iolog: fix two bugs in deferred growing
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "workqueue.h"
58 #include "lib/mountcheck.h"
59 #include "rate-submit.h"
60 #include "helper_thread.h"
61
62 static struct fio_mutex *startup_mutex;
63 static struct flist_head *cgroup_list;
64 static char *cgroup_mnt;
65 static int exit_value;
66 static volatile int fio_abort;
67 static unsigned int nr_process = 0;
68 static unsigned int nr_thread = 0;
69
70 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72 int groupid = 0;
73 unsigned int thread_number = 0;
74 unsigned int stat_number = 0;
75 int shm_id = 0;
76 int temp_stall_ts;
77 unsigned long done_secs = 0;
78
79 #define PAGE_ALIGN(buf) \
80         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
81
82 #define JOB_START_TIMEOUT       (5 * 1000)
83
84 static void sig_int(int sig)
85 {
86         if (threads) {
87                 if (is_backend)
88                         fio_server_got_signal(sig);
89                 else {
90                         log_info("\nfio: terminating on signal %d\n", sig);
91                         log_info_flush();
92                         exit_value = 128;
93                 }
94
95                 fio_terminate_threads(TERMINATE_ALL);
96         }
97 }
98
99 void sig_show_status(int sig)
100 {
101         show_running_run_stats();
102 }
103
104 static void set_sig_handlers(void)
105 {
106         struct sigaction act;
107
108         memset(&act, 0, sizeof(act));
109         act.sa_handler = sig_int;
110         act.sa_flags = SA_RESTART;
111         sigaction(SIGINT, &act, NULL);
112
113         memset(&act, 0, sizeof(act));
114         act.sa_handler = sig_int;
115         act.sa_flags = SA_RESTART;
116         sigaction(SIGTERM, &act, NULL);
117
118 /* Windows uses SIGBREAK as a quit signal from other applications */
119 #ifdef WIN32
120         memset(&act, 0, sizeof(act));
121         act.sa_handler = sig_int;
122         act.sa_flags = SA_RESTART;
123         sigaction(SIGBREAK, &act, NULL);
124 #endif
125
126         memset(&act, 0, sizeof(act));
127         act.sa_handler = sig_show_status;
128         act.sa_flags = SA_RESTART;
129         sigaction(SIGUSR1, &act, NULL);
130
131         if (is_backend) {
132                 memset(&act, 0, sizeof(act));
133                 act.sa_handler = sig_int;
134                 act.sa_flags = SA_RESTART;
135                 sigaction(SIGPIPE, &act, NULL);
136         }
137 }
138
139 /*
140  * Check if we are above the minimum rate given.
141  */
142 static bool __check_min_rate(struct thread_data *td, struct timeval *now,
143                              enum fio_ddir ddir)
144 {
145         unsigned long long bytes = 0;
146         unsigned long iops = 0;
147         unsigned long spent;
148         unsigned long rate;
149         unsigned int ratemin = 0;
150         unsigned int rate_iops = 0;
151         unsigned int rate_iops_min = 0;
152
153         assert(ddir_rw(ddir));
154
155         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
156                 return false;
157
158         /*
159          * allow a 2 second settle period in the beginning
160          */
161         if (mtime_since(&td->start, now) < 2000)
162                 return false;
163
164         iops += td->this_io_blocks[ddir];
165         bytes += td->this_io_bytes[ddir];
166         ratemin += td->o.ratemin[ddir];
167         rate_iops += td->o.rate_iops[ddir];
168         rate_iops_min += td->o.rate_iops_min[ddir];
169
170         /*
171          * if rate blocks is set, sample is running
172          */
173         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
174                 spent = mtime_since(&td->lastrate[ddir], now);
175                 if (spent < td->o.ratecycle)
176                         return false;
177
178                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
179                         /*
180                          * check bandwidth specified rate
181                          */
182                         if (bytes < td->rate_bytes[ddir]) {
183                                 log_err("%s: min rate %u not met\n", td->o.name,
184                                                                 ratemin);
185                                 return true;
186                         } else {
187                                 if (spent)
188                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
189                                 else
190                                         rate = 0;
191
192                                 if (rate < ratemin ||
193                                     bytes < td->rate_bytes[ddir]) {
194                                         log_err("%s: min rate %u not met, got"
195                                                 " %luKB/sec\n", td->o.name,
196                                                         ratemin, rate);
197                                         return true;
198                                 }
199                         }
200                 } else {
201                         /*
202                          * checks iops specified rate
203                          */
204                         if (iops < rate_iops) {
205                                 log_err("%s: min iops rate %u not met\n",
206                                                 td->o.name, rate_iops);
207                                 return true;
208                         } else {
209                                 if (spent)
210                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
211                                 else
212                                         rate = 0;
213
214                                 if (rate < rate_iops_min ||
215                                     iops < td->rate_blocks[ddir]) {
216                                         log_err("%s: min iops rate %u not met,"
217                                                 " got %lu\n", td->o.name,
218                                                         rate_iops_min, rate);
219                                         return true;
220                                 }
221                         }
222                 }
223         }
224
225         td->rate_bytes[ddir] = bytes;
226         td->rate_blocks[ddir] = iops;
227         memcpy(&td->lastrate[ddir], now, sizeof(*now));
228         return false;
229 }
230
231 static bool check_min_rate(struct thread_data *td, struct timeval *now)
232 {
233         bool ret = false;
234
235         if (td->bytes_done[DDIR_READ])
236                 ret |= __check_min_rate(td, now, DDIR_READ);
237         if (td->bytes_done[DDIR_WRITE])
238                 ret |= __check_min_rate(td, now, DDIR_WRITE);
239         if (td->bytes_done[DDIR_TRIM])
240                 ret |= __check_min_rate(td, now, DDIR_TRIM);
241
242         return ret;
243 }
244
245 /*
246  * When job exits, we can cancel the in-flight IO if we are using async
247  * io. Attempt to do so.
248  */
249 static void cleanup_pending_aio(struct thread_data *td)
250 {
251         int r;
252
253         /*
254          * get immediately available events, if any
255          */
256         r = io_u_queued_complete(td, 0);
257         if (r < 0)
258                 return;
259
260         /*
261          * now cancel remaining active events
262          */
263         if (td->io_ops->cancel) {
264                 struct io_u *io_u;
265                 int i;
266
267                 io_u_qiter(&td->io_u_all, io_u, i) {
268                         if (io_u->flags & IO_U_F_FLIGHT) {
269                                 r = td->io_ops->cancel(td, io_u);
270                                 if (!r)
271                                         put_io_u(td, io_u);
272                         }
273                 }
274         }
275
276         if (td->cur_depth)
277                 r = io_u_queued_complete(td, td->cur_depth);
278 }
279
280 /*
281  * Helper to handle the final sync of a file. Works just like the normal
282  * io path, just does everything sync.
283  */
284 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
285 {
286         struct io_u *io_u = __get_io_u(td);
287         int ret;
288
289         if (!io_u)
290                 return true;
291
292         io_u->ddir = DDIR_SYNC;
293         io_u->file = f;
294
295         if (td_io_prep(td, io_u)) {
296                 put_io_u(td, io_u);
297                 return true;
298         }
299
300 requeue:
301         ret = td_io_queue(td, io_u);
302         if (ret < 0) {
303                 td_verror(td, io_u->error, "td_io_queue");
304                 put_io_u(td, io_u);
305                 return true;
306         } else if (ret == FIO_Q_QUEUED) {
307                 if (td_io_commit(td))
308                         return true;
309                 if (io_u_queued_complete(td, 1) < 0)
310                         return true;
311         } else if (ret == FIO_Q_COMPLETED) {
312                 if (io_u->error) {
313                         td_verror(td, io_u->error, "td_io_queue");
314                         return true;
315                 }
316
317                 if (io_u_sync_complete(td, io_u) < 0)
318                         return true;
319         } else if (ret == FIO_Q_BUSY) {
320                 if (td_io_commit(td))
321                         return true;
322                 goto requeue;
323         }
324
325         return false;
326 }
327
328 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329 {
330         int ret;
331
332         if (fio_file_open(f))
333                 return fio_io_sync(td, f);
334
335         if (td_io_open_file(td, f))
336                 return 1;
337
338         ret = fio_io_sync(td, f);
339         td_io_close_file(td, f);
340         return ret;
341 }
342
343 static inline void __update_tv_cache(struct thread_data *td)
344 {
345         fio_gettime(&td->tv_cache, NULL);
346 }
347
348 static inline void update_tv_cache(struct thread_data *td)
349 {
350         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351                 __update_tv_cache(td);
352 }
353
354 static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
355 {
356         if (in_ramp_time(td))
357                 return false;
358         if (!td->o.timeout)
359                 return false;
360         if (utime_since(&td->epoch, t) >= td->o.timeout)
361                 return true;
362
363         return false;
364 }
365
366 /*
367  * We need to update the runtime consistently in ms, but keep a running
368  * tally of the current elapsed time in microseconds for sub millisecond
369  * updates.
370  */
371 static inline void update_runtime(struct thread_data *td,
372                                   unsigned long long *elapsed_us,
373                                   const enum fio_ddir ddir)
374 {
375         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
376                 return;
377
378         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
379         elapsed_us[ddir] += utime_since_now(&td->start);
380         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
381 }
382
383 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
384                                 int *retptr)
385 {
386         int ret = *retptr;
387
388         if (ret < 0 || td->error) {
389                 int err = td->error;
390                 enum error_type_bit eb;
391
392                 if (ret < 0)
393                         err = -ret;
394
395                 eb = td_error_type(ddir, err);
396                 if (!(td->o.continue_on_error & (1 << eb)))
397                         return true;
398
399                 if (td_non_fatal_error(td, eb, err)) {
400                         /*
401                          * Continue with the I/Os in case of
402                          * a non fatal error.
403                          */
404                         update_error_count(td, err);
405                         td_clear_error(td);
406                         *retptr = 0;
407                         return false;
408                 } else if (td->o.fill_device && err == ENOSPC) {
409                         /*
410                          * We expect to hit this error if
411                          * fill_device option is set.
412                          */
413                         td_clear_error(td);
414                         fio_mark_td_terminate(td);
415                         return true;
416                 } else {
417                         /*
418                          * Stop the I/O in case of a fatal
419                          * error.
420                          */
421                         update_error_count(td, err);
422                         return true;
423                 }
424         }
425
426         return false;
427 }
428
429 static void check_update_rusage(struct thread_data *td)
430 {
431         if (td->update_rusage) {
432                 td->update_rusage = 0;
433                 update_rusage_stat(td);
434                 fio_mutex_up(td->rusage_sem);
435         }
436 }
437
438 static int wait_for_completions(struct thread_data *td, struct timeval *time)
439 {
440         const int full = queue_full(td);
441         int min_evts = 0;
442         int ret;
443
444         if (td->flags & TD_F_REGROW_LOGS) {
445                 ret = io_u_quiesce(td);
446                 regrow_logs(td);
447                 return ret;
448         }
449
450         /*
451          * if the queue is full, we MUST reap at least 1 event
452          */
453         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
454         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
455                 min_evts = 1;
456
457         if (time && (__should_check_rate(td, DDIR_READ) ||
458             __should_check_rate(td, DDIR_WRITE) ||
459             __should_check_rate(td, DDIR_TRIM)))
460                 fio_gettime(time, NULL);
461
462         do {
463                 ret = io_u_queued_complete(td, min_evts);
464                 if (ret < 0)
465                         break;
466         } while (full && (td->cur_depth > td->o.iodepth_low));
467
468         return ret;
469 }
470
471 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
472                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
473                    struct timeval *comp_time)
474 {
475         int ret2;
476
477         switch (*ret) {
478         case FIO_Q_COMPLETED:
479                 if (io_u->error) {
480                         *ret = -io_u->error;
481                         clear_io_u(td, io_u);
482                 } else if (io_u->resid) {
483                         int bytes = io_u->xfer_buflen - io_u->resid;
484                         struct fio_file *f = io_u->file;
485
486                         if (bytes_issued)
487                                 *bytes_issued += bytes;
488
489                         if (!from_verify)
490                                 trim_io_piece(td, io_u);
491
492                         /*
493                          * zero read, fail
494                          */
495                         if (!bytes) {
496                                 if (!from_verify)
497                                         unlog_io_piece(td, io_u);
498                                 td_verror(td, EIO, "full resid");
499                                 put_io_u(td, io_u);
500                                 break;
501                         }
502
503                         io_u->xfer_buflen = io_u->resid;
504                         io_u->xfer_buf += bytes;
505                         io_u->offset += bytes;
506
507                         if (ddir_rw(io_u->ddir))
508                                 td->ts.short_io_u[io_u->ddir]++;
509
510                         f = io_u->file;
511                         if (io_u->offset == f->real_file_size)
512                                 goto sync_done;
513
514                         requeue_io_u(td, &io_u);
515                 } else {
516 sync_done:
517                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
518                             __should_check_rate(td, DDIR_WRITE) ||
519                             __should_check_rate(td, DDIR_TRIM)))
520                                 fio_gettime(comp_time, NULL);
521
522                         *ret = io_u_sync_complete(td, io_u);
523                         if (*ret < 0)
524                                 break;
525                 }
526
527                 /*
528                  * when doing I/O (not when verifying),
529                  * check for any errors that are to be ignored
530                  */
531                 if (!from_verify)
532                         break;
533
534                 return 0;
535         case FIO_Q_QUEUED:
536                 /*
537                  * if the engine doesn't have a commit hook,
538                  * the io_u is really queued. if it does have such
539                  * a hook, it has to call io_u_queued() itself.
540                  */
541                 if (td->io_ops->commit == NULL)
542                         io_u_queued(td, io_u);
543                 if (bytes_issued)
544                         *bytes_issued += io_u->xfer_buflen;
545                 break;
546         case FIO_Q_BUSY:
547                 if (!from_verify)
548                         unlog_io_piece(td, io_u);
549                 requeue_io_u(td, &io_u);
550                 ret2 = td_io_commit(td);
551                 if (ret2 < 0)
552                         *ret = ret2;
553                 break;
554         default:
555                 assert(*ret < 0);
556                 td_verror(td, -(*ret), "td_io_queue");
557                 break;
558         }
559
560         if (break_on_this_error(td, ddir, ret))
561                 return 1;
562
563         return 0;
564 }
565
566 static inline bool io_in_polling(struct thread_data *td)
567 {
568         return !td->o.iodepth_batch_complete_min &&
569                    !td->o.iodepth_batch_complete_max;
570 }
571
572 /*
573  * The main verify engine. Runs over the writes we previously submitted,
574  * reads the blocks back in, and checks the crc/md5 of the data.
575  */
576 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
577 {
578         struct fio_file *f;
579         struct io_u *io_u;
580         int ret, min_events;
581         unsigned int i;
582
583         dprint(FD_VERIFY, "starting loop\n");
584
585         /*
586          * sync io first and invalidate cache, to make sure we really
587          * read from disk.
588          */
589         for_each_file(td, f, i) {
590                 if (!fio_file_open(f))
591                         continue;
592                 if (fio_io_sync(td, f))
593                         break;
594                 if (file_invalidate_cache(td, f))
595                         break;
596         }
597
598         check_update_rusage(td);
599
600         if (td->error)
601                 return;
602
603         td_set_runstate(td, TD_VERIFYING);
604
605         io_u = NULL;
606         while (!td->terminate) {
607                 enum fio_ddir ddir;
608                 int full;
609
610                 update_tv_cache(td);
611                 check_update_rusage(td);
612
613                 if (runtime_exceeded(td, &td->tv_cache)) {
614                         __update_tv_cache(td);
615                         if (runtime_exceeded(td, &td->tv_cache)) {
616                                 fio_mark_td_terminate(td);
617                                 break;
618                         }
619                 }
620
621                 if (flow_threshold_exceeded(td))
622                         continue;
623
624                 if (!td->o.experimental_verify) {
625                         io_u = __get_io_u(td);
626                         if (!io_u)
627                                 break;
628
629                         if (get_next_verify(td, io_u)) {
630                                 put_io_u(td, io_u);
631                                 break;
632                         }
633
634                         if (td_io_prep(td, io_u)) {
635                                 put_io_u(td, io_u);
636                                 break;
637                         }
638                 } else {
639                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
640                                 break;
641
642                         while ((io_u = get_io_u(td)) != NULL) {
643                                 if (IS_ERR(io_u)) {
644                                         io_u = NULL;
645                                         ret = FIO_Q_BUSY;
646                                         goto reap;
647                                 }
648
649                                 /*
650                                  * We are only interested in the places where
651                                  * we wrote or trimmed IOs. Turn those into
652                                  * reads for verification purposes.
653                                  */
654                                 if (io_u->ddir == DDIR_READ) {
655                                         /*
656                                          * Pretend we issued it for rwmix
657                                          * accounting
658                                          */
659                                         td->io_issues[DDIR_READ]++;
660                                         put_io_u(td, io_u);
661                                         continue;
662                                 } else if (io_u->ddir == DDIR_TRIM) {
663                                         io_u->ddir = DDIR_READ;
664                                         io_u_set(io_u, IO_U_F_TRIMMED);
665                                         break;
666                                 } else if (io_u->ddir == DDIR_WRITE) {
667                                         io_u->ddir = DDIR_READ;
668                                         break;
669                                 } else {
670                                         put_io_u(td, io_u);
671                                         continue;
672                                 }
673                         }
674
675                         if (!io_u)
676                                 break;
677                 }
678
679                 if (verify_state_should_stop(td, io_u)) {
680                         put_io_u(td, io_u);
681                         break;
682                 }
683
684                 if (td->o.verify_async)
685                         io_u->end_io = verify_io_u_async;
686                 else
687                         io_u->end_io = verify_io_u;
688
689                 ddir = io_u->ddir;
690                 if (!td->o.disable_slat)
691                         fio_gettime(&io_u->start_time, NULL);
692
693                 ret = td_io_queue(td, io_u);
694
695                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
696                         break;
697
698                 /*
699                  * if we can queue more, do so. but check if there are
700                  * completed io_u's first. Note that we can get BUSY even
701                  * without IO queued, if the system is resource starved.
702                  */
703 reap:
704                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
705                 if (full || io_in_polling(td))
706                         ret = wait_for_completions(td, NULL);
707
708                 if (ret < 0)
709                         break;
710         }
711
712         check_update_rusage(td);
713
714         if (!td->error) {
715                 min_events = td->cur_depth;
716
717                 if (min_events)
718                         ret = io_u_queued_complete(td, min_events);
719         } else
720                 cleanup_pending_aio(td);
721
722         td_set_runstate(td, TD_RUNNING);
723
724         dprint(FD_VERIFY, "exiting loop\n");
725 }
726
727 static bool exceeds_number_ios(struct thread_data *td)
728 {
729         unsigned long long number_ios;
730
731         if (!td->o.number_ios)
732                 return false;
733
734         number_ios = ddir_rw_sum(td->io_blocks);
735         number_ios += td->io_u_queued + td->io_u_in_flight;
736
737         return number_ios >= (td->o.number_ios * td->loops);
738 }
739
740 static bool io_issue_bytes_exceeded(struct thread_data *td)
741 {
742         unsigned long long bytes, limit;
743
744         if (td_rw(td))
745                 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
746         else if (td_write(td))
747                 bytes = td->io_issue_bytes[DDIR_WRITE];
748         else if (td_read(td))
749                 bytes = td->io_issue_bytes[DDIR_READ];
750         else
751                 bytes = td->io_issue_bytes[DDIR_TRIM];
752
753         if (td->o.io_limit)
754                 limit = td->o.io_limit;
755         else
756                 limit = td->o.size;
757
758         limit *= td->loops;
759         return bytes >= limit || exceeds_number_ios(td);
760 }
761
762 static bool io_complete_bytes_exceeded(struct thread_data *td)
763 {
764         unsigned long long bytes, limit;
765
766         if (td_rw(td))
767                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
768         else if (td_write(td))
769                 bytes = td->this_io_bytes[DDIR_WRITE];
770         else if (td_read(td))
771                 bytes = td->this_io_bytes[DDIR_READ];
772         else
773                 bytes = td->this_io_bytes[DDIR_TRIM];
774
775         if (td->o.io_limit)
776                 limit = td->o.io_limit;
777         else
778                 limit = td->o.size;
779
780         limit *= td->loops;
781         return bytes >= limit || exceeds_number_ios(td);
782 }
783
784 /*
785  * used to calculate the next io time for rate control
786  *
787  */
788 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
789 {
790         uint64_t secs, remainder, bps, bytes, iops;
791
792         assert(!(td->flags & TD_F_CHILD));
793         bytes = td->rate_io_issue_bytes[ddir];
794         bps = td->rate_bps[ddir];
795
796         if (td->o.rate_process == RATE_PROCESS_POISSON) {
797                 uint64_t val;
798                 iops = bps / td->o.bs[ddir];
799                 val = (int64_t) (1000000 / iops) *
800                                 -logf(__rand_0_1(&td->poisson_state));
801                 if (val) {
802                         dprint(FD_RATE, "poisson rate iops=%llu\n",
803                                         (unsigned long long) 1000000 / val);
804                 }
805                 td->last_usec += val;
806                 return td->last_usec;
807         } else if (bps) {
808                 secs = bytes / bps;
809                 remainder = bytes % bps;
810                 return remainder * 1000000 / bps + secs * 1000000;
811         }
812
813         return 0;
814 }
815
816 /*
817  * Main IO worker function. It retrieves io_u's to process and queues
818  * and reaps them, checking for rate and errors along the way.
819  *
820  * Returns number of bytes written and trimmed.
821  */
822 static void do_io(struct thread_data *td, uint64_t *bytes_done)
823 {
824         unsigned int i;
825         int ret = 0;
826         uint64_t total_bytes, bytes_issued = 0;
827
828         for (i = 0; i < DDIR_RWDIR_CNT; i++)
829                 bytes_done[i] = td->bytes_done[i];
830
831         if (in_ramp_time(td))
832                 td_set_runstate(td, TD_RAMP);
833         else
834                 td_set_runstate(td, TD_RUNNING);
835
836         lat_target_init(td);
837
838         total_bytes = td->o.size;
839         /*
840         * Allow random overwrite workloads to write up to io_limit
841         * before starting verification phase as 'size' doesn't apply.
842         */
843         if (td_write(td) && td_random(td) && td->o.norandommap)
844                 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
845         /*
846          * If verify_backlog is enabled, we'll run the verify in this
847          * handler as well. For that case, we may need up to twice the
848          * amount of bytes.
849          */
850         if (td->o.verify != VERIFY_NONE &&
851            (td_write(td) && td->o.verify_backlog))
852                 total_bytes += td->o.size;
853
854         /* In trimwrite mode, each byte is trimmed and then written, so
855          * allow total_bytes to be twice as big */
856         if (td_trimwrite(td))
857                 total_bytes += td->total_io_size;
858
859         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
860                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
861                 td->o.time_based) {
862                 struct timeval comp_time;
863                 struct io_u *io_u;
864                 int full;
865                 enum fio_ddir ddir;
866
867                 check_update_rusage(td);
868
869                 if (td->terminate || td->done)
870                         break;
871
872                 update_tv_cache(td);
873
874                 if (runtime_exceeded(td, &td->tv_cache)) {
875                         __update_tv_cache(td);
876                         if (runtime_exceeded(td, &td->tv_cache)) {
877                                 fio_mark_td_terminate(td);
878                                 break;
879                         }
880                 }
881
882                 if (flow_threshold_exceeded(td))
883                         continue;
884
885                 /*
886                  * Break if we exceeded the bytes. The exception is time
887                  * based runs, but we still need to break out of the loop
888                  * for those to run verification, if enabled.
889                  */
890                 if (bytes_issued >= total_bytes &&
891                     (!td->o.time_based ||
892                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
893                         break;
894
895                 io_u = get_io_u(td);
896                 if (IS_ERR_OR_NULL(io_u)) {
897                         int err = PTR_ERR(io_u);
898
899                         io_u = NULL;
900                         if (err == -EBUSY) {
901                                 ret = FIO_Q_BUSY;
902                                 goto reap;
903                         }
904                         if (td->o.latency_target)
905                                 goto reap;
906                         break;
907                 }
908
909                 ddir = io_u->ddir;
910
911                 /*
912                  * Add verification end_io handler if:
913                  *      - Asked to verify (!td_rw(td))
914                  *      - Or the io_u is from our verify list (mixed write/ver)
915                  */
916                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
917                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
918
919                         if (!td->o.verify_pattern_bytes) {
920                                 io_u->rand_seed = __rand(&td->verify_state);
921                                 if (sizeof(int) != sizeof(long *))
922                                         io_u->rand_seed *= __rand(&td->verify_state);
923                         }
924
925                         if (verify_state_should_stop(td, io_u)) {
926                                 put_io_u(td, io_u);
927                                 break;
928                         }
929
930                         if (td->o.verify_async)
931                                 io_u->end_io = verify_io_u_async;
932                         else
933                                 io_u->end_io = verify_io_u;
934                         td_set_runstate(td, TD_VERIFYING);
935                 } else if (in_ramp_time(td))
936                         td_set_runstate(td, TD_RAMP);
937                 else
938                         td_set_runstate(td, TD_RUNNING);
939
940                 /*
941                  * Always log IO before it's issued, so we know the specific
942                  * order of it. The logged unit will track when the IO has
943                  * completed.
944                  */
945                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
946                     td->o.do_verify &&
947                     td->o.verify != VERIFY_NONE &&
948                     !td->o.experimental_verify)
949                         log_io_piece(td, io_u);
950
951                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
952                         const unsigned long blen = io_u->xfer_buflen;
953                         const enum fio_ddir ddir = acct_ddir(io_u);
954
955                         if (td->error)
956                                 break;
957
958                         workqueue_enqueue(&td->io_wq, &io_u->work);
959                         ret = FIO_Q_QUEUED;
960
961                         if (ddir_rw(ddir)) {
962                                 td->io_issues[ddir]++;
963                                 td->io_issue_bytes[ddir] += blen;
964                                 td->rate_io_issue_bytes[ddir] += blen;
965                         }
966
967                         if (should_check_rate(td))
968                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
969
970                 } else {
971                         ret = td_io_queue(td, io_u);
972
973                         if (should_check_rate(td))
974                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
975
976                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
977                                 break;
978
979                         /*
980                          * See if we need to complete some commands. Note that
981                          * we can get BUSY even without IO queued, if the
982                          * system is resource starved.
983                          */
984 reap:
985                         full = queue_full(td) ||
986                                 (ret == FIO_Q_BUSY && td->cur_depth);
987                         if (full || io_in_polling(td))
988                                 ret = wait_for_completions(td, &comp_time);
989                 }
990                 if (ret < 0)
991                         break;
992                 if (!ddir_rw_sum(td->bytes_done) &&
993                     !(td->io_ops->flags & FIO_NOIO))
994                         continue;
995
996                 if (!in_ramp_time(td) && should_check_rate(td)) {
997                         if (check_min_rate(td, &comp_time)) {
998                                 if (exitall_on_terminate || td->o.exitall_error)
999                                         fio_terminate_threads(td->groupid);
1000                                 td_verror(td, EIO, "check_min_rate");
1001                                 break;
1002                         }
1003                 }
1004                 if (!in_ramp_time(td) && td->o.latency_target)
1005                         lat_target_check(td);
1006
1007                 if (td->o.thinktime) {
1008                         unsigned long long b;
1009
1010                         b = ddir_rw_sum(td->io_blocks);
1011                         if (!(b % td->o.thinktime_blocks)) {
1012                                 int left;
1013
1014                                 io_u_quiesce(td);
1015
1016                                 if (td->o.thinktime_spin)
1017                                         usec_spin(td->o.thinktime_spin);
1018
1019                                 left = td->o.thinktime - td->o.thinktime_spin;
1020                                 if (left)
1021                                         usec_sleep(td, left);
1022                         }
1023                 }
1024         }
1025
1026         check_update_rusage(td);
1027
1028         if (td->trim_entries)
1029                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1030
1031         if (td->o.fill_device && td->error == ENOSPC) {
1032                 td->error = 0;
1033                 fio_mark_td_terminate(td);
1034         }
1035         if (!td->error) {
1036                 struct fio_file *f;
1037
1038                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1039                         workqueue_flush(&td->io_wq);
1040                         i = 0;
1041                 } else
1042                         i = td->cur_depth;
1043
1044                 if (i) {
1045                         ret = io_u_queued_complete(td, i);
1046                         if (td->o.fill_device && td->error == ENOSPC)
1047                                 td->error = 0;
1048                 }
1049
1050                 if (should_fsync(td) && td->o.end_fsync) {
1051                         td_set_runstate(td, TD_FSYNCING);
1052
1053                         for_each_file(td, f, i) {
1054                                 if (!fio_file_fsync(td, f))
1055                                         continue;
1056
1057                                 log_err("fio: end_fsync failed for file %s\n",
1058                                                                 f->file_name);
1059                         }
1060                 }
1061         } else
1062                 cleanup_pending_aio(td);
1063
1064         /*
1065          * stop job if we failed doing any IO
1066          */
1067         if (!ddir_rw_sum(td->this_io_bytes))
1068                 td->done = 1;
1069
1070         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1071                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1072 }
1073
1074 static void free_file_completion_logging(struct thread_data *td)
1075 {
1076         struct fio_file *f;
1077         unsigned int i;
1078
1079         for_each_file(td, f, i) {
1080                 if (!f->last_write_comp)
1081                         break;
1082                 sfree(f->last_write_comp);
1083         }
1084 }
1085
1086 static int init_file_completion_logging(struct thread_data *td,
1087                                         unsigned int depth)
1088 {
1089         struct fio_file *f;
1090         unsigned int i;
1091
1092         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1093                 return 0;
1094
1095         for_each_file(td, f, i) {
1096                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1097                 if (!f->last_write_comp)
1098                         goto cleanup;
1099         }
1100
1101         return 0;
1102
1103 cleanup:
1104         free_file_completion_logging(td);
1105         log_err("fio: failed to alloc write comp data\n");
1106         return 1;
1107 }
1108
1109 static void cleanup_io_u(struct thread_data *td)
1110 {
1111         struct io_u *io_u;
1112
1113         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1114
1115                 if (td->io_ops->io_u_free)
1116                         td->io_ops->io_u_free(td, io_u);
1117
1118                 fio_memfree(io_u, sizeof(*io_u));
1119         }
1120
1121         free_io_mem(td);
1122
1123         io_u_rexit(&td->io_u_requeues);
1124         io_u_qexit(&td->io_u_freelist);
1125         io_u_qexit(&td->io_u_all);
1126
1127         free_file_completion_logging(td);
1128 }
1129
1130 static int init_io_u(struct thread_data *td)
1131 {
1132         struct io_u *io_u;
1133         unsigned int max_bs, min_write;
1134         int cl_align, i, max_units;
1135         int data_xfer = 1, err;
1136         char *p;
1137
1138         max_units = td->o.iodepth;
1139         max_bs = td_max_bs(td);
1140         min_write = td->o.min_bs[DDIR_WRITE];
1141         td->orig_buffer_size = (unsigned long long) max_bs
1142                                         * (unsigned long long) max_units;
1143
1144         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1145                 data_xfer = 0;
1146
1147         err = 0;
1148         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1149         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1150         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1151
1152         if (err) {
1153                 log_err("fio: failed setting up IO queues\n");
1154                 return 1;
1155         }
1156
1157         /*
1158          * if we may later need to do address alignment, then add any
1159          * possible adjustment here so that we don't cause a buffer
1160          * overflow later. this adjustment may be too much if we get
1161          * lucky and the allocator gives us an aligned address.
1162          */
1163         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1164             (td->io_ops->flags & FIO_RAWIO))
1165                 td->orig_buffer_size += page_mask + td->o.mem_align;
1166
1167         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1168                 unsigned long bs;
1169
1170                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1171                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1172         }
1173
1174         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1175                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1176                 return 1;
1177         }
1178
1179         if (data_xfer && allocate_io_mem(td))
1180                 return 1;
1181
1182         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1183             (td->io_ops->flags & FIO_RAWIO))
1184                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1185         else
1186                 p = td->orig_buffer;
1187
1188         cl_align = os_cache_line_size();
1189
1190         for (i = 0; i < max_units; i++) {
1191                 void *ptr;
1192
1193                 if (td->terminate)
1194                         return 1;
1195
1196                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1197                 if (!ptr) {
1198                         log_err("fio: unable to allocate aligned memory\n");
1199                         break;
1200                 }
1201
1202                 io_u = ptr;
1203                 memset(io_u, 0, sizeof(*io_u));
1204                 INIT_FLIST_HEAD(&io_u->verify_list);
1205                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1206
1207                 if (data_xfer) {
1208                         io_u->buf = p;
1209                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1210
1211                         if (td_write(td))
1212                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1213                         if (td_write(td) && td->o.verify_pattern_bytes) {
1214                                 /*
1215                                  * Fill the buffer with the pattern if we are
1216                                  * going to be doing writes.
1217                                  */
1218                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1219                         }
1220                 }
1221
1222                 io_u->index = i;
1223                 io_u->flags = IO_U_F_FREE;
1224                 io_u_qpush(&td->io_u_freelist, io_u);
1225
1226                 /*
1227                  * io_u never leaves this stack, used for iteration of all
1228                  * io_u buffers.
1229                  */
1230                 io_u_qpush(&td->io_u_all, io_u);
1231
1232                 if (td->io_ops->io_u_init) {
1233                         int ret = td->io_ops->io_u_init(td, io_u);
1234
1235                         if (ret) {
1236                                 log_err("fio: failed to init engine data: %d\n", ret);
1237                                 return 1;
1238                         }
1239                 }
1240
1241                 p += max_bs;
1242         }
1243
1244         if (init_file_completion_logging(td, max_units))
1245                 return 1;
1246
1247         return 0;
1248 }
1249
1250 static int switch_ioscheduler(struct thread_data *td)
1251 {
1252         char tmp[256], tmp2[128];
1253         FILE *f;
1254         int ret;
1255
1256         if (td->io_ops->flags & FIO_DISKLESSIO)
1257                 return 0;
1258
1259         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1260
1261         f = fopen(tmp, "r+");
1262         if (!f) {
1263                 if (errno == ENOENT) {
1264                         log_err("fio: os or kernel doesn't support IO scheduler"
1265                                 " switching\n");
1266                         return 0;
1267                 }
1268                 td_verror(td, errno, "fopen iosched");
1269                 return 1;
1270         }
1271
1272         /*
1273          * Set io scheduler.
1274          */
1275         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1276         if (ferror(f) || ret != 1) {
1277                 td_verror(td, errno, "fwrite");
1278                 fclose(f);
1279                 return 1;
1280         }
1281
1282         rewind(f);
1283
1284         /*
1285          * Read back and check that the selected scheduler is now the default.
1286          */
1287         memset(tmp, 0, sizeof(tmp));
1288         ret = fread(tmp, sizeof(tmp), 1, f);
1289         if (ferror(f) || ret < 0) {
1290                 td_verror(td, errno, "fread");
1291                 fclose(f);
1292                 return 1;
1293         }
1294         /*
1295          * either a list of io schedulers or "none\n" is expected.
1296          */
1297         tmp[strlen(tmp) - 1] = '\0';
1298
1299
1300         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1301         if (!strstr(tmp, tmp2)) {
1302                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1303                 td_verror(td, EINVAL, "iosched_switch");
1304                 fclose(f);
1305                 return 1;
1306         }
1307
1308         fclose(f);
1309         return 0;
1310 }
1311
1312 static bool keep_running(struct thread_data *td)
1313 {
1314         unsigned long long limit;
1315
1316         if (td->done)
1317                 return false;
1318         if (td->o.time_based)
1319                 return true;
1320         if (td->o.loops) {
1321                 td->o.loops--;
1322                 return true;
1323         }
1324         if (exceeds_number_ios(td))
1325                 return false;
1326
1327         if (td->o.io_limit)
1328                 limit = td->o.io_limit;
1329         else
1330                 limit = td->o.size;
1331
1332         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1333                 uint64_t diff;
1334
1335                 /*
1336                  * If the difference is less than the minimum IO size, we
1337                  * are done.
1338                  */
1339                 diff = limit - ddir_rw_sum(td->io_bytes);
1340                 if (diff < td_max_bs(td))
1341                         return false;
1342
1343                 if (fio_files_done(td) && !td->o.io_limit)
1344                         return false;
1345
1346                 return true;
1347         }
1348
1349         return false;
1350 }
1351
1352 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1353 {
1354         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1355         int ret;
1356         char *str;
1357
1358         str = malloc(newlen);
1359         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1360
1361         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1362         ret = system(str);
1363         if (ret == -1)
1364                 log_err("fio: exec of cmd <%s> failed\n", str);
1365
1366         free(str);
1367         return ret;
1368 }
1369
1370 /*
1371  * Dry run to compute correct state of numberio for verification.
1372  */
1373 static uint64_t do_dry_run(struct thread_data *td)
1374 {
1375         td_set_runstate(td, TD_RUNNING);
1376
1377         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1378                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1379                 struct io_u *io_u;
1380                 int ret;
1381
1382                 if (td->terminate || td->done)
1383                         break;
1384
1385                 io_u = get_io_u(td);
1386                 if (!io_u)
1387                         break;
1388
1389                 io_u_set(io_u, IO_U_F_FLIGHT);
1390                 io_u->error = 0;
1391                 io_u->resid = 0;
1392                 if (ddir_rw(acct_ddir(io_u)))
1393                         td->io_issues[acct_ddir(io_u)]++;
1394                 if (ddir_rw(io_u->ddir)) {
1395                         io_u_mark_depth(td, 1);
1396                         td->ts.total_io_u[io_u->ddir]++;
1397                 }
1398
1399                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1400                     td->o.do_verify &&
1401                     td->o.verify != VERIFY_NONE &&
1402                     !td->o.experimental_verify)
1403                         log_io_piece(td, io_u);
1404
1405                 ret = io_u_sync_complete(td, io_u);
1406                 (void) ret;
1407         }
1408
1409         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1410 }
1411
1412 struct fork_data {
1413         struct thread_data *td;
1414         struct sk_out *sk_out;
1415 };
1416
1417 /*
1418  * Entry point for the thread based jobs. The process based jobs end up
1419  * here as well, after a little setup.
1420  */
1421 static void *thread_main(void *data)
1422 {
1423         struct fork_data *fd = data;
1424         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1425         struct thread_data *td = fd->td;
1426         struct thread_options *o = &td->o;
1427         struct sk_out *sk_out = fd->sk_out;
1428         pthread_condattr_t attr;
1429         int clear_state;
1430         int ret;
1431
1432         sk_out_assign(sk_out);
1433         free(fd);
1434
1435         if (!o->use_thread) {
1436                 setsid();
1437                 td->pid = getpid();
1438         } else
1439                 td->pid = gettid();
1440
1441         fio_local_clock_init(o->use_thread);
1442
1443         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1444
1445         if (is_backend)
1446                 fio_server_send_start(td);
1447
1448         INIT_FLIST_HEAD(&td->io_log_list);
1449         INIT_FLIST_HEAD(&td->io_hist_list);
1450         INIT_FLIST_HEAD(&td->verify_list);
1451         INIT_FLIST_HEAD(&td->trim_list);
1452         INIT_FLIST_HEAD(&td->next_rand_list);
1453         pthread_mutex_init(&td->io_u_lock, NULL);
1454         td->io_hist_tree = RB_ROOT;
1455
1456         pthread_condattr_init(&attr);
1457         pthread_cond_init(&td->verify_cond, &attr);
1458         pthread_cond_init(&td->free_cond, &attr);
1459
1460         td_set_runstate(td, TD_INITIALIZED);
1461         dprint(FD_MUTEX, "up startup_mutex\n");
1462         fio_mutex_up(startup_mutex);
1463         dprint(FD_MUTEX, "wait on td->mutex\n");
1464         fio_mutex_down(td->mutex);
1465         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1466
1467         /*
1468          * A new gid requires privilege, so we need to do this before setting
1469          * the uid.
1470          */
1471         if (o->gid != -1U && setgid(o->gid)) {
1472                 td_verror(td, errno, "setgid");
1473                 goto err;
1474         }
1475         if (o->uid != -1U && setuid(o->uid)) {
1476                 td_verror(td, errno, "setuid");
1477                 goto err;
1478         }
1479
1480         /*
1481          * Do this early, we don't want the compress threads to be limited
1482          * to the same CPUs as the IO workers. So do this before we set
1483          * any potential CPU affinity
1484          */
1485         if (iolog_compress_init(td, sk_out))
1486                 goto err;
1487
1488         /*
1489          * If we have a gettimeofday() thread, make sure we exclude that
1490          * thread from this job
1491          */
1492         if (o->gtod_cpu)
1493                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1494
1495         /*
1496          * Set affinity first, in case it has an impact on the memory
1497          * allocations.
1498          */
1499         if (fio_option_is_set(o, cpumask)) {
1500                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1501                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1502                         if (!ret) {
1503                                 log_err("fio: no CPUs set\n");
1504                                 log_err("fio: Try increasing number of available CPUs\n");
1505                                 td_verror(td, EINVAL, "cpus_split");
1506                                 goto err;
1507                         }
1508                 }
1509                 ret = fio_setaffinity(td->pid, o->cpumask);
1510                 if (ret == -1) {
1511                         td_verror(td, errno, "cpu_set_affinity");
1512                         goto err;
1513                 }
1514         }
1515
1516 #ifdef CONFIG_LIBNUMA
1517         /* numa node setup */
1518         if (fio_option_is_set(o, numa_cpunodes) ||
1519             fio_option_is_set(o, numa_memnodes)) {
1520                 struct bitmask *mask;
1521
1522                 if (numa_available() < 0) {
1523                         td_verror(td, errno, "Does not support NUMA API\n");
1524                         goto err;
1525                 }
1526
1527                 if (fio_option_is_set(o, numa_cpunodes)) {
1528                         mask = numa_parse_nodestring(o->numa_cpunodes);
1529                         ret = numa_run_on_node_mask(mask);
1530                         numa_free_nodemask(mask);
1531                         if (ret == -1) {
1532                                 td_verror(td, errno, \
1533                                         "numa_run_on_node_mask failed\n");
1534                                 goto err;
1535                         }
1536                 }
1537
1538                 if (fio_option_is_set(o, numa_memnodes)) {
1539                         mask = NULL;
1540                         if (o->numa_memnodes)
1541                                 mask = numa_parse_nodestring(o->numa_memnodes);
1542
1543                         switch (o->numa_mem_mode) {
1544                         case MPOL_INTERLEAVE:
1545                                 numa_set_interleave_mask(mask);
1546                                 break;
1547                         case MPOL_BIND:
1548                                 numa_set_membind(mask);
1549                                 break;
1550                         case MPOL_LOCAL:
1551                                 numa_set_localalloc();
1552                                 break;
1553                         case MPOL_PREFERRED:
1554                                 numa_set_preferred(o->numa_mem_prefer_node);
1555                                 break;
1556                         case MPOL_DEFAULT:
1557                         default:
1558                                 break;
1559                         }
1560
1561                         if (mask)
1562                                 numa_free_nodemask(mask);
1563
1564                 }
1565         }
1566 #endif
1567
1568         if (fio_pin_memory(td))
1569                 goto err;
1570
1571         /*
1572          * May alter parameters that init_io_u() will use, so we need to
1573          * do this first.
1574          */
1575         if (init_iolog(td))
1576                 goto err;
1577
1578         if (init_io_u(td))
1579                 goto err;
1580
1581         if (o->verify_async && verify_async_init(td))
1582                 goto err;
1583
1584         if (fio_option_is_set(o, ioprio) ||
1585             fio_option_is_set(o, ioprio_class)) {
1586                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1587                 if (ret == -1) {
1588                         td_verror(td, errno, "ioprio_set");
1589                         goto err;
1590                 }
1591         }
1592
1593         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1594                 goto err;
1595
1596         errno = 0;
1597         if (nice(o->nice) == -1 && errno != 0) {
1598                 td_verror(td, errno, "nice");
1599                 goto err;
1600         }
1601
1602         if (o->ioscheduler && switch_ioscheduler(td))
1603                 goto err;
1604
1605         if (!o->create_serialize && setup_files(td))
1606                 goto err;
1607
1608         if (td_io_init(td))
1609                 goto err;
1610
1611         if (init_random_map(td))
1612                 goto err;
1613
1614         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1615                 goto err;
1616
1617         if (o->pre_read) {
1618                 if (pre_read_files(td) < 0)
1619                         goto err;
1620         }
1621
1622         fio_verify_init(td);
1623
1624         if (rate_submit_init(td, sk_out))
1625                 goto err;
1626
1627         fio_gettime(&td->epoch, NULL);
1628         fio_getrusage(&td->ru_start);
1629         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1630         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1631
1632         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1633                         o->ratemin[DDIR_TRIM]) {
1634                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1635                                         sizeof(td->bw_sample_time));
1636                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1637                                         sizeof(td->bw_sample_time));
1638                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1639                                         sizeof(td->bw_sample_time));
1640         }
1641
1642         clear_state = 0;
1643         while (keep_running(td)) {
1644                 uint64_t verify_bytes;
1645
1646                 fio_gettime(&td->start, NULL);
1647                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1648
1649                 if (clear_state)
1650                         clear_io_state(td, 0);
1651
1652                 prune_io_piece_log(td);
1653
1654                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1655                         verify_bytes = do_dry_run(td);
1656                 else {
1657                         uint64_t bytes_done[DDIR_RWDIR_CNT];
1658
1659                         do_io(td, bytes_done);
1660
1661                         if (!ddir_rw_sum(bytes_done)) {
1662                                 fio_mark_td_terminate(td);
1663                                 verify_bytes = 0;
1664                         } else {
1665                                 verify_bytes = bytes_done[DDIR_WRITE] +
1666                                                 bytes_done[DDIR_TRIM];
1667                         }
1668                 }
1669
1670                 clear_state = 1;
1671
1672                 /*
1673                  * Make sure we've successfully updated the rusage stats
1674                  * before waiting on the stat mutex. Otherwise we could have
1675                  * the stat thread holding stat mutex and waiting for
1676                  * the rusage_sem, which would never get upped because
1677                  * this thread is waiting for the stat mutex.
1678                  */
1679                 check_update_rusage(td);
1680
1681                 fio_mutex_down(stat_mutex);
1682                 if (td_read(td) && td->io_bytes[DDIR_READ])
1683                         update_runtime(td, elapsed_us, DDIR_READ);
1684                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1685                         update_runtime(td, elapsed_us, DDIR_WRITE);
1686                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1687                         update_runtime(td, elapsed_us, DDIR_TRIM);
1688                 fio_gettime(&td->start, NULL);
1689                 fio_mutex_up(stat_mutex);
1690
1691                 if (td->error || td->terminate)
1692                         break;
1693
1694                 if (!o->do_verify ||
1695                     o->verify == VERIFY_NONE ||
1696                     (td->io_ops->flags & FIO_UNIDIR))
1697                         continue;
1698
1699                 clear_io_state(td, 0);
1700
1701                 fio_gettime(&td->start, NULL);
1702
1703                 do_verify(td, verify_bytes);
1704
1705                 /*
1706                  * See comment further up for why this is done here.
1707                  */
1708                 check_update_rusage(td);
1709
1710                 fio_mutex_down(stat_mutex);
1711                 update_runtime(td, elapsed_us, DDIR_READ);
1712                 fio_gettime(&td->start, NULL);
1713                 fio_mutex_up(stat_mutex);
1714
1715                 if (td->error || td->terminate)
1716                         break;
1717         }
1718
1719         td_set_runstate(td, TD_FINISHING);
1720
1721         update_rusage_stat(td);
1722         td->ts.total_run_time = mtime_since_now(&td->epoch);
1723         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1724         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1725         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1726
1727         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1728             (td->o.verify != VERIFY_NONE && td_write(td)))
1729                 verify_save_state(td->thread_number);
1730
1731         fio_unpin_memory(td);
1732
1733         td_writeout_logs(td, true);
1734
1735         iolog_compress_exit(td);
1736         rate_submit_exit(td);
1737
1738         if (o->exec_postrun)
1739                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1740
1741         if (exitall_on_terminate || (o->exitall_error && td->error))
1742                 fio_terminate_threads(td->groupid);
1743
1744 err:
1745         if (td->error)
1746                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1747                                                         td->verror);
1748
1749         if (o->verify_async)
1750                 verify_async_exit(td);
1751
1752         close_and_free_files(td);
1753         cleanup_io_u(td);
1754         close_ioengine(td);
1755         cgroup_shutdown(td, &cgroup_mnt);
1756         verify_free_state(td);
1757
1758         if (td->zone_state_index) {
1759                 int i;
1760
1761                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1762                         free(td->zone_state_index[i]);
1763                 free(td->zone_state_index);
1764                 td->zone_state_index = NULL;
1765         }
1766
1767         if (fio_option_is_set(o, cpumask)) {
1768                 ret = fio_cpuset_exit(&o->cpumask);
1769                 if (ret)
1770                         td_verror(td, ret, "fio_cpuset_exit");
1771         }
1772
1773         /*
1774          * do this very late, it will log file closing as well
1775          */
1776         if (o->write_iolog_file)
1777                 write_iolog_close(td);
1778
1779         fio_mutex_remove(td->mutex);
1780         td->mutex = NULL;
1781
1782         td_set_runstate(td, TD_EXITED);
1783
1784         /*
1785          * Do this last after setting our runstate to exited, so we
1786          * know that the stat thread is signaled.
1787          */
1788         check_update_rusage(td);
1789
1790         sk_out_drop();
1791         return (void *) (uintptr_t) td->error;
1792 }
1793
1794
1795 /*
1796  * We cannot pass the td data into a forked process, so attach the td and
1797  * pass it to the thread worker.
1798  */
1799 static int fork_main(struct sk_out *sk_out, int shmid, int offset)
1800 {
1801         struct fork_data *fd;
1802         void *data, *ret;
1803
1804 #if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1805         data = shmat(shmid, NULL, 0);
1806         if (data == (void *) -1) {
1807                 int __err = errno;
1808
1809                 perror("shmat");
1810                 return __err;
1811         }
1812 #else
1813         /*
1814          * HP-UX inherits shm mappings?
1815          */
1816         data = threads;
1817 #endif
1818
1819         fd = calloc(1, sizeof(*fd));
1820         fd->td = data + offset * sizeof(struct thread_data);
1821         fd->sk_out = sk_out;
1822         ret = thread_main(fd);
1823         shmdt(data);
1824         return (int) (uintptr_t) ret;
1825 }
1826
1827 static void dump_td_info(struct thread_data *td)
1828 {
1829         log_err("fio: job '%s' (state=%d) hasn't exited in %lu seconds, it "
1830                 "appears to be stuck. Doing forceful exit of this job.\n",
1831                         td->o.name, td->runstate,
1832                         (unsigned long) time_since_now(&td->terminate_time));
1833 }
1834
1835 /*
1836  * Run over the job map and reap the threads that have exited, if any.
1837  */
1838 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1839                          unsigned int *m_rate)
1840 {
1841         struct thread_data *td;
1842         unsigned int cputhreads, realthreads, pending;
1843         int i, status, ret;
1844
1845         /*
1846          * reap exited threads (TD_EXITED -> TD_REAPED)
1847          */
1848         realthreads = pending = cputhreads = 0;
1849         for_each_td(td, i) {
1850                 int flags = 0;
1851
1852                 /*
1853                  * ->io_ops is NULL for a thread that has closed its
1854                  * io engine
1855                  */
1856                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1857                         cputhreads++;
1858                 else
1859                         realthreads++;
1860
1861                 if (!td->pid) {
1862                         pending++;
1863                         continue;
1864                 }
1865                 if (td->runstate == TD_REAPED)
1866                         continue;
1867                 if (td->o.use_thread) {
1868                         if (td->runstate == TD_EXITED) {
1869                                 td_set_runstate(td, TD_REAPED);
1870                                 goto reaped;
1871                         }
1872                         continue;
1873                 }
1874
1875                 flags = WNOHANG;
1876                 if (td->runstate == TD_EXITED)
1877                         flags = 0;
1878
1879                 /*
1880                  * check if someone quit or got killed in an unusual way
1881                  */
1882                 ret = waitpid(td->pid, &status, flags);
1883                 if (ret < 0) {
1884                         if (errno == ECHILD) {
1885                                 log_err("fio: pid=%d disappeared %d\n",
1886                                                 (int) td->pid, td->runstate);
1887                                 td->sig = ECHILD;
1888                                 td_set_runstate(td, TD_REAPED);
1889                                 goto reaped;
1890                         }
1891                         perror("waitpid");
1892                 } else if (ret == td->pid) {
1893                         if (WIFSIGNALED(status)) {
1894                                 int sig = WTERMSIG(status);
1895
1896                                 if (sig != SIGTERM && sig != SIGUSR2)
1897                                         log_err("fio: pid=%d, got signal=%d\n",
1898                                                         (int) td->pid, sig);
1899                                 td->sig = sig;
1900                                 td_set_runstate(td, TD_REAPED);
1901                                 goto reaped;
1902                         }
1903                         if (WIFEXITED(status)) {
1904                                 if (WEXITSTATUS(status) && !td->error)
1905                                         td->error = WEXITSTATUS(status);
1906
1907                                 td_set_runstate(td, TD_REAPED);
1908                                 goto reaped;
1909                         }
1910                 }
1911
1912                 /*
1913                  * If the job is stuck, do a forceful timeout of it and
1914                  * move on.
1915                  */
1916                 if (td->terminate &&
1917                     td->runstate < TD_FSYNCING &&
1918                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1919                         dump_td_info(td);
1920                         td_set_runstate(td, TD_REAPED);
1921                         goto reaped;
1922                 }
1923
1924                 /*
1925                  * thread is not dead, continue
1926                  */
1927                 pending++;
1928                 continue;
1929 reaped:
1930                 (*nr_running)--;
1931                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1932                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1933                 if (!td->pid)
1934                         pending--;
1935
1936                 if (td->error)
1937                         exit_value++;
1938
1939                 done_secs += mtime_since_now(&td->epoch) / 1000;
1940                 profile_td_exit(td);
1941         }
1942
1943         if (*nr_running == cputhreads && !pending && realthreads)
1944                 fio_terminate_threads(TERMINATE_ALL);
1945 }
1946
1947 static bool __check_trigger_file(void)
1948 {
1949         struct stat sb;
1950
1951         if (!trigger_file)
1952                 return false;
1953
1954         if (stat(trigger_file, &sb))
1955                 return false;
1956
1957         if (unlink(trigger_file) < 0)
1958                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1959                                                         strerror(errno));
1960
1961         return true;
1962 }
1963
1964 static bool trigger_timedout(void)
1965 {
1966         if (trigger_timeout)
1967                 return time_since_genesis() >= trigger_timeout;
1968
1969         return false;
1970 }
1971
1972 void exec_trigger(const char *cmd)
1973 {
1974         int ret;
1975
1976         if (!cmd)
1977                 return;
1978
1979         ret = system(cmd);
1980         if (ret == -1)
1981                 log_err("fio: failed executing %s trigger\n", cmd);
1982 }
1983
1984 void check_trigger_file(void)
1985 {
1986         if (__check_trigger_file() || trigger_timedout()) {
1987                 if (nr_clients)
1988                         fio_clients_send_trigger(trigger_remote_cmd);
1989                 else {
1990                         verify_save_state(IO_LIST_ALL);
1991                         fio_terminate_threads(TERMINATE_ALL);
1992                         exec_trigger(trigger_cmd);
1993                 }
1994         }
1995 }
1996
1997 static int fio_verify_load_state(struct thread_data *td)
1998 {
1999         int ret;
2000
2001         if (!td->o.verify_state)
2002                 return 0;
2003
2004         if (is_backend) {
2005                 void *data;
2006
2007                 ret = fio_server_get_verify_state(td->o.name,
2008                                         td->thread_number - 1, &data);
2009                 if (!ret)
2010                         verify_assign_state(td, data);
2011         } else
2012                 ret = verify_load_state(td, "local");
2013
2014         return ret;
2015 }
2016
2017 static void do_usleep(unsigned int usecs)
2018 {
2019         check_for_running_stats();
2020         check_trigger_file();
2021         usleep(usecs);
2022 }
2023
2024 static bool check_mount_writes(struct thread_data *td)
2025 {
2026         struct fio_file *f;
2027         unsigned int i;
2028
2029         if (!td_write(td) || td->o.allow_mounted_write)
2030                 return false;
2031
2032         for_each_file(td, f, i) {
2033                 if (f->filetype != FIO_TYPE_BD)
2034                         continue;
2035                 if (device_is_mounted(f->file_name))
2036                         goto mounted;
2037         }
2038
2039         return false;
2040 mounted:
2041         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
2042         return true;
2043 }
2044
2045 static bool waitee_running(struct thread_data *me)
2046 {
2047         const char *waitee = me->o.wait_for;
2048         const char *self = me->o.name;
2049         struct thread_data *td;
2050         int i;
2051
2052         if (!waitee)
2053                 return false;
2054
2055         for_each_td(td, i) {
2056                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2057                         continue;
2058
2059                 if (td->runstate < TD_EXITED) {
2060                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2061                                         self, td->o.name,
2062                                         runstate_to_name(td->runstate));
2063                         return true;
2064                 }
2065         }
2066
2067         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2068         return false;
2069 }
2070
2071 /*
2072  * Main function for kicking off and reaping jobs, as needed.
2073  */
2074 static void run_threads(struct sk_out *sk_out)
2075 {
2076         struct thread_data *td;
2077         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2078         uint64_t spent;
2079
2080         if (fio_gtod_offload && fio_start_gtod_thread())
2081                 return;
2082
2083         fio_idle_prof_init();
2084
2085         set_sig_handlers();
2086
2087         nr_thread = nr_process = 0;
2088         for_each_td(td, i) {
2089                 if (check_mount_writes(td))
2090                         return;
2091                 if (td->o.use_thread)
2092                         nr_thread++;
2093                 else
2094                         nr_process++;
2095         }
2096
2097         if (output_format & FIO_OUTPUT_NORMAL) {
2098                 log_info("Starting ");
2099                 if (nr_thread)
2100                         log_info("%d thread%s", nr_thread,
2101                                                 nr_thread > 1 ? "s" : "");
2102                 if (nr_process) {
2103                         if (nr_thread)
2104                                 log_info(" and ");
2105                         log_info("%d process%s", nr_process,
2106                                                 nr_process > 1 ? "es" : "");
2107                 }
2108                 log_info("\n");
2109                 log_info_flush();
2110         }
2111
2112         todo = thread_number;
2113         nr_running = 0;
2114         nr_started = 0;
2115         m_rate = t_rate = 0;
2116
2117         for_each_td(td, i) {
2118                 print_status_init(td->thread_number - 1);
2119
2120                 if (!td->o.create_serialize)
2121                         continue;
2122
2123                 if (fio_verify_load_state(td))
2124                         goto reap;
2125
2126                 /*
2127                  * do file setup here so it happens sequentially,
2128                  * we don't want X number of threads getting their
2129                  * client data interspersed on disk
2130                  */
2131                 if (setup_files(td)) {
2132 reap:
2133                         exit_value++;
2134                         if (td->error)
2135                                 log_err("fio: pid=%d, err=%d/%s\n",
2136                                         (int) td->pid, td->error, td->verror);
2137                         td_set_runstate(td, TD_REAPED);
2138                         todo--;
2139                 } else {
2140                         struct fio_file *f;
2141                         unsigned int j;
2142
2143                         /*
2144                          * for sharing to work, each job must always open
2145                          * its own files. so close them, if we opened them
2146                          * for creation
2147                          */
2148                         for_each_file(td, f, j) {
2149                                 if (fio_file_open(f))
2150                                         td_io_close_file(td, f);
2151                         }
2152                 }
2153         }
2154
2155         /* start idle threads before io threads start to run */
2156         fio_idle_prof_start();
2157
2158         set_genesis_time();
2159
2160         while (todo) {
2161                 struct thread_data *map[REAL_MAX_JOBS];
2162                 struct timeval this_start;
2163                 int this_jobs = 0, left;
2164
2165                 /*
2166                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2167                  */
2168                 for_each_td(td, i) {
2169                         if (td->runstate != TD_NOT_CREATED)
2170                                 continue;
2171
2172                         /*
2173                          * never got a chance to start, killed by other
2174                          * thread for some reason
2175                          */
2176                         if (td->terminate) {
2177                                 todo--;
2178                                 continue;
2179                         }
2180
2181                         if (td->o.start_delay) {
2182                                 spent = utime_since_genesis();
2183
2184                                 if (td->o.start_delay > spent)
2185                                         continue;
2186                         }
2187
2188                         if (td->o.stonewall && (nr_started || nr_running)) {
2189                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2190                                                         td->o.name);
2191                                 break;
2192                         }
2193
2194                         if (waitee_running(td)) {
2195                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2196                                                 td->o.name, td->o.wait_for);
2197                                 continue;
2198                         }
2199
2200                         init_disk_util(td);
2201
2202                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2203                         td->update_rusage = 0;
2204
2205                         /*
2206                          * Set state to created. Thread will transition
2207                          * to TD_INITIALIZED when it's done setting up.
2208                          */
2209                         td_set_runstate(td, TD_CREATED);
2210                         map[this_jobs++] = td;
2211                         nr_started++;
2212
2213                         if (td->o.use_thread) {
2214                                 struct fork_data *fd;
2215                                 int ret;
2216
2217                                 fd = calloc(1, sizeof(*fd));
2218                                 fd->td = td;
2219                                 fd->sk_out = sk_out;
2220
2221                                 dprint(FD_PROCESS, "will pthread_create\n");
2222                                 ret = pthread_create(&td->thread, NULL,
2223                                                         thread_main, fd);
2224                                 if (ret) {
2225                                         log_err("pthread_create: %s\n",
2226                                                         strerror(ret));
2227                                         free(fd);
2228                                         nr_started--;
2229                                         break;
2230                                 }
2231                                 ret = pthread_detach(td->thread);
2232                                 if (ret)
2233                                         log_err("pthread_detach: %s",
2234                                                         strerror(ret));
2235                         } else {
2236                                 pid_t pid;
2237                                 dprint(FD_PROCESS, "will fork\n");
2238                                 pid = fork();
2239                                 if (!pid) {
2240                                         int ret = fork_main(sk_out, shm_id, i);
2241
2242                                         _exit(ret);
2243                                 } else if (i == fio_debug_jobno)
2244                                         *fio_debug_jobp = pid;
2245                         }
2246                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2247                         if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2248                                 log_err("fio: job startup hung? exiting.\n");
2249                                 fio_terminate_threads(TERMINATE_ALL);
2250                                 fio_abort = 1;
2251                                 nr_started--;
2252                                 break;
2253                         }
2254                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2255                 }
2256
2257                 /*
2258                  * Wait for the started threads to transition to
2259                  * TD_INITIALIZED.
2260                  */
2261                 fio_gettime(&this_start, NULL);
2262                 left = this_jobs;
2263                 while (left && !fio_abort) {
2264                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2265                                 break;
2266
2267                         do_usleep(100000);
2268
2269                         for (i = 0; i < this_jobs; i++) {
2270                                 td = map[i];
2271                                 if (!td)
2272                                         continue;
2273                                 if (td->runstate == TD_INITIALIZED) {
2274                                         map[i] = NULL;
2275                                         left--;
2276                                 } else if (td->runstate >= TD_EXITED) {
2277                                         map[i] = NULL;
2278                                         left--;
2279                                         todo--;
2280                                         nr_running++; /* work-around... */
2281                                 }
2282                         }
2283                 }
2284
2285                 if (left) {
2286                         log_err("fio: %d job%s failed to start\n", left,
2287                                         left > 1 ? "s" : "");
2288                         for (i = 0; i < this_jobs; i++) {
2289                                 td = map[i];
2290                                 if (!td)
2291                                         continue;
2292                                 kill(td->pid, SIGTERM);
2293                         }
2294                         break;
2295                 }
2296
2297                 /*
2298                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2299                  */
2300                 for_each_td(td, i) {
2301                         if (td->runstate != TD_INITIALIZED)
2302                                 continue;
2303
2304                         if (in_ramp_time(td))
2305                                 td_set_runstate(td, TD_RAMP);
2306                         else
2307                                 td_set_runstate(td, TD_RUNNING);
2308                         nr_running++;
2309                         nr_started--;
2310                         m_rate += ddir_rw_sum(td->o.ratemin);
2311                         t_rate += ddir_rw_sum(td->o.rate);
2312                         todo--;
2313                         fio_mutex_up(td->mutex);
2314                 }
2315
2316                 reap_threads(&nr_running, &t_rate, &m_rate);
2317
2318                 if (todo)
2319                         do_usleep(100000);
2320         }
2321
2322         while (nr_running) {
2323                 reap_threads(&nr_running, &t_rate, &m_rate);
2324                 do_usleep(10000);
2325         }
2326
2327         fio_idle_prof_stop();
2328
2329         update_io_ticks();
2330 }
2331
2332 static void free_disk_util(void)
2333 {
2334         disk_util_prune_entries();
2335         helper_thread_destroy();
2336 }
2337
2338 int fio_backend(struct sk_out *sk_out)
2339 {
2340         struct thread_data *td;
2341         int i;
2342
2343         if (exec_profile) {
2344                 if (load_profile(exec_profile))
2345                         return 1;
2346                 free(exec_profile);
2347                 exec_profile = NULL;
2348         }
2349         if (!thread_number)
2350                 return 0;
2351
2352         if (write_bw_log) {
2353                 struct log_params p = {
2354                         .log_type = IO_LOG_TYPE_BW,
2355                 };
2356
2357                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2358                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2359                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2360         }
2361
2362         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2363         if (startup_mutex == NULL)
2364                 return 1;
2365
2366         set_genesis_time();
2367         stat_init();
2368         helper_thread_create(startup_mutex, sk_out);
2369
2370         cgroup_list = smalloc(sizeof(*cgroup_list));
2371         INIT_FLIST_HEAD(cgroup_list);
2372
2373         run_threads(sk_out);
2374
2375         helper_thread_exit();
2376
2377         if (!fio_abort) {
2378                 __show_run_stats();
2379                 if (write_bw_log) {
2380                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2381                                 struct io_log *log = agg_io_log[i];
2382
2383                                 flush_log(log, 0);
2384                                 free_log(log);
2385                         }
2386                 }
2387         }
2388
2389         for_each_td(td, i) {
2390                 fio_options_free(td);
2391                 if (td->rusage_sem) {
2392                         fio_mutex_remove(td->rusage_sem);
2393                         td->rusage_sem = NULL;
2394                 }
2395         }
2396
2397         free_disk_util();
2398         cgroup_kill(cgroup_list);
2399         sfree(cgroup_list);
2400         sfree(cgroup_mnt);
2401
2402         fio_mutex_remove(startup_mutex);
2403         stat_exit();
2404         return exit_value;
2405 }