add an example job file for pmemblk
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "workqueue.h"
58 #include "lib/mountcheck.h"
59 #include "rate-submit.h"
60
61 static pthread_t helper_thread;
62 static pthread_mutex_t helper_lock;
63 pthread_cond_t helper_cond;
64 int helper_do_stat = 0;
65
66 static struct fio_mutex *startup_mutex;
67 static struct flist_head *cgroup_list;
68 static char *cgroup_mnt;
69 static int exit_value;
70 static volatile int fio_abort;
71 static unsigned int nr_process = 0;
72 static unsigned int nr_thread = 0;
73
74 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
75
76 int groupid = 0;
77 unsigned int thread_number = 0;
78 unsigned int stat_number = 0;
79 int shm_id = 0;
80 int temp_stall_ts;
81 unsigned long done_secs = 0;
82 volatile int helper_exit = 0;
83
84 #define PAGE_ALIGN(buf) \
85         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
86
87 #define JOB_START_TIMEOUT       (5 * 1000)
88
89 static void sig_int(int sig)
90 {
91         if (threads) {
92                 if (is_backend)
93                         fio_server_got_signal(sig);
94                 else {
95                         log_info("\nfio: terminating on signal %d\n", sig);
96                         log_info_flush();
97                         exit_value = 128;
98                 }
99
100                 fio_terminate_threads(TERMINATE_ALL);
101         }
102 }
103
104 void sig_show_status(int sig)
105 {
106         show_running_run_stats();
107 }
108
109 static void set_sig_handlers(void)
110 {
111         struct sigaction act;
112
113         memset(&act, 0, sizeof(act));
114         act.sa_handler = sig_int;
115         act.sa_flags = SA_RESTART;
116         sigaction(SIGINT, &act, NULL);
117
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_int;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGTERM, &act, NULL);
122
123 /* Windows uses SIGBREAK as a quit signal from other applications */
124 #ifdef WIN32
125         memset(&act, 0, sizeof(act));
126         act.sa_handler = sig_int;
127         act.sa_flags = SA_RESTART;
128         sigaction(SIGBREAK, &act, NULL);
129 #endif
130
131         memset(&act, 0, sizeof(act));
132         act.sa_handler = sig_show_status;
133         act.sa_flags = SA_RESTART;
134         sigaction(SIGUSR1, &act, NULL);
135
136         if (is_backend) {
137                 memset(&act, 0, sizeof(act));
138                 act.sa_handler = sig_int;
139                 act.sa_flags = SA_RESTART;
140                 sigaction(SIGPIPE, &act, NULL);
141         }
142 }
143
144 /*
145  * Check if we are above the minimum rate given.
146  */
147 static bool __check_min_rate(struct thread_data *td, struct timeval *now,
148                              enum fio_ddir ddir)
149 {
150         unsigned long long bytes = 0;
151         unsigned long iops = 0;
152         unsigned long spent;
153         unsigned long rate;
154         unsigned int ratemin = 0;
155         unsigned int rate_iops = 0;
156         unsigned int rate_iops_min = 0;
157
158         assert(ddir_rw(ddir));
159
160         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
161                 return false;
162
163         /*
164          * allow a 2 second settle period in the beginning
165          */
166         if (mtime_since(&td->start, now) < 2000)
167                 return false;
168
169         iops += td->this_io_blocks[ddir];
170         bytes += td->this_io_bytes[ddir];
171         ratemin += td->o.ratemin[ddir];
172         rate_iops += td->o.rate_iops[ddir];
173         rate_iops_min += td->o.rate_iops_min[ddir];
174
175         /*
176          * if rate blocks is set, sample is running
177          */
178         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
179                 spent = mtime_since(&td->lastrate[ddir], now);
180                 if (spent < td->o.ratecycle)
181                         return false;
182
183                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
184                         /*
185                          * check bandwidth specified rate
186                          */
187                         if (bytes < td->rate_bytes[ddir]) {
188                                 log_err("%s: min rate %u not met\n", td->o.name,
189                                                                 ratemin);
190                                 return true;
191                         } else {
192                                 if (spent)
193                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
194                                 else
195                                         rate = 0;
196
197                                 if (rate < ratemin ||
198                                     bytes < td->rate_bytes[ddir]) {
199                                         log_err("%s: min rate %u not met, got"
200                                                 " %luKB/sec\n", td->o.name,
201                                                         ratemin, rate);
202                                         return true;
203                                 }
204                         }
205                 } else {
206                         /*
207                          * checks iops specified rate
208                          */
209                         if (iops < rate_iops) {
210                                 log_err("%s: min iops rate %u not met\n",
211                                                 td->o.name, rate_iops);
212                                 return true;
213                         } else {
214                                 if (spent)
215                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
216                                 else
217                                         rate = 0;
218
219                                 if (rate < rate_iops_min ||
220                                     iops < td->rate_blocks[ddir]) {
221                                         log_err("%s: min iops rate %u not met,"
222                                                 " got %lu\n", td->o.name,
223                                                         rate_iops_min, rate);
224                                         return true;
225                                 }
226                         }
227                 }
228         }
229
230         td->rate_bytes[ddir] = bytes;
231         td->rate_blocks[ddir] = iops;
232         memcpy(&td->lastrate[ddir], now, sizeof(*now));
233         return false;
234 }
235
236 static bool check_min_rate(struct thread_data *td, struct timeval *now)
237 {
238         bool ret = false;
239
240         if (td->bytes_done[DDIR_READ])
241                 ret |= __check_min_rate(td, now, DDIR_READ);
242         if (td->bytes_done[DDIR_WRITE])
243                 ret |= __check_min_rate(td, now, DDIR_WRITE);
244         if (td->bytes_done[DDIR_TRIM])
245                 ret |= __check_min_rate(td, now, DDIR_TRIM);
246
247         return ret;
248 }
249
250 /*
251  * When job exits, we can cancel the in-flight IO if we are using async
252  * io. Attempt to do so.
253  */
254 static void cleanup_pending_aio(struct thread_data *td)
255 {
256         int r;
257
258         /*
259          * get immediately available events, if any
260          */
261         r = io_u_queued_complete(td, 0);
262         if (r < 0)
263                 return;
264
265         /*
266          * now cancel remaining active events
267          */
268         if (td->io_ops->cancel) {
269                 struct io_u *io_u;
270                 int i;
271
272                 io_u_qiter(&td->io_u_all, io_u, i) {
273                         if (io_u->flags & IO_U_F_FLIGHT) {
274                                 r = td->io_ops->cancel(td, io_u);
275                                 if (!r)
276                                         put_io_u(td, io_u);
277                         }
278                 }
279         }
280
281         if (td->cur_depth)
282                 r = io_u_queued_complete(td, td->cur_depth);
283 }
284
285 /*
286  * Helper to handle the final sync of a file. Works just like the normal
287  * io path, just does everything sync.
288  */
289 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
290 {
291         struct io_u *io_u = __get_io_u(td);
292         int ret;
293
294         if (!io_u)
295                 return true;
296
297         io_u->ddir = DDIR_SYNC;
298         io_u->file = f;
299
300         if (td_io_prep(td, io_u)) {
301                 put_io_u(td, io_u);
302                 return true;
303         }
304
305 requeue:
306         ret = td_io_queue(td, io_u);
307         if (ret < 0) {
308                 td_verror(td, io_u->error, "td_io_queue");
309                 put_io_u(td, io_u);
310                 return true;
311         } else if (ret == FIO_Q_QUEUED) {
312                 if (td_io_commit(td))
313                         return true;
314                 if (io_u_queued_complete(td, 1) < 0)
315                         return true;
316         } else if (ret == FIO_Q_COMPLETED) {
317                 if (io_u->error) {
318                         td_verror(td, io_u->error, "td_io_queue");
319                         return true;
320                 }
321
322                 if (io_u_sync_complete(td, io_u) < 0)
323                         return true;
324         } else if (ret == FIO_Q_BUSY) {
325                 if (td_io_commit(td))
326                         return true;
327                 goto requeue;
328         }
329
330         return false;
331 }
332
333 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
334 {
335         int ret;
336
337         if (fio_file_open(f))
338                 return fio_io_sync(td, f);
339
340         if (td_io_open_file(td, f))
341                 return 1;
342
343         ret = fio_io_sync(td, f);
344         td_io_close_file(td, f);
345         return ret;
346 }
347
348 static inline void __update_tv_cache(struct thread_data *td)
349 {
350         fio_gettime(&td->tv_cache, NULL);
351 }
352
353 static inline void update_tv_cache(struct thread_data *td)
354 {
355         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
356                 __update_tv_cache(td);
357 }
358
359 static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
360 {
361         if (in_ramp_time(td))
362                 return false;
363         if (!td->o.timeout)
364                 return false;
365         if (utime_since(&td->epoch, t) >= td->o.timeout)
366                 return true;
367
368         return false;
369 }
370
371 /*
372  * We need to update the runtime consistently in ms, but keep a running
373  * tally of the current elapsed time in microseconds for sub millisecond
374  * updates.
375  */
376 static inline void update_runtime(struct thread_data *td,
377                                   unsigned long long *elapsed_us,
378                                   const enum fio_ddir ddir)
379 {
380         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
381                 return;
382
383         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
384         elapsed_us[ddir] += utime_since_now(&td->start);
385         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
386 }
387
388 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
389                                 int *retptr)
390 {
391         int ret = *retptr;
392
393         if (ret < 0 || td->error) {
394                 int err = td->error;
395                 enum error_type_bit eb;
396
397                 if (ret < 0)
398                         err = -ret;
399
400                 eb = td_error_type(ddir, err);
401                 if (!(td->o.continue_on_error & (1 << eb)))
402                         return true;
403
404                 if (td_non_fatal_error(td, eb, err)) {
405                         /*
406                          * Continue with the I/Os in case of
407                          * a non fatal error.
408                          */
409                         update_error_count(td, err);
410                         td_clear_error(td);
411                         *retptr = 0;
412                         return false;
413                 } else if (td->o.fill_device && err == ENOSPC) {
414                         /*
415                          * We expect to hit this error if
416                          * fill_device option is set.
417                          */
418                         td_clear_error(td);
419                         fio_mark_td_terminate(td);
420                         return true;
421                 } else {
422                         /*
423                          * Stop the I/O in case of a fatal
424                          * error.
425                          */
426                         update_error_count(td, err);
427                         return true;
428                 }
429         }
430
431         return false;
432 }
433
434 static void check_update_rusage(struct thread_data *td)
435 {
436         if (td->update_rusage) {
437                 td->update_rusage = 0;
438                 update_rusage_stat(td);
439                 fio_mutex_up(td->rusage_sem);
440         }
441 }
442
443 static int wait_for_completions(struct thread_data *td, struct timeval *time)
444 {
445         const int full = queue_full(td);
446         int min_evts = 0;
447         int ret;
448
449         /*
450          * if the queue is full, we MUST reap at least 1 event
451          */
452         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
453         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
454                 min_evts = 1;
455
456         if (time && (__should_check_rate(td, DDIR_READ) ||
457             __should_check_rate(td, DDIR_WRITE) ||
458             __should_check_rate(td, DDIR_TRIM)))
459                 fio_gettime(time, NULL);
460
461         do {
462                 ret = io_u_queued_complete(td, min_evts);
463                 if (ret < 0)
464                         break;
465         } while (full && (td->cur_depth > td->o.iodepth_low));
466
467         return ret;
468 }
469
470 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
471                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
472                    struct timeval *comp_time)
473 {
474         int ret2;
475
476         switch (*ret) {
477         case FIO_Q_COMPLETED:
478                 if (io_u->error) {
479                         *ret = -io_u->error;
480                         clear_io_u(td, io_u);
481                 } else if (io_u->resid) {
482                         int bytes = io_u->xfer_buflen - io_u->resid;
483                         struct fio_file *f = io_u->file;
484
485                         if (bytes_issued)
486                                 *bytes_issued += bytes;
487
488                         if (!from_verify)
489                                 trim_io_piece(td, io_u);
490
491                         /*
492                          * zero read, fail
493                          */
494                         if (!bytes) {
495                                 if (!from_verify)
496                                         unlog_io_piece(td, io_u);
497                                 td_verror(td, EIO, "full resid");
498                                 put_io_u(td, io_u);
499                                 break;
500                         }
501
502                         io_u->xfer_buflen = io_u->resid;
503                         io_u->xfer_buf += bytes;
504                         io_u->offset += bytes;
505
506                         if (ddir_rw(io_u->ddir))
507                                 td->ts.short_io_u[io_u->ddir]++;
508
509                         f = io_u->file;
510                         if (io_u->offset == f->real_file_size)
511                                 goto sync_done;
512
513                         requeue_io_u(td, &io_u);
514                 } else {
515 sync_done:
516                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
517                             __should_check_rate(td, DDIR_WRITE) ||
518                             __should_check_rate(td, DDIR_TRIM)))
519                                 fio_gettime(comp_time, NULL);
520
521                         *ret = io_u_sync_complete(td, io_u);
522                         if (*ret < 0)
523                                 break;
524                 }
525
526                 /*
527                  * when doing I/O (not when verifying),
528                  * check for any errors that are to be ignored
529                  */
530                 if (!from_verify)
531                         break;
532
533                 return 0;
534         case FIO_Q_QUEUED:
535                 /*
536                  * if the engine doesn't have a commit hook,
537                  * the io_u is really queued. if it does have such
538                  * a hook, it has to call io_u_queued() itself.
539                  */
540                 if (td->io_ops->commit == NULL)
541                         io_u_queued(td, io_u);
542                 if (bytes_issued)
543                         *bytes_issued += io_u->xfer_buflen;
544                 break;
545         case FIO_Q_BUSY:
546                 if (!from_verify)
547                         unlog_io_piece(td, io_u);
548                 requeue_io_u(td, &io_u);
549                 ret2 = td_io_commit(td);
550                 if (ret2 < 0)
551                         *ret = ret2;
552                 break;
553         default:
554                 assert(*ret < 0);
555                 td_verror(td, -(*ret), "td_io_queue");
556                 break;
557         }
558
559         if (break_on_this_error(td, ddir, ret))
560                 return 1;
561
562         return 0;
563 }
564
565 static inline bool io_in_polling(struct thread_data *td)
566 {
567         return !td->o.iodepth_batch_complete_min &&
568                    !td->o.iodepth_batch_complete_max;
569 }
570
571 /*
572  * The main verify engine. Runs over the writes we previously submitted,
573  * reads the blocks back in, and checks the crc/md5 of the data.
574  */
575 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
576 {
577         struct fio_file *f;
578         struct io_u *io_u;
579         int ret, min_events;
580         unsigned int i;
581
582         dprint(FD_VERIFY, "starting loop\n");
583
584         /*
585          * sync io first and invalidate cache, to make sure we really
586          * read from disk.
587          */
588         for_each_file(td, f, i) {
589                 if (!fio_file_open(f))
590                         continue;
591                 if (fio_io_sync(td, f))
592                         break;
593                 if (file_invalidate_cache(td, f))
594                         break;
595         }
596
597         check_update_rusage(td);
598
599         if (td->error)
600                 return;
601
602         td_set_runstate(td, TD_VERIFYING);
603
604         io_u = NULL;
605         while (!td->terminate) {
606                 enum fio_ddir ddir;
607                 int full;
608
609                 update_tv_cache(td);
610                 check_update_rusage(td);
611
612                 if (runtime_exceeded(td, &td->tv_cache)) {
613                         __update_tv_cache(td);
614                         if (runtime_exceeded(td, &td->tv_cache)) {
615                                 fio_mark_td_terminate(td);
616                                 break;
617                         }
618                 }
619
620                 if (flow_threshold_exceeded(td))
621                         continue;
622
623                 if (!td->o.experimental_verify) {
624                         io_u = __get_io_u(td);
625                         if (!io_u)
626                                 break;
627
628                         if (get_next_verify(td, io_u)) {
629                                 put_io_u(td, io_u);
630                                 break;
631                         }
632
633                         if (td_io_prep(td, io_u)) {
634                                 put_io_u(td, io_u);
635                                 break;
636                         }
637                 } else {
638                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
639                                 break;
640
641                         while ((io_u = get_io_u(td)) != NULL) {
642                                 if (IS_ERR(io_u)) {
643                                         io_u = NULL;
644                                         ret = FIO_Q_BUSY;
645                                         goto reap;
646                                 }
647
648                                 /*
649                                  * We are only interested in the places where
650                                  * we wrote or trimmed IOs. Turn those into
651                                  * reads for verification purposes.
652                                  */
653                                 if (io_u->ddir == DDIR_READ) {
654                                         /*
655                                          * Pretend we issued it for rwmix
656                                          * accounting
657                                          */
658                                         td->io_issues[DDIR_READ]++;
659                                         put_io_u(td, io_u);
660                                         continue;
661                                 } else if (io_u->ddir == DDIR_TRIM) {
662                                         io_u->ddir = DDIR_READ;
663                                         io_u_set(io_u, IO_U_F_TRIMMED);
664                                         break;
665                                 } else if (io_u->ddir == DDIR_WRITE) {
666                                         io_u->ddir = DDIR_READ;
667                                         break;
668                                 } else {
669                                         put_io_u(td, io_u);
670                                         continue;
671                                 }
672                         }
673
674                         if (!io_u)
675                                 break;
676                 }
677
678                 if (verify_state_should_stop(td, io_u)) {
679                         put_io_u(td, io_u);
680                         break;
681                 }
682
683                 if (td->o.verify_async)
684                         io_u->end_io = verify_io_u_async;
685                 else
686                         io_u->end_io = verify_io_u;
687
688                 ddir = io_u->ddir;
689                 if (!td->o.disable_slat)
690                         fio_gettime(&io_u->start_time, NULL);
691
692                 ret = td_io_queue(td, io_u);
693
694                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
695                         break;
696
697                 /*
698                  * if we can queue more, do so. but check if there are
699                  * completed io_u's first. Note that we can get BUSY even
700                  * without IO queued, if the system is resource starved.
701                  */
702 reap:
703                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
704                 if (full || io_in_polling(td))
705                         ret = wait_for_completions(td, NULL);
706
707                 if (ret < 0)
708                         break;
709         }
710
711         check_update_rusage(td);
712
713         if (!td->error) {
714                 min_events = td->cur_depth;
715
716                 if (min_events)
717                         ret = io_u_queued_complete(td, min_events);
718         } else
719                 cleanup_pending_aio(td);
720
721         td_set_runstate(td, TD_RUNNING);
722
723         dprint(FD_VERIFY, "exiting loop\n");
724 }
725
726 static bool exceeds_number_ios(struct thread_data *td)
727 {
728         unsigned long long number_ios;
729
730         if (!td->o.number_ios)
731                 return false;
732
733         number_ios = ddir_rw_sum(td->io_blocks);
734         number_ios += td->io_u_queued + td->io_u_in_flight;
735
736         return number_ios >= (td->o.number_ios * td->loops);
737 }
738
739 static bool io_issue_bytes_exceeded(struct thread_data *td)
740 {
741         unsigned long long bytes, limit;
742
743         if (td_rw(td))
744                 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
745         else if (td_write(td))
746                 bytes = td->io_issue_bytes[DDIR_WRITE];
747         else if (td_read(td))
748                 bytes = td->io_issue_bytes[DDIR_READ];
749         else
750                 bytes = td->io_issue_bytes[DDIR_TRIM];
751
752         if (td->o.io_limit)
753                 limit = td->o.io_limit;
754         else
755                 limit = td->o.size;
756
757         limit *= td->loops;
758         return bytes >= limit || exceeds_number_ios(td);
759 }
760
761 static bool io_complete_bytes_exceeded(struct thread_data *td)
762 {
763         unsigned long long bytes, limit;
764
765         if (td_rw(td))
766                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
767         else if (td_write(td))
768                 bytes = td->this_io_bytes[DDIR_WRITE];
769         else if (td_read(td))
770                 bytes = td->this_io_bytes[DDIR_READ];
771         else
772                 bytes = td->this_io_bytes[DDIR_TRIM];
773
774         if (td->o.io_limit)
775                 limit = td->o.io_limit;
776         else
777                 limit = td->o.size;
778
779         limit *= td->loops;
780         return bytes >= limit || exceeds_number_ios(td);
781 }
782
783 /*
784  * used to calculate the next io time for rate control
785  *
786  */
787 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
788 {
789         uint64_t secs, remainder, bps, bytes, iops;
790
791         assert(!(td->flags & TD_F_CHILD));
792         bytes = td->rate_io_issue_bytes[ddir];
793         bps = td->rate_bps[ddir];
794
795         if (td->o.rate_process == RATE_PROCESS_POISSON) {
796                 uint64_t val;
797                 iops = bps / td->o.bs[ddir];
798                 val = (int64_t) (1000000 / iops) *
799                                 -logf(__rand_0_1(&td->poisson_state));
800                 if (val) {
801                         dprint(FD_RATE, "poisson rate iops=%llu\n",
802                                         (unsigned long long) 1000000 / val);
803                 }
804                 td->last_usec += val;
805                 return td->last_usec;
806         } else if (bps) {
807                 secs = bytes / bps;
808                 remainder = bytes % bps;
809                 return remainder * 1000000 / bps + secs * 1000000;
810         }
811
812         return 0;
813 }
814
815 /*
816  * Main IO worker function. It retrieves io_u's to process and queues
817  * and reaps them, checking for rate and errors along the way.
818  *
819  * Returns number of bytes written and trimmed.
820  */
821 static void do_io(struct thread_data *td, uint64_t *bytes_done)
822 {
823         unsigned int i;
824         int ret = 0;
825         uint64_t total_bytes, bytes_issued = 0;
826
827         for (i = 0; i < DDIR_RWDIR_CNT; i++)
828                 bytes_done[i] = td->bytes_done[i];
829
830         if (in_ramp_time(td))
831                 td_set_runstate(td, TD_RAMP);
832         else
833                 td_set_runstate(td, TD_RUNNING);
834
835         lat_target_init(td);
836
837         total_bytes = td->o.size;
838         /*
839         * Allow random overwrite workloads to write up to io_limit
840         * before starting verification phase as 'size' doesn't apply.
841         */
842         if (td_write(td) && td_random(td) && td->o.norandommap)
843                 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
844         /*
845          * If verify_backlog is enabled, we'll run the verify in this
846          * handler as well. For that case, we may need up to twice the
847          * amount of bytes.
848          */
849         if (td->o.verify != VERIFY_NONE &&
850            (td_write(td) && td->o.verify_backlog))
851                 total_bytes += td->o.size;
852
853         /* In trimwrite mode, each byte is trimmed and then written, so
854          * allow total_bytes to be twice as big */
855         if (td_trimwrite(td))
856                 total_bytes += td->total_io_size;
857
858         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
859                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
860                 td->o.time_based) {
861                 struct timeval comp_time;
862                 struct io_u *io_u;
863                 int full;
864                 enum fio_ddir ddir;
865
866                 check_update_rusage(td);
867
868                 if (td->terminate || td->done)
869                         break;
870
871                 update_tv_cache(td);
872
873                 if (runtime_exceeded(td, &td->tv_cache)) {
874                         __update_tv_cache(td);
875                         if (runtime_exceeded(td, &td->tv_cache)) {
876                                 fio_mark_td_terminate(td);
877                                 break;
878                         }
879                 }
880
881                 if (flow_threshold_exceeded(td))
882                         continue;
883
884                 if (!td->o.time_based && bytes_issued >= total_bytes)
885                         break;
886
887                 io_u = get_io_u(td);
888                 if (IS_ERR_OR_NULL(io_u)) {
889                         int err = PTR_ERR(io_u);
890
891                         io_u = NULL;
892                         if (err == -EBUSY) {
893                                 ret = FIO_Q_BUSY;
894                                 goto reap;
895                         }
896                         if (td->o.latency_target)
897                                 goto reap;
898                         break;
899                 }
900
901                 ddir = io_u->ddir;
902
903                 /*
904                  * Add verification end_io handler if:
905                  *      - Asked to verify (!td_rw(td))
906                  *      - Or the io_u is from our verify list (mixed write/ver)
907                  */
908                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
909                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
910
911                         if (!td->o.verify_pattern_bytes) {
912                                 io_u->rand_seed = __rand(&td->verify_state);
913                                 if (sizeof(int) != sizeof(long *))
914                                         io_u->rand_seed *= __rand(&td->verify_state);
915                         }
916
917                         if (verify_state_should_stop(td, io_u)) {
918                                 put_io_u(td, io_u);
919                                 break;
920                         }
921
922                         if (td->o.verify_async)
923                                 io_u->end_io = verify_io_u_async;
924                         else
925                                 io_u->end_io = verify_io_u;
926                         td_set_runstate(td, TD_VERIFYING);
927                 } else if (in_ramp_time(td))
928                         td_set_runstate(td, TD_RAMP);
929                 else
930                         td_set_runstate(td, TD_RUNNING);
931
932                 /*
933                  * Always log IO before it's issued, so we know the specific
934                  * order of it. The logged unit will track when the IO has
935                  * completed.
936                  */
937                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
938                     td->o.do_verify &&
939                     td->o.verify != VERIFY_NONE &&
940                     !td->o.experimental_verify)
941                         log_io_piece(td, io_u);
942
943                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
944                         const unsigned long blen = io_u->xfer_buflen;
945                         const enum fio_ddir ddir = acct_ddir(io_u);
946
947                         if (td->error)
948                                 break;
949
950                         workqueue_enqueue(&td->io_wq, &io_u->work);
951                         ret = FIO_Q_QUEUED;
952
953                         if (ddir_rw(ddir)) {
954                                 td->io_issues[ddir]++;
955                                 td->io_issue_bytes[ddir] += blen;
956                                 td->rate_io_issue_bytes[ddir] += blen;
957                         }
958
959                         if (should_check_rate(td))
960                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
961
962                 } else {
963                         ret = td_io_queue(td, io_u);
964
965                         if (should_check_rate(td))
966                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
967
968                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
969                                 break;
970
971                         /*
972                          * See if we need to complete some commands. Note that
973                          * we can get BUSY even without IO queued, if the
974                          * system is resource starved.
975                          */
976 reap:
977                         full = queue_full(td) ||
978                                 (ret == FIO_Q_BUSY && td->cur_depth);
979                         if (full || io_in_polling(td))
980                                 ret = wait_for_completions(td, &comp_time);
981                 }
982                 if (ret < 0)
983                         break;
984                 if (!ddir_rw_sum(td->bytes_done) &&
985                     !(td->io_ops->flags & FIO_NOIO))
986                         continue;
987
988                 if (!in_ramp_time(td) && should_check_rate(td)) {
989                         if (check_min_rate(td, &comp_time)) {
990                                 if (exitall_on_terminate || td->o.exitall_error)
991                                         fio_terminate_threads(td->groupid);
992                                 td_verror(td, EIO, "check_min_rate");
993                                 break;
994                         }
995                 }
996                 if (!in_ramp_time(td) && td->o.latency_target)
997                         lat_target_check(td);
998
999                 if (td->o.thinktime) {
1000                         unsigned long long b;
1001
1002                         b = ddir_rw_sum(td->io_blocks);
1003                         if (!(b % td->o.thinktime_blocks)) {
1004                                 int left;
1005
1006                                 io_u_quiesce(td);
1007
1008                                 if (td->o.thinktime_spin)
1009                                         usec_spin(td->o.thinktime_spin);
1010
1011                                 left = td->o.thinktime - td->o.thinktime_spin;
1012                                 if (left)
1013                                         usec_sleep(td, left);
1014                         }
1015                 }
1016         }
1017
1018         check_update_rusage(td);
1019
1020         if (td->trim_entries)
1021                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1022
1023         if (td->o.fill_device && td->error == ENOSPC) {
1024                 td->error = 0;
1025                 fio_mark_td_terminate(td);
1026         }
1027         if (!td->error) {
1028                 struct fio_file *f;
1029
1030                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1031                         workqueue_flush(&td->io_wq);
1032                         i = 0;
1033                 } else
1034                         i = td->cur_depth;
1035
1036                 if (i) {
1037                         ret = io_u_queued_complete(td, i);
1038                         if (td->o.fill_device && td->error == ENOSPC)
1039                                 td->error = 0;
1040                 }
1041
1042                 if (should_fsync(td) && td->o.end_fsync) {
1043                         td_set_runstate(td, TD_FSYNCING);
1044
1045                         for_each_file(td, f, i) {
1046                                 if (!fio_file_fsync(td, f))
1047                                         continue;
1048
1049                                 log_err("fio: end_fsync failed for file %s\n",
1050                                                                 f->file_name);
1051                         }
1052                 }
1053         } else
1054                 cleanup_pending_aio(td);
1055
1056         /*
1057          * stop job if we failed doing any IO
1058          */
1059         if (!ddir_rw_sum(td->this_io_bytes))
1060                 td->done = 1;
1061
1062         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1063                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1064 }
1065
1066 static void cleanup_io_u(struct thread_data *td)
1067 {
1068         struct io_u *io_u;
1069
1070         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1071
1072                 if (td->io_ops->io_u_free)
1073                         td->io_ops->io_u_free(td, io_u);
1074
1075                 fio_memfree(io_u, sizeof(*io_u));
1076         }
1077
1078         free_io_mem(td);
1079
1080         io_u_rexit(&td->io_u_requeues);
1081         io_u_qexit(&td->io_u_freelist);
1082         io_u_qexit(&td->io_u_all);
1083
1084         if (td->last_write_comp)
1085                 sfree(td->last_write_comp);
1086 }
1087
1088 static int init_io_u(struct thread_data *td)
1089 {
1090         struct io_u *io_u;
1091         unsigned int max_bs, min_write;
1092         int cl_align, i, max_units;
1093         int data_xfer = 1, err;
1094         char *p;
1095
1096         max_units = td->o.iodepth;
1097         max_bs = td_max_bs(td);
1098         min_write = td->o.min_bs[DDIR_WRITE];
1099         td->orig_buffer_size = (unsigned long long) max_bs
1100                                         * (unsigned long long) max_units;
1101
1102         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1103                 data_xfer = 0;
1104
1105         err = 0;
1106         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1107         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1108         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1109
1110         if (err) {
1111                 log_err("fio: failed setting up IO queues\n");
1112                 return 1;
1113         }
1114
1115         /*
1116          * if we may later need to do address alignment, then add any
1117          * possible adjustment here so that we don't cause a buffer
1118          * overflow later. this adjustment may be too much if we get
1119          * lucky and the allocator gives us an aligned address.
1120          */
1121         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1122             (td->io_ops->flags & FIO_RAWIO))
1123                 td->orig_buffer_size += page_mask + td->o.mem_align;
1124
1125         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1126                 unsigned long bs;
1127
1128                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1129                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1130         }
1131
1132         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1133                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1134                 return 1;
1135         }
1136
1137         if (data_xfer && allocate_io_mem(td))
1138                 return 1;
1139
1140         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1141             (td->io_ops->flags & FIO_RAWIO))
1142                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1143         else
1144                 p = td->orig_buffer;
1145
1146         cl_align = os_cache_line_size();
1147
1148         for (i = 0; i < max_units; i++) {
1149                 void *ptr;
1150
1151                 if (td->terminate)
1152                         return 1;
1153
1154                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1155                 if (!ptr) {
1156                         log_err("fio: unable to allocate aligned memory\n");
1157                         break;
1158                 }
1159
1160                 io_u = ptr;
1161                 memset(io_u, 0, sizeof(*io_u));
1162                 INIT_FLIST_HEAD(&io_u->verify_list);
1163                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1164
1165                 if (data_xfer) {
1166                         io_u->buf = p;
1167                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1168
1169                         if (td_write(td))
1170                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1171                         if (td_write(td) && td->o.verify_pattern_bytes) {
1172                                 /*
1173                                  * Fill the buffer with the pattern if we are
1174                                  * going to be doing writes.
1175                                  */
1176                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1177                         }
1178                 }
1179
1180                 io_u->index = i;
1181                 io_u->flags = IO_U_F_FREE;
1182                 io_u_qpush(&td->io_u_freelist, io_u);
1183
1184                 /*
1185                  * io_u never leaves this stack, used for iteration of all
1186                  * io_u buffers.
1187                  */
1188                 io_u_qpush(&td->io_u_all, io_u);
1189
1190                 if (td->io_ops->io_u_init) {
1191                         int ret = td->io_ops->io_u_init(td, io_u);
1192
1193                         if (ret) {
1194                                 log_err("fio: failed to init engine data: %d\n", ret);
1195                                 return 1;
1196                         }
1197                 }
1198
1199                 p += max_bs;
1200         }
1201
1202         if (td->o.verify != VERIFY_NONE) {
1203                 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1204                 if (!td->last_write_comp) {
1205                         log_err("fio: failed to alloc write comp data\n");
1206                         return 1;
1207                 }
1208         }
1209
1210         return 0;
1211 }
1212
1213 static int switch_ioscheduler(struct thread_data *td)
1214 {
1215         char tmp[256], tmp2[128];
1216         FILE *f;
1217         int ret;
1218
1219         if (td->io_ops->flags & FIO_DISKLESSIO)
1220                 return 0;
1221
1222         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1223
1224         f = fopen(tmp, "r+");
1225         if (!f) {
1226                 if (errno == ENOENT) {
1227                         log_err("fio: os or kernel doesn't support IO scheduler"
1228                                 " switching\n");
1229                         return 0;
1230                 }
1231                 td_verror(td, errno, "fopen iosched");
1232                 return 1;
1233         }
1234
1235         /*
1236          * Set io scheduler.
1237          */
1238         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1239         if (ferror(f) || ret != 1) {
1240                 td_verror(td, errno, "fwrite");
1241                 fclose(f);
1242                 return 1;
1243         }
1244
1245         rewind(f);
1246
1247         /*
1248          * Read back and check that the selected scheduler is now the default.
1249          */
1250         memset(tmp, 0, sizeof(tmp));
1251         ret = fread(tmp, sizeof(tmp), 1, f);
1252         if (ferror(f) || ret < 0) {
1253                 td_verror(td, errno, "fread");
1254                 fclose(f);
1255                 return 1;
1256         }
1257         /*
1258          * either a list of io schedulers or "none\n" is expected.
1259          */
1260         tmp[strlen(tmp) - 1] = '\0';
1261
1262
1263         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1264         if (!strstr(tmp, tmp2)) {
1265                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1266                 td_verror(td, EINVAL, "iosched_switch");
1267                 fclose(f);
1268                 return 1;
1269         }
1270
1271         fclose(f);
1272         return 0;
1273 }
1274
1275 static bool keep_running(struct thread_data *td)
1276 {
1277         unsigned long long limit;
1278
1279         if (td->done)
1280                 return false;
1281         if (td->o.time_based)
1282                 return true;
1283         if (td->o.loops) {
1284                 td->o.loops--;
1285                 return true;
1286         }
1287         if (exceeds_number_ios(td))
1288                 return false;
1289
1290         if (td->o.io_limit)
1291                 limit = td->o.io_limit;
1292         else
1293                 limit = td->o.size;
1294
1295         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1296                 uint64_t diff;
1297
1298                 /*
1299                  * If the difference is less than the minimum IO size, we
1300                  * are done.
1301                  */
1302                 diff = limit - ddir_rw_sum(td->io_bytes);
1303                 if (diff < td_max_bs(td))
1304                         return false;
1305
1306                 if (fio_files_done(td) && !td->o.io_limit)
1307                         return false;
1308
1309                 return true;
1310         }
1311
1312         return false;
1313 }
1314
1315 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1316 {
1317         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1318         int ret;
1319         char *str;
1320
1321         str = malloc(newlen);
1322         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1323
1324         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1325         ret = system(str);
1326         if (ret == -1)
1327                 log_err("fio: exec of cmd <%s> failed\n", str);
1328
1329         free(str);
1330         return ret;
1331 }
1332
1333 /*
1334  * Dry run to compute correct state of numberio for verification.
1335  */
1336 static uint64_t do_dry_run(struct thread_data *td)
1337 {
1338         td_set_runstate(td, TD_RUNNING);
1339
1340         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1341                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1342                 struct io_u *io_u;
1343                 int ret;
1344
1345                 if (td->terminate || td->done)
1346                         break;
1347
1348                 io_u = get_io_u(td);
1349                 if (!io_u)
1350                         break;
1351
1352                 io_u_set(io_u, IO_U_F_FLIGHT);
1353                 io_u->error = 0;
1354                 io_u->resid = 0;
1355                 if (ddir_rw(acct_ddir(io_u)))
1356                         td->io_issues[acct_ddir(io_u)]++;
1357                 if (ddir_rw(io_u->ddir)) {
1358                         io_u_mark_depth(td, 1);
1359                         td->ts.total_io_u[io_u->ddir]++;
1360                 }
1361
1362                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1363                     td->o.do_verify &&
1364                     td->o.verify != VERIFY_NONE &&
1365                     !td->o.experimental_verify)
1366                         log_io_piece(td, io_u);
1367
1368                 ret = io_u_sync_complete(td, io_u);
1369                 (void) ret;
1370         }
1371
1372         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1373 }
1374
1375 struct fork_data {
1376         struct thread_data *td;
1377         struct sk_out *sk_out;
1378 };
1379
1380 /*
1381  * Entry point for the thread based jobs. The process based jobs end up
1382  * here as well, after a little setup.
1383  */
1384 static void *thread_main(void *data)
1385 {
1386         struct fork_data *fd = data;
1387         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1388         struct thread_data *td = fd->td;
1389         struct thread_options *o = &td->o;
1390         struct sk_out *sk_out = fd->sk_out;
1391         pthread_condattr_t attr;
1392         int clear_state;
1393         int ret;
1394
1395         sk_out_assign(sk_out);
1396         free(fd);
1397
1398         if (!o->use_thread) {
1399                 setsid();
1400                 td->pid = getpid();
1401         } else
1402                 td->pid = gettid();
1403
1404         fio_local_clock_init(o->use_thread);
1405
1406         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1407
1408         if (is_backend)
1409                 fio_server_send_start(td);
1410
1411         INIT_FLIST_HEAD(&td->io_log_list);
1412         INIT_FLIST_HEAD(&td->io_hist_list);
1413         INIT_FLIST_HEAD(&td->verify_list);
1414         INIT_FLIST_HEAD(&td->trim_list);
1415         INIT_FLIST_HEAD(&td->next_rand_list);
1416         pthread_mutex_init(&td->io_u_lock, NULL);
1417         td->io_hist_tree = RB_ROOT;
1418
1419         pthread_condattr_init(&attr);
1420         pthread_cond_init(&td->verify_cond, &attr);
1421         pthread_cond_init(&td->free_cond, &attr);
1422
1423         td_set_runstate(td, TD_INITIALIZED);
1424         dprint(FD_MUTEX, "up startup_mutex\n");
1425         fio_mutex_up(startup_mutex);
1426         dprint(FD_MUTEX, "wait on td->mutex\n");
1427         fio_mutex_down(td->mutex);
1428         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1429
1430         /*
1431          * A new gid requires privilege, so we need to do this before setting
1432          * the uid.
1433          */
1434         if (o->gid != -1U && setgid(o->gid)) {
1435                 td_verror(td, errno, "setgid");
1436                 goto err;
1437         }
1438         if (o->uid != -1U && setuid(o->uid)) {
1439                 td_verror(td, errno, "setuid");
1440                 goto err;
1441         }
1442
1443         /*
1444          * If we have a gettimeofday() thread, make sure we exclude that
1445          * thread from this job
1446          */
1447         if (o->gtod_cpu)
1448                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1449
1450         /*
1451          * Set affinity first, in case it has an impact on the memory
1452          * allocations.
1453          */
1454         if (fio_option_is_set(o, cpumask)) {
1455                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1456                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1457                         if (!ret) {
1458                                 log_err("fio: no CPUs set\n");
1459                                 log_err("fio: Try increasing number of available CPUs\n");
1460                                 td_verror(td, EINVAL, "cpus_split");
1461                                 goto err;
1462                         }
1463                 }
1464                 ret = fio_setaffinity(td->pid, o->cpumask);
1465                 if (ret == -1) {
1466                         td_verror(td, errno, "cpu_set_affinity");
1467                         goto err;
1468                 }
1469         }
1470
1471 #ifdef CONFIG_LIBNUMA
1472         /* numa node setup */
1473         if (fio_option_is_set(o, numa_cpunodes) ||
1474             fio_option_is_set(o, numa_memnodes)) {
1475                 struct bitmask *mask;
1476
1477                 if (numa_available() < 0) {
1478                         td_verror(td, errno, "Does not support NUMA API\n");
1479                         goto err;
1480                 }
1481
1482                 if (fio_option_is_set(o, numa_cpunodes)) {
1483                         mask = numa_parse_nodestring(o->numa_cpunodes);
1484                         ret = numa_run_on_node_mask(mask);
1485                         numa_free_nodemask(mask);
1486                         if (ret == -1) {
1487                                 td_verror(td, errno, \
1488                                         "numa_run_on_node_mask failed\n");
1489                                 goto err;
1490                         }
1491                 }
1492
1493                 if (fio_option_is_set(o, numa_memnodes)) {
1494                         mask = NULL;
1495                         if (o->numa_memnodes)
1496                                 mask = numa_parse_nodestring(o->numa_memnodes);
1497
1498                         switch (o->numa_mem_mode) {
1499                         case MPOL_INTERLEAVE:
1500                                 numa_set_interleave_mask(mask);
1501                                 break;
1502                         case MPOL_BIND:
1503                                 numa_set_membind(mask);
1504                                 break;
1505                         case MPOL_LOCAL:
1506                                 numa_set_localalloc();
1507                                 break;
1508                         case MPOL_PREFERRED:
1509                                 numa_set_preferred(o->numa_mem_prefer_node);
1510                                 break;
1511                         case MPOL_DEFAULT:
1512                         default:
1513                                 break;
1514                         }
1515
1516                         if (mask)
1517                                 numa_free_nodemask(mask);
1518
1519                 }
1520         }
1521 #endif
1522
1523         if (fio_pin_memory(td))
1524                 goto err;
1525
1526         /*
1527          * May alter parameters that init_io_u() will use, so we need to
1528          * do this first.
1529          */
1530         if (init_iolog(td))
1531                 goto err;
1532
1533         if (init_io_u(td))
1534                 goto err;
1535
1536         if (o->verify_async && verify_async_init(td))
1537                 goto err;
1538
1539         if (fio_option_is_set(o, ioprio) ||
1540             fio_option_is_set(o, ioprio_class)) {
1541                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1542                 if (ret == -1) {
1543                         td_verror(td, errno, "ioprio_set");
1544                         goto err;
1545                 }
1546         }
1547
1548         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1549                 goto err;
1550
1551         errno = 0;
1552         if (nice(o->nice) == -1 && errno != 0) {
1553                 td_verror(td, errno, "nice");
1554                 goto err;
1555         }
1556
1557         if (o->ioscheduler && switch_ioscheduler(td))
1558                 goto err;
1559
1560         if (!o->create_serialize && setup_files(td))
1561                 goto err;
1562
1563         if (td_io_init(td))
1564                 goto err;
1565
1566         if (init_random_map(td))
1567                 goto err;
1568
1569         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1570                 goto err;
1571
1572         if (o->pre_read) {
1573                 if (pre_read_files(td) < 0)
1574                         goto err;
1575         }
1576
1577         if (iolog_compress_init(td, sk_out))
1578                 goto err;
1579
1580         fio_verify_init(td);
1581
1582         if (rate_submit_init(td, sk_out))
1583                 goto err;
1584
1585         fio_gettime(&td->epoch, NULL);
1586         fio_getrusage(&td->ru_start);
1587         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1588         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1589
1590         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1591                         o->ratemin[DDIR_TRIM]) {
1592                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1593                                         sizeof(td->bw_sample_time));
1594                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1595                                         sizeof(td->bw_sample_time));
1596                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1597                                         sizeof(td->bw_sample_time));
1598         }
1599
1600         clear_state = 0;
1601         while (keep_running(td)) {
1602                 uint64_t verify_bytes;
1603
1604                 fio_gettime(&td->start, NULL);
1605                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1606
1607                 if (clear_state)
1608                         clear_io_state(td, 0);
1609
1610                 prune_io_piece_log(td);
1611
1612                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1613                         verify_bytes = do_dry_run(td);
1614                 else {
1615                         uint64_t bytes_done[DDIR_RWDIR_CNT];
1616
1617                         do_io(td, bytes_done);
1618
1619                         if (!ddir_rw_sum(bytes_done)) {
1620                                 fio_mark_td_terminate(td);
1621                                 verify_bytes = 0;
1622                         } else {
1623                                 verify_bytes = bytes_done[DDIR_WRITE] +
1624                                                 bytes_done[DDIR_TRIM];
1625                         }
1626                 }
1627
1628                 clear_state = 1;
1629
1630                 /*
1631                  * Make sure we've successfully updated the rusage stats
1632                  * before waiting on the stat mutex. Otherwise we could have
1633                  * the stat thread holding stat mutex and waiting for
1634                  * the rusage_sem, which would never get upped because
1635                  * this thread is waiting for the stat mutex.
1636                  */
1637                 check_update_rusage(td);
1638
1639                 fio_mutex_down(stat_mutex);
1640                 if (td_read(td) && td->io_bytes[DDIR_READ])
1641                         update_runtime(td, elapsed_us, DDIR_READ);
1642                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1643                         update_runtime(td, elapsed_us, DDIR_WRITE);
1644                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1645                         update_runtime(td, elapsed_us, DDIR_TRIM);
1646                 fio_gettime(&td->start, NULL);
1647                 fio_mutex_up(stat_mutex);
1648
1649                 if (td->error || td->terminate)
1650                         break;
1651
1652                 if (!o->do_verify ||
1653                     o->verify == VERIFY_NONE ||
1654                     (td->io_ops->flags & FIO_UNIDIR))
1655                         continue;
1656
1657                 clear_io_state(td, 0);
1658
1659                 fio_gettime(&td->start, NULL);
1660
1661                 do_verify(td, verify_bytes);
1662
1663                 /*
1664                  * See comment further up for why this is done here.
1665                  */
1666                 check_update_rusage(td);
1667
1668                 fio_mutex_down(stat_mutex);
1669                 update_runtime(td, elapsed_us, DDIR_READ);
1670                 fio_gettime(&td->start, NULL);
1671                 fio_mutex_up(stat_mutex);
1672
1673                 if (td->error || td->terminate)
1674                         break;
1675         }
1676
1677         update_rusage_stat(td);
1678         td->ts.total_run_time = mtime_since_now(&td->epoch);
1679         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1680         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1681         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1682
1683         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1684             (td->o.verify != VERIFY_NONE && td_write(td)))
1685                 verify_save_state(td->thread_number);
1686
1687         fio_unpin_memory(td);
1688
1689         fio_writeout_logs(td);
1690
1691         iolog_compress_exit(td);
1692         rate_submit_exit(td);
1693
1694         if (o->exec_postrun)
1695                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1696
1697         if (exitall_on_terminate || (o->exitall_error && td->error))
1698                 fio_terminate_threads(td->groupid);
1699
1700 err:
1701         if (td->error)
1702                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1703                                                         td->verror);
1704
1705         if (o->verify_async)
1706                 verify_async_exit(td);
1707
1708         close_and_free_files(td);
1709         cleanup_io_u(td);
1710         close_ioengine(td);
1711         cgroup_shutdown(td, &cgroup_mnt);
1712         verify_free_state(td);
1713
1714         if (td->zone_state_index) {
1715                 int i;
1716
1717                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1718                         free(td->zone_state_index[i]);
1719                 free(td->zone_state_index);
1720                 td->zone_state_index = NULL;
1721         }
1722
1723         if (fio_option_is_set(o, cpumask)) {
1724                 ret = fio_cpuset_exit(&o->cpumask);
1725                 if (ret)
1726                         td_verror(td, ret, "fio_cpuset_exit");
1727         }
1728
1729         /*
1730          * do this very late, it will log file closing as well
1731          */
1732         if (o->write_iolog_file)
1733                 write_iolog_close(td);
1734
1735         fio_mutex_remove(td->mutex);
1736         td->mutex = NULL;
1737
1738         td_set_runstate(td, TD_EXITED);
1739
1740         /*
1741          * Do this last after setting our runstate to exited, so we
1742          * know that the stat thread is signaled.
1743          */
1744         check_update_rusage(td);
1745
1746         sk_out_drop();
1747         return (void *) (uintptr_t) td->error;
1748 }
1749
1750
1751 /*
1752  * We cannot pass the td data into a forked process, so attach the td and
1753  * pass it to the thread worker.
1754  */
1755 static int fork_main(struct sk_out *sk_out, int shmid, int offset)
1756 {
1757         struct fork_data *fd;
1758         void *data, *ret;
1759
1760 #if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1761         data = shmat(shmid, NULL, 0);
1762         if (data == (void *) -1) {
1763                 int __err = errno;
1764
1765                 perror("shmat");
1766                 return __err;
1767         }
1768 #else
1769         /*
1770          * HP-UX inherits shm mappings?
1771          */
1772         data = threads;
1773 #endif
1774
1775         fd = calloc(1, sizeof(*fd));
1776         fd->td = data + offset * sizeof(struct thread_data);
1777         fd->sk_out = sk_out;
1778         ret = thread_main(fd);
1779         shmdt(data);
1780         return (int) (uintptr_t) ret;
1781 }
1782
1783 static void dump_td_info(struct thread_data *td)
1784 {
1785         log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1786                 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1787                         (unsigned long) time_since_now(&td->terminate_time));
1788 }
1789
1790 /*
1791  * Run over the job map and reap the threads that have exited, if any.
1792  */
1793 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1794                          unsigned int *m_rate)
1795 {
1796         struct thread_data *td;
1797         unsigned int cputhreads, realthreads, pending;
1798         int i, status, ret;
1799
1800         /*
1801          * reap exited threads (TD_EXITED -> TD_REAPED)
1802          */
1803         realthreads = pending = cputhreads = 0;
1804         for_each_td(td, i) {
1805                 int flags = 0;
1806
1807                 /*
1808                  * ->io_ops is NULL for a thread that has closed its
1809                  * io engine
1810                  */
1811                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1812                         cputhreads++;
1813                 else
1814                         realthreads++;
1815
1816                 if (!td->pid) {
1817                         pending++;
1818                         continue;
1819                 }
1820                 if (td->runstate == TD_REAPED)
1821                         continue;
1822                 if (td->o.use_thread) {
1823                         if (td->runstate == TD_EXITED) {
1824                                 td_set_runstate(td, TD_REAPED);
1825                                 goto reaped;
1826                         }
1827                         continue;
1828                 }
1829
1830                 flags = WNOHANG;
1831                 if (td->runstate == TD_EXITED)
1832                         flags = 0;
1833
1834                 /*
1835                  * check if someone quit or got killed in an unusual way
1836                  */
1837                 ret = waitpid(td->pid, &status, flags);
1838                 if (ret < 0) {
1839                         if (errno == ECHILD) {
1840                                 log_err("fio: pid=%d disappeared %d\n",
1841                                                 (int) td->pid, td->runstate);
1842                                 td->sig = ECHILD;
1843                                 td_set_runstate(td, TD_REAPED);
1844                                 goto reaped;
1845                         }
1846                         perror("waitpid");
1847                 } else if (ret == td->pid) {
1848                         if (WIFSIGNALED(status)) {
1849                                 int sig = WTERMSIG(status);
1850
1851                                 if (sig != SIGTERM && sig != SIGUSR2)
1852                                         log_err("fio: pid=%d, got signal=%d\n",
1853                                                         (int) td->pid, sig);
1854                                 td->sig = sig;
1855                                 td_set_runstate(td, TD_REAPED);
1856                                 goto reaped;
1857                         }
1858                         if (WIFEXITED(status)) {
1859                                 if (WEXITSTATUS(status) && !td->error)
1860                                         td->error = WEXITSTATUS(status);
1861
1862                                 td_set_runstate(td, TD_REAPED);
1863                                 goto reaped;
1864                         }
1865                 }
1866
1867                 /*
1868                  * If the job is stuck, do a forceful timeout of it and
1869                  * move on.
1870                  */
1871                 if (td->terminate &&
1872                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1873                         dump_td_info(td);
1874                         td_set_runstate(td, TD_REAPED);
1875                         goto reaped;
1876                 }
1877
1878                 /*
1879                  * thread is not dead, continue
1880                  */
1881                 pending++;
1882                 continue;
1883 reaped:
1884                 (*nr_running)--;
1885                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1886                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1887                 if (!td->pid)
1888                         pending--;
1889
1890                 if (td->error)
1891                         exit_value++;
1892
1893                 done_secs += mtime_since_now(&td->epoch) / 1000;
1894                 profile_td_exit(td);
1895         }
1896
1897         if (*nr_running == cputhreads && !pending && realthreads)
1898                 fio_terminate_threads(TERMINATE_ALL);
1899 }
1900
1901 static bool __check_trigger_file(void)
1902 {
1903         struct stat sb;
1904
1905         if (!trigger_file)
1906                 return false;
1907
1908         if (stat(trigger_file, &sb))
1909                 return false;
1910
1911         if (unlink(trigger_file) < 0)
1912                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1913                                                         strerror(errno));
1914
1915         return true;
1916 }
1917
1918 static bool trigger_timedout(void)
1919 {
1920         if (trigger_timeout)
1921                 return time_since_genesis() >= trigger_timeout;
1922
1923         return false;
1924 }
1925
1926 void exec_trigger(const char *cmd)
1927 {
1928         int ret;
1929
1930         if (!cmd)
1931                 return;
1932
1933         ret = system(cmd);
1934         if (ret == -1)
1935                 log_err("fio: failed executing %s trigger\n", cmd);
1936 }
1937
1938 void check_trigger_file(void)
1939 {
1940         if (__check_trigger_file() || trigger_timedout()) {
1941                 if (nr_clients)
1942                         fio_clients_send_trigger(trigger_remote_cmd);
1943                 else {
1944                         verify_save_state(IO_LIST_ALL);
1945                         fio_terminate_threads(TERMINATE_ALL);
1946                         exec_trigger(trigger_cmd);
1947                 }
1948         }
1949 }
1950
1951 static int fio_verify_load_state(struct thread_data *td)
1952 {
1953         int ret;
1954
1955         if (!td->o.verify_state)
1956                 return 0;
1957
1958         if (is_backend) {
1959                 void *data;
1960                 int ver;
1961
1962                 ret = fio_server_get_verify_state(td->o.name,
1963                                         td->thread_number - 1, &data, &ver);
1964                 if (!ret)
1965                         verify_convert_assign_state(td, data, ver);
1966         } else
1967                 ret = verify_load_state(td, "local");
1968
1969         return ret;
1970 }
1971
1972 static void do_usleep(unsigned int usecs)
1973 {
1974         check_for_running_stats();
1975         check_trigger_file();
1976         usleep(usecs);
1977 }
1978
1979 static bool check_mount_writes(struct thread_data *td)
1980 {
1981         struct fio_file *f;
1982         unsigned int i;
1983
1984         if (!td_write(td) || td->o.allow_mounted_write)
1985                 return false;
1986
1987         for_each_file(td, f, i) {
1988                 if (f->filetype != FIO_TYPE_BD)
1989                         continue;
1990                 if (device_is_mounted(f->file_name))
1991                         goto mounted;
1992         }
1993
1994         return false;
1995 mounted:
1996         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
1997         return true;
1998 }
1999
2000 static bool waitee_running(struct thread_data *me)
2001 {
2002         const char *waitee = me->o.wait_for;
2003         const char *self = me->o.name;
2004         struct thread_data *td;
2005         int i;
2006
2007         if (!waitee)
2008                 return false;
2009
2010         for_each_td(td, i) {
2011                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2012                         continue;
2013
2014                 if (td->runstate < TD_EXITED) {
2015                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2016                                         self, td->o.name,
2017                                         runstate_to_name(td->runstate));
2018                         return true;
2019                 }
2020         }
2021
2022         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2023         return false;
2024 }
2025
2026 /*
2027  * Main function for kicking off and reaping jobs, as needed.
2028  */
2029 static void run_threads(struct sk_out *sk_out)
2030 {
2031         struct thread_data *td;
2032         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2033         uint64_t spent;
2034
2035         if (fio_gtod_offload && fio_start_gtod_thread())
2036                 return;
2037
2038         fio_idle_prof_init();
2039
2040         set_sig_handlers();
2041
2042         nr_thread = nr_process = 0;
2043         for_each_td(td, i) {
2044                 if (check_mount_writes(td))
2045                         return;
2046                 if (td->o.use_thread)
2047                         nr_thread++;
2048                 else
2049                         nr_process++;
2050         }
2051
2052         if (output_format & FIO_OUTPUT_NORMAL) {
2053                 log_info("Starting ");
2054                 if (nr_thread)
2055                         log_info("%d thread%s", nr_thread,
2056                                                 nr_thread > 1 ? "s" : "");
2057                 if (nr_process) {
2058                         if (nr_thread)
2059                                 log_info(" and ");
2060                         log_info("%d process%s", nr_process,
2061                                                 nr_process > 1 ? "es" : "");
2062                 }
2063                 log_info("\n");
2064                 log_info_flush();
2065         }
2066
2067         todo = thread_number;
2068         nr_running = 0;
2069         nr_started = 0;
2070         m_rate = t_rate = 0;
2071
2072         for_each_td(td, i) {
2073                 print_status_init(td->thread_number - 1);
2074
2075                 if (!td->o.create_serialize)
2076                         continue;
2077
2078                 if (fio_verify_load_state(td))
2079                         goto reap;
2080
2081                 /*
2082                  * do file setup here so it happens sequentially,
2083                  * we don't want X number of threads getting their
2084                  * client data interspersed on disk
2085                  */
2086                 if (setup_files(td)) {
2087 reap:
2088                         exit_value++;
2089                         if (td->error)
2090                                 log_err("fio: pid=%d, err=%d/%s\n",
2091                                         (int) td->pid, td->error, td->verror);
2092                         td_set_runstate(td, TD_REAPED);
2093                         todo--;
2094                 } else {
2095                         struct fio_file *f;
2096                         unsigned int j;
2097
2098                         /*
2099                          * for sharing to work, each job must always open
2100                          * its own files. so close them, if we opened them
2101                          * for creation
2102                          */
2103                         for_each_file(td, f, j) {
2104                                 if (fio_file_open(f))
2105                                         td_io_close_file(td, f);
2106                         }
2107                 }
2108         }
2109
2110         /* start idle threads before io threads start to run */
2111         fio_idle_prof_start();
2112
2113         set_genesis_time();
2114
2115         while (todo) {
2116                 struct thread_data *map[REAL_MAX_JOBS];
2117                 struct timeval this_start;
2118                 int this_jobs = 0, left;
2119
2120                 /*
2121                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2122                  */
2123                 for_each_td(td, i) {
2124                         if (td->runstate != TD_NOT_CREATED)
2125                                 continue;
2126
2127                         /*
2128                          * never got a chance to start, killed by other
2129                          * thread for some reason
2130                          */
2131                         if (td->terminate) {
2132                                 todo--;
2133                                 continue;
2134                         }
2135
2136                         if (td->o.start_delay) {
2137                                 spent = utime_since_genesis();
2138
2139                                 if (td->o.start_delay > spent)
2140                                         continue;
2141                         }
2142
2143                         if (td->o.stonewall && (nr_started || nr_running)) {
2144                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2145                                                         td->o.name);
2146                                 break;
2147                         }
2148
2149                         if (waitee_running(td)) {
2150                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2151                                                 td->o.name, td->o.wait_for);
2152                                 continue;
2153                         }
2154
2155                         init_disk_util(td);
2156
2157                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2158                         td->update_rusage = 0;
2159
2160                         /*
2161                          * Set state to created. Thread will transition
2162                          * to TD_INITIALIZED when it's done setting up.
2163                          */
2164                         td_set_runstate(td, TD_CREATED);
2165                         map[this_jobs++] = td;
2166                         nr_started++;
2167
2168                         if (td->o.use_thread) {
2169                                 struct fork_data *fd;
2170                                 int ret;
2171
2172                                 fd = calloc(1, sizeof(*fd));
2173                                 fd->td = td;
2174                                 fd->sk_out = sk_out;
2175
2176                                 dprint(FD_PROCESS, "will pthread_create\n");
2177                                 ret = pthread_create(&td->thread, NULL,
2178                                                         thread_main, fd);
2179                                 if (ret) {
2180                                         log_err("pthread_create: %s\n",
2181                                                         strerror(ret));
2182                                         free(fd);
2183                                         nr_started--;
2184                                         break;
2185                                 }
2186                                 ret = pthread_detach(td->thread);
2187                                 if (ret)
2188                                         log_err("pthread_detach: %s",
2189                                                         strerror(ret));
2190                         } else {
2191                                 pid_t pid;
2192                                 dprint(FD_PROCESS, "will fork\n");
2193                                 pid = fork();
2194                                 if (!pid) {
2195                                         int ret = fork_main(sk_out, shm_id, i);
2196
2197                                         _exit(ret);
2198                                 } else if (i == fio_debug_jobno)
2199                                         *fio_debug_jobp = pid;
2200                         }
2201                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2202                         if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2203                                 log_err("fio: job startup hung? exiting.\n");
2204                                 fio_terminate_threads(TERMINATE_ALL);
2205                                 fio_abort = 1;
2206                                 nr_started--;
2207                                 break;
2208                         }
2209                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2210                 }
2211
2212                 /*
2213                  * Wait for the started threads to transition to
2214                  * TD_INITIALIZED.
2215                  */
2216                 fio_gettime(&this_start, NULL);
2217                 left = this_jobs;
2218                 while (left && !fio_abort) {
2219                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2220                                 break;
2221
2222                         do_usleep(100000);
2223
2224                         for (i = 0; i < this_jobs; i++) {
2225                                 td = map[i];
2226                                 if (!td)
2227                                         continue;
2228                                 if (td->runstate == TD_INITIALIZED) {
2229                                         map[i] = NULL;
2230                                         left--;
2231                                 } else if (td->runstate >= TD_EXITED) {
2232                                         map[i] = NULL;
2233                                         left--;
2234                                         todo--;
2235                                         nr_running++; /* work-around... */
2236                                 }
2237                         }
2238                 }
2239
2240                 if (left) {
2241                         log_err("fio: %d job%s failed to start\n", left,
2242                                         left > 1 ? "s" : "");
2243                         for (i = 0; i < this_jobs; i++) {
2244                                 td = map[i];
2245                                 if (!td)
2246                                         continue;
2247                                 kill(td->pid, SIGTERM);
2248                         }
2249                         break;
2250                 }
2251
2252                 /*
2253                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2254                  */
2255                 for_each_td(td, i) {
2256                         if (td->runstate != TD_INITIALIZED)
2257                                 continue;
2258
2259                         if (in_ramp_time(td))
2260                                 td_set_runstate(td, TD_RAMP);
2261                         else
2262                                 td_set_runstate(td, TD_RUNNING);
2263                         nr_running++;
2264                         nr_started--;
2265                         m_rate += ddir_rw_sum(td->o.ratemin);
2266                         t_rate += ddir_rw_sum(td->o.rate);
2267                         todo--;
2268                         fio_mutex_up(td->mutex);
2269                 }
2270
2271                 reap_threads(&nr_running, &t_rate, &m_rate);
2272
2273                 if (todo)
2274                         do_usleep(100000);
2275         }
2276
2277         while (nr_running) {
2278                 reap_threads(&nr_running, &t_rate, &m_rate);
2279                 do_usleep(10000);
2280         }
2281
2282         fio_idle_prof_stop();
2283
2284         update_io_ticks();
2285 }
2286
2287 static void wait_for_helper_thread_exit(void)
2288 {
2289         void *ret;
2290
2291         helper_exit = 1;
2292         pthread_cond_signal(&helper_cond);
2293         pthread_join(helper_thread, &ret);
2294 }
2295
2296 static void free_disk_util(void)
2297 {
2298         disk_util_prune_entries();
2299
2300         pthread_cond_destroy(&helper_cond);
2301 }
2302
2303 static void *helper_thread_main(void *data)
2304 {
2305         struct sk_out *sk_out = data;
2306         int ret = 0;
2307
2308         sk_out_assign(sk_out);
2309
2310         fio_mutex_up(startup_mutex);
2311
2312         while (!ret) {
2313                 uint64_t sec = DISK_UTIL_MSEC / 1000;
2314                 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2315                 struct timespec ts;
2316                 struct timeval tv;
2317
2318                 gettimeofday(&tv, NULL);
2319                 ts.tv_sec = tv.tv_sec + sec;
2320                 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2321
2322                 if (ts.tv_nsec >= 1000000000ULL) {
2323                         ts.tv_nsec -= 1000000000ULL;
2324                         ts.tv_sec++;
2325                 }
2326
2327                 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2328
2329                 ret = update_io_ticks();
2330
2331                 if (helper_do_stat) {
2332                         helper_do_stat = 0;
2333                         __show_running_run_stats();
2334                 }
2335
2336                 if (!is_backend)
2337                         print_thread_status();
2338         }
2339
2340         sk_out_drop();
2341         return NULL;
2342 }
2343
2344 static int create_helper_thread(struct sk_out *sk_out)
2345 {
2346         int ret;
2347
2348         setup_disk_util();
2349
2350         pthread_cond_init(&helper_cond, NULL);
2351         pthread_mutex_init(&helper_lock, NULL);
2352
2353         ret = pthread_create(&helper_thread, NULL, helper_thread_main, sk_out);
2354         if (ret) {
2355                 log_err("Can't create helper thread: %s\n", strerror(ret));
2356                 return 1;
2357         }
2358
2359         dprint(FD_MUTEX, "wait on startup_mutex\n");
2360         fio_mutex_down(startup_mutex);
2361         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2362         return 0;
2363 }
2364
2365 int fio_backend(struct sk_out *sk_out)
2366 {
2367         struct thread_data *td;
2368         int i;
2369
2370         if (exec_profile) {
2371                 if (load_profile(exec_profile))
2372                         return 1;
2373                 free(exec_profile);
2374                 exec_profile = NULL;
2375         }
2376         if (!thread_number)
2377                 return 0;
2378
2379         if (write_bw_log) {
2380                 struct log_params p = {
2381                         .log_type = IO_LOG_TYPE_BW,
2382                 };
2383
2384                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2385                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2386                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2387         }
2388
2389         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2390         if (startup_mutex == NULL)
2391                 return 1;
2392
2393         set_genesis_time();
2394         stat_init();
2395         create_helper_thread(sk_out);
2396
2397         cgroup_list = smalloc(sizeof(*cgroup_list));
2398         INIT_FLIST_HEAD(cgroup_list);
2399
2400         run_threads(sk_out);
2401
2402         wait_for_helper_thread_exit();
2403
2404         if (!fio_abort) {
2405                 __show_run_stats();
2406                 if (write_bw_log) {
2407                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2408                                 struct io_log *log = agg_io_log[i];
2409
2410                                 flush_log(log, 0);
2411                                 free_log(log);
2412                         }
2413                 }
2414         }
2415
2416         for_each_td(td, i) {
2417                 fio_options_free(td);
2418                 if (td->rusage_sem) {
2419                         fio_mutex_remove(td->rusage_sem);
2420                         td->rusage_sem = NULL;
2421                 }
2422         }
2423
2424         free_disk_util();
2425         cgroup_kill(cgroup_list);
2426         sfree(cgroup_list);
2427         sfree(cgroup_mnt);
2428
2429         fio_mutex_remove(startup_mutex);
2430         stat_exit();
2431         return exit_value;
2432 }