }
1095
1096 /*
1097  * Entry point for the thread based jobs. The process based jobs end up
1098  * here as well, after a little setup.
1099  */
1100 static void *thread_main(void *data)
1101 {
1102         unsigned long long elapsed;
1103         struct thread_data *td = data;
1104         struct thread_options *o = &td->o;
1105         pthread_condattr_t attr;
1106         int clear_state;
1107         int ret;
1108
1109         if (!o->use_thread) {
1110                 setsid();
1111                 td->pid = getpid();
1112         } else
1113                 td->pid = gettid();
1114
1115         fio_local_clock_init(o->use_thread);
1116
1117         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1118
1119         if (is_backend)
1120                 fio_server_send_start(td);
1121
1122         INIT_FLIST_HEAD(&td->io_u_freelist);
1123         INIT_FLIST_HEAD(&td->io_u_busylist);
1124         INIT_FLIST_HEAD(&td->io_u_requeues);
1125         INIT_FLIST_HEAD(&td->io_log_list);
1126         INIT_FLIST_HEAD(&td->io_hist_list);
1127         INIT_FLIST_HEAD(&td->verify_list);
1128         INIT_FLIST_HEAD(&td->trim_list);
1129         INIT_FLIST_HEAD(&td->next_rand_list);
1130         pthread_mutex_init(&td->io_u_lock, NULL);
1131         td->io_hist_tree = RB_ROOT;
1132
1133         pthread_condattr_init(&attr);
1134         pthread_cond_init(&td->verify_cond, &attr);
1135         pthread_cond_init(&td->free_cond, &attr);
1136
1137         td_set_runstate(td, TD_INITIALIZED);
1138         dprint(FD_MUTEX, "up startup_mutex\n");
1139         fio_mutex_up(startup_mutex);
1140         dprint(FD_MUTEX, "wait on td->mutex\n");
1141         fio_mutex_down(td->mutex);
1142         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1143
1144         /*
1145          * the ->mutex mutex is now no longer used, close it to avoid
1146          * eating a file descriptor
1147          */
1148         fio_mutex_remove(td->mutex);
1149         td->mutex = NULL;
1150
1151         /*
1152          * A new gid requires privilege, so we need to do this before setting
1153          * the uid.
1154          */
1155         if (o->gid != -1U && setgid(o->gid)) {
1156                 td_verror(td, errno, "setgid");
1157                 goto err;
1158         }
1159         if (o->uid != -1U && setuid(o->uid)) {
1160                 td_verror(td, errno, "setuid");
1161                 goto err;
1162         }
1163
1164         /*
1165          * If we have a gettimeofday() thread, make sure we exclude that
1166          * thread from this job
1167          */
1168         if (o->gtod_cpu)
1169                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1170
1171         /*
1172          * Set affinity first, in case it has an impact on the memory
1173          * allocations.
1174          */
1175         if (o->cpumask_set) {
1176                 ret = fio_setaffinity(td->pid, o->cpumask);
1177                 if (ret == -1) {
1178                         td_verror(td, errno, "cpu_set_affinity");
1179                         goto err;
1180                 }
1181         }
1182
1183 #ifdef CONFIG_LIBNUMA
1184         /* numa node setup */
1185         if (o->numa_cpumask_set || o->numa_memmask_set) {
1186                 int ret;
1187
1188                 if (numa_available() < 0) {
1189                         td_verror(td, errno, "Does not support NUMA API\n");
1190                         goto err;
1191                 }
1192
1193                 if (o->numa_cpumask_set) {
1194                         ret = numa_run_on_node_mask(o->numa_cpunodesmask);
1195                         if (ret == -1) {
1196                                 td_verror(td, errno, \
1197                                         "numa_run_on_node_mask failed\n");
1198                                 goto err;
1199                         }
1200                 }
1201
1202                 if (o->numa_memmask_set) {
1203
1204                         switch (o->numa_mem_mode) {
1205                         case MPOL_INTERLEAVE:
1206                                 numa_set_interleave_mask(o->numa_memnodesmask);
1207                                 break;
1208                         case MPOL_BIND:
1209                                 numa_set_membind(o->numa_memnodesmask);
1210                                 break;
1211                         case MPOL_LOCAL:
1212                                 numa_set_localalloc();
1213                                 break;
1214                         case MPOL_PREFERRED:
1215                                 numa_set_preferred(o->numa_mem_prefer_node);
1216                                 break;
1217                         case MPOL_DEFAULT:
1218                         default:
1219                                 break;
1220                         }
1221
1222                 }
1223         }
1224 #endif
1225
1226         if (fio_pin_memory(td))
1227                 goto err;
1228
1229         /*
1230          * May alter parameters that init_io_u() will use, so we need to
1231          * do this first.
1232          */
1233         if (init_iolog(td))
1234                 goto err;
1235
1236         if (init_io_u(td))
1237                 goto err;
1238
1239         if (o->verify_async && verify_async_init(td))
1240                 goto err;
1241
1242         if (o->ioprio) {
1243                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1244                 if (ret == -1) {
1245                         td_verror(td, errno, "ioprio_set");
1246                         goto err;
1247                 }
1248         }
1249
1250         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1251                 goto err;
1252
1253         errno = 0;
1254         if (nice(o->nice) == -1 && errno != 0) {
1255                 td_verror(td, errno, "nice");
1256                 goto err;
1257         }
1258
1259         if (o->ioscheduler && switch_ioscheduler(td))
1260                 goto err;
1261
1262         if (!o->create_serialize && setup_files(td))
1263                 goto err;
1264
1265         if (td_io_init(td))
1266                 goto err;
1267
1268         if (init_random_map(td))
1269                 goto err;
1270
1271         if (o->exec_prerun && exec_string(o->exec_prerun))
1272                 goto err;
1273
1274         if (o->pre_read) {
1275                 if (pre_read_files(td) < 0)
1276                         goto err;
1277         }
1278
1279         fio_verify_init(td);
1280
1281         fio_gettime(&td->epoch, NULL);
1282         fio_getrusage(&td->ru_start);
1283         clear_state = 0;
1284         while (keep_running(td)) {
1285                 uint64_t verify_bytes;
1286
1287                 fio_gettime(&td->start, NULL);
1288                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1289                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1290                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1291
1292                 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1293                                 o->ratemin[DDIR_TRIM]) {
1294                         memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1295                                                 sizeof(td->bw_sample_time));
1296                         memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1297                                                 sizeof(td->bw_sample_time));
1298                         memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1299                                                 sizeof(td->bw_sample_time));
1300                 }
1301
1302                 if (clear_state)
1303                         clear_io_state(td);
1304
1305                 prune_io_piece_log(td);
1306
1307                 verify_bytes = do_io(td);
1308
1309                 clear_state = 1;
1310
1311                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1312                         elapsed = utime_since_now(&td->start);
1313                         td->ts.runtime[DDIR_READ] += elapsed;
1314                 }
1315                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1316                         elapsed = utime_since_now(&td->start);
1317                         td->ts.runtime[DDIR_WRITE] += elapsed;
1318                 }
1319                 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1320                         elapsed = utime_since_now(&td->start);
1321                         td->ts.runtime[DDIR_TRIM] += elapsed;
1322                 }
1323
1324                 if (td->error || td->terminate)
1325                         break;
1326
1327                 if (!o->do_verify ||
1328                     o->verify == VERIFY_NONE ||
1329                     (td->io_ops->flags & FIO_UNIDIR))
1330                         continue;
1331
1332                 clear_io_state(td);
1333
1334                 fio_gettime(&td->start, NULL);
1335
1336                 do_verify(td, verify_bytes);
1337
1338                 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1339
1340                 if (td->error || td->terminate)
1341                         break;
1342         }
1343
1344         update_rusage_stat(td);
1345         td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1346         td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1347         td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1348         td->ts.total_run_time = mtime_since_now(&td->epoch);
1349         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1350         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1351         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1352
1353         fio_unpin_memory(td);
1354
1355         fio_mutex_down(writeout_mutex);
1356         if (td->bw_log) {
1357                 if (o->bw_log_file) {
1358                         finish_log_named(td, td->bw_log,
1359                                                 o->bw_log_file, "bw");
1360                 } else
1361                         finish_log(td, td->bw_log, "bw");
1362         }
1363         if (td->lat_log) {
1364                 if (o->lat_log_file) {
1365                         finish_log_named(td, td->lat_log,
1366                                                 o->lat_log_file, "lat");
1367                 } else
1368                         finish_log(td, td->lat_log, "lat");
1369         }
1370         if (td->slat_log) {
1371                 if (o->lat_log_file) {
1372                         finish_log_named(td, td->slat_log,
1373                                                 o->lat_log_file, "slat");
1374                 } else
1375                         finish_log(td, td->slat_log, "slat");
1376         }
1377         if (td->clat_log) {
1378                 if (o->lat_log_file) {
1379                         finish_log_named(td, td->clat_log,
1380                                                 o->lat_log_file, "clat");
1381                 } else
1382                         finish_log(td, td->clat_log, "clat");
1383         }
1384         if (td->iops_log) {
1385                 if (o->iops_log_file) {
1386                         finish_log_named(td, td->iops_log,
1387                                                 o->iops_log_file, "iops");
1388                 } else
1389                         finish_log(td, td->iops_log, "iops");
1390         }
1391
1392         fio_mutex_up(writeout_mutex);
1393         if (o->exec_postrun)
1394                 exec_string(o->exec_postrun);
1395
1396         if (exitall_on_terminate)
1397                 fio_terminate_threads(td->groupid);
1398
1399 err:
1400         if (td->error)
1401                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1402                                                         td->verror);
1403
1404         if (o->verify_async)
1405                 verify_async_exit(td);
1406
1407         close_and_free_files(td);
1408         cleanup_io_u(td);
1409         close_ioengine(td);
1410         cgroup_shutdown(td, &cgroup_mnt);
1411
1412         if (o->cpumask_set) {
1413                 int ret = fio_cpuset_exit(&o->cpumask);
1414
1415                 td_verror(td, ret, "fio_cpuset_exit");
1416         }
1417
1418         /*
1419          * do this very late, it will log file closing as well
1420          */
1421         if (o->write_iolog_file)
1422                 write_iolog_close(td);
1423
1424         fio_mutex_remove(td->rusage_sem);
1425         td->rusage_sem = NULL;
1426
1427         td_set_runstate(td, TD_EXITED);
1428         return (void *) (uintptr_t) td->error;
1429 }
1430
1431
1432 /*
1433  * We cannot pass the td data into a forked process, so attach the td and
1434  * pass it to the thread worker.
1435  */
1436 static int fork_main(int shmid, int offset)
1437 {
1438         struct thread_data *td;
1439         void *data, *ret;
1440
1441 #ifndef __hpux
1442         data = shmat(shmid, NULL, 0);
1443         if (data == (void *) -1) {
1444                 int __err = errno;
1445
1446                 perror("shmat");
1447                 return __err;
1448         }
1449 #else
1450         /*
1451          * HP-UX inherits shm mappings?
1452          */
1453         data = threads;
1454 #endif
1455
1456         td = data + offset * sizeof(struct thread_data);
1457         ret = thread_main(td);
1458         shmdt(data);
1459         return (int) (uintptr_t) ret;
1460 }
1461
1462 /*
1463  * Run over the job map and reap the threads that have exited, if any.
1464  */
1465 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1466                          unsigned int *m_rate)
1467 {
1468         struct thread_data *td;
1469         unsigned int cputhreads, realthreads, pending;
1470         int i, status, ret;
1471
1472         /*
1473          * reap exited threads (TD_EXITED -> TD_REAPED)
1474          */
1475         realthreads = pending = cputhreads = 0;
1476         for_each_td(td, i) {
1477                 int flags = 0;
1478
1479                 /*
1480                  * ->io_ops is NULL for a thread that has closed its
1481                  * io engine
1482                  */
1483                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1484                         cputhreads++;
1485                 else
1486                         realthreads++;
1487
1488                 if (!td->pid) {
1489                         pending++;
1490                         continue;
1491                 }
1492                 if (td->runstate == TD_REAPED)
1493                         continue;
1494                 if (td->o.use_thread) {
1495                         if (td->runstate == TD_EXITED) {
1496                                 td_set_runstate(td, TD_REAPED);
1497                                 goto reaped;
1498                         }
1499                         continue;
1500                 }
1501
1502                 flags = WNOHANG;
1503                 if (td->runstate == TD_EXITED)
1504                         flags = 0;
1505
1506                 /*
1507                  * check if someone quit or got killed in an unusual way
1508                  */
1509                 ret = waitpid(td->pid, &status, flags);
1510                 if (ret < 0) {
1511                         if (errno == ECHILD) {
1512                                 log_err("fio: pid=%d disappeared %d\n",
1513                                                 (int) td->pid, td->runstate);
1514                                 td->sig = ECHILD;
1515                                 td_set_runstate(td, TD_REAPED);
1516                                 goto reaped;
1517                         }
1518                         perror("waitpid");
1519                 } else if (ret == td->pid) {
1520                         if (WIFSIGNALED(status)) {
1521                                 int sig = WTERMSIG(status);
1522
1523                                 if (sig != SIGTERM && sig != SIGUSR2)
1524                                         log_err("fio: pid=%d, got signal=%d\n",
1525                                                         (int) td->pid, sig);
1526                                 td->sig = sig;
1527                                 td_set_runstate(td, TD_REAPED);
1528                                 goto reaped;
1529                         }
1530                         if (WIFEXITED(status)) {
1531                                 if (WEXITSTATUS(status) && !td->error)
1532                                         td->error = WEXITSTATUS(status);
1533
1534                                 td_set_runstate(td, TD_REAPED);
1535                                 goto reaped;
1536                         }
1537                 }
1538
1539                 /*
1540                  * thread is not dead, continue
1541                  */
1542                 pending++;
1543                 continue;
1544 reaped:
1545                 (*nr_running)--;
1546                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1547                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1548                 if (!td->pid)
1549                         pending--;
1550
1551                 if (td->error)
1552                         exit_value++;
1553
1554                 done_secs += mtime_since_now(&td->epoch) / 1000;
1555         }
1556
1557         if (*nr_running == cputhreads && !pending && realthreads)
1558                 fio_terminate_threads(TERMINATE_ALL);
1559 }
1560
1561 static void do_usleep(unsigned int usecs)
1562 {
1563         check_for_running_stats();
1564         usleep(usecs);
1565 }
1566
1567 /*
1568  * Main function for kicking off and reaping jobs, as needed.
1569  */
1570 static void run_threads(void)
1571 {
1572         struct thread_data *td;
1573         unsigned long spent;
1574         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1575
1576         if (fio_gtod_offload && fio_start_gtod_thread())
1577                 return;
1578         
1579         fio_idle_prof_init();
1580
1581         set_sig_handlers();
1582
1583         nr_thread = nr_process = 0;
1584         for_each_td(td, i) {
1585                 if (td->o.use_thread)
1586                         nr_thread++;
1587                 else
1588                         nr_process++;
1589         }
1590
1591         if (output_format == FIO_OUTPUT_NORMAL) {
1592                 log_info("Starting ");
1593                 if (nr_thread)
1594                         log_info("%d thread%s", nr_thread,
1595                                                 nr_thread > 1 ? "s" : "");
1596                 if (nr_process) {
1597                         if (nr_thread)
1598                                 log_info(" and ");
1599                         log_info("%d process%s", nr_process,
1600                                                 nr_process > 1 ? "es" : "");
1601                 }
1602                 log_info("\n");
1603                 fflush(stdout);
1604         }
1605
1606         todo = thread_number;
1607         nr_running = 0;
1608         nr_started = 0;
1609         m_rate = t_rate = 0;
1610
1611         for_each_td(td, i) {
1612                 print_status_init(td->thread_number - 1);
1613
1614                 if (!td->o.create_serialize)
1615                         continue;
1616
1617                 /*
1618                  * do file setup here so it happens sequentially,
1619                  * we don't want X number of threads getting their
1620                  * client data interspersed on disk
1621                  */
1622                 if (setup_files(td)) {
1623                         exit_value++;
1624                         if (td->error)
1625                                 log_err("fio: pid=%d, err=%d/%s\n",
1626                                         (int) td->pid, td->error, td->verror);
1627                         td_set_runstate(td, TD_REAPED);
1628                         todo--;
1629                 } else {
1630                         struct fio_file *f;
1631                         unsigned int j;
1632
1633                         /*
1634                          * for sharing to work, each job must always open
1635                          * its own files. so close them, if we opened them
1636                          * for creation
1637                          */
1638                         for_each_file(td, f, j) {
1639                                 if (fio_file_open(f))
1640                                         td_io_close_file(td, f);
1641                         }
1642                 }
1643         }
1644
1645         /* start idle threads before io threads start to run */
1646         fio_idle_prof_start();
1647
1648         set_genesis_time();
1649
1650         while (todo) {
1651                 struct thread_data *map[REAL_MAX_JOBS];
1652                 struct timeval this_start;
1653                 int this_jobs = 0, left;
1654
1655                 /*
1656                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1657                  */
1658                 for_each_td(td, i) {
1659                         if (td->runstate != TD_NOT_CREATED)
1660                                 continue;
1661
1662                         /*
1663                          * never got a chance to start, killed by other
1664                          * thread for some reason
1665                          */
1666                         if (td->terminate) {
1667                                 todo--;
1668                                 continue;
1669                         }
1670
1671                         if (td->o.start_delay) {
1672                                 spent = mtime_since_genesis();
1673
1674                                 if (td->o.start_delay * 1000 > spent)
1675                                         continue;
1676                         }
1677
1678                         if (td->o.stonewall && (nr_started || nr_running)) {
1679                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1680                                                         td->o.name);
1681                                 break;
1682                         }
1683
1684                         init_disk_util(td);
1685
1686                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1687                         td->update_rusage = 0;
1688
1689                         /*
1690                          * Set state to created. Thread will transition
1691                          * to TD_INITIALIZED when it's done setting up.
1692                          */
1693                         td_set_runstate(td, TD_CREATED);
1694                         map[this_jobs++] = td;
1695                         nr_started++;
1696
1697                         if (td->o.use_thread) {
1698                                 int ret;
1699
1700                                 dprint(FD_PROCESS, "will pthread_create\n");
1701                                 ret = pthread_create(&td->thread, NULL,
1702                                                         thread_main, td);
1703                                 if (ret) {
1704                                         log_err("pthread_create: %s\n",
1705                                                         strerror(ret));
1706                                         nr_started--;
1707                                         break;
1708                                 }
1709                                 ret = pthread_detach(td->thread);
1710                                 if (ret)
1711                                         log_err("pthread_detach: %s",
1712                                                         strerror(ret));
1713                         } else {
1714                                 pid_t pid;
1715                                 dprint(FD_PROCESS, "will fork\n");
1716                                 pid = fork();
1717                                 if (!pid) {
1718                                         int ret = fork_main(shm_id, i);
1719
1720                                         _exit(ret);
1721                                 } else if (i == fio_debug_jobno)
1722                                         *fio_debug_jobp = pid;
1723                         }
1724                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1725                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
1726                                 log_err("fio: job startup hung? exiting.\n");
1727                                 fio_terminate_threads(TERMINATE_ALL);
1728                                 fio_abort = 1;
1729                                 nr_started--;
1730                                 break;
1731                         }
1732                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1733                 }
1734
1735                 /*
1736                  * Wait for the started threads to transition to
1737                  * TD_INITIALIZED.
1738                  */
1739                 fio_gettime(&this_start, NULL);
1740                 left = this_jobs;
1741                 while (left && !fio_abort) {
1742                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1743                                 break;
1744
1745                         do_usleep(100000);
1746
1747                         for (i = 0; i < this_jobs; i++) {
1748                                 td = map[i];
1749                                 if (!td)
1750                                         continue;
1751                                 if (td->runstate == TD_INITIALIZED) {
1752                                         map[i] = NULL;
1753                                         left--;
1754                                 } else if (td->runstate >= TD_EXITED) {
1755                                         map[i] = NULL;
1756                                         left--;
1757                                         todo--;
1758                                         nr_running++; /* work-around... */
1759                                 }
1760                         }
1761                 }
1762
1763                 if (left) {
1764                         log_err("fio: %d job%s failed to start\n", left,
1765                                         left > 1 ? "s" : "");
1766                         for (i = 0; i < this_jobs; i++) {
1767                                 td = map[i];
1768                                 if (!td)
1769                                         continue;
1770                                 kill(td->pid, SIGTERM);
1771                         }
1772                         break;
1773                 }
1774
1775                 /*
1776                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1777                  */
1778                 for_each_td(td, i) {
1779                         if (td->runstate != TD_INITIALIZED)
1780                                 continue;
1781
1782                         if (in_ramp_time(td))
1783                                 td_set_runstate(td, TD_RAMP);
1784                         else
1785                                 td_set_runstate(td, TD_RUNNING);
1786                         nr_running++;
1787                         nr_started--;
1788                         m_rate += ddir_rw_sum(td->o.ratemin);
1789                         t_rate += ddir_rw_sum(td->o.rate);
1790                         todo--;
1791                         fio_mutex_up(td->mutex);
1792                 }
1793
1794                 reap_threads(&nr_running, &t_rate, &m_rate);
1795
1796                 if (todo)
1797                         do_usleep(100000);
1798         }
1799
1800         while (nr_running) {
1801                 reap_threads(&nr_running, &t_rate, &m_rate);
1802                 do_usleep(10000);
1803         }
1804
1805         fio_idle_prof_stop();
1806
1807         update_io_ticks();
1808 }
1809
1810 void wait_for_disk_thread_exit(void)
1811 {
1812         fio_mutex_down(disk_thread_mutex);
1813 }
1814
1815 static void free_disk_util(void)
1816 {
1817         disk_util_start_exit();
1818         wait_for_disk_thread_exit();
1819         disk_util_prune_entries();
1820 }
1821
1822 static void *disk_thread_main(void *data)
1823 {
1824         int ret = 0;
1825
1826         fio_mutex_up(startup_mutex);
1827
1828         while (threads && !ret) {
1829                 usleep(DISK_UTIL_MSEC * 1000);
1830                 if (!threads)
1831                         break;
1832                 ret = update_io_ticks();
1833
1834                 if (!is_backend)
1835                         print_thread_status();
1836         }
1837
1838         fio_mutex_up(disk_thread_mutex);
1839         return NULL;
1840 }
1841
1842 static int create_disk_util_thread(void)
1843 {
1844         int ret;
1845
1846         setup_disk_util();
1847
1848         disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1849
1850         ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1851         if (ret) {
1852                 fio_mutex_remove(disk_thread_mutex);
1853                 log_err("Can't create disk util thread: %s\n", strerror(ret));
1854                 return 1;
1855         }
1856
1857         ret = pthread_detach(disk_util_thread);
1858         if (ret) {
1859                 fio_mutex_remove(disk_thread_mutex);
1860                 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1861                 return 1;
1862         }
1863
1864         dprint(FD_MUTEX, "wait on startup_mutex\n");
1865         fio_mutex_down(startup_mutex);
1866         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1867         return 0;
1868 }
1869
1870 int fio_backend(void)
1871 {
1872         struct thread_data *td;
1873         int i;
1874
1875         if (exec_profile) {
1876                 if (load_profile(exec_profile))
1877                         return 1;
1878                 free(exec_profile);
1879                 exec_profile = NULL;
1880         }
1881         if (!thread_number)
1882                 return 0;
1883
1884         if (write_bw_log) {
1885                 setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
1886                 setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
1887                 setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
1888         }
1889
1890         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1891         if (startup_mutex == NULL)
1892                 return 1;
1893         writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
1894         if (writeout_mutex == NULL)
1895                 return 1;
1896
1897         set_genesis_time();
1898         stat_init();
1899         create_disk_util_thread();
1900
1901         cgroup_list = smalloc(sizeof(*cgroup_list));
1902         INIT_FLIST_HEAD(cgroup_list);
1903
1904         run_threads();
1905
1906         if (!fio_abort) {
1907                 show_run_stats();
1908                 if (write_bw_log) {
1909                         __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1910                         __finish_log(agg_io_log[DDIR_WRITE],
1911                                         "agg-write_bw.log");
1912                         __finish_log(agg_io_log[DDIR_TRIM],
1913                                         "agg-write_bw.log");
1914                 }
1915         }
1916
1917         for_each_td(td, i)
1918                 fio_options_free(td);
1919
1920         free_disk_util();
1921         cgroup_kill(cgroup_list);
1922         sfree(cgroup_list);
1923         sfree(cgroup_mnt);
1924
1925         fio_mutex_remove(startup_mutex);
1926         fio_mutex_remove(writeout_mutex);
1927         fio_mutex_remove(disk_thread_mutex);
1928         stat_exit();
1929         return exit_value;
1930 }