8303dc626a5c69bbfb999c046cd16958566deaf2
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38
39 #include "fio.h"
40 #ifndef FIO_NO_HAVE_SHM_H
41 #include <sys/shm.h>
42 #endif
43 #include "hash.h"
44 #include "smalloc.h"
45 #include "verify.h"
46 #include "trim.h"
47 #include "diskutil.h"
48 #include "cgroup.h"
49 #include "profile.h"
50 #include "lib/rand.h"
51 #include "memalign.h"
52 #include "server.h"
53 #include "lib/getrusage.h"
54 #include "idletime.h"
55 #include "err.h"
56 #include "lib/tp.h"
57
58 static pthread_t disk_util_thread;
59 static struct fio_mutex *disk_thread_mutex;
60 static pthread_cond_t du_cond;
61 static pthread_mutex_t du_lock;
62
63 static struct fio_mutex *startup_mutex;
64 static struct flist_head *cgroup_list;
65 static char *cgroup_mnt;
66 static int exit_value;
67 static volatile int fio_abort;
68 static unsigned int nr_process = 0;
69 static unsigned int nr_thread = 0;
70
71 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
72
73 int groupid = 0;
74 unsigned int thread_number = 0;
75 unsigned int stat_number = 0;
76 int shm_id = 0;
77 int temp_stall_ts;
78 unsigned long done_secs = 0;
79 volatile int disk_util_exit = 0;
80
81 #define PAGE_ALIGN(buf) \
82         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
83
84 #define JOB_START_TIMEOUT       (5 * 1000)
85
86 static void sig_int(int sig)
87 {
88         if (threads) {
89                 if (is_backend)
90                         fio_server_got_signal(sig);
91                 else {
92                         log_info("\nfio: terminating on signal %d\n", sig);
93                         log_info_flush();
94                         exit_value = 128;
95                 }
96
97                 fio_terminate_threads(TERMINATE_ALL);
98         }
99 }
100
101 static void sig_show_status(int sig)
102 {
103         show_running_run_stats();
104 }
105
106 static void set_sig_handlers(void)
107 {
108         struct sigaction act;
109
110         memset(&act, 0, sizeof(act));
111         act.sa_handler = sig_int;
112         act.sa_flags = SA_RESTART;
113         sigaction(SIGINT, &act, NULL);
114
115         memset(&act, 0, sizeof(act));
116         act.sa_handler = sig_int;
117         act.sa_flags = SA_RESTART;
118         sigaction(SIGTERM, &act, NULL);
119
120 /* Windows uses SIGBREAK as a quit signal from other applications */
121 #ifdef WIN32
122         memset(&act, 0, sizeof(act));
123         act.sa_handler = sig_int;
124         act.sa_flags = SA_RESTART;
125         sigaction(SIGBREAK, &act, NULL);
126 #endif
127
128         memset(&act, 0, sizeof(act));
129         act.sa_handler = sig_show_status;
130         act.sa_flags = SA_RESTART;
131         sigaction(SIGUSR1, &act, NULL);
132
133         if (is_backend) {
134                 memset(&act, 0, sizeof(act));
135                 act.sa_handler = sig_int;
136                 act.sa_flags = SA_RESTART;
137                 sigaction(SIGPIPE, &act, NULL);
138         }
139 }
140
141 /*
142  * Check if we are above the minimum rate given.
143  */
144 static int __check_min_rate(struct thread_data *td, struct timeval *now,
145                             enum fio_ddir ddir)
146 {
147         unsigned long long bytes = 0;
148         unsigned long iops = 0;
149         unsigned long spent;
150         unsigned long rate;
151         unsigned int ratemin = 0;
152         unsigned int rate_iops = 0;
153         unsigned int rate_iops_min = 0;
154
155         assert(ddir_rw(ddir));
156
157         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
158                 return 0;
159
160         /*
161          * allow a 2 second settle period in the beginning
162          */
163         if (mtime_since(&td->start, now) < 2000)
164                 return 0;
165
166         iops += td->this_io_blocks[ddir];
167         bytes += td->this_io_bytes[ddir];
168         ratemin += td->o.ratemin[ddir];
169         rate_iops += td->o.rate_iops[ddir];
170         rate_iops_min += td->o.rate_iops_min[ddir];
171
172         /*
173          * if rate blocks is set, sample is running
174          */
175         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
176                 spent = mtime_since(&td->lastrate[ddir], now);
177                 if (spent < td->o.ratecycle)
178                         return 0;
179
180                 if (td->o.rate[ddir]) {
181                         /*
182                          * check bandwidth specified rate
183                          */
184                         if (bytes < td->rate_bytes[ddir]) {
185                                 log_err("%s: min rate %u not met\n", td->o.name,
186                                                                 ratemin);
187                                 return 1;
188                         } else {
189                                 if (spent)
190                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
191                                 else
192                                         rate = 0;
193
194                                 if (rate < ratemin ||
195                                     bytes < td->rate_bytes[ddir]) {
196                                         log_err("%s: min rate %u not met, got"
197                                                 " %luKB/sec\n", td->o.name,
198                                                         ratemin, rate);
199                                         return 1;
200                                 }
201                         }
202                 } else {
203                         /*
204                          * checks iops specified rate
205                          */
206                         if (iops < rate_iops) {
207                                 log_err("%s: min iops rate %u not met\n",
208                                                 td->o.name, rate_iops);
209                                 return 1;
210                         } else {
211                                 if (spent)
212                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
213                                 else
214                                         rate = 0;
215
216                                 if (rate < rate_iops_min ||
217                                     iops < td->rate_blocks[ddir]) {
218                                         log_err("%s: min iops rate %u not met,"
219                                                 " got %lu\n", td->o.name,
220                                                         rate_iops_min, rate);
221                                 }
222                         }
223                 }
224         }
225
226         td->rate_bytes[ddir] = bytes;
227         td->rate_blocks[ddir] = iops;
228         memcpy(&td->lastrate[ddir], now, sizeof(*now));
229         return 0;
230 }
231
232 static int check_min_rate(struct thread_data *td, struct timeval *now,
233                           uint64_t *bytes_done)
234 {
235         int ret = 0;
236
237         if (bytes_done[DDIR_READ])
238                 ret |= __check_min_rate(td, now, DDIR_READ);
239         if (bytes_done[DDIR_WRITE])
240                 ret |= __check_min_rate(td, now, DDIR_WRITE);
241         if (bytes_done[DDIR_TRIM])
242                 ret |= __check_min_rate(td, now, DDIR_TRIM);
243
244         return ret;
245 }
246
247 /*
248  * When job exits, we can cancel the in-flight IO if we are using async
249  * io. Attempt to do so.
250  */
251 static void cleanup_pending_aio(struct thread_data *td)
252 {
253         int r;
254
255         /*
256          * get immediately available events, if any
257          */
258         r = io_u_queued_complete(td, 0, NULL);
259         if (r < 0)
260                 return;
261
262         /*
263          * now cancel remaining active events
264          */
265         if (td->io_ops->cancel) {
266                 struct io_u *io_u;
267                 int i;
268
269                 io_u_qiter(&td->io_u_all, io_u, i) {
270                         if (io_u->flags & IO_U_F_FLIGHT) {
271                                 r = td->io_ops->cancel(td, io_u);
272                                 if (!r)
273                                         put_io_u(td, io_u);
274                         }
275                 }
276         }
277
278         if (td->cur_depth)
279                 r = io_u_queued_complete(td, td->cur_depth, NULL);
280 }
281
282 /*
283  * Helper to handle the final sync of a file. Works just like the normal
284  * io path, just does everything sync.
285  */
286 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
287 {
288         struct io_u *io_u = __get_io_u(td);
289         int ret;
290
291         if (!io_u)
292                 return 1;
293
294         io_u->ddir = DDIR_SYNC;
295         io_u->file = f;
296
297         if (td_io_prep(td, io_u)) {
298                 put_io_u(td, io_u);
299                 return 1;
300         }
301
302 requeue:
303         ret = td_io_queue(td, io_u);
304         if (ret < 0) {
305                 td_verror(td, io_u->error, "td_io_queue");
306                 put_io_u(td, io_u);
307                 return 1;
308         } else if (ret == FIO_Q_QUEUED) {
309                 if (io_u_queued_complete(td, 1, NULL) < 0)
310                         return 1;
311         } else if (ret == FIO_Q_COMPLETED) {
312                 if (io_u->error) {
313                         td_verror(td, io_u->error, "td_io_queue");
314                         return 1;
315                 }
316
317                 if (io_u_sync_complete(td, io_u, NULL) < 0)
318                         return 1;
319         } else if (ret == FIO_Q_BUSY) {
320                 if (td_io_commit(td))
321                         return 1;
322                 goto requeue;
323         }
324
325         return 0;
326 }
327
328 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329 {
330         int ret;
331
332         if (fio_file_open(f))
333                 return fio_io_sync(td, f);
334
335         if (td_io_open_file(td, f))
336                 return 1;
337
338         ret = fio_io_sync(td, f);
339         td_io_close_file(td, f);
340         return ret;
341 }
342
343 static inline void __update_tv_cache(struct thread_data *td)
344 {
345         fio_gettime(&td->tv_cache, NULL);
346 }
347
348 static inline void update_tv_cache(struct thread_data *td)
349 {
350         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351                 __update_tv_cache(td);
352 }
353
354 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
355 {
356         if (in_ramp_time(td))
357                 return 0;
358         if (!td->o.timeout)
359                 return 0;
360         if (utime_since(&td->epoch, t) >= td->o.timeout)
361                 return 1;
362
363         return 0;
364 }
365
366 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
367                                int *retptr)
368 {
369         int ret = *retptr;
370
371         if (ret < 0 || td->error) {
372                 int err = td->error;
373                 enum error_type_bit eb;
374
375                 if (ret < 0)
376                         err = -ret;
377
378                 eb = td_error_type(ddir, err);
379                 if (!(td->o.continue_on_error & (1 << eb)))
380                         return 1;
381
382                 if (td_non_fatal_error(td, eb, err)) {
383                         /*
384                          * Continue with the I/Os in case of
385                          * a non fatal error.
386                          */
387                         update_error_count(td, err);
388                         td_clear_error(td);
389                         *retptr = 0;
390                         return 0;
391                 } else if (td->o.fill_device && err == ENOSPC) {
392                         /*
393                          * We expect to hit this error if
394                          * fill_device option is set.
395                          */
396                         td_clear_error(td);
397                         fio_mark_td_terminate(td);
398                         return 1;
399                 } else {
400                         /*
401                          * Stop the I/O in case of a fatal
402                          * error.
403                          */
404                         update_error_count(td, err);
405                         return 1;
406                 }
407         }
408
409         return 0;
410 }
411
412 static void check_update_rusage(struct thread_data *td)
413 {
414         if (td->update_rusage) {
415                 td->update_rusage = 0;
416                 update_rusage_stat(td);
417                 fio_mutex_up(td->rusage_sem);
418         }
419 }
420
421 /*
422  * The main verify engine. Runs over the writes we previously submitted,
423  * reads the blocks back in, and checks the crc/md5 of the data.
424  */
425 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
426 {
427         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
428         struct fio_file *f;
429         struct io_u *io_u;
430         int ret, min_events;
431         unsigned int i;
432
433         dprint(FD_VERIFY, "starting loop\n");
434
435         /*
436          * sync io first and invalidate cache, to make sure we really
437          * read from disk.
438          */
439         for_each_file(td, f, i) {
440                 if (!fio_file_open(f))
441                         continue;
442                 if (fio_io_sync(td, f))
443                         break;
444                 if (file_invalidate_cache(td, f))
445                         break;
446         }
447
448         check_update_rusage(td);
449
450         if (td->error)
451                 return;
452
453         td_set_runstate(td, TD_VERIFYING);
454
455         io_u = NULL;
456         while (!td->terminate) {
457                 enum fio_ddir ddir;
458                 int ret2, full;
459
460                 update_tv_cache(td);
461                 check_update_rusage(td);
462
463                 if (runtime_exceeded(td, &td->tv_cache)) {
464                         __update_tv_cache(td);
465                         if (runtime_exceeded(td, &td->tv_cache)) {
466                                 fio_mark_td_terminate(td);
467                                 break;
468                         }
469                 }
470
471                 if (flow_threshold_exceeded(td))
472                         continue;
473
474                 if (!td->o.experimental_verify) {
475                         io_u = __get_io_u(td);
476                         if (!io_u)
477                                 break;
478
479                         if (get_next_verify(td, io_u)) {
480                                 put_io_u(td, io_u);
481                                 break;
482                         }
483
484                         if (td_io_prep(td, io_u)) {
485                                 put_io_u(td, io_u);
486                                 break;
487                         }
488                 } else {
489                         if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
490                                 break;
491
492                         while ((io_u = get_io_u(td)) != NULL) {
493                                 if (IS_ERR(io_u)) {
494                                         io_u = NULL;
495                                         ret = FIO_Q_BUSY;
496                                         goto reap;
497                                 }
498
499                                 /*
500                                  * We are only interested in the places where
501                                  * we wrote or trimmed IOs. Turn those into
502                                  * reads for verification purposes.
503                                  */
504                                 if (io_u->ddir == DDIR_READ) {
505                                         /*
506                                          * Pretend we issued it for rwmix
507                                          * accounting
508                                          */
509                                         td->io_issues[DDIR_READ]++;
510                                         put_io_u(td, io_u);
511                                         continue;
512                                 } else if (io_u->ddir == DDIR_TRIM) {
513                                         io_u->ddir = DDIR_READ;
514                                         io_u->flags |= IO_U_F_TRIMMED;
515                                         break;
516                                 } else if (io_u->ddir == DDIR_WRITE) {
517                                         io_u->ddir = DDIR_READ;
518                                         break;
519                                 } else {
520                                         put_io_u(td, io_u);
521                                         continue;
522                                 }
523                         }
524
525                         if (!io_u)
526                                 break;
527                 }
528
529                 if (td->o.verify_async)
530                         io_u->end_io = verify_io_u_async;
531                 else
532                         io_u->end_io = verify_io_u;
533
534                 ddir = io_u->ddir;
535
536                 ret = td_io_queue(td, io_u);
537                 switch (ret) {
538                 case FIO_Q_COMPLETED:
539                         if (io_u->error) {
540                                 ret = -io_u->error;
541                                 clear_io_u(td, io_u);
542                         } else if (io_u->resid) {
543                                 int bytes = io_u->xfer_buflen - io_u->resid;
544
545                                 /*
546                                  * zero read, fail
547                                  */
548                                 if (!bytes) {
549                                         td_verror(td, EIO, "full resid");
550                                         put_io_u(td, io_u);
551                                         break;
552                                 }
553
554                                 io_u->xfer_buflen = io_u->resid;
555                                 io_u->xfer_buf += bytes;
556                                 io_u->offset += bytes;
557
558                                 if (ddir_rw(io_u->ddir))
559                                         td->ts.short_io_u[io_u->ddir]++;
560
561                                 f = io_u->file;
562                                 if (io_u->offset == f->real_file_size)
563                                         goto sync_done;
564
565                                 requeue_io_u(td, &io_u);
566                         } else {
567 sync_done:
568                                 ret = io_u_sync_complete(td, io_u, bytes_done);
569                                 if (ret < 0)
570                                         break;
571                         }
572                         continue;
573                 case FIO_Q_QUEUED:
574                         break;
575                 case FIO_Q_BUSY:
576                         requeue_io_u(td, &io_u);
577                         ret2 = td_io_commit(td);
578                         if (ret2 < 0)
579                                 ret = ret2;
580                         break;
581                 default:
582                         assert(ret < 0);
583                         td_verror(td, -ret, "td_io_queue");
584                         break;
585                 }
586
587                 if (break_on_this_error(td, ddir, &ret))
588                         break;
589
590                 /*
591                  * if we can queue more, do so. but check if there are
592                  * completed io_u's first. Note that we can get BUSY even
593                  * without IO queued, if the system is resource starved.
594                  */
595 reap:
596                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
597                 if (full || !td->o.iodepth_batch_complete) {
598                         min_events = min(td->o.iodepth_batch_complete,
599                                          td->cur_depth);
600                         /*
601                          * if the queue is full, we MUST reap at least 1 event
602                          */
603                         if (full && !min_events)
604                                 min_events = 1;
605
606                         do {
607                                 /*
608                                  * Reap required number of io units, if any,
609                                  * and do the verification on them through
610                                  * the callback handler
611                                  */
612                                 if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
613                                         ret = -1;
614                                         break;
615                                 }
616                         } while (full && (td->cur_depth > td->o.iodepth_low));
617                 }
618                 if (ret < 0)
619                         break;
620         }
621
622         check_update_rusage(td);
623
624         if (!td->error) {
625                 min_events = td->cur_depth;
626
627                 if (min_events)
628                         ret = io_u_queued_complete(td, min_events, NULL);
629         } else
630                 cleanup_pending_aio(td);
631
632         td_set_runstate(td, TD_RUNNING);
633
634         dprint(FD_VERIFY, "exiting loop\n");
635 }
636
637 static unsigned int exceeds_number_ios(struct thread_data *td)
638 {
639         unsigned long long number_ios;
640
641         if (!td->o.number_ios)
642                 return 0;
643
644         number_ios = ddir_rw_sum(td->this_io_blocks);
645         number_ios += td->io_u_queued + td->io_u_in_flight;
646
647         return number_ios >= td->o.number_ios;
648 }
649
650 static int io_bytes_exceeded(struct thread_data *td)
651 {
652         unsigned long long bytes, limit;
653
654         if (td_rw(td))
655                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
656         else if (td_write(td))
657                 bytes = td->this_io_bytes[DDIR_WRITE];
658         else if (td_read(td))
659                 bytes = td->this_io_bytes[DDIR_READ];
660         else
661                 bytes = td->this_io_bytes[DDIR_TRIM];
662
663         if (td->o.io_limit)
664                 limit = td->o.io_limit;
665         else
666                 limit = td->o.size;
667
668         return bytes >= limit || exceeds_number_ios(td);
669 }
670
671 /*
672  * Main IO worker function. It retrieves io_u's to process and queues
673  * and reaps them, checking for rate and errors along the way.
674  *
675  * Returns number of bytes written and trimmed.
676  */
677 static uint64_t do_io(struct thread_data *td)
678 {
679         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
680         unsigned int i;
681         int ret = 0;
682         uint64_t total_bytes, bytes_issued = 0;
683
684         if (in_ramp_time(td))
685                 td_set_runstate(td, TD_RAMP);
686         else
687                 td_set_runstate(td, TD_RUNNING);
688
689         lat_target_init(td);
690
691         /*
692          * If verify_backlog is enabled, we'll run the verify in this
693          * handler as well. For that case, we may need up to twice the
694          * amount of bytes.
695          */
696         total_bytes = td->o.size;
697         if (td->o.verify != VERIFY_NONE &&
698            (td_write(td) && td->o.verify_backlog))
699                 total_bytes += td->o.size;
700
701         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
702                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
703                 td->o.time_based) {
704                 struct timeval comp_time;
705                 int min_evts = 0;
706                 struct io_u *io_u;
707                 int ret2, full;
708                 enum fio_ddir ddir;
709
710                 check_update_rusage(td);
711
712                 if (td->terminate || td->done)
713                         break;
714
715                 update_tv_cache(td);
716
717                 if (runtime_exceeded(td, &td->tv_cache)) {
718                         __update_tv_cache(td);
719                         if (runtime_exceeded(td, &td->tv_cache)) {
720                                 fio_mark_td_terminate(td);
721                                 break;
722                         }
723                 }
724
725                 if (flow_threshold_exceeded(td))
726                         continue;
727
728                 if (bytes_issued >= total_bytes)
729                         break;
730
731                 io_u = get_io_u(td);
732                 if (IS_ERR_OR_NULL(io_u)) {
733                         int err = PTR_ERR(io_u);
734
735                         io_u = NULL;
736                         if (err == -EBUSY) {
737                                 ret = FIO_Q_BUSY;
738                                 goto reap;
739                         }
740                         if (td->o.latency_target)
741                                 goto reap;
742                         break;
743                 }
744
745                 ddir = io_u->ddir;
746
747                 /*
748                  * Add verification end_io handler if:
749                  *      - Asked to verify (!td_rw(td))
750                  *      - Or the io_u is from our verify list (mixed write/ver)
751                  */
752                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
753                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
754
755                         if (!td->o.verify_pattern_bytes) {
756                                 io_u->rand_seed = __rand(&td->__verify_state);
757                                 if (sizeof(int) != sizeof(long *))
758                                         io_u->rand_seed *= __rand(&td->__verify_state);
759                         }
760
761                         if (td->o.verify_async)
762                                 io_u->end_io = verify_io_u_async;
763                         else
764                                 io_u->end_io = verify_io_u;
765                         td_set_runstate(td, TD_VERIFYING);
766                 } else if (in_ramp_time(td))
767                         td_set_runstate(td, TD_RAMP);
768                 else
769                         td_set_runstate(td, TD_RUNNING);
770
771                 /*
772                  * Always log IO before it's issued, so we know the specific
773                  * order of it. The logged unit will track when the IO has
774                  * completed.
775                  */
776                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
777                     td->o.do_verify &&
778                     td->o.verify != VERIFY_NONE &&
779                     !td->o.experimental_verify)
780                         log_io_piece(td, io_u);
781
782                 ret = td_io_queue(td, io_u);
783                 switch (ret) {
784                 case FIO_Q_COMPLETED:
785                         if (io_u->error) {
786                                 ret = -io_u->error;
787                                 unlog_io_piece(td, io_u);
788                                 clear_io_u(td, io_u);
789                         } else if (io_u->resid) {
790                                 int bytes = io_u->xfer_buflen - io_u->resid;
791                                 struct fio_file *f = io_u->file;
792
793                                 bytes_issued += bytes;
794
795                                 trim_io_piece(td, io_u);
796
797                                 /*
798                                  * zero read, fail
799                                  */
800                                 if (!bytes) {
801                                         unlog_io_piece(td, io_u);
802                                         td_verror(td, EIO, "full resid");
803                                         put_io_u(td, io_u);
804                                         break;
805                                 }
806
807                                 io_u->xfer_buflen = io_u->resid;
808                                 io_u->xfer_buf += bytes;
809                                 io_u->offset += bytes;
810
811                                 if (ddir_rw(io_u->ddir))
812                                         td->ts.short_io_u[io_u->ddir]++;
813
814                                 if (io_u->offset == f->real_file_size)
815                                         goto sync_done;
816
817                                 requeue_io_u(td, &io_u);
818                         } else {
819 sync_done:
820                                 if (__should_check_rate(td, DDIR_READ) ||
821                                     __should_check_rate(td, DDIR_WRITE) ||
822                                     __should_check_rate(td, DDIR_TRIM))
823                                         fio_gettime(&comp_time, NULL);
824
825                                 ret = io_u_sync_complete(td, io_u, bytes_done);
826                                 if (ret < 0)
827                                         break;
828                                 bytes_issued += io_u->xfer_buflen;
829                         }
830                         break;
831                 case FIO_Q_QUEUED:
832                         /*
833                          * if the engine doesn't have a commit hook,
834                          * the io_u is really queued. if it does have such
835                          * a hook, it has to call io_u_queued() itself.
836                          */
837                         if (td->io_ops->commit == NULL)
838                                 io_u_queued(td, io_u);
839                         bytes_issued += io_u->xfer_buflen;
840                         break;
841                 case FIO_Q_BUSY:
842                         unlog_io_piece(td, io_u);
843                         requeue_io_u(td, &io_u);
844                         ret2 = td_io_commit(td);
845                         if (ret2 < 0)
846                                 ret = ret2;
847                         break;
848                 default:
849                         assert(ret < 0);
850                         put_io_u(td, io_u);
851                         break;
852                 }
853
854                 if (break_on_this_error(td, ddir, &ret))
855                         break;
856
857                 /*
858                  * See if we need to complete some commands. Note that we
859                  * can get BUSY even without IO queued, if the system is
860                  * resource starved.
861                  */
862 reap:
863                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
864                 if (full || !td->o.iodepth_batch_complete) {
865                         min_evts = min(td->o.iodepth_batch_complete,
866                                         td->cur_depth);
867                         /*
868                          * if the queue is full, we MUST reap at least 1 event
869                          */
870                         if (full && !min_evts)
871                                 min_evts = 1;
872
873                         if (__should_check_rate(td, DDIR_READ) ||
874                             __should_check_rate(td, DDIR_WRITE) ||
875                             __should_check_rate(td, DDIR_TRIM))
876                                 fio_gettime(&comp_time, NULL);
877
878                         do {
879                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
880                                 if (ret < 0)
881                                         break;
882
883                         } while (full && (td->cur_depth > td->o.iodepth_low));
884                 }
885
886                 if (ret < 0)
887                         break;
888                 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
889                         continue;
890
891                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
892                         if (check_min_rate(td, &comp_time, bytes_done)) {
893                                 if (exitall_on_terminate)
894                                         fio_terminate_threads(td->groupid);
895                                 td_verror(td, EIO, "check_min_rate");
896                                 break;
897                         }
898                 }
899                 if (!in_ramp_time(td) && td->o.latency_target)
900                         lat_target_check(td);
901
902                 if (td->o.thinktime) {
903                         unsigned long long b;
904
905                         b = ddir_rw_sum(td->io_blocks);
906                         if (!(b % td->o.thinktime_blocks)) {
907                                 int left;
908
909                                 io_u_quiesce(td);
910
911                                 if (td->o.thinktime_spin)
912                                         usec_spin(td->o.thinktime_spin);
913
914                                 left = td->o.thinktime - td->o.thinktime_spin;
915                                 if (left)
916                                         usec_sleep(td, left);
917                         }
918                 }
919         }
920
921         check_update_rusage(td);
922
923         if (td->trim_entries)
924                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
925
926         if (td->o.fill_device && td->error == ENOSPC) {
927                 td->error = 0;
928                 fio_mark_td_terminate(td);
929         }
930         if (!td->error) {
931                 struct fio_file *f;
932
933                 i = td->cur_depth;
934                 if (i) {
935                         ret = io_u_queued_complete(td, i, bytes_done);
936                         if (td->o.fill_device && td->error == ENOSPC)
937                                 td->error = 0;
938                 }
939
940                 if (should_fsync(td) && td->o.end_fsync) {
941                         td_set_runstate(td, TD_FSYNCING);
942
943                         for_each_file(td, f, i) {
944                                 if (!fio_file_fsync(td, f))
945                                         continue;
946
947                                 log_err("fio: end_fsync failed for file %s\n",
948                                                                 f->file_name);
949                         }
950                 }
951         } else
952                 cleanup_pending_aio(td);
953
954         /*
955          * stop job if we failed doing any IO
956          */
957         if (!ddir_rw_sum(td->this_io_bytes))
958                 td->done = 1;
959
960         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
961 }
962
963 static void cleanup_io_u(struct thread_data *td)
964 {
965         struct io_u *io_u;
966
967         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
968
969                 if (td->io_ops->io_u_free)
970                         td->io_ops->io_u_free(td, io_u);
971
972                 fio_memfree(io_u, sizeof(*io_u));
973         }
974
975         free_io_mem(td);
976
977         io_u_rexit(&td->io_u_requeues);
978         io_u_qexit(&td->io_u_freelist);
979         io_u_qexit(&td->io_u_all);
980 }
981
982 static int init_io_u(struct thread_data *td)
983 {
984         struct io_u *io_u;
985         unsigned int max_bs, min_write;
986         int cl_align, i, max_units;
987         int data_xfer = 1, err;
988         char *p;
989
990         max_units = td->o.iodepth;
991         max_bs = td_max_bs(td);
992         min_write = td->o.min_bs[DDIR_WRITE];
993         td->orig_buffer_size = (unsigned long long) max_bs
994                                         * (unsigned long long) max_units;
995
996         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
997                 data_xfer = 0;
998
999         err = 0;
1000         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1001         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1002         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1003
1004         if (err) {
1005                 log_err("fio: failed setting up IO queues\n");
1006                 return 1;
1007         }
1008
1009         /*
1010          * if we may later need to do address alignment, then add any
1011          * possible adjustment here so that we don't cause a buffer
1012          * overflow later. this adjustment may be too much if we get
1013          * lucky and the allocator gives us an aligned address.
1014          */
1015         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1016             (td->io_ops->flags & FIO_RAWIO))
1017                 td->orig_buffer_size += page_mask + td->o.mem_align;
1018
1019         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1020                 unsigned long bs;
1021
1022                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1023                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1024         }
1025
1026         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1027                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1028                 return 1;
1029         }
1030
1031         if (data_xfer && allocate_io_mem(td))
1032                 return 1;
1033
1034         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1035             (td->io_ops->flags & FIO_RAWIO))
1036                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1037         else
1038                 p = td->orig_buffer;
1039
1040         cl_align = os_cache_line_size();
1041
1042         for (i = 0; i < max_units; i++) {
1043                 void *ptr;
1044
1045                 if (td->terminate)
1046                         return 1;
1047
1048                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1049                 if (!ptr) {
1050                         log_err("fio: unable to allocate aligned memory\n");
1051                         break;
1052                 }
1053
1054                 io_u = ptr;
1055                 memset(io_u, 0, sizeof(*io_u));
1056                 INIT_FLIST_HEAD(&io_u->verify_list);
1057                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1058
1059                 if (data_xfer) {
1060                         io_u->buf = p;
1061                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1062
1063                         if (td_write(td))
1064                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1065                         if (td_write(td) && td->o.verify_pattern_bytes) {
1066                                 /*
1067                                  * Fill the buffer with the pattern if we are
1068                                  * going to be doing writes.
1069                                  */
1070                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1071                         }
1072                 }
1073
1074                 io_u->index = i;
1075                 io_u->flags = IO_U_F_FREE;
1076                 io_u_qpush(&td->io_u_freelist, io_u);
1077
1078                 /*
1079                  * io_u never leaves this stack, used for iteration of all
1080                  * io_u buffers.
1081                  */
1082                 io_u_qpush(&td->io_u_all, io_u);
1083
1084                 if (td->io_ops->io_u_init) {
1085                         int ret = td->io_ops->io_u_init(td, io_u);
1086
1087                         if (ret) {
1088                                 log_err("fio: failed to init engine data: %d\n", ret);
1089                                 return 1;
1090                         }
1091                 }
1092
1093                 p += max_bs;
1094         }
1095
1096         return 0;
1097 }
1098
1099 static int switch_ioscheduler(struct thread_data *td)
1100 {
1101         char tmp[256], tmp2[128];
1102         FILE *f;
1103         int ret;
1104
1105         if (td->io_ops->flags & FIO_DISKLESSIO)
1106                 return 0;
1107
1108         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1109
1110         f = fopen(tmp, "r+");
1111         if (!f) {
1112                 if (errno == ENOENT) {
1113                         log_err("fio: os or kernel doesn't support IO scheduler"
1114                                 " switching\n");
1115                         return 0;
1116                 }
1117                 td_verror(td, errno, "fopen iosched");
1118                 return 1;
1119         }
1120
1121         /*
1122          * Set io scheduler.
1123          */
1124         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1125         if (ferror(f) || ret != 1) {
1126                 td_verror(td, errno, "fwrite");
1127                 fclose(f);
1128                 return 1;
1129         }
1130
1131         rewind(f);
1132
1133         /*
1134          * Read back and check that the selected scheduler is now the default.
1135          */
1136         ret = fread(tmp, sizeof(tmp), 1, f);
1137         if (ferror(f) || ret < 0) {
1138                 td_verror(td, errno, "fread");
1139                 fclose(f);
1140                 return 1;
1141         }
1142         tmp[sizeof(tmp) - 1] = '\0';
1143
1144
1145         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1146         if (!strstr(tmp, tmp2)) {
1147                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1148                 td_verror(td, EINVAL, "iosched_switch");
1149                 fclose(f);
1150                 return 1;
1151         }
1152
1153         fclose(f);
1154         return 0;
1155 }
1156
1157 static int keep_running(struct thread_data *td)
1158 {
1159         unsigned long long limit;
1160
1161         if (td->done)
1162                 return 0;
1163         if (td->o.time_based)
1164                 return 1;
1165         if (td->o.loops) {
1166                 td->o.loops--;
1167                 return 1;
1168         }
1169         if (exceeds_number_ios(td))
1170                 return 0;
1171
1172         if (td->o.io_limit)
1173                 limit = td->o.io_limit;
1174         else
1175                 limit = td->o.size;
1176
1177         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1178                 uint64_t diff;
1179
1180                 /*
1181                  * If the difference is less than the minimum IO size, we
1182                  * are done.
1183                  */
1184                 diff = limit - ddir_rw_sum(td->io_bytes);
1185                 if (diff < td_max_bs(td))
1186                         return 0;
1187
1188                 if (fio_files_done(td))
1189                         return 0;
1190
1191                 return 1;
1192         }
1193
1194         return 0;
1195 }
1196
1197 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1198 {
1199         int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1200         char *str;
1201
1202         str = malloc(newlen);
1203         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1204
1205         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1206         ret = system(str);
1207         if (ret == -1)
1208                 log_err("fio: exec of cmd <%s> failed\n", str);
1209
1210         free(str);
1211         return ret;
1212 }
1213
1214 /*
1215  * Dry run to compute correct state of numberio for verification.
1216  */
1217 static uint64_t do_dry_run(struct thread_data *td)
1218 {
1219         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1220
1221         td_set_runstate(td, TD_RUNNING);
1222
1223         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1224                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1225                 struct io_u *io_u;
1226                 int ret;
1227
1228                 if (td->terminate || td->done)
1229                         break;
1230
1231                 io_u = get_io_u(td);
1232                 if (!io_u)
1233                         break;
1234
1235                 io_u->flags |= IO_U_F_FLIGHT;
1236                 io_u->error = 0;
1237                 io_u->resid = 0;
1238                 if (ddir_rw(acct_ddir(io_u)))
1239                         td->io_issues[acct_ddir(io_u)]++;
1240                 if (ddir_rw(io_u->ddir)) {
1241                         io_u_mark_depth(td, 1);
1242                         td->ts.total_io_u[io_u->ddir]++;
1243                 }
1244
1245                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1246                     td->o.do_verify &&
1247                     td->o.verify != VERIFY_NONE &&
1248                     !td->o.experimental_verify)
1249                         log_io_piece(td, io_u);
1250
1251                 ret = io_u_sync_complete(td, io_u, bytes_done);
1252                 (void) ret;
1253         }
1254
1255         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1256 }
1257
1258 /*
1259  * Entry point for the thread based jobs. The process based jobs end up
1260  * here as well, after a little setup.
1261  */
1262 static void *thread_main(void *data)
1263 {
1264         unsigned long long elapsed;
1265         struct thread_data *td = data;
1266         struct thread_options *o = &td->o;
1267         pthread_condattr_t attr;
1268         int clear_state;
1269         int ret;
1270
1271         if (!o->use_thread) {
1272                 setsid();
1273                 td->pid = getpid();
1274         } else
1275                 td->pid = gettid();
1276
1277         fio_local_clock_init(o->use_thread);
1278
1279         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1280
1281         if (is_backend)
1282                 fio_server_send_start(td);
1283
1284         INIT_FLIST_HEAD(&td->io_log_list);
1285         INIT_FLIST_HEAD(&td->io_hist_list);
1286         INIT_FLIST_HEAD(&td->verify_list);
1287         INIT_FLIST_HEAD(&td->trim_list);
1288         INIT_FLIST_HEAD(&td->next_rand_list);
1289         pthread_mutex_init(&td->io_u_lock, NULL);
1290         td->io_hist_tree = RB_ROOT;
1291
1292         pthread_condattr_init(&attr);
1293         pthread_cond_init(&td->verify_cond, &attr);
1294         pthread_cond_init(&td->free_cond, &attr);
1295
1296         td_set_runstate(td, TD_INITIALIZED);
1297         dprint(FD_MUTEX, "up startup_mutex\n");
1298         fio_mutex_up(startup_mutex);
1299         dprint(FD_MUTEX, "wait on td->mutex\n");
1300         fio_mutex_down(td->mutex);
1301         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1302
1303         /*
1304          * A new gid requires privilege, so we need to do this before setting
1305          * the uid.
1306          */
1307         if (o->gid != -1U && setgid(o->gid)) {
1308                 td_verror(td, errno, "setgid");
1309                 goto err;
1310         }
1311         if (o->uid != -1U && setuid(o->uid)) {
1312                 td_verror(td, errno, "setuid");
1313                 goto err;
1314         }
1315
1316         /*
1317          * If we have a gettimeofday() thread, make sure we exclude that
1318          * thread from this job
1319          */
1320         if (o->gtod_cpu)
1321                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1322
1323         /*
1324          * Set affinity first, in case it has an impact on the memory
1325          * allocations.
1326          */
1327         if (o->cpumask_set) {
1328                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1329                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1330                         if (!ret) {
1331                                 log_err("fio: no CPUs set\n");
1332                                 log_err("fio: Try increasing number of available CPUs\n");
1333                                 td_verror(td, EINVAL, "cpus_split");
1334                                 goto err;
1335                         }
1336                 }
1337                 ret = fio_setaffinity(td->pid, o->cpumask);
1338                 if (ret == -1) {
1339                         td_verror(td, errno, "cpu_set_affinity");
1340                         goto err;
1341                 }
1342         }
1343
1344 #ifdef CONFIG_LIBNUMA
1345         /* numa node setup */
1346         if (o->numa_cpumask_set || o->numa_memmask_set) {
1347                 struct bitmask *mask;
1348                 int ret;
1349
1350                 if (numa_available() < 0) {
1351                         td_verror(td, errno, "Does not support NUMA API\n");
1352                         goto err;
1353                 }
1354
1355                 if (o->numa_cpumask_set) {
1356                         mask = numa_parse_nodestring(o->numa_cpunodes);
1357                         ret = numa_run_on_node_mask(mask);
1358                         numa_free_nodemask(mask);
1359                         if (ret == -1) {
1360                                 td_verror(td, errno, \
1361                                         "numa_run_on_node_mask failed\n");
1362                                 goto err;
1363                         }
1364                 }
1365
1366                 if (o->numa_memmask_set) {
1367
1368                         mask = NULL;
1369                         if (o->numa_memnodes)
1370                                 mask = numa_parse_nodestring(o->numa_memnodes);
1371
1372                         switch (o->numa_mem_mode) {
1373                         case MPOL_INTERLEAVE:
1374                                 numa_set_interleave_mask(mask);
1375                                 break;
1376                         case MPOL_BIND:
1377                                 numa_set_membind(mask);
1378                                 break;
1379                         case MPOL_LOCAL:
1380                                 numa_set_localalloc();
1381                                 break;
1382                         case MPOL_PREFERRED:
1383                                 numa_set_preferred(o->numa_mem_prefer_node);
1384                                 break;
1385                         case MPOL_DEFAULT:
1386                         default:
1387                                 break;
1388                         }
1389
1390                         if (mask)
1391                                 numa_free_nodemask(mask);
1392
1393                 }
1394         }
1395 #endif
1396
1397         if (fio_pin_memory(td))
1398                 goto err;
1399
1400         /*
1401          * May alter parameters that init_io_u() will use, so we need to
1402          * do this first.
1403          */
1404         if (init_iolog(td))
1405                 goto err;
1406
1407         if (init_io_u(td))
1408                 goto err;
1409
1410         if (o->verify_async && verify_async_init(td))
1411                 goto err;
1412
1413         if (o->ioprio) {
1414                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1415                 if (ret == -1) {
1416                         td_verror(td, errno, "ioprio_set");
1417                         goto err;
1418                 }
1419         }
1420
1421         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1422                 goto err;
1423
1424         errno = 0;
1425         if (nice(o->nice) == -1 && errno != 0) {
1426                 td_verror(td, errno, "nice");
1427                 goto err;
1428         }
1429
1430         if (o->ioscheduler && switch_ioscheduler(td))
1431                 goto err;
1432
1433         if (!o->create_serialize && setup_files(td))
1434                 goto err;
1435
1436         if (td_io_init(td))
1437                 goto err;
1438
1439         if (init_random_map(td))
1440                 goto err;
1441
1442         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1443                 goto err;
1444
1445         if (o->pre_read) {
1446                 if (pre_read_files(td) < 0)
1447                         goto err;
1448         }
1449
1450         if (td->flags & TD_F_COMPRESS_LOG)
1451                 tp_init(&td->tp_data);
1452
1453         fio_verify_init(td);
1454
1455         fio_gettime(&td->epoch, NULL);
1456         fio_getrusage(&td->ru_start);
1457         clear_state = 0;
1458         while (keep_running(td)) {
1459                 uint64_t verify_bytes;
1460
1461                 fio_gettime(&td->start, NULL);
1462                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1463                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1464                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1465
1466                 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1467                                 o->ratemin[DDIR_TRIM]) {
1468                         memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1469                                                 sizeof(td->bw_sample_time));
1470                         memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1471                                                 sizeof(td->bw_sample_time));
1472                         memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1473                                                 sizeof(td->bw_sample_time));
1474                 }
1475
1476                 if (clear_state)
1477                         clear_io_state(td);
1478
1479                 prune_io_piece_log(td);
1480
1481                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1482                         verify_bytes = do_dry_run(td);
1483                 else
1484                         verify_bytes = do_io(td);
1485
1486                 clear_state = 1;
1487
1488                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1489                         elapsed = utime_since_now(&td->start);
1490                         td->ts.runtime[DDIR_READ] += elapsed;
1491                 }
1492                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1493                         elapsed = utime_since_now(&td->start);
1494                         td->ts.runtime[DDIR_WRITE] += elapsed;
1495                 }
1496                 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1497                         elapsed = utime_since_now(&td->start);
1498                         td->ts.runtime[DDIR_TRIM] += elapsed;
1499                 }
1500
1501                 if (td->error || td->terminate)
1502                         break;
1503
1504                 if (!o->do_verify ||
1505                     o->verify == VERIFY_NONE ||
1506                     (td->io_ops->flags & FIO_UNIDIR))
1507                         continue;
1508
1509                 clear_io_state(td);
1510
1511                 fio_gettime(&td->start, NULL);
1512
1513                 do_verify(td, verify_bytes);
1514
1515                 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1516
1517                 if (td->error || td->terminate)
1518                         break;
1519         }
1520
1521         update_rusage_stat(td);
1522         td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1523         td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1524         td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1525         td->ts.total_run_time = mtime_since_now(&td->epoch);
1526         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1527         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1528         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1529
1530         fio_unpin_memory(td);
1531
1532         fio_writeout_logs(td);
1533
1534         if (td->flags & TD_F_COMPRESS_LOG)
1535                 tp_exit(&td->tp_data);
1536
1537         if (o->exec_postrun)
1538                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1539
1540         if (exitall_on_terminate)
1541                 fio_terminate_threads(td->groupid);
1542
1543 err:
1544         if (td->error)
1545                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1546                                                         td->verror);
1547
1548         if (o->verify_async)
1549                 verify_async_exit(td);
1550
1551         close_and_free_files(td);
1552         cleanup_io_u(td);
1553         close_ioengine(td);
1554         cgroup_shutdown(td, &cgroup_mnt);
1555
1556         if (o->cpumask_set) {
1557                 int ret = fio_cpuset_exit(&o->cpumask);
1558
1559                 td_verror(td, ret, "fio_cpuset_exit");
1560         }
1561
1562         /*
1563          * do this very late, it will log file closing as well
1564          */
1565         if (o->write_iolog_file)
1566                 write_iolog_close(td);
1567
1568         fio_mutex_remove(td->rusage_sem);
1569         td->rusage_sem = NULL;
1570
1571         fio_mutex_remove(td->mutex);
1572         td->mutex = NULL;
1573
1574         td_set_runstate(td, TD_EXITED);
1575         return (void *) (uintptr_t) td->error;
1576 }
1577
1578
1579 /*
1580  * We cannot pass the td data into a forked process, so attach the td and
1581  * pass it to the thread worker.
1582  */
1583 static int fork_main(int shmid, int offset)
1584 {
1585         struct thread_data *td;
1586         void *data, *ret;
1587
1588 #if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1589         data = shmat(shmid, NULL, 0);
1590         if (data == (void *) -1) {
1591                 int __err = errno;
1592
1593                 perror("shmat");
1594                 return __err;
1595         }
1596 #else
1597         /*
1598          * HP-UX inherits shm mappings?
1599          */
1600         data = threads;
1601 #endif
1602
1603         td = data + offset * sizeof(struct thread_data);
1604         ret = thread_main(td);
1605         shmdt(data);
1606         return (int) (uintptr_t) ret;
1607 }
1608
1609 static void dump_td_info(struct thread_data *td)
1610 {
1611         log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1612                 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1613                         (unsigned long) time_since_now(&td->terminate_time));
1614 }
1615
1616 /*
1617  * Run over the job map and reap the threads that have exited, if any.
1618  */
1619 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1620                          unsigned int *m_rate)
1621 {
1622         struct thread_data *td;
1623         unsigned int cputhreads, realthreads, pending;
1624         int i, status, ret;
1625
1626         /*
1627          * reap exited threads (TD_EXITED -> TD_REAPED)
1628          */
1629         realthreads = pending = cputhreads = 0;
1630         for_each_td(td, i) {
1631                 int flags = 0;
1632
1633                 /*
1634                  * ->io_ops is NULL for a thread that has closed its
1635                  * io engine
1636                  */
1637                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1638                         cputhreads++;
1639                 else
1640                         realthreads++;
1641
1642                 if (!td->pid) {
1643                         pending++;
1644                         continue;
1645                 }
1646                 if (td->runstate == TD_REAPED)
1647                         continue;
1648                 if (td->o.use_thread) {
1649                         if (td->runstate == TD_EXITED) {
1650                                 td_set_runstate(td, TD_REAPED);
1651                                 goto reaped;
1652                         }
1653                         continue;
1654                 }
1655
1656                 flags = WNOHANG;
1657                 if (td->runstate == TD_EXITED)
1658                         flags = 0;
1659
1660                 /*
1661                  * check if someone quit or got killed in an unusual way
1662                  */
1663                 ret = waitpid(td->pid, &status, flags);
1664                 if (ret < 0) {
1665                         if (errno == ECHILD) {
1666                                 log_err("fio: pid=%d disappeared %d\n",
1667                                                 (int) td->pid, td->runstate);
1668                                 td->sig = ECHILD;
1669                                 td_set_runstate(td, TD_REAPED);
1670                                 goto reaped;
1671                         }
1672                         perror("waitpid");
1673                 } else if (ret == td->pid) {
1674                         if (WIFSIGNALED(status)) {
1675                                 int sig = WTERMSIG(status);
1676
1677                                 if (sig != SIGTERM && sig != SIGUSR2)
1678                                         log_err("fio: pid=%d, got signal=%d\n",
1679                                                         (int) td->pid, sig);
1680                                 td->sig = sig;
1681                                 td_set_runstate(td, TD_REAPED);
1682                                 goto reaped;
1683                         }
1684                         if (WIFEXITED(status)) {
1685                                 if (WEXITSTATUS(status) && !td->error)
1686                                         td->error = WEXITSTATUS(status);
1687
1688                                 td_set_runstate(td, TD_REAPED);
1689                                 goto reaped;
1690                         }
1691                 }
1692
1693                 /*
1694                  * If the job is stuck, do a forceful timeout of it and
1695                  * move on.
1696                  */
1697                 if (td->terminate &&
1698                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1699                         dump_td_info(td);
1700                         td_set_runstate(td, TD_REAPED);
1701                         goto reaped;
1702                 }
1703
1704                 /*
1705                  * thread is not dead, continue
1706                  */
1707                 pending++;
1708                 continue;
1709 reaped:
1710                 (*nr_running)--;
1711                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1712                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1713                 if (!td->pid)
1714                         pending--;
1715
1716                 if (td->error)
1717                         exit_value++;
1718
1719                 done_secs += mtime_since_now(&td->epoch) / 1000;
1720                 profile_td_exit(td);
1721         }
1722
1723         if (*nr_running == cputhreads && !pending && realthreads)
1724                 fio_terminate_threads(TERMINATE_ALL);
1725 }
1726
1727 static void do_usleep(unsigned int usecs)
1728 {
1729         check_for_running_stats();
1730         usleep(usecs);
1731 }
1732
1733 /*
1734  * Main function for kicking off and reaping jobs, as needed.
1735  */
1736 static void run_threads(void)
1737 {
1738         struct thread_data *td;
1739         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1740         uint64_t spent;
1741
1742         if (fio_gtod_offload && fio_start_gtod_thread())
1743                 return;
1744
1745         fio_idle_prof_init();
1746
1747         set_sig_handlers();
1748
1749         nr_thread = nr_process = 0;
1750         for_each_td(td, i) {
1751                 if (td->o.use_thread)
1752                         nr_thread++;
1753                 else
1754                         nr_process++;
1755         }
1756
1757         if (output_format == FIO_OUTPUT_NORMAL) {
1758                 log_info("Starting ");
1759                 if (nr_thread)
1760                         log_info("%d thread%s", nr_thread,
1761                                                 nr_thread > 1 ? "s" : "");
1762                 if (nr_process) {
1763                         if (nr_thread)
1764                                 log_info(" and ");
1765                         log_info("%d process%s", nr_process,
1766                                                 nr_process > 1 ? "es" : "");
1767                 }
1768                 log_info("\n");
1769                 log_info_flush();
1770         }
1771
1772         todo = thread_number;
1773         nr_running = 0;
1774         nr_started = 0;
1775         m_rate = t_rate = 0;
1776
1777         for_each_td(td, i) {
1778                 print_status_init(td->thread_number - 1);
1779
1780                 if (!td->o.create_serialize)
1781                         continue;
1782
1783                 /*
1784                  * do file setup here so it happens sequentially,
1785                  * we don't want X number of threads getting their
1786                  * client data interspersed on disk
1787                  */
1788                 if (setup_files(td)) {
1789                         exit_value++;
1790                         if (td->error)
1791                                 log_err("fio: pid=%d, err=%d/%s\n",
1792                                         (int) td->pid, td->error, td->verror);
1793                         td_set_runstate(td, TD_REAPED);
1794                         todo--;
1795                 } else {
1796                         struct fio_file *f;
1797                         unsigned int j;
1798
1799                         /*
1800                          * for sharing to work, each job must always open
1801                          * its own files. so close them, if we opened them
1802                          * for creation
1803                          */
1804                         for_each_file(td, f, j) {
1805                                 if (fio_file_open(f))
1806                                         td_io_close_file(td, f);
1807                         }
1808                 }
1809         }
1810
1811         /* start idle threads before io threads start to run */
1812         fio_idle_prof_start();
1813
1814         set_genesis_time();
1815
1816         while (todo) {
1817                 struct thread_data *map[REAL_MAX_JOBS];
1818                 struct timeval this_start;
1819                 int this_jobs = 0, left;
1820
1821                 /*
1822                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1823                  */
1824                 for_each_td(td, i) {
1825                         if (td->runstate != TD_NOT_CREATED)
1826                                 continue;
1827
1828                         /*
1829                          * never got a chance to start, killed by other
1830                          * thread for some reason
1831                          */
1832                         if (td->terminate) {
1833                                 todo--;
1834                                 continue;
1835                         }
1836
1837                         if (td->o.start_delay) {
1838                                 spent = utime_since_genesis();
1839
1840                                 if (td->o.start_delay > spent)
1841                                         continue;
1842                         }
1843
1844                         if (td->o.stonewall && (nr_started || nr_running)) {
1845                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1846                                                         td->o.name);
1847                                 break;
1848                         }
1849
1850                         init_disk_util(td);
1851
1852                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1853                         td->update_rusage = 0;
1854
1855                         /*
1856                          * Set state to created. Thread will transition
1857                          * to TD_INITIALIZED when it's done setting up.
1858                          */
1859                         td_set_runstate(td, TD_CREATED);
1860                         map[this_jobs++] = td;
1861                         nr_started++;
1862
1863                         if (td->o.use_thread) {
1864                                 int ret;
1865
1866                                 dprint(FD_PROCESS, "will pthread_create\n");
1867                                 ret = pthread_create(&td->thread, NULL,
1868                                                         thread_main, td);
1869                                 if (ret) {
1870                                         log_err("pthread_create: %s\n",
1871                                                         strerror(ret));
1872                                         nr_started--;
1873                                         break;
1874                                 }
1875                                 ret = pthread_detach(td->thread);
1876                                 if (ret)
1877                                         log_err("pthread_detach: %s",
1878                                                         strerror(ret));
1879                         } else {
1880                                 pid_t pid;
1881                                 dprint(FD_PROCESS, "will fork\n");
1882                                 pid = fork();
1883                                 if (!pid) {
1884                                         int ret = fork_main(shm_id, i);
1885
1886                                         _exit(ret);
1887                                 } else if (i == fio_debug_jobno)
1888                                         *fio_debug_jobp = pid;
1889                         }
1890                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1891                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
1892                                 log_err("fio: job startup hung? exiting.\n");
1893                                 fio_terminate_threads(TERMINATE_ALL);
1894                                 fio_abort = 1;
1895                                 nr_started--;
1896                                 break;
1897                         }
1898                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1899                 }
1900
1901                 /*
1902                  * Wait for the started threads to transition to
1903                  * TD_INITIALIZED.
1904                  */
1905                 fio_gettime(&this_start, NULL);
1906                 left = this_jobs;
1907                 while (left && !fio_abort) {
1908                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1909                                 break;
1910
1911                         do_usleep(100000);
1912
1913                         for (i = 0; i < this_jobs; i++) {
1914                                 td = map[i];
1915                                 if (!td)
1916                                         continue;
1917                                 if (td->runstate == TD_INITIALIZED) {
1918                                         map[i] = NULL;
1919                                         left--;
1920                                 } else if (td->runstate >= TD_EXITED) {
1921                                         map[i] = NULL;
1922                                         left--;
1923                                         todo--;
1924                                         nr_running++; /* work-around... */
1925                                 }
1926                         }
1927                 }
1928
1929                 if (left) {
1930                         log_err("fio: %d job%s failed to start\n", left,
1931                                         left > 1 ? "s" : "");
1932                         for (i = 0; i < this_jobs; i++) {
1933                                 td = map[i];
1934                                 if (!td)
1935                                         continue;
1936                                 kill(td->pid, SIGTERM);
1937                         }
1938                         break;
1939                 }
1940
1941                 /*
1942                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1943                  */
1944                 for_each_td(td, i) {
1945                         if (td->runstate != TD_INITIALIZED)
1946                                 continue;
1947
1948                         if (in_ramp_time(td))
1949                                 td_set_runstate(td, TD_RAMP);
1950                         else
1951                                 td_set_runstate(td, TD_RUNNING);
1952                         nr_running++;
1953                         nr_started--;
1954                         m_rate += ddir_rw_sum(td->o.ratemin);
1955                         t_rate += ddir_rw_sum(td->o.rate);
1956                         todo--;
1957                         fio_mutex_up(td->mutex);
1958                 }
1959
1960                 reap_threads(&nr_running, &t_rate, &m_rate);
1961
1962                 if (todo)
1963                         do_usleep(100000);
1964         }
1965
1966         while (nr_running) {
1967                 reap_threads(&nr_running, &t_rate, &m_rate);
1968                 do_usleep(10000);
1969         }
1970
1971         fio_idle_prof_stop();
1972
1973         update_io_ticks();
1974 }
1975
1976 static void wait_for_disk_thread_exit(void)
1977 {
1978         void *ret;
1979
1980         disk_util_start_exit();
1981         pthread_cond_signal(&du_cond);
1982         pthread_join(disk_util_thread, &ret);
1983 }
1984
1985 static void free_disk_util(void)
1986 {
1987         disk_util_prune_entries();
1988
1989         pthread_cond_destroy(&du_cond);
1990 }
1991
1992 static void *disk_thread_main(void *data)
1993 {
1994         int ret = 0;
1995
1996         fio_mutex_up(startup_mutex);
1997
1998         while (!ret) {
1999                 uint64_t sec = DISK_UTIL_MSEC / 1000;
2000                 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2001                 struct timespec ts;
2002                 struct timeval tv;
2003
2004                 gettimeofday(&tv, NULL);
2005                 ts.tv_sec = tv.tv_sec + sec;
2006                 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2007                 if (ts.tv_nsec > 1000000000ULL) {
2008                         ts.tv_nsec -= 1000000000ULL;
2009                         ts.tv_sec++;
2010                 }
2011
2012                 ret = pthread_cond_timedwait(&du_cond, &du_lock, &ts);
2013                 if (ret != ETIMEDOUT) {
2014                         printf("disk thread should exit %d\n", ret);
2015                         break;
2016                 }
2017
2018                 ret = update_io_ticks();
2019
2020                 if (!is_backend)
2021                         print_thread_status();
2022         }
2023
2024         return NULL;
2025 }
2026
2027 static int create_disk_util_thread(void)
2028 {
2029         int ret;
2030
2031         setup_disk_util();
2032
2033         disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2034
2035         pthread_cond_init(&du_cond, NULL);
2036         pthread_mutex_init(&du_lock, NULL);
2037
2038         ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
2039         if (ret) {
2040                 fio_mutex_remove(disk_thread_mutex);
2041                 log_err("Can't create disk util thread: %s\n", strerror(ret));
2042                 return 1;
2043         }
2044
2045         dprint(FD_MUTEX, "wait on startup_mutex\n");
2046         fio_mutex_down(startup_mutex);
2047         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2048         return 0;
2049 }
2050
2051 int fio_backend(void)
2052 {
2053         struct thread_data *td;
2054         int i;
2055
2056         if (exec_profile) {
2057                 if (load_profile(exec_profile))
2058                         return 1;
2059                 free(exec_profile);
2060                 exec_profile = NULL;
2061         }
2062         if (!thread_number)
2063                 return 0;
2064
2065         if (write_bw_log) {
2066                 struct log_params p = {
2067                         .log_type = IO_LOG_TYPE_BW,
2068                 };
2069
2070                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2071                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2072                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2073         }
2074
2075         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2076         if (startup_mutex == NULL)
2077                 return 1;
2078
2079         set_genesis_time();
2080         stat_init();
2081         create_disk_util_thread();
2082
2083         cgroup_list = smalloc(sizeof(*cgroup_list));
2084         INIT_FLIST_HEAD(cgroup_list);
2085
2086         run_threads();
2087
2088         wait_for_disk_thread_exit();
2089
2090         if (!fio_abort) {
2091                 __show_run_stats();
2092                 if (write_bw_log) {
2093                         int i;
2094
2095                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2096                                 struct io_log *log = agg_io_log[i];
2097
2098                                 flush_log(log);
2099                                 free_log(log);
2100                         }
2101                 }
2102         }
2103
2104         for_each_td(td, i)
2105                 fio_options_free(td);
2106
2107         free_disk_util();
2108         cgroup_kill(cgroup_list);
2109         sfree(cgroup_list);
2110         sfree(cgroup_mnt);
2111
2112         fio_mutex_remove(startup_mutex);
2113         fio_mutex_remove(disk_thread_mutex);
2114         stat_exit();
2115         return exit_value;
2116 }