Fixup --timeout command line option
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38
39 #include "fio.h"
40 #ifndef FIO_NO_HAVE_SHM_H
41 #include <sys/shm.h>
42 #endif
43 #include "hash.h"
44 #include "smalloc.h"
45 #include "verify.h"
46 #include "trim.h"
47 #include "diskutil.h"
48 #include "cgroup.h"
49 #include "profile.h"
50 #include "lib/rand.h"
51 #include "memalign.h"
52 #include "server.h"
53 #include "lib/getrusage.h"
54 #include "idletime.h"
55 #include "err.h"
56
57 static pthread_t disk_util_thread;
58 static struct fio_mutex *disk_thread_mutex;
59 static struct fio_mutex *startup_mutex;
60 static struct flist_head *cgroup_list;
61 static char *cgroup_mnt;
62 static int exit_value;
63 static volatile int fio_abort;
64 static unsigned int nr_process = 0;
65 static unsigned int nr_thread = 0;
66
67 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69 int groupid = 0;
70 unsigned int thread_number = 0;
71 unsigned int stat_number = 0;
72 int shm_id = 0;
73 int temp_stall_ts;
74 unsigned long done_secs = 0;
75 volatile int disk_util_exit = 0;
76
77 #define PAGE_ALIGN(buf) \
78         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80 #define JOB_START_TIMEOUT       (5 * 1000)
81
82 static void sig_int(int sig)
83 {
84         if (threads) {
85                 if (is_backend)
86                         fio_server_got_signal(sig);
87                 else {
88                         log_info("\nfio: terminating on signal %d\n", sig);
89                         fflush(stdout);
90                         exit_value = 128;
91                 }
92
93                 fio_terminate_threads(TERMINATE_ALL);
94         }
95 }
96
97 static void sig_show_status(int sig)
98 {
99         show_running_run_stats();
100 }
101
102 static void set_sig_handlers(void)
103 {
104         struct sigaction act;
105
106         memset(&act, 0, sizeof(act));
107         act.sa_handler = sig_int;
108         act.sa_flags = SA_RESTART;
109         sigaction(SIGINT, &act, NULL);
110
111         memset(&act, 0, sizeof(act));
112         act.sa_handler = sig_int;
113         act.sa_flags = SA_RESTART;
114         sigaction(SIGTERM, &act, NULL);
115
116 /* Windows uses SIGBREAK as a quit signal from other applications */
117 #ifdef WIN32
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_int;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGBREAK, &act, NULL);
122 #endif
123
124         memset(&act, 0, sizeof(act));
125         act.sa_handler = sig_show_status;
126         act.sa_flags = SA_RESTART;
127         sigaction(SIGUSR1, &act, NULL);
128
129         if (is_backend) {
130                 memset(&act, 0, sizeof(act));
131                 act.sa_handler = sig_int;
132                 act.sa_flags = SA_RESTART;
133                 sigaction(SIGPIPE, &act, NULL);
134         }
135 }
136
137 /*
138  * Check if we are above the minimum rate given.
139  */
140 static int __check_min_rate(struct thread_data *td, struct timeval *now,
141                             enum fio_ddir ddir)
142 {
143         unsigned long long bytes = 0;
144         unsigned long iops = 0;
145         unsigned long spent;
146         unsigned long rate;
147         unsigned int ratemin = 0;
148         unsigned int rate_iops = 0;
149         unsigned int rate_iops_min = 0;
150
151         assert(ddir_rw(ddir));
152
153         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154                 return 0;
155
156         /*
157          * allow a 2 second settle period in the beginning
158          */
159         if (mtime_since(&td->start, now) < 2000)
160                 return 0;
161
162         iops += td->this_io_blocks[ddir];
163         bytes += td->this_io_bytes[ddir];
164         ratemin += td->o.ratemin[ddir];
165         rate_iops += td->o.rate_iops[ddir];
166         rate_iops_min += td->o.rate_iops_min[ddir];
167
168         /*
169          * if rate blocks is set, sample is running
170          */
171         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172                 spent = mtime_since(&td->lastrate[ddir], now);
173                 if (spent < td->o.ratecycle)
174                         return 0;
175
176                 if (td->o.rate[ddir]) {
177                         /*
178                          * check bandwidth specified rate
179                          */
180                         if (bytes < td->rate_bytes[ddir]) {
181                                 log_err("%s: min rate %u not met\n", td->o.name,
182                                                                 ratemin);
183                                 return 1;
184                         } else {
185                                 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186                                 if (rate < ratemin ||
187                                     bytes < td->rate_bytes[ddir]) {
188                                         log_err("%s: min rate %u not met, got"
189                                                 " %luKB/sec\n", td->o.name,
190                                                         ratemin, rate);
191                                         return 1;
192                                 }
193                         }
194                 } else {
195                         /*
196                          * checks iops specified rate
197                          */
198                         if (iops < rate_iops) {
199                                 log_err("%s: min iops rate %u not met\n",
200                                                 td->o.name, rate_iops);
201                                 return 1;
202                         } else {
203                                 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204                                 if (rate < rate_iops_min ||
205                                     iops < td->rate_blocks[ddir]) {
206                                         log_err("%s: min iops rate %u not met,"
207                                                 " got %lu\n", td->o.name,
208                                                         rate_iops_min, rate);
209                                 }
210                         }
211                 }
212         }
213
214         td->rate_bytes[ddir] = bytes;
215         td->rate_blocks[ddir] = iops;
216         memcpy(&td->lastrate[ddir], now, sizeof(*now));
217         return 0;
218 }
219
220 static int check_min_rate(struct thread_data *td, struct timeval *now,
221                           uint64_t *bytes_done)
222 {
223         int ret = 0;
224
225         if (bytes_done[DDIR_READ])
226                 ret |= __check_min_rate(td, now, DDIR_READ);
227         if (bytes_done[DDIR_WRITE])
228                 ret |= __check_min_rate(td, now, DDIR_WRITE);
229         if (bytes_done[DDIR_TRIM])
230                 ret |= __check_min_rate(td, now, DDIR_TRIM);
231
232         return ret;
233 }
234
235 /*
236  * When job exits, we can cancel the in-flight IO if we are using async
237  * io. Attempt to do so.
238  */
239 static void cleanup_pending_aio(struct thread_data *td)
240 {
241         int r;
242
243         /*
244          * get immediately available events, if any
245          */
246         r = io_u_queued_complete(td, 0, NULL);
247         if (r < 0)
248                 return;
249
250         /*
251          * now cancel remaining active events
252          */
253         if (td->io_ops->cancel) {
254                 struct io_u *io_u;
255                 int i;
256
257                 io_u_qiter(&td->io_u_all, io_u, i) {
258                         if (io_u->flags & IO_U_F_FLIGHT) {
259                                 r = td->io_ops->cancel(td, io_u);
260                                 if (!r)
261                                         put_io_u(td, io_u);
262                         }
263                 }
264         }
265
266         if (td->cur_depth)
267                 r = io_u_queued_complete(td, td->cur_depth, NULL);
268 }
269
270 /*
271  * Helper to handle the final sync of a file. Works just like the normal
272  * io path, just does everything sync.
273  */
274 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
275 {
276         struct io_u *io_u = __get_io_u(td);
277         int ret;
278
279         if (!io_u)
280                 return 1;
281
282         io_u->ddir = DDIR_SYNC;
283         io_u->file = f;
284
285         if (td_io_prep(td, io_u)) {
286                 put_io_u(td, io_u);
287                 return 1;
288         }
289
290 requeue:
291         ret = td_io_queue(td, io_u);
292         if (ret < 0) {
293                 td_verror(td, io_u->error, "td_io_queue");
294                 put_io_u(td, io_u);
295                 return 1;
296         } else if (ret == FIO_Q_QUEUED) {
297                 if (io_u_queued_complete(td, 1, NULL) < 0)
298                         return 1;
299         } else if (ret == FIO_Q_COMPLETED) {
300                 if (io_u->error) {
301                         td_verror(td, io_u->error, "td_io_queue");
302                         return 1;
303                 }
304
305                 if (io_u_sync_complete(td, io_u, NULL) < 0)
306                         return 1;
307         } else if (ret == FIO_Q_BUSY) {
308                 if (td_io_commit(td))
309                         return 1;
310                 goto requeue;
311         }
312
313         return 0;
314 }
315
316 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
317 {
318         int ret;
319
320         if (fio_file_open(f))
321                 return fio_io_sync(td, f);
322
323         if (td_io_open_file(td, f))
324                 return 1;
325
326         ret = fio_io_sync(td, f);
327         td_io_close_file(td, f);
328         return ret;
329 }
330
331 static inline void __update_tv_cache(struct thread_data *td)
332 {
333         fio_gettime(&td->tv_cache, NULL);
334 }
335
336 static inline void update_tv_cache(struct thread_data *td)
337 {
338         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
339                 __update_tv_cache(td);
340 }
341
342 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
343 {
344         if (in_ramp_time(td))
345                 return 0;
346         if (!td->o.timeout)
347                 return 0;
348         if (utime_since(&td->epoch, t) >= td->o.timeout)
349                 return 1;
350
351         return 0;
352 }
353
354 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
355                                int *retptr)
356 {
357         int ret = *retptr;
358
359         if (ret < 0 || td->error) {
360                 int err = td->error;
361                 enum error_type_bit eb;
362
363                 if (ret < 0)
364                         err = -ret;
365
366                 eb = td_error_type(ddir, err);
367                 if (!(td->o.continue_on_error & (1 << eb)))
368                         return 1;
369
370                 if (td_non_fatal_error(td, eb, err)) {
371                         /*
372                          * Continue with the I/Os in case of
373                          * a non fatal error.
374                          */
375                         update_error_count(td, err);
376                         td_clear_error(td);
377                         *retptr = 0;
378                         return 0;
379                 } else if (td->o.fill_device && err == ENOSPC) {
380                         /*
381                          * We expect to hit this error if
382                          * fill_device option is set.
383                          */
384                         td_clear_error(td);
385                         td->terminate = 1;
386                         return 1;
387                 } else {
388                         /*
389                          * Stop the I/O in case of a fatal
390                          * error.
391                          */
392                         update_error_count(td, err);
393                         return 1;
394                 }
395         }
396
397         return 0;
398 }
399
400 static void check_update_rusage(struct thread_data *td)
401 {
402         if (td->update_rusage) {
403                 td->update_rusage = 0;
404                 update_rusage_stat(td);
405                 fio_mutex_up(td->rusage_sem);
406         }
407 }
408
409 /*
410  * The main verify engine. Runs over the writes we previously submitted,
411  * reads the blocks back in, and checks the crc/md5 of the data.
412  */
413 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
414 {
415         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
416         struct fio_file *f;
417         struct io_u *io_u;
418         int ret, min_events;
419         unsigned int i;
420
421         dprint(FD_VERIFY, "starting loop\n");
422
423         /*
424          * sync io first and invalidate cache, to make sure we really
425          * read from disk.
426          */
427         for_each_file(td, f, i) {
428                 if (!fio_file_open(f))
429                         continue;
430                 if (fio_io_sync(td, f))
431                         break;
432                 if (file_invalidate_cache(td, f))
433                         break;
434         }
435
436         check_update_rusage(td);
437
438         if (td->error)
439                 return;
440
441         td_set_runstate(td, TD_VERIFYING);
442
443         io_u = NULL;
444         while (!td->terminate) {
445                 enum fio_ddir ddir;
446                 int ret2, full;
447
448                 update_tv_cache(td);
449                 check_update_rusage(td);
450
451                 if (runtime_exceeded(td, &td->tv_cache)) {
452                         __update_tv_cache(td);
453                         if (runtime_exceeded(td, &td->tv_cache)) {
454                                 td->terminate = 1;
455                                 break;
456                         }
457                 }
458
459                 if (flow_threshold_exceeded(td))
460                         continue;
461
462                 if (!td->o.experimental_verify) {
463                         io_u = __get_io_u(td);
464                         if (!io_u)
465                                 break;
466
467                         if (get_next_verify(td, io_u)) {
468                                 put_io_u(td, io_u);
469                                 break;
470                         }
471
472                         if (td_io_prep(td, io_u)) {
473                                 put_io_u(td, io_u);
474                                 break;
475                         }
476                 } else {
477                         if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
478                                 break;
479
480                         while ((io_u = get_io_u(td)) != NULL) {
481                                 if (IS_ERR(io_u)) {
482                                         io_u = NULL;
483                                         ret = FIO_Q_BUSY;
484                                         goto reap;
485                                 }
486
487                                 /*
488                                  * We are only interested in the places where
489                                  * we wrote or trimmed IOs. Turn those into
490                                  * reads for verification purposes.
491                                  */
492                                 if (io_u->ddir == DDIR_READ) {
493                                         /*
494                                          * Pretend we issued it for rwmix
495                                          * accounting
496                                          */
497                                         td->io_issues[DDIR_READ]++;
498                                         put_io_u(td, io_u);
499                                         continue;
500                                 } else if (io_u->ddir == DDIR_TRIM) {
501                                         io_u->ddir = DDIR_READ;
502                                         io_u->flags |= IO_U_F_TRIMMED;
503                                         break;
504                                 } else if (io_u->ddir == DDIR_WRITE) {
505                                         io_u->ddir = DDIR_READ;
506                                         break;
507                                 } else {
508                                         put_io_u(td, io_u);
509                                         continue;
510                                 }
511                         }
512
513                         if (!io_u)
514                                 break;
515                 }
516
517                 if (td->o.verify_async)
518                         io_u->end_io = verify_io_u_async;
519                 else
520                         io_u->end_io = verify_io_u;
521
522                 ddir = io_u->ddir;
523
524                 ret = td_io_queue(td, io_u);
525                 switch (ret) {
526                 case FIO_Q_COMPLETED:
527                         if (io_u->error) {
528                                 ret = -io_u->error;
529                                 clear_io_u(td, io_u);
530                         } else if (io_u->resid) {
531                                 int bytes = io_u->xfer_buflen - io_u->resid;
532
533                                 /*
534                                  * zero read, fail
535                                  */
536                                 if (!bytes) {
537                                         td_verror(td, EIO, "full resid");
538                                         put_io_u(td, io_u);
539                                         break;
540                                 }
541
542                                 io_u->xfer_buflen = io_u->resid;
543                                 io_u->xfer_buf += bytes;
544                                 io_u->offset += bytes;
545
546                                 if (ddir_rw(io_u->ddir))
547                                         td->ts.short_io_u[io_u->ddir]++;
548
549                                 f = io_u->file;
550                                 if (io_u->offset == f->real_file_size)
551                                         goto sync_done;
552
553                                 requeue_io_u(td, &io_u);
554                         } else {
555 sync_done:
556                                 ret = io_u_sync_complete(td, io_u, bytes_done);
557                                 if (ret < 0)
558                                         break;
559                         }
560                         continue;
561                 case FIO_Q_QUEUED:
562                         break;
563                 case FIO_Q_BUSY:
564                         requeue_io_u(td, &io_u);
565                         ret2 = td_io_commit(td);
566                         if (ret2 < 0)
567                                 ret = ret2;
568                         break;
569                 default:
570                         assert(ret < 0);
571                         td_verror(td, -ret, "td_io_queue");
572                         break;
573                 }
574
575                 if (break_on_this_error(td, ddir, &ret))
576                         break;
577
578                 /*
579                  * if we can queue more, do so. but check if there are
580                  * completed io_u's first. Note that we can get BUSY even
581                  * without IO queued, if the system is resource starved.
582                  */
583 reap:
584                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
585                 if (full || !td->o.iodepth_batch_complete) {
586                         min_events = min(td->o.iodepth_batch_complete,
587                                          td->cur_depth);
588                         /*
589                          * if the queue is full, we MUST reap at least 1 event
590                          */
591                         if (full && !min_events)
592                                 min_events = 1;
593
594                         do {
595                                 /*
596                                  * Reap required number of io units, if any,
597                                  * and do the verification on them through
598                                  * the callback handler
599                                  */
600                                 if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
601                                         ret = -1;
602                                         break;
603                                 }
604                         } while (full && (td->cur_depth > td->o.iodepth_low));
605                 }
606                 if (ret < 0)
607                         break;
608         }
609
610         check_update_rusage(td);
611
612         if (!td->error) {
613                 min_events = td->cur_depth;
614
615                 if (min_events)
616                         ret = io_u_queued_complete(td, min_events, NULL);
617         } else
618                 cleanup_pending_aio(td);
619
620         td_set_runstate(td, TD_RUNNING);
621
622         dprint(FD_VERIFY, "exiting loop\n");
623 }
624
625 static unsigned int exceeds_number_ios(struct thread_data *td)
626 {
627         unsigned long long number_ios;
628
629         if (!td->o.number_ios)
630                 return 0;
631
632         number_ios = ddir_rw_sum(td->this_io_blocks);
633         number_ios += td->io_u_queued + td->io_u_in_flight;
634
635         return number_ios >= td->o.number_ios;
636 }
637
638 static int io_bytes_exceeded(struct thread_data *td)
639 {
640         unsigned long long bytes;
641
642         if (td_rw(td))
643                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
644         else if (td_write(td))
645                 bytes = td->this_io_bytes[DDIR_WRITE];
646         else if (td_read(td))
647                 bytes = td->this_io_bytes[DDIR_READ];
648         else
649                 bytes = td->this_io_bytes[DDIR_TRIM];
650
651         return bytes >= td->o.size || exceeds_number_ios(td);
652 }
653
654 /*
655  * Main IO worker function. It retrieves io_u's to process and queues
656  * and reaps them, checking for rate and errors along the way.
657  *
658  * Returns number of bytes written and trimmed.
659  */
660 static uint64_t do_io(struct thread_data *td)
661 {
662         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
663         unsigned int i;
664         int ret = 0;
665         uint64_t total_bytes, bytes_issued = 0;
666
667         if (in_ramp_time(td))
668                 td_set_runstate(td, TD_RAMP);
669         else
670                 td_set_runstate(td, TD_RUNNING);
671
672         lat_target_init(td);
673
674         /*
675          * If verify_backlog is enabled, we'll run the verify in this
676          * handler as well. For that case, we may need up to twice the
677          * amount of bytes.
678          */
679         total_bytes = td->o.size;
680         if (td->o.verify != VERIFY_NONE &&
681            (td_write(td) && td->o.verify_backlog))
682                 total_bytes += td->o.size;
683
684         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
685                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
686                 td->o.time_based) {
687                 struct timeval comp_time;
688                 int min_evts = 0;
689                 struct io_u *io_u;
690                 int ret2, full;
691                 enum fio_ddir ddir;
692
693                 check_update_rusage(td);
694
695                 if (td->terminate || td->done)
696                         break;
697
698                 update_tv_cache(td);
699
700                 if (runtime_exceeded(td, &td->tv_cache)) {
701                         __update_tv_cache(td);
702                         if (runtime_exceeded(td, &td->tv_cache)) {
703                                 td->terminate = 1;
704                                 break;
705                         }
706                 }
707
708                 if (flow_threshold_exceeded(td))
709                         continue;
710
711                 if (bytes_issued >= total_bytes)
712                         break;
713
714                 io_u = get_io_u(td);
715                 if (IS_ERR_OR_NULL(io_u)) {
716                         int err = PTR_ERR(io_u);
717
718                         io_u = NULL;
719                         if (err == -EBUSY) {
720                                 ret = FIO_Q_BUSY;
721                                 goto reap;
722                         }
723                         if (td->o.latency_target)
724                                 goto reap;
725                         break;
726                 }
727
728                 ddir = io_u->ddir;
729
730                 /*
731                  * Add verification end_io handler if:
732                  *      - Asked to verify (!td_rw(td))
733                  *      - Or the io_u is from our verify list (mixed write/ver)
734                  */
735                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
736                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
737
738                         if (!td->o.verify_pattern_bytes) {
739                                 io_u->rand_seed = __rand(&td->__verify_state);
740                                 if (sizeof(int) != sizeof(long *))
741                                         io_u->rand_seed *= __rand(&td->__verify_state);
742                         }
743
744                         if (td->o.verify_async)
745                                 io_u->end_io = verify_io_u_async;
746                         else
747                                 io_u->end_io = verify_io_u;
748                         td_set_runstate(td, TD_VERIFYING);
749                 } else if (in_ramp_time(td))
750                         td_set_runstate(td, TD_RAMP);
751                 else
752                         td_set_runstate(td, TD_RUNNING);
753
754                 /*
755                  * Always log IO before it's issued, so we know the specific
756                  * order of it. The logged unit will track when the IO has
757                  * completed.
758                  */
759                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
760                     td->o.do_verify &&
761                     td->o.verify != VERIFY_NONE &&
762                     !td->o.experimental_verify)
763                         log_io_piece(td, io_u);
764
765                 ret = td_io_queue(td, io_u);
766                 switch (ret) {
767                 case FIO_Q_COMPLETED:
768                         if (io_u->error) {
769                                 ret = -io_u->error;
770                                 clear_io_u(td, io_u);
771                         } else if (io_u->resid) {
772                                 int bytes = io_u->xfer_buflen - io_u->resid;
773                                 struct fio_file *f = io_u->file;
774
775                                 bytes_issued += bytes;
776                                 /*
777                                  * zero read, fail
778                                  */
779                                 if (!bytes) {
780                                         td_verror(td, EIO, "full resid");
781                                         put_io_u(td, io_u);
782                                         break;
783                                 }
784
785                                 io_u->xfer_buflen = io_u->resid;
786                                 io_u->xfer_buf += bytes;
787                                 io_u->offset += bytes;
788
789                                 if (ddir_rw(io_u->ddir))
790                                         td->ts.short_io_u[io_u->ddir]++;
791
792                                 if (io_u->offset == f->real_file_size)
793                                         goto sync_done;
794
795                                 requeue_io_u(td, &io_u);
796                         } else {
797 sync_done:
798                                 if (__should_check_rate(td, DDIR_READ) ||
799                                     __should_check_rate(td, DDIR_WRITE) ||
800                                     __should_check_rate(td, DDIR_TRIM))
801                                         fio_gettime(&comp_time, NULL);
802
803                                 ret = io_u_sync_complete(td, io_u, bytes_done);
804                                 if (ret < 0)
805                                         break;
806                                 bytes_issued += io_u->xfer_buflen;
807                         }
808                         break;
809                 case FIO_Q_QUEUED:
810                         /*
811                          * if the engine doesn't have a commit hook,
812                          * the io_u is really queued. if it does have such
813                          * a hook, it has to call io_u_queued() itself.
814                          */
815                         if (td->io_ops->commit == NULL)
816                                 io_u_queued(td, io_u);
817                         bytes_issued += io_u->xfer_buflen;
818                         break;
819                 case FIO_Q_BUSY:
820                         requeue_io_u(td, &io_u);
821                         ret2 = td_io_commit(td);
822                         if (ret2 < 0)
823                                 ret = ret2;
824                         break;
825                 default:
826                         assert(ret < 0);
827                         put_io_u(td, io_u);
828                         break;
829                 }
830
831                 if (break_on_this_error(td, ddir, &ret))
832                         break;
833
834                 /*
835                  * See if we need to complete some commands. Note that we
836                  * can get BUSY even without IO queued, if the system is
837                  * resource starved.
838                  */
839 reap:
840                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
841                 if (full || !td->o.iodepth_batch_complete) {
842                         min_evts = min(td->o.iodepth_batch_complete,
843                                         td->cur_depth);
844                         /*
845                          * if the queue is full, we MUST reap at least 1 event
846                          */
847                         if (full && !min_evts)
848                                 min_evts = 1;
849
850                         if (__should_check_rate(td, DDIR_READ) ||
851                             __should_check_rate(td, DDIR_WRITE) ||
852                             __should_check_rate(td, DDIR_TRIM))
853                                 fio_gettime(&comp_time, NULL);
854
855                         do {
856                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
857                                 if (ret < 0)
858                                         break;
859
860                         } while (full && (td->cur_depth > td->o.iodepth_low));
861                 }
862
863                 if (ret < 0)
864                         break;
865                 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
866                         continue;
867
868                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
869                         if (check_min_rate(td, &comp_time, bytes_done)) {
870                                 if (exitall_on_terminate)
871                                         fio_terminate_threads(td->groupid);
872                                 td_verror(td, EIO, "check_min_rate");
873                                 break;
874                         }
875                 }
876                 if (!in_ramp_time(td) && td->o.latency_target)
877                         lat_target_check(td);
878
879                 if (td->o.thinktime) {
880                         unsigned long long b;
881
882                         b = ddir_rw_sum(td->io_blocks);
883                         if (!(b % td->o.thinktime_blocks)) {
884                                 int left;
885
886                                 io_u_quiesce(td);
887
888                                 if (td->o.thinktime_spin)
889                                         usec_spin(td->o.thinktime_spin);
890
891                                 left = td->o.thinktime - td->o.thinktime_spin;
892                                 if (left)
893                                         usec_sleep(td, left);
894                         }
895                 }
896         }
897
898         check_update_rusage(td);
899
900         if (td->trim_entries)
901                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
902
903         if (td->o.fill_device && td->error == ENOSPC) {
904                 td->error = 0;
905                 td->terminate = 1;
906         }
907         if (!td->error) {
908                 struct fio_file *f;
909
910                 i = td->cur_depth;
911                 if (i) {
912                         ret = io_u_queued_complete(td, i, bytes_done);
913                         if (td->o.fill_device && td->error == ENOSPC)
914                                 td->error = 0;
915                 }
916
917                 if (should_fsync(td) && td->o.end_fsync) {
918                         td_set_runstate(td, TD_FSYNCING);
919
920                         for_each_file(td, f, i) {
921                                 if (!fio_file_fsync(td, f))
922                                         continue;
923
924                                 log_err("fio: end_fsync failed for file %s\n",
925                                                                 f->file_name);
926                         }
927                 }
928         } else
929                 cleanup_pending_aio(td);
930
931         /*
932          * stop job if we failed doing any IO
933          */
934         if (!ddir_rw_sum(td->this_io_bytes))
935                 td->done = 1;
936
937         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
938 }
939
940 static void cleanup_io_u(struct thread_data *td)
941 {
942         struct io_u *io_u;
943
944         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
945
946                 if (td->io_ops->io_u_free)
947                         td->io_ops->io_u_free(td, io_u);
948
949                 fio_memfree(io_u, sizeof(*io_u));
950         }
951
952         free_io_mem(td);
953
954         io_u_rexit(&td->io_u_requeues);
955         io_u_qexit(&td->io_u_freelist);
956         io_u_qexit(&td->io_u_all);
957 }
958
959 static int init_io_u(struct thread_data *td)
960 {
961         struct io_u *io_u;
962         unsigned int max_bs, min_write;
963         int cl_align, i, max_units;
964         int data_xfer = 1, err;
965         char *p;
966
967         max_units = td->o.iodepth;
968         max_bs = td_max_bs(td);
969         min_write = td->o.min_bs[DDIR_WRITE];
970         td->orig_buffer_size = (unsigned long long) max_bs
971                                         * (unsigned long long) max_units;
972
973         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
974                 data_xfer = 0;
975
976         err = 0;
977         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
978         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
979         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
980
981         if (err) {
982                 log_err("fio: failed setting up IO queues\n");
983                 return 1;
984         }
985
986         /*
987          * if we may later need to do address alignment, then add any
988          * possible adjustment here so that we don't cause a buffer
989          * overflow later. this adjustment may be too much if we get
990          * lucky and the allocator gives us an aligned address.
991          */
992         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
993             (td->io_ops->flags & FIO_RAWIO))
994                 td->orig_buffer_size += page_mask + td->o.mem_align;
995
996         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
997                 unsigned long bs;
998
999                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1000                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1001         }
1002
1003         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1004                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1005                 return 1;
1006         }
1007
1008         if (data_xfer && allocate_io_mem(td))
1009                 return 1;
1010
1011         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1012             (td->io_ops->flags & FIO_RAWIO))
1013                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1014         else
1015                 p = td->orig_buffer;
1016
1017         cl_align = os_cache_line_size();
1018
1019         for (i = 0; i < max_units; i++) {
1020                 void *ptr;
1021
1022                 if (td->terminate)
1023                         return 1;
1024
1025                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1026                 if (!ptr) {
1027                         log_err("fio: unable to allocate aligned memory\n");
1028                         break;
1029                 }
1030
1031                 io_u = ptr;
1032                 memset(io_u, 0, sizeof(*io_u));
1033                 INIT_FLIST_HEAD(&io_u->verify_list);
1034                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1035
1036                 if (data_xfer) {
1037                         io_u->buf = p;
1038                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1039
1040                         if (td_write(td))
1041                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1042                         if (td_write(td) && td->o.verify_pattern_bytes) {
1043                                 /*
1044                                  * Fill the buffer with the pattern if we are
1045                                  * going to be doing writes.
1046                                  */
1047                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1048                         }
1049                 }
1050
1051                 io_u->index = i;
1052                 io_u->flags = IO_U_F_FREE;
1053                 io_u_qpush(&td->io_u_freelist, io_u);
1054
1055                 /*
1056                  * io_u never leaves this stack, used for iteration of all
1057                  * io_u buffers.
1058                  */
1059                 io_u_qpush(&td->io_u_all, io_u);
1060
1061                 if (td->io_ops->io_u_init) {
1062                         int ret = td->io_ops->io_u_init(td, io_u);
1063
1064                         if (ret) {
1065                                 log_err("fio: failed to init engine data: %d\n", ret);
1066                                 return 1;
1067                         }
1068                 }
1069
1070                 p += max_bs;
1071         }
1072
1073         return 0;
1074 }
1075
1076 static int switch_ioscheduler(struct thread_data *td)
1077 {
1078         char tmp[256], tmp2[128];
1079         FILE *f;
1080         int ret;
1081
1082         if (td->io_ops->flags & FIO_DISKLESSIO)
1083                 return 0;
1084
1085         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1086
1087         f = fopen(tmp, "r+");
1088         if (!f) {
1089                 if (errno == ENOENT) {
1090                         log_err("fio: os or kernel doesn't support IO scheduler"
1091                                 " switching\n");
1092                         return 0;
1093                 }
1094                 td_verror(td, errno, "fopen iosched");
1095                 return 1;
1096         }
1097
1098         /*
1099          * Set io scheduler.
1100          */
1101         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1102         if (ferror(f) || ret != 1) {
1103                 td_verror(td, errno, "fwrite");
1104                 fclose(f);
1105                 return 1;
1106         }
1107
1108         rewind(f);
1109
1110         /*
1111          * Read back and check that the selected scheduler is now the default.
1112          */
1113         ret = fread(tmp, 1, sizeof(tmp), f);
1114         if (ferror(f) || ret < 0) {
1115                 td_verror(td, errno, "fread");
1116                 fclose(f);
1117                 return 1;
1118         }
1119
1120         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1121         if (!strstr(tmp, tmp2)) {
1122                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1123                 td_verror(td, EINVAL, "iosched_switch");
1124                 fclose(f);
1125                 return 1;
1126         }
1127
1128         fclose(f);
1129         return 0;
1130 }
1131
1132 static int keep_running(struct thread_data *td)
1133 {
1134         if (td->done)
1135                 return 0;
1136         if (td->o.time_based)
1137                 return 1;
1138         if (td->o.loops) {
1139                 td->o.loops--;
1140                 return 1;
1141         }
1142         if (exceeds_number_ios(td))
1143                 return 0;
1144
1145         if (td->o.size != -1ULL && ddir_rw_sum(td->io_bytes) < td->o.size) {
1146                 uint64_t diff;
1147
1148                 /*
1149                  * If the difference is less than the minimum IO size, we
1150                  * are done.
1151                  */
1152                 diff = td->o.size - ddir_rw_sum(td->io_bytes);
1153                 if (diff < td_max_bs(td))
1154                         return 0;
1155
1156                 if (fio_files_done(td))
1157                         return 0;
1158
1159                 return 1;
1160         }
1161
1162         return 0;
1163 }
1164
1165 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1166 {
1167         int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1168         char *str;
1169
1170         str = malloc(newlen);
1171         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1172
1173         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1174         ret = system(str);
1175         if (ret == -1)
1176                 log_err("fio: exec of cmd <%s> failed\n", str);
1177
1178         free(str);
1179         return ret;
1180 }
1181
1182 /*
1183  * Dry run to compute correct state of numberio for verification.
1184  */
1185 static uint64_t do_dry_run(struct thread_data *td)
1186 {
1187         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1188
1189         td_set_runstate(td, TD_RUNNING);
1190
1191         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1192                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1193                 struct io_u *io_u;
1194                 int ret;
1195
1196                 if (td->terminate || td->done)
1197                         break;
1198
1199                 io_u = get_io_u(td);
1200                 if (!io_u)
1201                         break;
1202
1203                 io_u->flags |= IO_U_F_FLIGHT;
1204                 io_u->error = 0;
1205                 io_u->resid = 0;
1206                 if (ddir_rw(acct_ddir(io_u)))
1207                         td->io_issues[acct_ddir(io_u)]++;
1208                 if (ddir_rw(io_u->ddir)) {
1209                         io_u_mark_depth(td, 1);
1210                         td->ts.total_io_u[io_u->ddir]++;
1211                 }
1212
1213                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1214                     td->o.do_verify &&
1215                     td->o.verify != VERIFY_NONE &&
1216                     !td->o.experimental_verify)
1217                         log_io_piece(td, io_u);
1218
1219                 ret = io_u_sync_complete(td, io_u, bytes_done);
1220                 (void) ret;
1221         }
1222
1223         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1224 }
1225
1226 /*
1227  * Entry point for the thread based jobs. The process based jobs end up
1228  * here as well, after a little setup.
1229  */
1230 static void *thread_main(void *data)
1231 {
1232         unsigned long long elapsed;
1233         struct thread_data *td = data;
1234         struct thread_options *o = &td->o;
1235         pthread_condattr_t attr;
1236         int clear_state;
1237         int ret;
1238
1239         if (!o->use_thread) {
1240                 setsid();
1241                 td->pid = getpid();
1242         } else
1243                 td->pid = gettid();
1244
1245         /*
1246          * fio_time_init() may not have been called yet if running as a server
1247          */
1248         fio_time_init();
1249
1250         fio_local_clock_init(o->use_thread);
1251
1252         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1253
1254         if (is_backend)
1255                 fio_server_send_start(td);
1256
1257         INIT_FLIST_HEAD(&td->io_log_list);
1258         INIT_FLIST_HEAD(&td->io_hist_list);
1259         INIT_FLIST_HEAD(&td->verify_list);
1260         INIT_FLIST_HEAD(&td->trim_list);
1261         INIT_FLIST_HEAD(&td->next_rand_list);
1262         pthread_mutex_init(&td->io_u_lock, NULL);
1263         td->io_hist_tree = RB_ROOT;
1264
1265         pthread_condattr_init(&attr);
1266         pthread_cond_init(&td->verify_cond, &attr);
1267         pthread_cond_init(&td->free_cond, &attr);
1268
1269         td_set_runstate(td, TD_INITIALIZED);
1270         dprint(FD_MUTEX, "up startup_mutex\n");
1271         fio_mutex_up(startup_mutex);
1272         dprint(FD_MUTEX, "wait on td->mutex\n");
1273         fio_mutex_down(td->mutex);
1274         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1275
1276         /*
1277          * A new gid requires privilege, so we need to do this before setting
1278          * the uid.
1279          */
1280         if (o->gid != -1U && setgid(o->gid)) {
1281                 td_verror(td, errno, "setgid");
1282                 goto err;
1283         }
1284         if (o->uid != -1U && setuid(o->uid)) {
1285                 td_verror(td, errno, "setuid");
1286                 goto err;
1287         }
1288
1289         /*
1290          * If we have a gettimeofday() thread, make sure we exclude that
1291          * thread from this job
1292          */
1293         if (o->gtod_cpu)
1294                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1295
1296         /*
1297          * Set affinity first, in case it has an impact on the memory
1298          * allocations.
1299          */
1300         if (o->cpumask_set) {
1301                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1302                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1303                         if (!ret) {
1304                                 log_err("fio: no CPUs set\n");
1305                                 log_err("fio: Try increasing number of available CPUs\n");
1306                                 td_verror(td, EINVAL, "cpus_split");
1307                                 goto err;
1308                         }
1309                 }
1310                 ret = fio_setaffinity(td->pid, o->cpumask);
1311                 if (ret == -1) {
1312                         td_verror(td, errno, "cpu_set_affinity");
1313                         goto err;
1314                 }
1315         }
1316
1317 #ifdef CONFIG_LIBNUMA
1318         /* numa node setup */
1319         if (o->numa_cpumask_set || o->numa_memmask_set) {
1320                 int ret;
1321
1322                 if (numa_available() < 0) {
1323                         td_verror(td, errno, "Does not support NUMA API\n");
1324                         goto err;
1325                 }
1326
1327                 if (o->numa_cpumask_set) {
1328                         ret = numa_run_on_node_mask(o->numa_cpunodesmask);
1329                         if (ret == -1) {
1330                                 td_verror(td, errno, \
1331                                         "numa_run_on_node_mask failed\n");
1332                                 goto err;
1333                         }
1334                 }
1335
1336                 if (o->numa_memmask_set) {
1337
1338                         switch (o->numa_mem_mode) {
1339                         case MPOL_INTERLEAVE:
1340                                 numa_set_interleave_mask(o->numa_memnodesmask);
1341                                 break;
1342                         case MPOL_BIND:
1343                                 numa_set_membind(o->numa_memnodesmask);
1344                                 break;
1345                         case MPOL_LOCAL:
1346                                 numa_set_localalloc();
1347                                 break;
1348                         case MPOL_PREFERRED:
1349                                 numa_set_preferred(o->numa_mem_prefer_node);
1350                                 break;
1351                         case MPOL_DEFAULT:
1352                         default:
1353                                 break;
1354                         }
1355
1356                 }
1357         }
1358 #endif
1359
1360         if (fio_pin_memory(td))
1361                 goto err;
1362
1363         /*
1364          * May alter parameters that init_io_u() will use, so we need to
1365          * do this first.
1366          */
1367         if (init_iolog(td))
1368                 goto err;
1369
1370         if (init_io_u(td))
1371                 goto err;
1372
1373         if (o->verify_async && verify_async_init(td))
1374                 goto err;
1375
1376         if (o->ioprio) {
1377                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1378                 if (ret == -1) {
1379                         td_verror(td, errno, "ioprio_set");
1380                         goto err;
1381                 }
1382         }
1383
1384         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1385                 goto err;
1386
1387         errno = 0;
1388         if (nice(o->nice) == -1 && errno != 0) {
1389                 td_verror(td, errno, "nice");
1390                 goto err;
1391         }
1392
1393         if (o->ioscheduler && switch_ioscheduler(td))
1394                 goto err;
1395
1396         if (!o->create_serialize && setup_files(td))
1397                 goto err;
1398
1399         if (td_io_init(td))
1400                 goto err;
1401
1402         if (init_random_map(td))
1403                 goto err;
1404
1405         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1406                 goto err;
1407
1408         if (o->pre_read) {
1409                 if (pre_read_files(td) < 0)
1410                         goto err;
1411         }
1412
1413         fio_verify_init(td);
1414
1415         fio_gettime(&td->epoch, NULL);
1416         fio_getrusage(&td->ru_start);
1417         clear_state = 0;
1418         while (keep_running(td)) {
1419                 uint64_t verify_bytes;
1420
1421                 fio_gettime(&td->start, NULL);
1422                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1423                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1424                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1425
1426                 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1427                                 o->ratemin[DDIR_TRIM]) {
1428                         memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1429                                                 sizeof(td->bw_sample_time));
1430                         memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1431                                                 sizeof(td->bw_sample_time));
1432                         memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1433                                                 sizeof(td->bw_sample_time));
1434                 }
1435
1436                 if (clear_state)
1437                         clear_io_state(td);
1438
1439                 prune_io_piece_log(td);
1440
1441                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1442                         verify_bytes = do_dry_run(td);
1443                 else
1444                         verify_bytes = do_io(td);
1445
1446                 clear_state = 1;
1447
1448                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1449                         elapsed = utime_since_now(&td->start);
1450                         td->ts.runtime[DDIR_READ] += elapsed;
1451                 }
1452                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1453                         elapsed = utime_since_now(&td->start);
1454                         td->ts.runtime[DDIR_WRITE] += elapsed;
1455                 }
1456                 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1457                         elapsed = utime_since_now(&td->start);
1458                         td->ts.runtime[DDIR_TRIM] += elapsed;
1459                 }
1460
1461                 if (td->error || td->terminate)
1462                         break;
1463
1464                 if (!o->do_verify ||
1465                     o->verify == VERIFY_NONE ||
1466                     (td->io_ops->flags & FIO_UNIDIR))
1467                         continue;
1468
1469                 clear_io_state(td);
1470
1471                 fio_gettime(&td->start, NULL);
1472
1473                 do_verify(td, verify_bytes);
1474
1475                 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1476
1477                 if (td->error || td->terminate)
1478                         break;
1479         }
1480
1481         update_rusage_stat(td);
1482         td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1483         td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1484         td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1485         td->ts.total_run_time = mtime_since_now(&td->epoch);
1486         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1487         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1488         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1489
1490         fio_unpin_memory(td);
1491
1492         fio_writeout_logs(td);
1493
1494         if (o->exec_postrun)
1495                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1496
1497         if (exitall_on_terminate)
1498                 fio_terminate_threads(td->groupid);
1499
1500 err:
1501         if (td->error)
1502                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1503                                                         td->verror);
1504
1505         if (o->verify_async)
1506                 verify_async_exit(td);
1507
1508         close_and_free_files(td);
1509         cleanup_io_u(td);
1510         close_ioengine(td);
1511         cgroup_shutdown(td, &cgroup_mnt);
1512
1513         if (o->cpumask_set) {
1514                 int ret = fio_cpuset_exit(&o->cpumask);
1515
1516                 td_verror(td, ret, "fio_cpuset_exit");
1517         }
1518
1519         /*
1520          * do this very late, it will log file closing as well
1521          */
1522         if (o->write_iolog_file)
1523                 write_iolog_close(td);
1524
1525         fio_mutex_remove(td->rusage_sem);
1526         td->rusage_sem = NULL;
1527
1528         fio_mutex_remove(td->mutex);
1529         td->mutex = NULL;
1530
1531         td_set_runstate(td, TD_EXITED);
1532         return (void *) (uintptr_t) td->error;
1533 }
1534
1535
1536 /*
1537  * We cannot pass the td data into a forked process, so attach the td and
1538  * pass it to the thread worker.
1539  */
1540 static int fork_main(int shmid, int offset)
1541 {
1542         struct thread_data *td;
1543         void *data, *ret;
1544
1545 #ifndef __hpux
1546         data = shmat(shmid, NULL, 0);
1547         if (data == (void *) -1) {
1548                 int __err = errno;
1549
1550                 perror("shmat");
1551                 return __err;
1552         }
1553 #else
1554         /*
1555          * HP-UX inherits shm mappings?
1556          */
1557         data = threads;
1558 #endif
1559
1560         td = data + offset * sizeof(struct thread_data);
1561         ret = thread_main(td);
1562         shmdt(data);
1563         return (int) (uintptr_t) ret;
1564 }
1565
1566 /*
1567  * Run over the job map and reap the threads that have exited, if any.
1568  */
1569 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1570                          unsigned int *m_rate)
1571 {
1572         struct thread_data *td;
1573         unsigned int cputhreads, realthreads, pending;
1574         int i, status, ret;
1575
1576         /*
1577          * reap exited threads (TD_EXITED -> TD_REAPED)
1578          */
1579         realthreads = pending = cputhreads = 0;
1580         for_each_td(td, i) {
1581                 int flags = 0;
1582
1583                 /*
1584                  * ->io_ops is NULL for a thread that has closed its
1585                  * io engine
1586                  */
1587                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1588                         cputhreads++;
1589                 else
1590                         realthreads++;
1591
1592                 if (!td->pid) {
1593                         pending++;
1594                         continue;
1595                 }
1596                 if (td->runstate == TD_REAPED)
1597                         continue;
1598                 if (td->o.use_thread) {
1599                         if (td->runstate == TD_EXITED) {
1600                                 td_set_runstate(td, TD_REAPED);
1601                                 goto reaped;
1602                         }
1603                         continue;
1604                 }
1605
1606                 flags = WNOHANG;
1607                 if (td->runstate == TD_EXITED)
1608                         flags = 0;
1609
1610                 /*
1611                  * check if someone quit or got killed in an unusual way
1612                  */
1613                 ret = waitpid(td->pid, &status, flags);
1614                 if (ret < 0) {
1615                         if (errno == ECHILD) {
1616                                 log_err("fio: pid=%d disappeared %d\n",
1617                                                 (int) td->pid, td->runstate);
1618                                 td->sig = ECHILD;
1619                                 td_set_runstate(td, TD_REAPED);
1620                                 goto reaped;
1621                         }
1622                         perror("waitpid");
1623                 } else if (ret == td->pid) {
1624                         if (WIFSIGNALED(status)) {
1625                                 int sig = WTERMSIG(status);
1626
1627                                 if (sig != SIGTERM && sig != SIGUSR2)
1628                                         log_err("fio: pid=%d, got signal=%d\n",
1629                                                         (int) td->pid, sig);
1630                                 td->sig = sig;
1631                                 td_set_runstate(td, TD_REAPED);
1632                                 goto reaped;
1633                         }
1634                         if (WIFEXITED(status)) {
1635                                 if (WEXITSTATUS(status) && !td->error)
1636                                         td->error = WEXITSTATUS(status);
1637
1638                                 td_set_runstate(td, TD_REAPED);
1639                                 goto reaped;
1640                         }
1641                 }
1642
1643                 /*
1644                  * thread is not dead, continue
1645                  */
1646                 pending++;
1647                 continue;
1648 reaped:
1649                 (*nr_running)--;
1650                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1651                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1652                 if (!td->pid)
1653                         pending--;
1654
1655                 if (td->error)
1656                         exit_value++;
1657
1658                 done_secs += mtime_since_now(&td->epoch) / 1000;
1659                 profile_td_exit(td);
1660         }
1661
1662         if (*nr_running == cputhreads && !pending && realthreads)
1663                 fio_terminate_threads(TERMINATE_ALL);
1664 }
1665
1666 static void do_usleep(unsigned int usecs)
1667 {
1668         check_for_running_stats();
1669         usleep(usecs);
1670 }
1671
1672 /*
1673  * Main function for kicking off and reaping jobs, as needed.
1674  */
1675 static void run_threads(void)
1676 {
1677         struct thread_data *td;
1678         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1679         uint64_t spent;
1680
1681         if (fio_gtod_offload && fio_start_gtod_thread())
1682                 return;
1683
1684         fio_idle_prof_init();
1685
1686         set_sig_handlers();
1687
1688         nr_thread = nr_process = 0;
1689         for_each_td(td, i) {
1690                 if (td->o.use_thread)
1691                         nr_thread++;
1692                 else
1693                         nr_process++;
1694         }
1695
1696         if (output_format == FIO_OUTPUT_NORMAL) {
1697                 log_info("Starting ");
1698                 if (nr_thread)
1699                         log_info("%d thread%s", nr_thread,
1700                                                 nr_thread > 1 ? "s" : "");
1701                 if (nr_process) {
1702                         if (nr_thread)
1703                                 log_info(" and ");
1704                         log_info("%d process%s", nr_process,
1705                                                 nr_process > 1 ? "es" : "");
1706                 }
1707                 log_info("\n");
1708                 fflush(stdout);
1709         }
1710
1711         todo = thread_number;
1712         nr_running = 0;
1713         nr_started = 0;
1714         m_rate = t_rate = 0;
1715
1716         for_each_td(td, i) {
1717                 print_status_init(td->thread_number - 1);
1718
1719                 if (!td->o.create_serialize)
1720                         continue;
1721
1722                 /*
1723                  * do file setup here so it happens sequentially,
1724                  * we don't want X number of threads getting their
1725                  * client data interspersed on disk
1726                  */
1727                 if (setup_files(td)) {
1728                         exit_value++;
1729                         if (td->error)
1730                                 log_err("fio: pid=%d, err=%d/%s\n",
1731                                         (int) td->pid, td->error, td->verror);
1732                         td_set_runstate(td, TD_REAPED);
1733                         todo--;
1734                 } else {
1735                         struct fio_file *f;
1736                         unsigned int j;
1737
1738                         /*
1739                          * for sharing to work, each job must always open
1740                          * its own files. so close them, if we opened them
1741                          * for creation
1742                          */
1743                         for_each_file(td, f, j) {
1744                                 if (fio_file_open(f))
1745                                         td_io_close_file(td, f);
1746                         }
1747                 }
1748         }
1749
1750         /* start idle threads before io threads start to run */
1751         fio_idle_prof_start();
1752
1753         set_genesis_time();
1754
1755         while (todo) {
1756                 struct thread_data *map[REAL_MAX_JOBS];
1757                 struct timeval this_start;
1758                 int this_jobs = 0, left;
1759
1760                 /*
1761                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1762                  */
1763                 for_each_td(td, i) {
1764                         if (td->runstate != TD_NOT_CREATED)
1765                                 continue;
1766
1767                         /*
1768                          * never got a chance to start, killed by other
1769                          * thread for some reason
1770                          */
1771                         if (td->terminate) {
1772                                 todo--;
1773                                 continue;
1774                         }
1775
1776                         if (td->o.start_delay) {
1777                                 spent = utime_since_genesis();
1778
1779                                 if (td->o.start_delay > spent)
1780                                         continue;
1781                         }
1782
1783                         if (td->o.stonewall && (nr_started || nr_running)) {
1784                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1785                                                         td->o.name);
1786                                 break;
1787                         }
1788
1789                         init_disk_util(td);
1790
1791                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1792                         td->update_rusage = 0;
1793
1794                         /*
1795                          * Set state to created. Thread will transition
1796                          * to TD_INITIALIZED when it's done setting up.
1797                          */
1798                         td_set_runstate(td, TD_CREATED);
1799                         map[this_jobs++] = td;
1800                         nr_started++;
1801
1802                         if (td->o.use_thread) {
1803                                 int ret;
1804
1805                                 dprint(FD_PROCESS, "will pthread_create\n");
1806                                 ret = pthread_create(&td->thread, NULL,
1807                                                         thread_main, td);
1808                                 if (ret) {
1809                                         log_err("pthread_create: %s\n",
1810                                                         strerror(ret));
1811                                         nr_started--;
1812                                         break;
1813                                 }
1814                                 ret = pthread_detach(td->thread);
1815                                 if (ret)
1816                                         log_err("pthread_detach: %s",
1817                                                         strerror(ret));
1818                         } else {
1819                                 pid_t pid;
1820                                 dprint(FD_PROCESS, "will fork\n");
1821                                 pid = fork();
1822                                 if (!pid) {
1823                                         int ret = fork_main(shm_id, i);
1824
1825                                         _exit(ret);
1826                                 } else if (i == fio_debug_jobno)
1827                                         *fio_debug_jobp = pid;
1828                         }
1829                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1830                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
1831                                 log_err("fio: job startup hung? exiting.\n");
1832                                 fio_terminate_threads(TERMINATE_ALL);
1833                                 fio_abort = 1;
1834                                 nr_started--;
1835                                 break;
1836                         }
1837                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1838                 }
1839
1840                 /*
1841                  * Wait for the started threads to transition to
1842                  * TD_INITIALIZED.
1843                  */
1844                 fio_gettime(&this_start, NULL);
1845                 left = this_jobs;
1846                 while (left && !fio_abort) {
1847                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1848                                 break;
1849
1850                         do_usleep(100000);
1851
1852                         for (i = 0; i < this_jobs; i++) {
1853                                 td = map[i];
1854                                 if (!td)
1855                                         continue;
1856                                 if (td->runstate == TD_INITIALIZED) {
1857                                         map[i] = NULL;
1858                                         left--;
1859                                 } else if (td->runstate >= TD_EXITED) {
1860                                         map[i] = NULL;
1861                                         left--;
1862                                         todo--;
1863                                         nr_running++; /* work-around... */
1864                                 }
1865                         }
1866                 }
1867
1868                 if (left) {
1869                         log_err("fio: %d job%s failed to start\n", left,
1870                                         left > 1 ? "s" : "");
1871                         for (i = 0; i < this_jobs; i++) {
1872                                 td = map[i];
1873                                 if (!td)
1874                                         continue;
1875                                 kill(td->pid, SIGTERM);
1876                         }
1877                         break;
1878                 }
1879
1880                 /*
1881                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1882                  */
1883                 for_each_td(td, i) {
1884                         if (td->runstate != TD_INITIALIZED)
1885                                 continue;
1886
1887                         if (in_ramp_time(td))
1888                                 td_set_runstate(td, TD_RAMP);
1889                         else
1890                                 td_set_runstate(td, TD_RUNNING);
1891                         nr_running++;
1892                         nr_started--;
1893                         m_rate += ddir_rw_sum(td->o.ratemin);
1894                         t_rate += ddir_rw_sum(td->o.rate);
1895                         todo--;
1896                         fio_mutex_up(td->mutex);
1897                 }
1898
1899                 reap_threads(&nr_running, &t_rate, &m_rate);
1900
1901                 if (todo)
1902                         do_usleep(100000);
1903         }
1904
1905         while (nr_running) {
1906                 reap_threads(&nr_running, &t_rate, &m_rate);
1907                 do_usleep(10000);
1908         }
1909
1910         fio_idle_prof_stop();
1911
1912         update_io_ticks();
1913 }
1914
1915 void wait_for_disk_thread_exit(void)
1916 {
1917         fio_mutex_down(disk_thread_mutex);
1918 }
1919
1920 static void free_disk_util(void)
1921 {
1922         disk_util_start_exit();
1923         wait_for_disk_thread_exit();
1924         disk_util_prune_entries();
1925 }
1926
1927 static void *disk_thread_main(void *data)
1928 {
1929         int ret = 0;
1930
1931         fio_mutex_up(startup_mutex);
1932
1933         while (threads && !ret) {
1934                 usleep(DISK_UTIL_MSEC * 1000);
1935                 if (!threads)
1936                         break;
1937                 ret = update_io_ticks();
1938
1939                 if (!is_backend)
1940                         print_thread_status();
1941         }
1942
1943         fio_mutex_up(disk_thread_mutex);
1944         return NULL;
1945 }
1946
1947 static int create_disk_util_thread(void)
1948 {
1949         int ret;
1950
1951         setup_disk_util();
1952
1953         disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1954
1955         ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1956         if (ret) {
1957                 fio_mutex_remove(disk_thread_mutex);
1958                 log_err("Can't create disk util thread: %s\n", strerror(ret));
1959                 return 1;
1960         }
1961
1962         ret = pthread_detach(disk_util_thread);
1963         if (ret) {
1964                 fio_mutex_remove(disk_thread_mutex);
1965                 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1966                 return 1;
1967         }
1968
1969         dprint(FD_MUTEX, "wait on startup_mutex\n");
1970         fio_mutex_down(startup_mutex);
1971         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1972         return 0;
1973 }
1974
1975 int fio_backend(void)
1976 {
1977         struct thread_data *td;
1978         int i;
1979
1980         if (exec_profile) {
1981                 if (load_profile(exec_profile))
1982                         return 1;
1983                 free(exec_profile);
1984                 exec_profile = NULL;
1985         }
1986         if (!thread_number)
1987                 return 0;
1988
1989         if (write_bw_log) {
1990                 setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
1991                 setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
1992                 setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
1993         }
1994
1995         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1996         if (startup_mutex == NULL)
1997                 return 1;
1998
1999         set_genesis_time();
2000         stat_init();
2001         create_disk_util_thread();
2002
2003         cgroup_list = smalloc(sizeof(*cgroup_list));
2004         INIT_FLIST_HEAD(cgroup_list);
2005
2006         run_threads();
2007
2008         if (!fio_abort) {
2009                 show_run_stats();
2010                 if (write_bw_log) {
2011                         __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
2012                         __finish_log(agg_io_log[DDIR_WRITE],
2013                                         "agg-write_bw.log");
2014                         __finish_log(agg_io_log[DDIR_TRIM],
2015                                         "agg-write_bw.log");
2016                 }
2017         }
2018
2019         for_each_td(td, i)
2020                 fio_options_free(td);
2021
2022         free_disk_util();
2023         cgroup_kill(cgroup_list);
2024         sfree(cgroup_list);
2025         sfree(cgroup_mnt);
2026
2027         fio_mutex_remove(startup_mutex);
2028         fio_mutex_remove(disk_thread_mutex);
2029         stat_exit();
2030         return exit_value;
2031 }