man page: fix bad case for 'pre-reading file' state
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "workqueue.h"
58 #include "lib/mountcheck.h"
59 #include "rate-submit.h"
60 #include "helper_thread.h"
61
62 static struct fio_mutex *startup_mutex;
63 static struct flist_head *cgroup_list;
64 static char *cgroup_mnt;
65 static int exit_value;
66 static volatile int fio_abort;
67 static unsigned int nr_process = 0;
68 static unsigned int nr_thread = 0;
69
70 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72 int groupid = 0;
73 unsigned int thread_number = 0;
74 unsigned int stat_number = 0;
75 int shm_id = 0;
76 int temp_stall_ts;
77 unsigned long done_secs = 0;
78
79 #define JOB_START_TIMEOUT       (5 * 1000)
80
81 static void sig_int(int sig)
82 {
83         if (threads) {
84                 if (is_backend)
85                         fio_server_got_signal(sig);
86                 else {
87                         log_info("\nfio: terminating on signal %d\n", sig);
88                         log_info_flush();
89                         exit_value = 128;
90                 }
91
92                 fio_terminate_threads(TERMINATE_ALL);
93         }
94 }
95
96 void sig_show_status(int sig)
97 {
98         show_running_run_stats();
99 }
100
101 static void set_sig_handlers(void)
102 {
103         struct sigaction act;
104
105         memset(&act, 0, sizeof(act));
106         act.sa_handler = sig_int;
107         act.sa_flags = SA_RESTART;
108         sigaction(SIGINT, &act, NULL);
109
110         memset(&act, 0, sizeof(act));
111         act.sa_handler = sig_int;
112         act.sa_flags = SA_RESTART;
113         sigaction(SIGTERM, &act, NULL);
114
115 /* Windows uses SIGBREAK as a quit signal from other applications */
116 #ifdef WIN32
117         memset(&act, 0, sizeof(act));
118         act.sa_handler = sig_int;
119         act.sa_flags = SA_RESTART;
120         sigaction(SIGBREAK, &act, NULL);
121 #endif
122
123         memset(&act, 0, sizeof(act));
124         act.sa_handler = sig_show_status;
125         act.sa_flags = SA_RESTART;
126         sigaction(SIGUSR1, &act, NULL);
127
128         if (is_backend) {
129                 memset(&act, 0, sizeof(act));
130                 act.sa_handler = sig_int;
131                 act.sa_flags = SA_RESTART;
132                 sigaction(SIGPIPE, &act, NULL);
133         }
134 }
135
136 /*
137  * Check if we are above the minimum rate given.
138  */
139 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
140                              enum fio_ddir ddir)
141 {
142         unsigned long long bytes = 0;
143         unsigned long iops = 0;
144         unsigned long spent;
145         unsigned long rate;
146         unsigned int ratemin = 0;
147         unsigned int rate_iops = 0;
148         unsigned int rate_iops_min = 0;
149
150         assert(ddir_rw(ddir));
151
152         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153                 return false;
154
155         /*
156          * allow a 2 second settle period in the beginning
157          */
158         if (mtime_since(&td->start, now) < 2000)
159                 return false;
160
161         iops += td->this_io_blocks[ddir];
162         bytes += td->this_io_bytes[ddir];
163         ratemin += td->o.ratemin[ddir];
164         rate_iops += td->o.rate_iops[ddir];
165         rate_iops_min += td->o.rate_iops_min[ddir];
166
167         /*
168          * if rate blocks is set, sample is running
169          */
170         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171                 spent = mtime_since(&td->lastrate[ddir], now);
172                 if (spent < td->o.ratecycle)
173                         return false;
174
175                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176                         /*
177                          * check bandwidth specified rate
178                          */
179                         if (bytes < td->rate_bytes[ddir]) {
180                                 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181                                         td->o.name, ratemin, bytes);
182                                 return true;
183                         } else {
184                                 if (spent)
185                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186                                 else
187                                         rate = 0;
188
189                                 if (rate < ratemin ||
190                                     bytes < td->rate_bytes[ddir]) {
191                                         log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192                                                 td->o.name, ratemin, rate);
193                                         return true;
194                                 }
195                         }
196                 } else {
197                         /*
198                          * checks iops specified rate
199                          */
200                         if (iops < rate_iops) {
201                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202                                                 td->o.name, rate_iops, iops);
203                                 return true;
204                         } else {
205                                 if (spent)
206                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207                                 else
208                                         rate = 0;
209
210                                 if (rate < rate_iops_min ||
211                                     iops < td->rate_blocks[ddir]) {
212                                         log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213                                                 td->o.name, rate_iops_min, rate);
214                                         return true;
215                                 }
216                         }
217                 }
218         }
219
220         td->rate_bytes[ddir] = bytes;
221         td->rate_blocks[ddir] = iops;
222         memcpy(&td->lastrate[ddir], now, sizeof(*now));
223         return false;
224 }
225
226 static bool check_min_rate(struct thread_data *td, struct timespec *now)
227 {
228         bool ret = false;
229
230         if (td->bytes_done[DDIR_READ])
231                 ret |= __check_min_rate(td, now, DDIR_READ);
232         if (td->bytes_done[DDIR_WRITE])
233                 ret |= __check_min_rate(td, now, DDIR_WRITE);
234         if (td->bytes_done[DDIR_TRIM])
235                 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237         return ret;
238 }
239
240 /*
241  * When job exits, we can cancel the in-flight IO if we are using async
242  * io. Attempt to do so.
243  */
244 static void cleanup_pending_aio(struct thread_data *td)
245 {
246         int r;
247
248         /*
249          * get immediately available events, if any
250          */
251         r = io_u_queued_complete(td, 0);
252         if (r < 0)
253                 return;
254
255         /*
256          * now cancel remaining active events
257          */
258         if (td->io_ops->cancel) {
259                 struct io_u *io_u;
260                 int i;
261
262                 io_u_qiter(&td->io_u_all, io_u, i) {
263                         if (io_u->flags & IO_U_F_FLIGHT) {
264                                 r = td->io_ops->cancel(td, io_u);
265                                 if (!r)
266                                         put_io_u(td, io_u);
267                         }
268                 }
269         }
270
271         if (td->cur_depth)
272                 r = io_u_queued_complete(td, td->cur_depth);
273 }
274
275 /*
276  * Helper to handle the final sync of a file. Works just like the normal
277  * io path, just does everything sync.
278  */
279 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280 {
281         struct io_u *io_u = __get_io_u(td);
282         int ret;
283
284         if (!io_u)
285                 return true;
286
287         io_u->ddir = DDIR_SYNC;
288         io_u->file = f;
289
290         if (td_io_prep(td, io_u)) {
291                 put_io_u(td, io_u);
292                 return true;
293         }
294
295 requeue:
296         ret = td_io_queue(td, io_u);
297         if (ret < 0) {
298                 td_verror(td, io_u->error, "td_io_queue");
299                 put_io_u(td, io_u);
300                 return true;
301         } else if (ret == FIO_Q_QUEUED) {
302                 if (td_io_commit(td))
303                         return true;
304                 if (io_u_queued_complete(td, 1) < 0)
305                         return true;
306         } else if (ret == FIO_Q_COMPLETED) {
307                 if (io_u->error) {
308                         td_verror(td, io_u->error, "td_io_queue");
309                         return true;
310                 }
311
312                 if (io_u_sync_complete(td, io_u) < 0)
313                         return true;
314         } else if (ret == FIO_Q_BUSY) {
315                 if (td_io_commit(td))
316                         return true;
317                 goto requeue;
318         }
319
320         return false;
321 }
322
323 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324 {
325         int ret;
326
327         if (fio_file_open(f))
328                 return fio_io_sync(td, f);
329
330         if (td_io_open_file(td, f))
331                 return 1;
332
333         ret = fio_io_sync(td, f);
334         td_io_close_file(td, f);
335         return ret;
336 }
337
338 static inline void __update_ts_cache(struct thread_data *td)
339 {
340         fio_gettime(&td->ts_cache, NULL);
341 }
342
343 static inline void update_ts_cache(struct thread_data *td)
344 {
345         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
346                 __update_ts_cache(td);
347 }
348
349 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
350 {
351         if (in_ramp_time(td))
352                 return false;
353         if (!td->o.timeout)
354                 return false;
355         if (utime_since(&td->epoch, t) >= td->o.timeout)
356                 return true;
357
358         return false;
359 }
360
361 /*
362  * We need to update the runtime consistently in ms, but keep a running
363  * tally of the current elapsed time in microseconds for sub millisecond
364  * updates.
365  */
366 static inline void update_runtime(struct thread_data *td,
367                                   unsigned long long *elapsed_us,
368                                   const enum fio_ddir ddir)
369 {
370         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371                 return;
372
373         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374         elapsed_us[ddir] += utime_since_now(&td->start);
375         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376 }
377
378 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379                                 int *retptr)
380 {
381         int ret = *retptr;
382
383         if (ret < 0 || td->error) {
384                 int err = td->error;
385                 enum error_type_bit eb;
386
387                 if (ret < 0)
388                         err = -ret;
389
390                 eb = td_error_type(ddir, err);
391                 if (!(td->o.continue_on_error & (1 << eb)))
392                         return true;
393
394                 if (td_non_fatal_error(td, eb, err)) {
395                         /*
396                          * Continue with the I/Os in case of
397                          * a non fatal error.
398                          */
399                         update_error_count(td, err);
400                         td_clear_error(td);
401                         *retptr = 0;
402                         return false;
403                 } else if (td->o.fill_device && err == ENOSPC) {
404                         /*
405                          * We expect to hit this error if
406                          * fill_device option is set.
407                          */
408                         td_clear_error(td);
409                         fio_mark_td_terminate(td);
410                         return true;
411                 } else {
412                         /*
413                          * Stop the I/O in case of a fatal
414                          * error.
415                          */
416                         update_error_count(td, err);
417                         return true;
418                 }
419         }
420
421         return false;
422 }
423
424 static void check_update_rusage(struct thread_data *td)
425 {
426         if (td->update_rusage) {
427                 td->update_rusage = 0;
428                 update_rusage_stat(td);
429                 fio_mutex_up(td->rusage_sem);
430         }
431 }
432
433 static int wait_for_completions(struct thread_data *td, struct timespec *time)
434 {
435         const int full = queue_full(td);
436         int min_evts = 0;
437         int ret;
438
439         if (td->flags & TD_F_REGROW_LOGS)
440                 return io_u_quiesce(td);
441
442         /*
443          * if the queue is full, we MUST reap at least 1 event
444          */
445         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447                 min_evts = 1;
448
449         if (time && (__should_check_rate(td, DDIR_READ) ||
450             __should_check_rate(td, DDIR_WRITE) ||
451             __should_check_rate(td, DDIR_TRIM)))
452                 fio_gettime(time, NULL);
453
454         do {
455                 ret = io_u_queued_complete(td, min_evts);
456                 if (ret < 0)
457                         break;
458         } while (full && (td->cur_depth > td->o.iodepth_low));
459
460         return ret;
461 }
462
463 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465                    struct timespec *comp_time)
466 {
467         int ret2;
468
469         switch (*ret) {
470         case FIO_Q_COMPLETED:
471                 if (io_u->error) {
472                         *ret = -io_u->error;
473                         clear_io_u(td, io_u);
474                 } else if (io_u->resid) {
475                         int bytes = io_u->xfer_buflen - io_u->resid;
476                         struct fio_file *f = io_u->file;
477
478                         if (bytes_issued)
479                                 *bytes_issued += bytes;
480
481                         if (!from_verify)
482                                 trim_io_piece(td, io_u);
483
484                         /*
485                          * zero read, fail
486                          */
487                         if (!bytes) {
488                                 if (!from_verify)
489                                         unlog_io_piece(td, io_u);
490                                 td_verror(td, EIO, "full resid");
491                                 put_io_u(td, io_u);
492                                 break;
493                         }
494
495                         io_u->xfer_buflen = io_u->resid;
496                         io_u->xfer_buf += bytes;
497                         io_u->offset += bytes;
498
499                         if (ddir_rw(io_u->ddir))
500                                 td->ts.short_io_u[io_u->ddir]++;
501
502                         if (io_u->offset == f->real_file_size)
503                                 goto sync_done;
504
505                         requeue_io_u(td, &io_u);
506                 } else {
507 sync_done:
508                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
509                             __should_check_rate(td, DDIR_WRITE) ||
510                             __should_check_rate(td, DDIR_TRIM)))
511                                 fio_gettime(comp_time, NULL);
512
513                         *ret = io_u_sync_complete(td, io_u);
514                         if (*ret < 0)
515                                 break;
516                 }
517
518                 if (td->flags & TD_F_REGROW_LOGS)
519                         regrow_logs(td);
520
521                 /*
522                  * when doing I/O (not when verifying),
523                  * check for any errors that are to be ignored
524                  */
525                 if (!from_verify)
526                         break;
527
528                 return 0;
529         case FIO_Q_QUEUED:
530                 /*
531                  * if the engine doesn't have a commit hook,
532                  * the io_u is really queued. if it does have such
533                  * a hook, it has to call io_u_queued() itself.
534                  */
535                 if (td->io_ops->commit == NULL)
536                         io_u_queued(td, io_u);
537                 if (bytes_issued)
538                         *bytes_issued += io_u->xfer_buflen;
539                 break;
540         case FIO_Q_BUSY:
541                 if (!from_verify)
542                         unlog_io_piece(td, io_u);
543                 requeue_io_u(td, &io_u);
544                 ret2 = td_io_commit(td);
545                 if (ret2 < 0)
546                         *ret = ret2;
547                 break;
548         default:
549                 assert(*ret < 0);
550                 td_verror(td, -(*ret), "td_io_queue");
551                 break;
552         }
553
554         if (break_on_this_error(td, ddir, ret))
555                 return 1;
556
557         return 0;
558 }
559
560 static inline bool io_in_polling(struct thread_data *td)
561 {
562         return !td->o.iodepth_batch_complete_min &&
563                    !td->o.iodepth_batch_complete_max;
564 }
565 /*
566  * Unlinks files from thread data fio_file structure
567  */
568 static int unlink_all_files(struct thread_data *td)
569 {
570         struct fio_file *f;
571         unsigned int i;
572         int ret = 0;
573
574         for_each_file(td, f, i) {
575                 if (f->filetype != FIO_TYPE_FILE)
576                         continue;
577                 ret = td_io_unlink_file(td, f);
578                 if (ret)
579                         break;
580         }
581
582         if (ret)
583                 td_verror(td, ret, "unlink_all_files");
584
585         return ret;
586 }
587
588 /*
589  * Check if io_u will overlap an in-flight IO in the queue
590  */
591 static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
592 {
593         bool overlap;
594         struct io_u *check_io_u;
595         unsigned long long x1, x2, y1, y2;
596         int i;
597
598         x1 = io_u->offset;
599         x2 = io_u->offset + io_u->buflen;
600         overlap = false;
601         io_u_qiter(q, check_io_u, i) {
602                 if (check_io_u->flags & IO_U_F_FLIGHT) {
603                         y1 = check_io_u->offset;
604                         y2 = check_io_u->offset + check_io_u->buflen;
605
606                         if (x1 < y2 && y1 < x2) {
607                                 overlap = true;
608                                 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
609                                                 x1, io_u->buflen,
610                                                 y1, check_io_u->buflen);
611                                 break;
612                         }
613                 }
614         }
615
616         return overlap;
617 }
618
619 static int io_u_submit(struct thread_data *td, struct io_u *io_u)
620 {
621         /*
622          * Check for overlap if the user asked us to, and we have
623          * at least one IO in flight besides this one.
624          */
625         if (td->o.serialize_overlap && td->cur_depth > 1 &&
626             in_flight_overlap(&td->io_u_all, io_u))
627                 return FIO_Q_BUSY;
628
629         return td_io_queue(td, io_u);
630 }
631
632 /*
633  * The main verify engine. Runs over the writes we previously submitted,
634  * reads the blocks back in, and checks the crc/md5 of the data.
635  */
636 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
637 {
638         struct fio_file *f;
639         struct io_u *io_u;
640         int ret, min_events;
641         unsigned int i;
642
643         dprint(FD_VERIFY, "starting loop\n");
644
645         /*
646          * sync io first and invalidate cache, to make sure we really
647          * read from disk.
648          */
649         for_each_file(td, f, i) {
650                 if (!fio_file_open(f))
651                         continue;
652                 if (fio_io_sync(td, f))
653                         break;
654                 if (file_invalidate_cache(td, f))
655                         break;
656         }
657
658         check_update_rusage(td);
659
660         if (td->error)
661                 return;
662
663         /*
664          * verify_state needs to be reset before verification
665          * proceeds so that expected random seeds match actual
666          * random seeds in headers. The main loop will reset
667          * all random number generators if randrepeat is set.
668          */
669         if (!td->o.rand_repeatable)
670                 td_fill_verify_state_seed(td);
671
672         td_set_runstate(td, TD_VERIFYING);
673
674         io_u = NULL;
675         while (!td->terminate) {
676                 enum fio_ddir ddir;
677                 int full;
678
679                 update_ts_cache(td);
680                 check_update_rusage(td);
681
682                 if (runtime_exceeded(td, &td->ts_cache)) {
683                         __update_ts_cache(td);
684                         if (runtime_exceeded(td, &td->ts_cache)) {
685                                 fio_mark_td_terminate(td);
686                                 break;
687                         }
688                 }
689
690                 if (flow_threshold_exceeded(td))
691                         continue;
692
693                 if (!td->o.experimental_verify) {
694                         io_u = __get_io_u(td);
695                         if (!io_u)
696                                 break;
697
698                         if (get_next_verify(td, io_u)) {
699                                 put_io_u(td, io_u);
700                                 break;
701                         }
702
703                         if (td_io_prep(td, io_u)) {
704                                 put_io_u(td, io_u);
705                                 break;
706                         }
707                 } else {
708                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
709                                 break;
710
711                         while ((io_u = get_io_u(td)) != NULL) {
712                                 if (IS_ERR_OR_NULL(io_u)) {
713                                         io_u = NULL;
714                                         ret = FIO_Q_BUSY;
715                                         goto reap;
716                                 }
717
718                                 /*
719                                  * We are only interested in the places where
720                                  * we wrote or trimmed IOs. Turn those into
721                                  * reads for verification purposes.
722                                  */
723                                 if (io_u->ddir == DDIR_READ) {
724                                         /*
725                                          * Pretend we issued it for rwmix
726                                          * accounting
727                                          */
728                                         td->io_issues[DDIR_READ]++;
729                                         put_io_u(td, io_u);
730                                         continue;
731                                 } else if (io_u->ddir == DDIR_TRIM) {
732                                         io_u->ddir = DDIR_READ;
733                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
734                                         break;
735                                 } else if (io_u->ddir == DDIR_WRITE) {
736                                         io_u->ddir = DDIR_READ;
737                                         break;
738                                 } else {
739                                         put_io_u(td, io_u);
740                                         continue;
741                                 }
742                         }
743
744                         if (!io_u)
745                                 break;
746                 }
747
748                 if (verify_state_should_stop(td, io_u)) {
749                         put_io_u(td, io_u);
750                         break;
751                 }
752
753                 if (td->o.verify_async)
754                         io_u->end_io = verify_io_u_async;
755                 else
756                         io_u->end_io = verify_io_u;
757
758                 ddir = io_u->ddir;
759                 if (!td->o.disable_slat)
760                         fio_gettime(&io_u->start_time, NULL);
761
762                 ret = io_u_submit(td, io_u);
763
764                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
765                         break;
766
767                 /*
768                  * if we can queue more, do so. but check if there are
769                  * completed io_u's first. Note that we can get BUSY even
770                  * without IO queued, if the system is resource starved.
771                  */
772 reap:
773                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
774                 if (full || io_in_polling(td))
775                         ret = wait_for_completions(td, NULL);
776
777                 if (ret < 0)
778                         break;
779         }
780
781         check_update_rusage(td);
782
783         if (!td->error) {
784                 min_events = td->cur_depth;
785
786                 if (min_events)
787                         ret = io_u_queued_complete(td, min_events);
788         } else
789                 cleanup_pending_aio(td);
790
791         td_set_runstate(td, TD_RUNNING);
792
793         dprint(FD_VERIFY, "exiting loop\n");
794 }
795
796 static bool exceeds_number_ios(struct thread_data *td)
797 {
798         unsigned long long number_ios;
799
800         if (!td->o.number_ios)
801                 return false;
802
803         number_ios = ddir_rw_sum(td->io_blocks);
804         number_ios += td->io_u_queued + td->io_u_in_flight;
805
806         return number_ios >= (td->o.number_ios * td->loops);
807 }
808
809 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
810 {
811         unsigned long long bytes, limit;
812
813         if (td_rw(td))
814                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
815         else if (td_write(td))
816                 bytes = this_bytes[DDIR_WRITE];
817         else if (td_read(td))
818                 bytes = this_bytes[DDIR_READ];
819         else
820                 bytes = this_bytes[DDIR_TRIM];
821
822         if (td->o.io_size)
823                 limit = td->o.io_size;
824         else
825                 limit = td->o.size;
826
827         limit *= td->loops;
828         return bytes >= limit || exceeds_number_ios(td);
829 }
830
831 static bool io_issue_bytes_exceeded(struct thread_data *td)
832 {
833         return io_bytes_exceeded(td, td->io_issue_bytes);
834 }
835
836 static bool io_complete_bytes_exceeded(struct thread_data *td)
837 {
838         return io_bytes_exceeded(td, td->this_io_bytes);
839 }
840
841 /*
842  * used to calculate the next io time for rate control
843  *
844  */
845 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
846 {
847         uint64_t secs, remainder, bps, bytes, iops;
848
849         assert(!(td->flags & TD_F_CHILD));
850         bytes = td->rate_io_issue_bytes[ddir];
851         bps = td->rate_bps[ddir];
852
853         if (td->o.rate_process == RATE_PROCESS_POISSON) {
854                 uint64_t val;
855                 iops = bps / td->o.bs[ddir];
856                 val = (int64_t) (1000000 / iops) *
857                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
858                 if (val) {
859                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
860                                         (unsigned long long) 1000000 / val,
861                                         ddir);
862                 }
863                 td->last_usec[ddir] += val;
864                 return td->last_usec[ddir];
865         } else if (bps) {
866                 secs = bytes / bps;
867                 remainder = bytes % bps;
868                 return remainder * 1000000 / bps + secs * 1000000;
869         }
870
871         return 0;
872 }
873
874 /*
875  * Main IO worker function. It retrieves io_u's to process and queues
876  * and reaps them, checking for rate and errors along the way.
877  *
878  * Returns number of bytes written and trimmed.
879  */
880 static void do_io(struct thread_data *td, uint64_t *bytes_done)
881 {
882         unsigned int i;
883         int ret = 0;
884         uint64_t total_bytes, bytes_issued = 0;
885
886         for (i = 0; i < DDIR_RWDIR_CNT; i++)
887                 bytes_done[i] = td->bytes_done[i];
888
889         if (in_ramp_time(td))
890                 td_set_runstate(td, TD_RAMP);
891         else
892                 td_set_runstate(td, TD_RUNNING);
893
894         lat_target_init(td);
895
896         total_bytes = td->o.size;
897         /*
898         * Allow random overwrite workloads to write up to io_size
899         * before starting verification phase as 'size' doesn't apply.
900         */
901         if (td_write(td) && td_random(td) && td->o.norandommap)
902                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
903         /*
904          * If verify_backlog is enabled, we'll run the verify in this
905          * handler as well. For that case, we may need up to twice the
906          * amount of bytes.
907          */
908         if (td->o.verify != VERIFY_NONE &&
909            (td_write(td) && td->o.verify_backlog))
910                 total_bytes += td->o.size;
911
912         /* In trimwrite mode, each byte is trimmed and then written, so
913          * allow total_bytes to be twice as big */
914         if (td_trimwrite(td))
915                 total_bytes += td->total_io_size;
916
917         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
918                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
919                 td->o.time_based) {
920                 struct timespec comp_time;
921                 struct io_u *io_u;
922                 int full;
923                 enum fio_ddir ddir;
924
925                 check_update_rusage(td);
926
927                 if (td->terminate || td->done)
928                         break;
929
930                 update_ts_cache(td);
931
932                 if (runtime_exceeded(td, &td->ts_cache)) {
933                         __update_ts_cache(td);
934                         if (runtime_exceeded(td, &td->ts_cache)) {
935                                 fio_mark_td_terminate(td);
936                                 break;
937                         }
938                 }
939
940                 if (flow_threshold_exceeded(td))
941                         continue;
942
943                 /*
944                  * Break if we exceeded the bytes. The exception is time
945                  * based runs, but we still need to break out of the loop
946                  * for those to run verification, if enabled.
947                  */
948                 if (bytes_issued >= total_bytes &&
949                     (!td->o.time_based ||
950                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
951                         break;
952
953                 io_u = get_io_u(td);
954                 if (IS_ERR_OR_NULL(io_u)) {
955                         int err = PTR_ERR(io_u);
956
957                         io_u = NULL;
958                         if (err == -EBUSY) {
959                                 ret = FIO_Q_BUSY;
960                                 goto reap;
961                         }
962                         if (td->o.latency_target)
963                                 goto reap;
964                         break;
965                 }
966
967                 ddir = io_u->ddir;
968
969                 /*
970                  * Add verification end_io handler if:
971                  *      - Asked to verify (!td_rw(td))
972                  *      - Or the io_u is from our verify list (mixed write/ver)
973                  */
974                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
975                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
976
977                         if (!td->o.verify_pattern_bytes) {
978                                 io_u->rand_seed = __rand(&td->verify_state);
979                                 if (sizeof(int) != sizeof(long *))
980                                         io_u->rand_seed *= __rand(&td->verify_state);
981                         }
982
983                         if (verify_state_should_stop(td, io_u)) {
984                                 put_io_u(td, io_u);
985                                 break;
986                         }
987
988                         if (td->o.verify_async)
989                                 io_u->end_io = verify_io_u_async;
990                         else
991                                 io_u->end_io = verify_io_u;
992                         td_set_runstate(td, TD_VERIFYING);
993                 } else if (in_ramp_time(td))
994                         td_set_runstate(td, TD_RAMP);
995                 else
996                         td_set_runstate(td, TD_RUNNING);
997
998                 /*
999                  * Always log IO before it's issued, so we know the specific
1000                  * order of it. The logged unit will track when the IO has
1001                  * completed.
1002                  */
1003                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1004                     td->o.do_verify &&
1005                     td->o.verify != VERIFY_NONE &&
1006                     !td->o.experimental_verify)
1007                         log_io_piece(td, io_u);
1008
1009                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1010                         const unsigned long blen = io_u->xfer_buflen;
1011                         const enum fio_ddir ddir = acct_ddir(io_u);
1012
1013                         if (td->error)
1014                                 break;
1015
1016                         workqueue_enqueue(&td->io_wq, &io_u->work);
1017                         ret = FIO_Q_QUEUED;
1018
1019                         if (ddir_rw(ddir)) {
1020                                 td->io_issues[ddir]++;
1021                                 td->io_issue_bytes[ddir] += blen;
1022                                 td->rate_io_issue_bytes[ddir] += blen;
1023                         }
1024
1025                         if (should_check_rate(td))
1026                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1027
1028                 } else {
1029                         ret = io_u_submit(td, io_u);
1030
1031                         if (should_check_rate(td))
1032                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1033
1034                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1035                                 break;
1036
1037                         /*
1038                          * See if we need to complete some commands. Note that
1039                          * we can get BUSY even without IO queued, if the
1040                          * system is resource starved.
1041                          */
1042 reap:
1043                         full = queue_full(td) ||
1044                                 (ret == FIO_Q_BUSY && td->cur_depth);
1045                         if (full || io_in_polling(td))
1046                                 ret = wait_for_completions(td, &comp_time);
1047                 }
1048                 if (ret < 0)
1049                         break;
1050                 if (!ddir_rw_sum(td->bytes_done) &&
1051                     !td_ioengine_flagged(td, FIO_NOIO))
1052                         continue;
1053
1054                 if (!in_ramp_time(td) && should_check_rate(td)) {
1055                         if (check_min_rate(td, &comp_time)) {
1056                                 if (exitall_on_terminate || td->o.exitall_error)
1057                                         fio_terminate_threads(td->groupid);
1058                                 td_verror(td, EIO, "check_min_rate");
1059                                 break;
1060                         }
1061                 }
1062                 if (!in_ramp_time(td) && td->o.latency_target)
1063                         lat_target_check(td);
1064
1065                 if (td->o.thinktime) {
1066                         unsigned long long b;
1067
1068                         b = ddir_rw_sum(td->io_blocks);
1069                         if (!(b % td->o.thinktime_blocks)) {
1070                                 int left;
1071
1072                                 io_u_quiesce(td);
1073
1074                                 if (td->o.thinktime_spin)
1075                                         usec_spin(td->o.thinktime_spin);
1076
1077                                 left = td->o.thinktime - td->o.thinktime_spin;
1078                                 if (left)
1079                                         usec_sleep(td, left);
1080                         }
1081                 }
1082         }
1083
1084         check_update_rusage(td);
1085
1086         if (td->trim_entries)
1087                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1088
1089         if (td->o.fill_device && td->error == ENOSPC) {
1090                 td->error = 0;
1091                 fio_mark_td_terminate(td);
1092         }
1093         if (!td->error) {
1094                 struct fio_file *f;
1095
1096                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1097                         workqueue_flush(&td->io_wq);
1098                         i = 0;
1099                 } else
1100                         i = td->cur_depth;
1101
1102                 if (i) {
1103                         ret = io_u_queued_complete(td, i);
1104                         if (td->o.fill_device && td->error == ENOSPC)
1105                                 td->error = 0;
1106                 }
1107
1108                 if (should_fsync(td) && td->o.end_fsync) {
1109                         td_set_runstate(td, TD_FSYNCING);
1110
1111                         for_each_file(td, f, i) {
1112                                 if (!fio_file_fsync(td, f))
1113                                         continue;
1114
1115                                 log_err("fio: end_fsync failed for file %s\n",
1116                                                                 f->file_name);
1117                         }
1118                 }
1119         } else
1120                 cleanup_pending_aio(td);
1121
1122         /*
1123          * stop job if we failed doing any IO
1124          */
1125         if (!ddir_rw_sum(td->this_io_bytes))
1126                 td->done = 1;
1127
1128         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1129                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1130 }
1131
1132 static void free_file_completion_logging(struct thread_data *td)
1133 {
1134         struct fio_file *f;
1135         unsigned int i;
1136
1137         for_each_file(td, f, i) {
1138                 if (!f->last_write_comp)
1139                         break;
1140                 sfree(f->last_write_comp);
1141         }
1142 }
1143
1144 static int init_file_completion_logging(struct thread_data *td,
1145                                         unsigned int depth)
1146 {
1147         struct fio_file *f;
1148         unsigned int i;
1149
1150         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1151                 return 0;
1152
1153         for_each_file(td, f, i) {
1154                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1155                 if (!f->last_write_comp)
1156                         goto cleanup;
1157         }
1158
1159         return 0;
1160
1161 cleanup:
1162         free_file_completion_logging(td);
1163         log_err("fio: failed to alloc write comp data\n");
1164         return 1;
1165 }
1166
1167 static void cleanup_io_u(struct thread_data *td)
1168 {
1169         struct io_u *io_u;
1170
1171         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1172
1173                 if (td->io_ops->io_u_free)
1174                         td->io_ops->io_u_free(td, io_u);
1175
1176                 fio_memfree(io_u, sizeof(*io_u));
1177         }
1178
1179         free_io_mem(td);
1180
1181         io_u_rexit(&td->io_u_requeues);
1182         io_u_qexit(&td->io_u_freelist);
1183         io_u_qexit(&td->io_u_all);
1184
1185         free_file_completion_logging(td);
1186 }
1187
1188 static int init_io_u(struct thread_data *td)
1189 {
1190         struct io_u *io_u;
1191         unsigned int max_bs, min_write;
1192         int cl_align, i, max_units;
1193         int data_xfer = 1, err;
1194         char *p;
1195
1196         max_units = td->o.iodepth;
1197         max_bs = td_max_bs(td);
1198         min_write = td->o.min_bs[DDIR_WRITE];
1199         td->orig_buffer_size = (unsigned long long) max_bs
1200                                         * (unsigned long long) max_units;
1201
1202         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1203                 data_xfer = 0;
1204
1205         err = 0;
1206         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1207         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1208         err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1209
1210         if (err) {
1211                 log_err("fio: failed setting up IO queues\n");
1212                 return 1;
1213         }
1214
1215         /*
1216          * if we may later need to do address alignment, then add any
1217          * possible adjustment here so that we don't cause a buffer
1218          * overflow later. this adjustment may be too much if we get
1219          * lucky and the allocator gives us an aligned address.
1220          */
1221         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1222             td_ioengine_flagged(td, FIO_RAWIO))
1223                 td->orig_buffer_size += page_mask + td->o.mem_align;
1224
1225         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1226                 unsigned long bs;
1227
1228                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1229                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1230         }
1231
1232         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1233                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1234                 return 1;
1235         }
1236
1237         if (data_xfer && allocate_io_mem(td))
1238                 return 1;
1239
1240         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1241             td_ioengine_flagged(td, FIO_RAWIO))
1242                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1243         else
1244                 p = td->orig_buffer;
1245
1246         cl_align = os_cache_line_size();
1247
1248         for (i = 0; i < max_units; i++) {
1249                 void *ptr;
1250
1251                 if (td->terminate)
1252                         return 1;
1253
1254                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1255                 if (!ptr) {
1256                         log_err("fio: unable to allocate aligned memory\n");
1257                         break;
1258                 }
1259
1260                 io_u = ptr;
1261                 memset(io_u, 0, sizeof(*io_u));
1262                 INIT_FLIST_HEAD(&io_u->verify_list);
1263                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1264
1265                 if (data_xfer) {
1266                         io_u->buf = p;
1267                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1268
1269                         if (td_write(td))
1270                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1271                         if (td_write(td) && td->o.verify_pattern_bytes) {
1272                                 /*
1273                                  * Fill the buffer with the pattern if we are
1274                                  * going to be doing writes.
1275                                  */
1276                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1277                         }
1278                 }
1279
1280                 io_u->index = i;
1281                 io_u->flags = IO_U_F_FREE;
1282                 io_u_qpush(&td->io_u_freelist, io_u);
1283
1284                 /*
1285                  * io_u never leaves this stack, used for iteration of all
1286                  * io_u buffers.
1287                  */
1288                 io_u_qpush(&td->io_u_all, io_u);
1289
1290                 if (td->io_ops->io_u_init) {
1291                         int ret = td->io_ops->io_u_init(td, io_u);
1292
1293                         if (ret) {
1294                                 log_err("fio: failed to init engine data: %d\n", ret);
1295                                 return 1;
1296                         }
1297                 }
1298
1299                 p += max_bs;
1300         }
1301
1302         if (init_file_completion_logging(td, max_units))
1303                 return 1;
1304
1305         return 0;
1306 }
1307
1308 /*
1309  * This function is Linux specific.
1310  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1311  */
1312 static int switch_ioscheduler(struct thread_data *td)
1313 {
1314 #ifdef FIO_HAVE_IOSCHED_SWITCH
1315         char tmp[256], tmp2[128];
1316         FILE *f;
1317         int ret;
1318
1319         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1320                 return 0;
1321
1322         assert(td->files && td->files[0]);
1323         sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1324
1325         f = fopen(tmp, "r+");
1326         if (!f) {
1327                 if (errno == ENOENT) {
1328                         log_err("fio: os or kernel doesn't support IO scheduler"
1329                                 " switching\n");
1330                         return 0;
1331                 }
1332                 td_verror(td, errno, "fopen iosched");
1333                 return 1;
1334         }
1335
1336         /*
1337          * Set io scheduler.
1338          */
1339         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1340         if (ferror(f) || ret != 1) {
1341                 td_verror(td, errno, "fwrite");
1342                 fclose(f);
1343                 return 1;
1344         }
1345
1346         rewind(f);
1347
1348         /*
1349          * Read back and check that the selected scheduler is now the default.
1350          */
1351         memset(tmp, 0, sizeof(tmp));
1352         ret = fread(tmp, sizeof(tmp), 1, f);
1353         if (ferror(f) || ret < 0) {
1354                 td_verror(td, errno, "fread");
1355                 fclose(f);
1356                 return 1;
1357         }
1358         /*
1359          * either a list of io schedulers or "none\n" is expected.
1360          */
1361         tmp[strlen(tmp) - 1] = '\0';
1362
1363         /*
1364          * Write to "none" entry doesn't fail, so check the result here.
1365          */
1366         if (!strcmp(tmp, "none")) {
1367                 log_err("fio: io scheduler is not tunable\n");
1368                 fclose(f);
1369                 return 0;
1370         }
1371
1372         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1373         if (!strstr(tmp, tmp2)) {
1374                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1375                 td_verror(td, EINVAL, "iosched_switch");
1376                 fclose(f);
1377                 return 1;
1378         }
1379
1380         fclose(f);
1381         return 0;
1382 #else
1383         return 0;
1384 #endif
1385 }
1386
1387 static bool keep_running(struct thread_data *td)
1388 {
1389         unsigned long long limit;
1390
1391         if (td->done)
1392                 return false;
1393         if (td->terminate)
1394                 return false;
1395         if (td->o.time_based)
1396                 return true;
1397         if (td->o.loops) {
1398                 td->o.loops--;
1399                 return true;
1400         }
1401         if (exceeds_number_ios(td))
1402                 return false;
1403
1404         if (td->o.io_size)
1405                 limit = td->o.io_size;
1406         else
1407                 limit = td->o.size;
1408
1409         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1410                 uint64_t diff;
1411
1412                 /*
1413                  * If the difference is less than the maximum IO size, we
1414                  * are done.
1415                  */
1416                 diff = limit - ddir_rw_sum(td->io_bytes);
1417                 if (diff < td_max_bs(td))
1418                         return false;
1419
1420                 if (fio_files_done(td) && !td->o.io_size)
1421                         return false;
1422
1423                 return true;
1424         }
1425
1426         return false;
1427 }
1428
1429 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1430 {
1431         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1432         int ret;
1433         char *str;
1434
1435         str = malloc(newlen);
1436         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1437
1438         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1439         ret = system(str);
1440         if (ret == -1)
1441                 log_err("fio: exec of cmd <%s> failed\n", str);
1442
1443         free(str);
1444         return ret;
1445 }
1446
1447 /*
1448  * Dry run to compute correct state of numberio for verification.
1449  */
1450 static uint64_t do_dry_run(struct thread_data *td)
1451 {
1452         td_set_runstate(td, TD_RUNNING);
1453
1454         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1455                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1456                 struct io_u *io_u;
1457                 int ret;
1458
1459                 if (td->terminate || td->done)
1460                         break;
1461
1462                 io_u = get_io_u(td);
1463                 if (IS_ERR_OR_NULL(io_u))
1464                         break;
1465
1466                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1467                 io_u->error = 0;
1468                 io_u->resid = 0;
1469                 if (ddir_rw(acct_ddir(io_u)))
1470                         td->io_issues[acct_ddir(io_u)]++;
1471                 if (ddir_rw(io_u->ddir)) {
1472                         io_u_mark_depth(td, 1);
1473                         td->ts.total_io_u[io_u->ddir]++;
1474                 }
1475
1476                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1477                     td->o.do_verify &&
1478                     td->o.verify != VERIFY_NONE &&
1479                     !td->o.experimental_verify)
1480                         log_io_piece(td, io_u);
1481
1482                 ret = io_u_sync_complete(td, io_u);
1483                 (void) ret;
1484         }
1485
1486         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1487 }
1488
1489 struct fork_data {
1490         struct thread_data *td;
1491         struct sk_out *sk_out;
1492 };
1493
1494 /*
1495  * Entry point for the thread based jobs. The process based jobs end up
1496  * here as well, after a little setup.
1497  */
1498 static void *thread_main(void *data)
1499 {
1500         struct fork_data *fd = data;
1501         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1502         struct thread_data *td = fd->td;
1503         struct thread_options *o = &td->o;
1504         struct sk_out *sk_out = fd->sk_out;
1505         uint64_t bytes_done[DDIR_RWDIR_CNT];
1506         int deadlock_loop_cnt;
1507         bool clear_state, did_some_io;
1508         int ret;
1509
1510         sk_out_assign(sk_out);
1511         free(fd);
1512
1513         if (!o->use_thread) {
1514                 setsid();
1515                 td->pid = getpid();
1516         } else
1517                 td->pid = gettid();
1518
1519         fio_local_clock_init(o->use_thread);
1520
1521         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1522
1523         if (is_backend)
1524                 fio_server_send_start(td);
1525
1526         INIT_FLIST_HEAD(&td->io_log_list);
1527         INIT_FLIST_HEAD(&td->io_hist_list);
1528         INIT_FLIST_HEAD(&td->verify_list);
1529         INIT_FLIST_HEAD(&td->trim_list);
1530         INIT_FLIST_HEAD(&td->next_rand_list);
1531         td->io_hist_tree = RB_ROOT;
1532
1533         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1534         if (ret) {
1535                 td_verror(td, ret, "mutex_cond_init_pshared");
1536                 goto err;
1537         }
1538         ret = cond_init_pshared(&td->verify_cond);
1539         if (ret) {
1540                 td_verror(td, ret, "mutex_cond_pshared");
1541                 goto err;
1542         }
1543
1544         td_set_runstate(td, TD_INITIALIZED);
1545         dprint(FD_MUTEX, "up startup_mutex\n");
1546         fio_mutex_up(startup_mutex);
1547         dprint(FD_MUTEX, "wait on td->mutex\n");
1548         fio_mutex_down(td->mutex);
1549         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1550
1551         /*
1552          * A new gid requires privilege, so we need to do this before setting
1553          * the uid.
1554          */
1555         if (o->gid != -1U && setgid(o->gid)) {
1556                 td_verror(td, errno, "setgid");
1557                 goto err;
1558         }
1559         if (o->uid != -1U && setuid(o->uid)) {
1560                 td_verror(td, errno, "setuid");
1561                 goto err;
1562         }
1563
1564         /*
1565          * Do this early, we don't want the compress threads to be limited
1566          * to the same CPUs as the IO workers. So do this before we set
1567          * any potential CPU affinity
1568          */
1569         if (iolog_compress_init(td, sk_out))
1570                 goto err;
1571
1572         /*
1573          * If we have a gettimeofday() thread, make sure we exclude that
1574          * thread from this job
1575          */
1576         if (o->gtod_cpu)
1577                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1578
1579         /*
1580          * Set affinity first, in case it has an impact on the memory
1581          * allocations.
1582          */
1583         if (fio_option_is_set(o, cpumask)) {
1584                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1585                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1586                         if (!ret) {
1587                                 log_err("fio: no CPUs set\n");
1588                                 log_err("fio: Try increasing number of available CPUs\n");
1589                                 td_verror(td, EINVAL, "cpus_split");
1590                                 goto err;
1591                         }
1592                 }
1593                 ret = fio_setaffinity(td->pid, o->cpumask);
1594                 if (ret == -1) {
1595                         td_verror(td, errno, "cpu_set_affinity");
1596                         goto err;
1597                 }
1598         }
1599
1600 #ifdef CONFIG_LIBNUMA
1601         /* numa node setup */
1602         if (fio_option_is_set(o, numa_cpunodes) ||
1603             fio_option_is_set(o, numa_memnodes)) {
1604                 struct bitmask *mask;
1605
1606                 if (numa_available() < 0) {
1607                         td_verror(td, errno, "Does not support NUMA API\n");
1608                         goto err;
1609                 }
1610
1611                 if (fio_option_is_set(o, numa_cpunodes)) {
1612                         mask = numa_parse_nodestring(o->numa_cpunodes);
1613                         ret = numa_run_on_node_mask(mask);
1614                         numa_free_nodemask(mask);
1615                         if (ret == -1) {
1616                                 td_verror(td, errno, \
1617                                         "numa_run_on_node_mask failed\n");
1618                                 goto err;
1619                         }
1620                 }
1621
1622                 if (fio_option_is_set(o, numa_memnodes)) {
1623                         mask = NULL;
1624                         if (o->numa_memnodes)
1625                                 mask = numa_parse_nodestring(o->numa_memnodes);
1626
1627                         switch (o->numa_mem_mode) {
1628                         case MPOL_INTERLEAVE:
1629                                 numa_set_interleave_mask(mask);
1630                                 break;
1631                         case MPOL_BIND:
1632                                 numa_set_membind(mask);
1633                                 break;
1634                         case MPOL_LOCAL:
1635                                 numa_set_localalloc();
1636                                 break;
1637                         case MPOL_PREFERRED:
1638                                 numa_set_preferred(o->numa_mem_prefer_node);
1639                                 break;
1640                         case MPOL_DEFAULT:
1641                         default:
1642                                 break;
1643                         }
1644
1645                         if (mask)
1646                                 numa_free_nodemask(mask);
1647
1648                 }
1649         }
1650 #endif
1651
1652         if (fio_pin_memory(td))
1653                 goto err;
1654
1655         /*
1656          * May alter parameters that init_io_u() will use, so we need to
1657          * do this first.
1658          */
1659         if (init_iolog(td))
1660                 goto err;
1661
1662         if (init_io_u(td))
1663                 goto err;
1664
1665         if (o->verify_async && verify_async_init(td))
1666                 goto err;
1667
1668         if (fio_option_is_set(o, ioprio) ||
1669             fio_option_is_set(o, ioprio_class)) {
1670                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1671                 if (ret == -1) {
1672                         td_verror(td, errno, "ioprio_set");
1673                         goto err;
1674                 }
1675         }
1676
1677         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1678                 goto err;
1679
1680         errno = 0;
1681         if (nice(o->nice) == -1 && errno != 0) {
1682                 td_verror(td, errno, "nice");
1683                 goto err;
1684         }
1685
1686         if (o->ioscheduler && switch_ioscheduler(td))
1687                 goto err;
1688
1689         if (!o->create_serialize && setup_files(td))
1690                 goto err;
1691
1692         if (td_io_init(td))
1693                 goto err;
1694
1695         if (!init_random_map(td))
1696                 goto err;
1697
1698         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1699                 goto err;
1700
1701         if (o->pre_read && !pre_read_files(td))
1702                 goto err;
1703
1704         fio_verify_init(td);
1705
1706         if (rate_submit_init(td, sk_out))
1707                 goto err;
1708
1709         set_epoch_time(td, o->log_unix_epoch);
1710         fio_getrusage(&td->ru_start);
1711         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1712         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1713         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1714
1715         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1716                         o->ratemin[DDIR_TRIM]) {
1717                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1718                                         sizeof(td->bw_sample_time));
1719                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1720                                         sizeof(td->bw_sample_time));
1721                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1722                                         sizeof(td->bw_sample_time));
1723         }
1724
1725         memset(bytes_done, 0, sizeof(bytes_done));
1726         clear_state = false;
1727         did_some_io = false;
1728
1729         while (keep_running(td)) {
1730                 uint64_t verify_bytes;
1731
1732                 fio_gettime(&td->start, NULL);
1733                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1734
1735                 if (clear_state) {
1736                         clear_io_state(td, 0);
1737
1738                         if (o->unlink_each_loop && unlink_all_files(td))
1739                                 break;
1740                 }
1741
1742                 prune_io_piece_log(td);
1743
1744                 if (td->o.verify_only && td_write(td))
1745                         verify_bytes = do_dry_run(td);
1746                 else {
1747                         do_io(td, bytes_done);
1748
1749                         if (!ddir_rw_sum(bytes_done)) {
1750                                 fio_mark_td_terminate(td);
1751                                 verify_bytes = 0;
1752                         } else {
1753                                 verify_bytes = bytes_done[DDIR_WRITE] +
1754                                                 bytes_done[DDIR_TRIM];
1755                         }
1756                 }
1757
1758                 /*
1759                  * If we took too long to shut down, the main thread could
1760                  * already consider us reaped/exited. If that happens, break
1761                  * out and clean up.
1762                  */
1763                 if (td->runstate >= TD_EXITED)
1764                         break;
1765
1766                 clear_state = true;
1767
1768                 /*
1769                  * Make sure we've successfully updated the rusage stats
1770                  * before waiting on the stat mutex. Otherwise we could have
1771                  * the stat thread holding stat mutex and waiting for
1772                  * the rusage_sem, which would never get upped because
1773                  * this thread is waiting for the stat mutex.
1774                  */
1775                 deadlock_loop_cnt = 0;
1776                 do {
1777                         check_update_rusage(td);
1778                         if (!fio_mutex_down_trylock(stat_mutex))
1779                                 break;
1780                         usleep(1000);
1781                         if (deadlock_loop_cnt++ > 5000) {
1782                                 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1783                                 td->error = EDEADLK;
1784                                 goto err;
1785                         }
1786                 } while (1);
1787
1788                 if (td_read(td) && td->io_bytes[DDIR_READ])
1789                         update_runtime(td, elapsed_us, DDIR_READ);
1790                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1791                         update_runtime(td, elapsed_us, DDIR_WRITE);
1792                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1793                         update_runtime(td, elapsed_us, DDIR_TRIM);
1794                 fio_gettime(&td->start, NULL);
1795                 fio_mutex_up(stat_mutex);
1796
1797                 if (td->error || td->terminate)
1798                         break;
1799
1800                 if (!o->do_verify ||
1801                     o->verify == VERIFY_NONE ||
1802                     td_ioengine_flagged(td, FIO_UNIDIR))
1803                         continue;
1804
1805                 if (ddir_rw_sum(bytes_done))
1806                         did_some_io = true;
1807
1808                 clear_io_state(td, 0);
1809
1810                 fio_gettime(&td->start, NULL);
1811
1812                 do_verify(td, verify_bytes);
1813
1814                 /*
1815                  * See comment further up for why this is done here.
1816                  */
1817                 check_update_rusage(td);
1818
1819                 fio_mutex_down(stat_mutex);
1820                 update_runtime(td, elapsed_us, DDIR_READ);
1821                 fio_gettime(&td->start, NULL);
1822                 fio_mutex_up(stat_mutex);
1823
1824                 if (td->error || td->terminate)
1825                         break;
1826         }
1827
1828         /*
1829          * If td ended up with no I/O when it should have had,
1830          * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1831          * (Are we not missing other flags that can be ignored ?)
1832          */
1833         if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1834             !did_some_io && !td->o.create_only &&
1835             !(td_ioengine_flagged(td, FIO_NOIO) ||
1836               td_ioengine_flagged(td, FIO_DISKLESSIO)))
1837                 log_err("%s: No I/O performed by %s, "
1838                          "perhaps try --debug=io option for details?\n",
1839                          td->o.name, td->io_ops->name);
1840
1841         td_set_runstate(td, TD_FINISHING);
1842
1843         update_rusage_stat(td);
1844         td->ts.total_run_time = mtime_since_now(&td->epoch);
1845         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1846         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1847         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1848
1849         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1850             (td->o.verify != VERIFY_NONE && td_write(td)))
1851                 verify_save_state(td->thread_number);
1852
1853         fio_unpin_memory(td);
1854
1855         td_writeout_logs(td, true);
1856
1857         iolog_compress_exit(td);
1858         rate_submit_exit(td);
1859
1860         if (o->exec_postrun)
1861                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1862
1863         if (exitall_on_terminate || (o->exitall_error && td->error))
1864                 fio_terminate_threads(td->groupid);
1865
1866 err:
1867         if (td->error)
1868                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1869                                                         td->verror);
1870
1871         if (o->verify_async)
1872                 verify_async_exit(td);
1873
1874         close_and_free_files(td);
1875         cleanup_io_u(td);
1876         close_ioengine(td);
1877         cgroup_shutdown(td, &cgroup_mnt);
1878         verify_free_state(td);
1879
1880         if (td->zone_state_index) {
1881                 int i;
1882
1883                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1884                         free(td->zone_state_index[i]);
1885                 free(td->zone_state_index);
1886                 td->zone_state_index = NULL;
1887         }
1888
1889         if (fio_option_is_set(o, cpumask)) {
1890                 ret = fio_cpuset_exit(&o->cpumask);
1891                 if (ret)
1892                         td_verror(td, ret, "fio_cpuset_exit");
1893         }
1894
1895         /*
1896          * do this very late, it will log file closing as well
1897          */
1898         if (o->write_iolog_file)
1899                 write_iolog_close(td);
1900
1901         td_set_runstate(td, TD_EXITED);
1902
1903         /*
1904          * Do this last after setting our runstate to exited, so we
1905          * know that the stat thread is signaled.
1906          */
1907         check_update_rusage(td);
1908
1909         sk_out_drop();
1910         return (void *) (uintptr_t) td->error;
1911 }
1912
1913 /*
1914  * Run over the job map and reap the threads that have exited, if any.
1915  */
1916 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1917                          uint64_t *m_rate)
1918 {
1919         struct thread_data *td;
1920         unsigned int cputhreads, realthreads, pending;
1921         int i, status, ret;
1922
1923         /*
1924          * reap exited threads (TD_EXITED -> TD_REAPED)
1925          */
1926         realthreads = pending = cputhreads = 0;
1927         for_each_td(td, i) {
1928                 int flags = 0;
1929
1930                  if (!strcmp(td->o.ioengine, "cpuio"))
1931                         cputhreads++;
1932                 else
1933                         realthreads++;
1934
1935                 if (!td->pid) {
1936                         pending++;
1937                         continue;
1938                 }
1939                 if (td->runstate == TD_REAPED)
1940                         continue;
1941                 if (td->o.use_thread) {
1942                         if (td->runstate == TD_EXITED) {
1943                                 td_set_runstate(td, TD_REAPED);
1944                                 goto reaped;
1945                         }
1946                         continue;
1947                 }
1948
1949                 flags = WNOHANG;
1950                 if (td->runstate == TD_EXITED)
1951                         flags = 0;
1952
1953                 /*
1954                  * check if someone quit or got killed in an unusual way
1955                  */
1956                 ret = waitpid(td->pid, &status, flags);
1957                 if (ret < 0) {
1958                         if (errno == ECHILD) {
1959                                 log_err("fio: pid=%d disappeared %d\n",
1960                                                 (int) td->pid, td->runstate);
1961                                 td->sig = ECHILD;
1962                                 td_set_runstate(td, TD_REAPED);
1963                                 goto reaped;
1964                         }
1965                         perror("waitpid");
1966                 } else if (ret == td->pid) {
1967                         if (WIFSIGNALED(status)) {
1968                                 int sig = WTERMSIG(status);
1969
1970                                 if (sig != SIGTERM && sig != SIGUSR2)
1971                                         log_err("fio: pid=%d, got signal=%d\n",
1972                                                         (int) td->pid, sig);
1973                                 td->sig = sig;
1974                                 td_set_runstate(td, TD_REAPED);
1975                                 goto reaped;
1976                         }
1977                         if (WIFEXITED(status)) {
1978                                 if (WEXITSTATUS(status) && !td->error)
1979                                         td->error = WEXITSTATUS(status);
1980
1981                                 td_set_runstate(td, TD_REAPED);
1982                                 goto reaped;
1983                         }
1984                 }
1985
1986                 /*
1987                  * If the job is stuck, do a forceful timeout of it and
1988                  * move on.
1989                  */
1990                 if (td->terminate &&
1991                     td->runstate < TD_FSYNCING &&
1992                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1993                         log_err("fio: job '%s' (state=%d) hasn't exited in "
1994                                 "%lu seconds, it appears to be stuck. Doing "
1995                                 "forceful exit of this job.\n",
1996                                 td->o.name, td->runstate,
1997                                 (unsigned long) time_since_now(&td->terminate_time));
1998                         td_set_runstate(td, TD_REAPED);
1999                         goto reaped;
2000                 }
2001
2002                 /*
2003                  * thread is not dead, continue
2004                  */
2005                 pending++;
2006                 continue;
2007 reaped:
2008                 (*nr_running)--;
2009                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2010                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2011                 if (!td->pid)
2012                         pending--;
2013
2014                 if (td->error)
2015                         exit_value++;
2016
2017                 done_secs += mtime_since_now(&td->epoch) / 1000;
2018                 profile_td_exit(td);
2019         }
2020
2021         if (*nr_running == cputhreads && !pending && realthreads)
2022                 fio_terminate_threads(TERMINATE_ALL);
2023 }
2024
2025 static bool __check_trigger_file(void)
2026 {
2027         struct stat sb;
2028
2029         if (!trigger_file)
2030                 return false;
2031
2032         if (stat(trigger_file, &sb))
2033                 return false;
2034
2035         if (unlink(trigger_file) < 0)
2036                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2037                                                         strerror(errno));
2038
2039         return true;
2040 }
2041
2042 static bool trigger_timedout(void)
2043 {
2044         if (trigger_timeout)
2045                 if (time_since_genesis() >= trigger_timeout) {
2046                         trigger_timeout = 0;
2047                         return true;
2048                 }
2049
2050         return false;
2051 }
2052
2053 void exec_trigger(const char *cmd)
2054 {
2055         int ret;
2056
2057         if (!cmd || cmd[0] == '\0')
2058                 return;
2059
2060         ret = system(cmd);
2061         if (ret == -1)
2062                 log_err("fio: failed executing %s trigger\n", cmd);
2063 }
2064
2065 void check_trigger_file(void)
2066 {
2067         if (__check_trigger_file() || trigger_timedout()) {
2068                 if (nr_clients)
2069                         fio_clients_send_trigger(trigger_remote_cmd);
2070                 else {
2071                         verify_save_state(IO_LIST_ALL);
2072                         fio_terminate_threads(TERMINATE_ALL);
2073                         exec_trigger(trigger_cmd);
2074                 }
2075         }
2076 }
2077
2078 static int fio_verify_load_state(struct thread_data *td)
2079 {
2080         int ret;
2081
2082         if (!td->o.verify_state)
2083                 return 0;
2084
2085         if (is_backend) {
2086                 void *data;
2087
2088                 ret = fio_server_get_verify_state(td->o.name,
2089                                         td->thread_number - 1, &data);
2090                 if (!ret)
2091                         verify_assign_state(td, data);
2092         } else
2093                 ret = verify_load_state(td, "local");
2094
2095         return ret;
2096 }
2097
2098 static void do_usleep(unsigned int usecs)
2099 {
2100         check_for_running_stats();
2101         check_trigger_file();
2102         usleep(usecs);
2103 }
2104
2105 static bool check_mount_writes(struct thread_data *td)
2106 {
2107         struct fio_file *f;
2108         unsigned int i;
2109
2110         if (!td_write(td) || td->o.allow_mounted_write)
2111                 return false;
2112
2113         /*
2114          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2115          * are mkfs'd and mounted.
2116          */
2117         for_each_file(td, f, i) {
2118 #ifdef FIO_HAVE_CHARDEV_SIZE
2119                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2120 #else
2121                 if (f->filetype != FIO_TYPE_BLOCK)
2122 #endif
2123                         continue;
2124                 if (device_is_mounted(f->file_name))
2125                         goto mounted;
2126         }
2127
2128         return false;
2129 mounted:
2130         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2131         return true;
2132 }
2133
2134 static bool waitee_running(struct thread_data *me)
2135 {
2136         const char *waitee = me->o.wait_for;
2137         const char *self = me->o.name;
2138         struct thread_data *td;
2139         int i;
2140
2141         if (!waitee)
2142                 return false;
2143
2144         for_each_td(td, i) {
2145                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2146                         continue;
2147
2148                 if (td->runstate < TD_EXITED) {
2149                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2150                                         self, td->o.name,
2151                                         runstate_to_name(td->runstate));
2152                         return true;
2153                 }
2154         }
2155
2156         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2157         return false;
2158 }
2159
2160 /*
2161  * Main function for kicking off and reaping jobs, as needed.
2162  */
2163 static void run_threads(struct sk_out *sk_out)
2164 {
2165         struct thread_data *td;
2166         unsigned int i, todo, nr_running, nr_started;
2167         uint64_t m_rate, t_rate;
2168         uint64_t spent;
2169
2170         if (fio_gtod_offload && fio_start_gtod_thread())
2171                 return;
2172
2173         fio_idle_prof_init();
2174
2175         set_sig_handlers();
2176
2177         nr_thread = nr_process = 0;
2178         for_each_td(td, i) {
2179                 if (check_mount_writes(td))
2180                         return;
2181                 if (td->o.use_thread)
2182                         nr_thread++;
2183                 else
2184                         nr_process++;
2185         }
2186
2187         if (output_format & FIO_OUTPUT_NORMAL) {
2188                 log_info("Starting ");
2189                 if (nr_thread)
2190                         log_info("%d thread%s", nr_thread,
2191                                                 nr_thread > 1 ? "s" : "");
2192                 if (nr_process) {
2193                         if (nr_thread)
2194                                 log_info(" and ");
2195                         log_info("%d process%s", nr_process,
2196                                                 nr_process > 1 ? "es" : "");
2197                 }
2198                 log_info("\n");
2199                 log_info_flush();
2200         }
2201
2202         todo = thread_number;
2203         nr_running = 0;
2204         nr_started = 0;
2205         m_rate = t_rate = 0;
2206
2207         for_each_td(td, i) {
2208                 print_status_init(td->thread_number - 1);
2209
2210                 if (!td->o.create_serialize)
2211                         continue;
2212
2213                 if (fio_verify_load_state(td))
2214                         goto reap;
2215
2216                 /*
2217                  * do file setup here so it happens sequentially,
2218                  * we don't want X number of threads getting their
2219                  * client data interspersed on disk
2220                  */
2221                 if (setup_files(td)) {
2222 reap:
2223                         exit_value++;
2224                         if (td->error)
2225                                 log_err("fio: pid=%d, err=%d/%s\n",
2226                                         (int) td->pid, td->error, td->verror);
2227                         td_set_runstate(td, TD_REAPED);
2228                         todo--;
2229                 } else {
2230                         struct fio_file *f;
2231                         unsigned int j;
2232
2233                         /*
2234                          * for sharing to work, each job must always open
2235                          * its own files. so close them, if we opened them
2236                          * for creation
2237                          */
2238                         for_each_file(td, f, j) {
2239                                 if (fio_file_open(f))
2240                                         td_io_close_file(td, f);
2241                         }
2242                 }
2243         }
2244
2245         /* start idle threads before io threads start to run */
2246         fio_idle_prof_start();
2247
2248         set_genesis_time();
2249
2250         while (todo) {
2251                 struct thread_data *map[REAL_MAX_JOBS];
2252                 struct timespec this_start;
2253                 int this_jobs = 0, left;
2254                 struct fork_data *fd;
2255
2256                 /*
2257                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2258                  */
2259                 for_each_td(td, i) {
2260                         if (td->runstate != TD_NOT_CREATED)
2261                                 continue;
2262
2263                         /*
2264                          * never got a chance to start, killed by other
2265                          * thread for some reason
2266                          */
2267                         if (td->terminate) {
2268                                 todo--;
2269                                 continue;
2270                         }
2271
2272                         if (td->o.start_delay) {
2273                                 spent = utime_since_genesis();
2274
2275                                 if (td->o.start_delay > spent)
2276                                         continue;
2277                         }
2278
2279                         if (td->o.stonewall && (nr_started || nr_running)) {
2280                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2281                                                         td->o.name);
2282                                 break;
2283                         }
2284
2285                         if (waitee_running(td)) {
2286                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2287                                                 td->o.name, td->o.wait_for);
2288                                 continue;
2289                         }
2290
2291                         init_disk_util(td);
2292
2293                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2294                         td->update_rusage = 0;
2295
2296                         /*
2297                          * Set state to created. Thread will transition
2298                          * to TD_INITIALIZED when it's done setting up.
2299                          */
2300                         td_set_runstate(td, TD_CREATED);
2301                         map[this_jobs++] = td;
2302                         nr_started++;
2303
2304                         fd = calloc(1, sizeof(*fd));
2305                         fd->td = td;
2306                         fd->sk_out = sk_out;
2307
2308                         if (td->o.use_thread) {
2309                                 int ret;
2310
2311                                 dprint(FD_PROCESS, "will pthread_create\n");
2312                                 ret = pthread_create(&td->thread, NULL,
2313                                                         thread_main, fd);
2314                                 if (ret) {
2315                                         log_err("pthread_create: %s\n",
2316                                                         strerror(ret));
2317                                         free(fd);
2318                                         nr_started--;
2319                                         break;
2320                                 }
2321                                 ret = pthread_detach(td->thread);
2322                                 if (ret)
2323                                         log_err("pthread_detach: %s",
2324                                                         strerror(ret));
2325                         } else {
2326                                 pid_t pid;
2327                                 dprint(FD_PROCESS, "will fork\n");
2328                                 pid = fork();
2329                                 if (!pid) {
2330                                         int ret;
2331
2332                                         ret = (int)(uintptr_t)thread_main(fd);
2333                                         _exit(ret);
2334                                 } else if (i == fio_debug_jobno)
2335                                         *fio_debug_jobp = pid;
2336                         }
2337                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2338                         if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2339                                 log_err("fio: job startup hung? exiting.\n");
2340                                 fio_terminate_threads(TERMINATE_ALL);
2341                                 fio_abort = 1;
2342                                 nr_started--;
2343                                 free(fd);
2344                                 break;
2345                         }
2346                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2347                 }
2348
2349                 /*
2350                  * Wait for the started threads to transition to
2351                  * TD_INITIALIZED.
2352                  */
2353                 fio_gettime(&this_start, NULL);
2354                 left = this_jobs;
2355                 while (left && !fio_abort) {
2356                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2357                                 break;
2358
2359                         do_usleep(100000);
2360
2361                         for (i = 0; i < this_jobs; i++) {
2362                                 td = map[i];
2363                                 if (!td)
2364                                         continue;
2365                                 if (td->runstate == TD_INITIALIZED) {
2366                                         map[i] = NULL;
2367                                         left--;
2368                                 } else if (td->runstate >= TD_EXITED) {
2369                                         map[i] = NULL;
2370                                         left--;
2371                                         todo--;
2372                                         nr_running++; /* work-around... */
2373                                 }
2374                         }
2375                 }
2376
2377                 if (left) {
2378                         log_err("fio: %d job%s failed to start\n", left,
2379                                         left > 1 ? "s" : "");
2380                         for (i = 0; i < this_jobs; i++) {
2381                                 td = map[i];
2382                                 if (!td)
2383                                         continue;
2384                                 kill(td->pid, SIGTERM);
2385                         }
2386                         break;
2387                 }
2388
2389                 /*
2390                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2391                  */
2392                 for_each_td(td, i) {
2393                         if (td->runstate != TD_INITIALIZED)
2394                                 continue;
2395
2396                         if (in_ramp_time(td))
2397                                 td_set_runstate(td, TD_RAMP);
2398                         else
2399                                 td_set_runstate(td, TD_RUNNING);
2400                         nr_running++;
2401                         nr_started--;
2402                         m_rate += ddir_rw_sum(td->o.ratemin);
2403                         t_rate += ddir_rw_sum(td->o.rate);
2404                         todo--;
2405                         fio_mutex_up(td->mutex);
2406                 }
2407
2408                 reap_threads(&nr_running, &t_rate, &m_rate);
2409
2410                 if (todo)
2411                         do_usleep(100000);
2412         }
2413
2414         while (nr_running) {
2415                 reap_threads(&nr_running, &t_rate, &m_rate);
2416                 do_usleep(10000);
2417         }
2418
2419         fio_idle_prof_stop();
2420
2421         update_io_ticks();
2422 }
2423
2424 static void free_disk_util(void)
2425 {
2426         disk_util_prune_entries();
2427         helper_thread_destroy();
2428 }
2429
2430 int fio_backend(struct sk_out *sk_out)
2431 {
2432         struct thread_data *td;
2433         int i;
2434
2435         if (exec_profile) {
2436                 if (load_profile(exec_profile))
2437                         return 1;
2438                 free(exec_profile);
2439                 exec_profile = NULL;
2440         }
2441         if (!thread_number)
2442                 return 0;
2443
2444         if (write_bw_log) {
2445                 struct log_params p = {
2446                         .log_type = IO_LOG_TYPE_BW,
2447                 };
2448
2449                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2450                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2451                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2452         }
2453
2454         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2455         if (startup_mutex == NULL)
2456                 return 1;
2457
2458         set_genesis_time();
2459         stat_init();
2460         helper_thread_create(startup_mutex, sk_out);
2461
2462         cgroup_list = smalloc(sizeof(*cgroup_list));
2463         INIT_FLIST_HEAD(cgroup_list);
2464
2465         run_threads(sk_out);
2466
2467         helper_thread_exit();
2468
2469         if (!fio_abort) {
2470                 __show_run_stats();
2471                 if (write_bw_log) {
2472                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2473                                 struct io_log *log = agg_io_log[i];
2474
2475                                 flush_log(log, false);
2476                                 free_log(log);
2477                         }
2478                 }
2479         }
2480
2481         for_each_td(td, i) {
2482                 if (td->ss.dur) {
2483                         if (td->ss.iops_data != NULL) {
2484                                 free(td->ss.iops_data);
2485                                 free(td->ss.bw_data);
2486                         }
2487                 }
2488                 fio_options_free(td);
2489                 if (td->rusage_sem) {
2490                         fio_mutex_remove(td->rusage_sem);
2491                         td->rusage_sem = NULL;
2492                 }
2493                 fio_mutex_remove(td->mutex);
2494                 td->mutex = NULL;
2495         }
2496
2497         free_disk_util();
2498         cgroup_kill(cgroup_list);
2499         sfree(cgroup_list);
2500         sfree(cgroup_mnt);
2501
2502         fio_mutex_remove(startup_mutex);
2503         stat_exit();
2504         return exit_value;
2505 }