4e8a4389a642d3c5b269fb235264f7c27bd367e1
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #ifndef FIO_NO_HAVE_SHM_H
38 #include <sys/shm.h>
39 #endif
40 #include <sys/mman.h>
41
42 #include "fio.h"
43 #include "hash.h"
44 #include "smalloc.h"
45 #include "verify.h"
46 #include "trim.h"
47 #include "diskutil.h"
48 #include "cgroup.h"
49 #include "profile.h"
50 #include "lib/rand.h"
51 #include "memalign.h"
52 #include "server.h"
53 #include "lib/getrusage.h"
54 #include "idletime.h"
55
56 static pthread_t disk_util_thread;
57 static struct fio_mutex *disk_thread_mutex;
58 static struct fio_mutex *startup_mutex;
59 static struct fio_mutex *writeout_mutex;
60 static struct flist_head *cgroup_list;
61 static char *cgroup_mnt;
62 static int exit_value;
63 static volatile int fio_abort;
64 static unsigned int nr_process = 0;
65 static unsigned int nr_thread = 0;
66
67 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69 int groupid = 0;
70 unsigned int thread_number = 0;
71 unsigned int stat_number = 0;
72 int shm_id = 0;
73 int temp_stall_ts;
74 unsigned long done_secs = 0;
75 volatile int disk_util_exit = 0;
76
77 #define PAGE_ALIGN(buf) \
78         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80 #define JOB_START_TIMEOUT       (5 * 1000)
81
82 static void sig_int(int sig)
83 {
84         if (threads) {
85                 if (is_backend)
86                         fio_server_got_signal(sig);
87                 else {
88                         log_info("\nfio: terminating on signal %d\n", sig);
89                         fflush(stdout);
90                         exit_value = 128;
91                 }
92
93                 fio_terminate_threads(TERMINATE_ALL);
94         }
95 }
96
97 static void sig_show_status(int sig)
98 {
99         show_running_run_stats();
100 }
101
102 static void set_sig_handlers(void)
103 {
104         struct sigaction act;
105
106         memset(&act, 0, sizeof(act));
107         act.sa_handler = sig_int;
108         act.sa_flags = SA_RESTART;
109         sigaction(SIGINT, &act, NULL);
110
111         memset(&act, 0, sizeof(act));
112         act.sa_handler = sig_int;
113         act.sa_flags = SA_RESTART;
114         sigaction(SIGTERM, &act, NULL);
115
116 /* Windows uses SIGBREAK as a quit signal from other applications */
117 #ifdef WIN32
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_int;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGBREAK, &act, NULL);
122 #endif
123
124         memset(&act, 0, sizeof(act));
125         act.sa_handler = sig_show_status;
126         act.sa_flags = SA_RESTART;
127         sigaction(SIGUSR1, &act, NULL);
128
129         if (is_backend) {
130                 memset(&act, 0, sizeof(act));
131                 act.sa_handler = sig_int;
132                 act.sa_flags = SA_RESTART;
133                 sigaction(SIGPIPE, &act, NULL);
134         }
135 }
136
137 /*
138  * Check if we are above the minimum rate given.
139  */
140 static int __check_min_rate(struct thread_data *td, struct timeval *now,
141                             enum fio_ddir ddir)
142 {
143         unsigned long long bytes = 0;
144         unsigned long iops = 0;
145         unsigned long spent;
146         unsigned long rate;
147         unsigned int ratemin = 0;
148         unsigned int rate_iops = 0;
149         unsigned int rate_iops_min = 0;
150
151         assert(ddir_rw(ddir));
152
153         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154                 return 0;
155
156         /*
157          * allow a 2 second settle period in the beginning
158          */
159         if (mtime_since(&td->start, now) < 2000)
160                 return 0;
161
162         iops += td->this_io_blocks[ddir];
163         bytes += td->this_io_bytes[ddir];
164         ratemin += td->o.ratemin[ddir];
165         rate_iops += td->o.rate_iops[ddir];
166         rate_iops_min += td->o.rate_iops_min[ddir];
167
168         /*
169          * if rate blocks is set, sample is running
170          */
171         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172                 spent = mtime_since(&td->lastrate[ddir], now);
173                 if (spent < td->o.ratecycle)
174                         return 0;
175
176                 if (td->o.rate[ddir]) {
177                         /*
178                          * check bandwidth specified rate
179                          */
180                         if (bytes < td->rate_bytes[ddir]) {
181                                 log_err("%s: min rate %u not met\n", td->o.name,
182                                                                 ratemin);
183                                 return 1;
184                         } else {
185                                 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186                                 if (rate < ratemin ||
187                                     bytes < td->rate_bytes[ddir]) {
188                                         log_err("%s: min rate %u not met, got"
189                                                 " %luKB/sec\n", td->o.name,
190                                                         ratemin, rate);
191                                         return 1;
192                                 }
193                         }
194                 } else {
195                         /*
196                          * checks iops specified rate
197                          */
198                         if (iops < rate_iops) {
199                                 log_err("%s: min iops rate %u not met\n",
200                                                 td->o.name, rate_iops);
201                                 return 1;
202                         } else {
203                                 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204                                 if (rate < rate_iops_min ||
205                                     iops < td->rate_blocks[ddir]) {
206                                         log_err("%s: min iops rate %u not met,"
207                                                 " got %lu\n", td->o.name,
208                                                         rate_iops_min, rate);
209                                 }
210                         }
211                 }
212         }
213
214         td->rate_bytes[ddir] = bytes;
215         td->rate_blocks[ddir] = iops;
216         memcpy(&td->lastrate[ddir], now, sizeof(*now));
217         return 0;
218 }
219
220 static int check_min_rate(struct thread_data *td, struct timeval *now,
221                           uint64_t *bytes_done)
222 {
223         int ret = 0;
224
225         if (bytes_done[DDIR_READ])
226                 ret |= __check_min_rate(td, now, DDIR_READ);
227         if (bytes_done[DDIR_WRITE])
228                 ret |= __check_min_rate(td, now, DDIR_WRITE);
229         if (bytes_done[DDIR_TRIM])
230                 ret |= __check_min_rate(td, now, DDIR_TRIM);
231
232         return ret;
233 }
234
235 /*
236  * When job exits, we can cancel the in-flight IO if we are using async
237  * io. Attempt to do so.
238  */
239 static void cleanup_pending_aio(struct thread_data *td)
240 {
241         struct flist_head *entry, *n;
242         struct io_u *io_u;
243         int r;
244
245         /*
246          * get immediately available events, if any
247          */
248         r = io_u_queued_complete(td, 0, NULL);
249         if (r < 0)
250                 return;
251
252         /*
253          * now cancel remaining active events
254          */
255         if (td->io_ops->cancel) {
256                 flist_for_each_safe(entry, n, &td->io_u_busylist) {
257                         io_u = flist_entry(entry, struct io_u, list);
258
259                         /*
260                          * if the io_u isn't in flight, then that generally
261                          * means someone leaked an io_u. complain but fix
262                          * it up, so we don't stall here.
263                          */
264                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
265                                 log_err("fio: non-busy IO on busy list\n");
266                                 put_io_u(td, io_u);
267                         } else {
268                                 r = td->io_ops->cancel(td, io_u);
269                                 if (!r)
270                                         put_io_u(td, io_u);
271                         }
272                 }
273         }
274
275         if (td->cur_depth)
276                 r = io_u_queued_complete(td, td->cur_depth, NULL);
277 }
278
279 /*
280  * Helper to handle the final sync of a file. Works just like the normal
281  * io path, just does everything sync.
282  */
283 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
284 {
285         struct io_u *io_u = __get_io_u(td);
286         int ret;
287
288         if (!io_u)
289                 return 1;
290
291         io_u->ddir = DDIR_SYNC;
292         io_u->file = f;
293
294         if (td_io_prep(td, io_u)) {
295                 put_io_u(td, io_u);
296                 return 1;
297         }
298
299 requeue:
300         ret = td_io_queue(td, io_u);
301         if (ret < 0) {
302                 td_verror(td, io_u->error, "td_io_queue");
303                 put_io_u(td, io_u);
304                 return 1;
305         } else if (ret == FIO_Q_QUEUED) {
306                 if (io_u_queued_complete(td, 1, NULL) < 0)
307                         return 1;
308         } else if (ret == FIO_Q_COMPLETED) {
309                 if (io_u->error) {
310                         td_verror(td, io_u->error, "td_io_queue");
311                         return 1;
312                 }
313
314                 if (io_u_sync_complete(td, io_u, NULL) < 0)
315                         return 1;
316         } else if (ret == FIO_Q_BUSY) {
317                 if (td_io_commit(td))
318                         return 1;
319                 goto requeue;
320         }
321
322         return 0;
323 }
324
325 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
326 {
327         int ret;
328
329         if (fio_file_open(f))
330                 return fio_io_sync(td, f);
331
332         if (td_io_open_file(td, f))
333                 return 1;
334
335         ret = fio_io_sync(td, f);
336         td_io_close_file(td, f);
337         return ret;
338 }
339
340 static inline void __update_tv_cache(struct thread_data *td)
341 {
342         fio_gettime(&td->tv_cache, NULL);
343 }
344
345 static inline void update_tv_cache(struct thread_data *td)
346 {
347         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
348                 __update_tv_cache(td);
349 }
350
351 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
352 {
353         if (in_ramp_time(td))
354                 return 0;
355         if (!td->o.timeout)
356                 return 0;
357         if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
358                 return 1;
359
360         return 0;
361 }
362
363 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
364                                int *retptr)
365 {
366         int ret = *retptr;
367
368         if (ret < 0 || td->error) {
369                 int err = td->error;
370                 enum error_type_bit eb;
371
372                 if (ret < 0)
373                         err = -ret;
374
375                 eb = td_error_type(ddir, err);
376                 if (!(td->o.continue_on_error & (1 << eb)))
377                         return 1;
378
379                 if (td_non_fatal_error(td, eb, err)) {
380                         /*
381                          * Continue with the I/Os in case of
382                          * a non fatal error.
383                          */
384                         update_error_count(td, err);
385                         td_clear_error(td);
386                         *retptr = 0;
387                         return 0;
388                 } else if (td->o.fill_device && err == ENOSPC) {
389                         /*
390                          * We expect to hit this error if
391                          * fill_device option is set.
392                          */
393                         td_clear_error(td);
394                         td->terminate = 1;
395                         return 1;
396                 } else {
397                         /*
398                          * Stop the I/O in case of a fatal
399                          * error.
400                          */
401                         update_error_count(td, err);
402                         return 1;
403                 }
404         }
405
406         return 0;
407 }
408
409 /*
410  * The main verify engine. Runs over the writes we previously submitted,
411  * reads the blocks back in, and checks the crc/md5 of the data.
412  */
413 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
414 {
415         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
416         struct fio_file *f;
417         struct io_u *io_u;
418         int ret, min_events;
419         unsigned int i;
420
421         dprint(FD_VERIFY, "starting loop\n");
422
423         /*
424          * sync io first and invalidate cache, to make sure we really
425          * read from disk.
426          */
427         for_each_file(td, f, i) {
428                 if (!fio_file_open(f))
429                         continue;
430                 if (fio_io_sync(td, f))
431                         break;
432                 if (file_invalidate_cache(td, f))
433                         break;
434         }
435
436         if (td->error)
437                 return;
438
439         td_set_runstate(td, TD_VERIFYING);
440
441         io_u = NULL;
442         while (!td->terminate) {
443                 enum fio_ddir ddir;
444                 int ret2, full;
445
446                 update_tv_cache(td);
447
448                 if (runtime_exceeded(td, &td->tv_cache)) {
449                         __update_tv_cache(td);
450                         if (runtime_exceeded(td, &td->tv_cache)) {
451                                 td->terminate = 1;
452                                 break;
453                         }
454                 }
455
456                 if (flow_threshold_exceeded(td))
457                         continue;
458
459                 if (!td->o.experimental_verify) {
460                         io_u = __get_io_u(td);
461                         if (!io_u)
462                                 break;
463
464                         if (get_next_verify(td, io_u)) {
465                                 put_io_u(td, io_u);
466                                 break;
467                         }
468
469                         if (td_io_prep(td, io_u)) {
470                                 put_io_u(td, io_u);
471                                 break;
472                         }
473                 } else {
474                         if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
475                                 break;
476
477                         while ((io_u = get_io_u(td)) != NULL) {
478                                 /*
479                                  * We are only interested in the places where
480                                  * we wrote or trimmed IOs. Turn those into
481                                  * reads for verification purposes.
482                                  */
483                                 if (io_u->ddir == DDIR_READ) {
484                                         /*
485                                          * Pretend we issued it for rwmix
486                                          * accounting
487                                          */
488                                         td->io_issues[DDIR_READ]++;
489                                         put_io_u(td, io_u);
490                                         continue;
491                                 } else if (io_u->ddir == DDIR_TRIM) {
492                                         io_u->ddir = DDIR_READ;
493                                         io_u->flags |= IO_U_F_TRIMMED;
494                                         break;
495                                 } else if (io_u->ddir == DDIR_WRITE) {
496                                         io_u->ddir = DDIR_READ;
497                                         break;
498                                 } else {
499                                         put_io_u(td, io_u);
500                                         continue;
501                                 }
502                         }
503
504                         if (!io_u)
505                                 break;
506                 }
507
508                 if (td->o.verify_async)
509                         io_u->end_io = verify_io_u_async;
510                 else
511                         io_u->end_io = verify_io_u;
512
513                 ddir = io_u->ddir;
514
515                 ret = td_io_queue(td, io_u);
516                 switch (ret) {
517                 case FIO_Q_COMPLETED:
518                         if (io_u->error) {
519                                 ret = -io_u->error;
520                                 clear_io_u(td, io_u);
521                         } else if (io_u->resid) {
522                                 int bytes = io_u->xfer_buflen - io_u->resid;
523
524                                 /*
525                                  * zero read, fail
526                                  */
527                                 if (!bytes) {
528                                         td_verror(td, EIO, "full resid");
529                                         put_io_u(td, io_u);
530                                         break;
531                                 }
532
533                                 io_u->xfer_buflen = io_u->resid;
534                                 io_u->xfer_buf += bytes;
535                                 io_u->offset += bytes;
536
537                                 if (ddir_rw(io_u->ddir))
538                                         td->ts.short_io_u[io_u->ddir]++;
539
540                                 f = io_u->file;
541                                 if (io_u->offset == f->real_file_size)
542                                         goto sync_done;
543
544                                 requeue_io_u(td, &io_u);
545                         } else {
546 sync_done:
547                                 ret = io_u_sync_complete(td, io_u, bytes_done);
548                                 if (ret < 0)
549                                         break;
550                         }
551                         continue;
552                 case FIO_Q_QUEUED:
553                         break;
554                 case FIO_Q_BUSY:
555                         requeue_io_u(td, &io_u);
556                         ret2 = td_io_commit(td);
557                         if (ret2 < 0)
558                                 ret = ret2;
559                         break;
560                 default:
561                         assert(ret < 0);
562                         td_verror(td, -ret, "td_io_queue");
563                         break;
564                 }
565
566                 if (break_on_this_error(td, ddir, &ret))
567                         break;
568
569                 /*
570                  * if we can queue more, do so. but check if there are
571                  * completed io_u's first. Note that we can get BUSY even
572                  * without IO queued, if the system is resource starved.
573                  */
574                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
575                 if (full || !td->o.iodepth_batch_complete) {
576                         min_events = min(td->o.iodepth_batch_complete,
577                                          td->cur_depth);
578                         /*
579                          * if the queue is full, we MUST reap at least 1 event
580                          */
581                         if (full && !min_events)
582                                 min_events = 1;
583
584                         do {
585                                 /*
586                                  * Reap required number of io units, if any,
587                                  * and do the verification on them through
588                                  * the callback handler
589                                  */
590                                 if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
591                                         ret = -1;
592                                         break;
593                                 }
594                         } while (full && (td->cur_depth > td->o.iodepth_low));
595                 }
596                 if (ret < 0)
597                         break;
598         }
599
600         if (!td->error) {
601                 min_events = td->cur_depth;
602
603                 if (min_events)
604                         ret = io_u_queued_complete(td, min_events, NULL);
605         } else
606                 cleanup_pending_aio(td);
607
608         td_set_runstate(td, TD_RUNNING);
609
610         dprint(FD_VERIFY, "exiting loop\n");
611 }
612
613 static int io_bytes_exceeded(struct thread_data *td)
614 {
615         unsigned long long bytes;
616
617         if (td_rw(td))
618                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
619         else if (td_write(td))
620                 bytes = td->this_io_bytes[DDIR_WRITE];
621         else if (td_read(td))
622                 bytes = td->this_io_bytes[DDIR_READ];
623         else
624                 bytes = td->this_io_bytes[DDIR_TRIM];
625
626         return bytes >= td->o.size;
627 }
628
629 /*
630  * Main IO worker function. It retrieves io_u's to process and queues
631  * and reaps them, checking for rate and errors along the way.
632  *
633  * Returns number of bytes written and trimmed.
634  */
635 static uint64_t do_io(struct thread_data *td)
636 {
637         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
638         unsigned int i;
639         int ret = 0;
640
641         if (in_ramp_time(td))
642                 td_set_runstate(td, TD_RAMP);
643         else
644                 td_set_runstate(td, TD_RUNNING);
645
646         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
647                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
648                 td->o.time_based) {
649                 struct timeval comp_time;
650                 int min_evts = 0;
651                 struct io_u *io_u;
652                 int ret2, full;
653                 enum fio_ddir ddir;
654
655                 if (td->terminate || td->done)
656                         break;
657
658                 update_tv_cache(td);
659
660                 if (runtime_exceeded(td, &td->tv_cache)) {
661                         __update_tv_cache(td);
662                         if (runtime_exceeded(td, &td->tv_cache)) {
663                                 td->terminate = 1;
664                                 break;
665                         }
666                 }
667
668                 if (flow_threshold_exceeded(td))
669                         continue;
670
671                 io_u = get_io_u(td);
672                 if (!io_u)
673                         break;
674
675                 ddir = io_u->ddir;
676
677                 /*
678                  * Add verification end_io handler if:
679                  *      - Asked to verify (!td_rw(td))
680                  *      - Or the io_u is from our verify list (mixed write/ver)
681                  */
682                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
683                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
684                         if (td->o.verify_async)
685                                 io_u->end_io = verify_io_u_async;
686                         else
687                                 io_u->end_io = verify_io_u;
688                         td_set_runstate(td, TD_VERIFYING);
689                 } else if (in_ramp_time(td))
690                         td_set_runstate(td, TD_RAMP);
691                 else
692                         td_set_runstate(td, TD_RUNNING);
693
694                 ret = td_io_queue(td, io_u);
695                 switch (ret) {
696                 case FIO_Q_COMPLETED:
697                         if (io_u->error) {
698                                 ret = -io_u->error;
699                                 clear_io_u(td, io_u);
700                         } else if (io_u->resid) {
701                                 int bytes = io_u->xfer_buflen - io_u->resid;
702                                 struct fio_file *f = io_u->file;
703
704                                 /*
705                                  * zero read, fail
706                                  */
707                                 if (!bytes) {
708                                         td_verror(td, EIO, "full resid");
709                                         put_io_u(td, io_u);
710                                         break;
711                                 }
712
713                                 io_u->xfer_buflen = io_u->resid;
714                                 io_u->xfer_buf += bytes;
715                                 io_u->offset += bytes;
716
717                                 if (ddir_rw(io_u->ddir))
718                                         td->ts.short_io_u[io_u->ddir]++;
719
720                                 if (io_u->offset == f->real_file_size)
721                                         goto sync_done;
722
723                                 requeue_io_u(td, &io_u);
724                         } else {
725 sync_done:
726                                 if (__should_check_rate(td, DDIR_READ) ||
727                                     __should_check_rate(td, DDIR_WRITE) ||
728                                     __should_check_rate(td, DDIR_TRIM))
729                                         fio_gettime(&comp_time, NULL);
730
731                                 ret = io_u_sync_complete(td, io_u, bytes_done);
732                                 if (ret < 0)
733                                         break;
734                         }
735                         break;
736                 case FIO_Q_QUEUED:
737                         /*
738                          * if the engine doesn't have a commit hook,
739                          * the io_u is really queued. if it does have such
740                          * a hook, it has to call io_u_queued() itself.
741                          */
742                         if (td->io_ops->commit == NULL)
743                                 io_u_queued(td, io_u);
744                         break;
745                 case FIO_Q_BUSY:
746                         requeue_io_u(td, &io_u);
747                         ret2 = td_io_commit(td);
748                         if (ret2 < 0)
749                                 ret = ret2;
750                         break;
751                 default:
752                         assert(ret < 0);
753                         put_io_u(td, io_u);
754                         break;
755                 }
756
757                 if (break_on_this_error(td, ddir, &ret))
758                         break;
759
760                 /*
761                  * See if we need to complete some commands. Note that we
762                  * can get BUSY even without IO queued, if the system is
763                  * resource starved.
764                  */
765                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
766                 if (full || !td->o.iodepth_batch_complete) {
767                         min_evts = min(td->o.iodepth_batch_complete,
768                                         td->cur_depth);
769                         /*
770                          * if the queue is full, we MUST reap at least 1 event
771                          */
772                         if (full && !min_evts)
773                                 min_evts = 1;
774
775                         if (__should_check_rate(td, DDIR_READ) ||
776                             __should_check_rate(td, DDIR_WRITE) ||
777                             __should_check_rate(td, DDIR_TRIM))
778                                 fio_gettime(&comp_time, NULL);
779
780                         do {
781                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
782                                 if (ret < 0)
783                                         break;
784
785                         } while (full && (td->cur_depth > td->o.iodepth_low));
786                 }
787
788                 if (ret < 0)
789                         break;
790                 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
791                         continue;
792
793                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
794                         if (check_min_rate(td, &comp_time, bytes_done)) {
795                                 if (exitall_on_terminate)
796                                         fio_terminate_threads(td->groupid);
797                                 td_verror(td, EIO, "check_min_rate");
798                                 break;
799                         }
800                 }
801
802                 if (td->o.thinktime) {
803                         unsigned long long b;
804
805                         b = ddir_rw_sum(td->io_blocks);
806                         if (!(b % td->o.thinktime_blocks)) {
807                                 int left;
808
809                                 if (td->o.thinktime_spin)
810                                         usec_spin(td->o.thinktime_spin);
811
812                                 left = td->o.thinktime - td->o.thinktime_spin;
813                                 if (left)
814                                         usec_sleep(td, left);
815                         }
816                 }
817         }
818
819         if (td->trim_entries)
820                 log_err("fio: %d trim entries leaked?\n", td->trim_entries);
821
822         if (td->o.fill_device && td->error == ENOSPC) {
823                 td->error = 0;
824                 td->terminate = 1;
825         }
826         if (!td->error) {
827                 struct fio_file *f;
828
829                 i = td->cur_depth;
830                 if (i) {
831                         ret = io_u_queued_complete(td, i, bytes_done);
832                         if (td->o.fill_device && td->error == ENOSPC)
833                                 td->error = 0;
834                 }
835
836                 if (should_fsync(td) && td->o.end_fsync) {
837                         td_set_runstate(td, TD_FSYNCING);
838
839                         for_each_file(td, f, i) {
840                                 if (!fio_file_fsync(td, f))
841                                         continue;
842
843                                 log_err("fio: end_fsync failed for file %s\n",
844                                                                 f->file_name);
845                         }
846                 }
847         } else
848                 cleanup_pending_aio(td);
849
850         /*
851          * stop job if we failed doing any IO
852          */
853         if (!ddir_rw_sum(td->this_io_bytes))
854                 td->done = 1;
855
856         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
857 }
858
859 static void cleanup_io_u(struct thread_data *td)
860 {
861         struct flist_head *entry, *n;
862         struct io_u *io_u;
863
864         flist_for_each_safe(entry, n, &td->io_u_freelist) {
865                 io_u = flist_entry(entry, struct io_u, list);
866
867                 flist_del(&io_u->list);
868
869                 if (td->io_ops->io_u_free)
870                         td->io_ops->io_u_free(td, io_u);
871
872                 fio_memfree(io_u, sizeof(*io_u));
873         }
874
875         free_io_mem(td);
876 }
877
878 static int init_io_u(struct thread_data *td)
879 {
880         struct io_u *io_u;
881         unsigned int max_bs, min_write;
882         int cl_align, i, max_units;
883         int data_xfer = 1;
884         char *p;
885
886         max_units = td->o.iodepth;
887         max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
888         max_bs = max(td->o.max_bs[DDIR_TRIM], max_bs);
889         min_write = td->o.min_bs[DDIR_WRITE];
890         td->orig_buffer_size = (unsigned long long) max_bs
891                                         * (unsigned long long) max_units;
892
893         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
894                 data_xfer = 0;
895
896         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
897                 unsigned long bs;
898
899                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
900                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
901         }
902
903         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
904                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
905                 return 1;
906         }
907
908         if (data_xfer && allocate_io_mem(td))
909                 return 1;
910
911         if (td->o.odirect || td->o.mem_align ||
912             (td->io_ops->flags & FIO_RAWIO))
913                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
914         else
915                 p = td->orig_buffer;
916
917         cl_align = os_cache_line_size();
918
919         for (i = 0; i < max_units; i++) {
920                 void *ptr;
921
922                 if (td->terminate)
923                         return 1;
924
925                 ptr = fio_memalign(cl_align, sizeof(*io_u));
926                 if (!ptr) {
927                         log_err("fio: unable to allocate aligned memory\n");
928                         break;
929                 }
930
931                 io_u = ptr;
932                 memset(io_u, 0, sizeof(*io_u));
933                 INIT_FLIST_HEAD(&io_u->list);
934                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
935
936                 if (data_xfer) {
937                         io_u->buf = p;
938                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
939
940                         if (td_write(td))
941                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
942                         if (td_write(td) && td->o.verify_pattern_bytes) {
943                                 /*
944                                  * Fill the buffer with the pattern if we are
945                                  * going to be doing writes.
946                                  */
947                                 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
948                         }
949                 }
950
951                 io_u->index = i;
952                 io_u->flags = IO_U_F_FREE;
953                 flist_add(&io_u->list, &td->io_u_freelist);
954
955                 if (td->io_ops->io_u_init) {
956                         int ret = td->io_ops->io_u_init(td, io_u);
957
958                         if (ret) {
959                                 log_err("fio: failed to init engine data: %d\n", ret);
960                                 return 1;
961                         }
962                 }
963
964                 p += max_bs;
965         }
966
967         return 0;
968 }
969
970 static int switch_ioscheduler(struct thread_data *td)
971 {
972         char tmp[256], tmp2[128];
973         FILE *f;
974         int ret;
975
976         if (td->io_ops->flags & FIO_DISKLESSIO)
977                 return 0;
978
979         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
980
981         f = fopen(tmp, "r+");
982         if (!f) {
983                 if (errno == ENOENT) {
984                         log_err("fio: os or kernel doesn't support IO scheduler"
985                                 " switching\n");
986                         return 0;
987                 }
988                 td_verror(td, errno, "fopen iosched");
989                 return 1;
990         }
991
992         /*
993          * Set io scheduler.
994          */
995         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
996         if (ferror(f) || ret != 1) {
997                 td_verror(td, errno, "fwrite");
998                 fclose(f);
999                 return 1;
1000         }
1001
1002         rewind(f);
1003
1004         /*
1005          * Read back and check that the selected scheduler is now the default.
1006          */
1007         ret = fread(tmp, 1, sizeof(tmp), f);
1008         if (ferror(f) || ret < 0) {
1009                 td_verror(td, errno, "fread");
1010                 fclose(f);
1011                 return 1;
1012         }
1013
1014         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1015         if (!strstr(tmp, tmp2)) {
1016                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1017                 td_verror(td, EINVAL, "iosched_switch");
1018                 fclose(f);
1019                 return 1;
1020         }
1021
1022         fclose(f);
1023         return 0;
1024 }
1025
1026 static int keep_running(struct thread_data *td)
1027 {
1028         if (td->done)
1029                 return 0;
1030         if (td->o.time_based)
1031                 return 1;
1032         if (td->o.loops) {
1033                 td->o.loops--;
1034                 return 1;
1035         }
1036
1037         if (ddir_rw_sum(td->io_bytes) < td->o.size) {
1038                 uint64_t diff;
1039
1040                 /*
1041                  * If the difference is less than the minimum IO size, we
1042                  * are done.
1043                  */
1044                 diff = td->o.size - ddir_rw_sum(td->io_bytes);
1045                 if (diff < td->o.rw_min_bs)
1046                         return 0;
1047
1048                 return 1;
1049         }
1050
1051         return 0;
1052 }
1053
1054 static int exec_string(const char *string)
1055 {
1056         int ret, newlen = strlen(string) + 1 + 8;
1057         char *str;
1058
1059         str = malloc(newlen);
1060         sprintf(str, "sh -c %s", string);
1061
1062         ret = system(str);
1063         if (ret == -1)
1064                 log_err("fio: exec of cmd <%s> failed\n", str);
1065
1066         free(str);
1067         return ret;
1068 }
1069
1070 /*
1071  * Entry point for the thread based jobs. The process based jobs end up
1072  * here as well, after a little setup.
1073  */
1074 static void *thread_main(void *data)
1075 {
1076         unsigned long long elapsed;
1077         struct thread_data *td = data;
1078         struct thread_options *o = &td->o;
1079         pthread_condattr_t attr;
1080         int clear_state;
1081         int ret;
1082
1083         if (!o->use_thread) {
1084                 setsid();
1085                 td->pid = getpid();
1086         } else
1087                 td->pid = gettid();
1088
1089         fio_local_clock_init(td->o.use_thread);
1090
1091         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1092
1093         if (is_backend)
1094                 fio_server_send_start(td);
1095
1096         INIT_FLIST_HEAD(&td->io_u_freelist);
1097         INIT_FLIST_HEAD(&td->io_u_busylist);
1098         INIT_FLIST_HEAD(&td->io_u_requeues);
1099         INIT_FLIST_HEAD(&td->io_log_list);
1100         INIT_FLIST_HEAD(&td->io_hist_list);
1101         INIT_FLIST_HEAD(&td->verify_list);
1102         INIT_FLIST_HEAD(&td->trim_list);
1103         INIT_FLIST_HEAD(&td->next_rand_list);
1104         pthread_mutex_init(&td->io_u_lock, NULL);
1105         td->io_hist_tree = RB_ROOT;
1106
1107         pthread_condattr_init(&attr);
1108         pthread_cond_init(&td->verify_cond, &attr);
1109         pthread_cond_init(&td->free_cond, &attr);
1110
1111         td_set_runstate(td, TD_INITIALIZED);
1112         dprint(FD_MUTEX, "up startup_mutex\n");
1113         fio_mutex_up(startup_mutex);
1114         dprint(FD_MUTEX, "wait on td->mutex\n");
1115         fio_mutex_down(td->mutex);
1116         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1117
1118         /*
1119          * the ->mutex mutex is now no longer used, close it to avoid
1120          * eating a file descriptor
1121          */
1122         fio_mutex_remove(td->mutex);
1123         td->mutex = NULL;
1124
1125         /*
1126          * A new gid requires privilege, so we need to do this before setting
1127          * the uid.
1128          */
1129         if (o->gid != -1U && setgid(o->gid)) {
1130                 td_verror(td, errno, "setgid");
1131                 goto err;
1132         }
1133         if (o->uid != -1U && setuid(o->uid)) {
1134                 td_verror(td, errno, "setuid");
1135                 goto err;
1136         }
1137
1138         /*
1139          * If we have a gettimeofday() thread, make sure we exclude that
1140          * thread from this job
1141          */
1142         if (o->gtod_cpu)
1143                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1144
1145         /*
1146          * Set affinity first, in case it has an impact on the memory
1147          * allocations.
1148          */
1149         if (o->cpumask_set) {
1150                 ret = fio_setaffinity(td->pid, o->cpumask);
1151                 if (ret == -1) {
1152                         td_verror(td, errno, "cpu_set_affinity");
1153                         goto err;
1154                 }
1155         }
1156
1157 #ifdef CONFIG_LIBNUMA
1158         /* numa node setup */
1159         if (td->o.numa_cpumask_set || td->o.numa_memmask_set) {
1160                 int ret;
1161
1162                 if (numa_available() < 0) {
1163                         td_verror(td, errno, "Does not support NUMA API\n");
1164                         goto err;
1165                 }
1166
1167                 if (td->o.numa_cpumask_set) {
1168                         ret = numa_run_on_node_mask(td->o.numa_cpunodesmask);
1169                         if (ret == -1) {
1170                                 td_verror(td, errno, \
1171                                         "numa_run_on_node_mask failed\n");
1172                                 goto err;
1173                         }
1174                 }
1175
1176                 if (td->o.numa_memmask_set) {
1177
1178                         switch (td->o.numa_mem_mode) {
1179                         case MPOL_INTERLEAVE:
1180                                 numa_set_interleave_mask(td->o.numa_memnodesmask);
1181                                 break;
1182                         case MPOL_BIND:
1183                                 numa_set_membind(td->o.numa_memnodesmask);
1184                                 break;
1185                         case MPOL_LOCAL:
1186                                 numa_set_localalloc();
1187                                 break;
1188                         case MPOL_PREFERRED:
1189                                 numa_set_preferred(td->o.numa_mem_prefer_node);
1190                                 break;
1191                         case MPOL_DEFAULT:
1192                         default:
1193                                 break;
1194                         }
1195
1196                 }
1197         }
1198 #endif
1199
1200         /*
1201          * May alter parameters that init_io_u() will use, so we need to
1202          * do this first.
1203          */
1204         if (init_iolog(td))
1205                 goto err;
1206
1207         if (init_io_u(td))
1208                 goto err;
1209
1210         if (o->verify_async && verify_async_init(td))
1211                 goto err;
1212
1213         if (o->ioprio) {
1214                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1215                 if (ret == -1) {
1216                         td_verror(td, errno, "ioprio_set");
1217                         goto err;
1218                 }
1219         }
1220
1221         if (td->o.cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1222                 goto err;
1223
1224         errno = 0;
1225         if (nice(o->nice) == -1 && errno != 0) {
1226                 td_verror(td, errno, "nice");
1227                 goto err;
1228         }
1229
1230         if (o->ioscheduler && switch_ioscheduler(td))
1231                 goto err;
1232
1233         if (!o->create_serialize && setup_files(td))
1234                 goto err;
1235
1236         if (td_io_init(td))
1237                 goto err;
1238
1239         if (init_random_map(td))
1240                 goto err;
1241
1242         if (o->exec_prerun && exec_string(o->exec_prerun))
1243                 goto err;
1244
1245         if (o->pre_read) {
1246                 if (pre_read_files(td) < 0)
1247                         goto err;
1248         }
1249
1250         fio_verify_init(td);
1251
1252         fio_gettime(&td->epoch, NULL);
1253         fio_getrusage(&td->ru_start);
1254         clear_state = 0;
1255         while (keep_running(td)) {
1256                 uint64_t verify_bytes;
1257
1258                 fio_gettime(&td->start, NULL);
1259                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1260                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1261                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1262
1263                 if (td->o.ratemin[DDIR_READ] || td->o.ratemin[DDIR_WRITE] ||
1264                                 td->o.ratemin[DDIR_TRIM]) {
1265                         memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1266                                                 sizeof(td->bw_sample_time));
1267                         memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1268                                                 sizeof(td->bw_sample_time));
1269                         memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1270                                                 sizeof(td->bw_sample_time));
1271                 }
1272
1273                 if (clear_state)
1274                         clear_io_state(td);
1275
1276                 prune_io_piece_log(td);
1277
1278                 verify_bytes = do_io(td);
1279
1280                 clear_state = 1;
1281
1282                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1283                         elapsed = utime_since_now(&td->start);
1284                         td->ts.runtime[DDIR_READ] += elapsed;
1285                 }
1286                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1287                         elapsed = utime_since_now(&td->start);
1288                         td->ts.runtime[DDIR_WRITE] += elapsed;
1289                 }
1290                 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1291                         elapsed = utime_since_now(&td->start);
1292                         td->ts.runtime[DDIR_TRIM] += elapsed;
1293                 }
1294
1295                 if (td->error || td->terminate)
1296                         break;
1297
1298                 if (!td->o.do_verify ||
1299                     td->o.verify == VERIFY_NONE ||
1300                     (td->io_ops->flags & FIO_UNIDIR))
1301                         continue;
1302
1303                 clear_io_state(td);
1304
1305                 fio_gettime(&td->start, NULL);
1306
1307                 do_verify(td, verify_bytes);
1308
1309                 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1310
1311                 if (td->error || td->terminate)
1312                         break;
1313         }
1314
1315         update_rusage_stat(td);
1316         td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1317         td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1318         td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1319         td->ts.total_run_time = mtime_since_now(&td->epoch);
1320         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1321         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1322         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1323
1324         fio_unpin_memory(td);
1325
1326         fio_mutex_down(writeout_mutex);
1327         if (td->bw_log) {
1328                 if (td->o.bw_log_file) {
1329                         finish_log_named(td, td->bw_log,
1330                                                 td->o.bw_log_file, "bw");
1331                 } else
1332                         finish_log(td, td->bw_log, "bw");
1333         }
1334         if (td->lat_log) {
1335                 if (td->o.lat_log_file) {
1336                         finish_log_named(td, td->lat_log,
1337                                                 td->o.lat_log_file, "lat");
1338                 } else
1339                         finish_log(td, td->lat_log, "lat");
1340         }
1341         if (td->slat_log) {
1342                 if (td->o.lat_log_file) {
1343                         finish_log_named(td, td->slat_log,
1344                                                 td->o.lat_log_file, "slat");
1345                 } else
1346                         finish_log(td, td->slat_log, "slat");
1347         }
1348         if (td->clat_log) {
1349                 if (td->o.lat_log_file) {
1350                         finish_log_named(td, td->clat_log,
1351                                                 td->o.lat_log_file, "clat");
1352                 } else
1353                         finish_log(td, td->clat_log, "clat");
1354         }
1355         if (td->iops_log) {
1356                 if (td->o.iops_log_file) {
1357                         finish_log_named(td, td->iops_log,
1358                                                 td->o.iops_log_file, "iops");
1359                 } else
1360                         finish_log(td, td->iops_log, "iops");
1361         }
1362
1363         fio_mutex_up(writeout_mutex);
1364         if (td->o.exec_postrun)
1365                 exec_string(td->o.exec_postrun);
1366
1367         if (exitall_on_terminate)
1368                 fio_terminate_threads(td->groupid);
1369
1370 err:
1371         if (td->error)
1372                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1373                                                         td->verror);
1374
1375         if (td->o.verify_async)
1376                 verify_async_exit(td);
1377
1378         close_and_free_files(td);
1379         cleanup_io_u(td);
1380         close_ioengine(td);
1381         cgroup_shutdown(td, &cgroup_mnt);
1382
1383         if (o->cpumask_set) {
1384                 int ret = fio_cpuset_exit(&o->cpumask);
1385
1386                 td_verror(td, ret, "fio_cpuset_exit");
1387         }
1388
1389         /*
1390          * do this very late, it will log file closing as well
1391          */
1392         if (td->o.write_iolog_file)
1393                 write_iolog_close(td);
1394
1395         td_set_runstate(td, TD_EXITED);
1396         return (void *) (uintptr_t) td->error;
1397 }
1398
1399
1400 /*
1401  * We cannot pass the td data into a forked process, so attach the td and
1402  * pass it to the thread worker.
1403  */
1404 static int fork_main(int shmid, int offset)
1405 {
1406         struct thread_data *td;
1407         void *data, *ret;
1408
1409 #ifndef __hpux
1410         data = shmat(shmid, NULL, 0);
1411         if (data == (void *) -1) {
1412                 int __err = errno;
1413
1414                 perror("shmat");
1415                 return __err;
1416         }
1417 #else
1418         /*
1419          * HP-UX inherits shm mappings?
1420          */
1421         data = threads;
1422 #endif
1423
1424         td = data + offset * sizeof(struct thread_data);
1425         ret = thread_main(td);
1426         shmdt(data);
1427         return (int) (uintptr_t) ret;
1428 }
1429
1430 /*
1431  * Run over the job map and reap the threads that have exited, if any.
1432  */
1433 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1434                          unsigned int *m_rate)
1435 {
1436         struct thread_data *td;
1437         unsigned int cputhreads, realthreads, pending;
1438         int i, status, ret;
1439
1440         /*
1441          * reap exited threads (TD_EXITED -> TD_REAPED)
1442          */
1443         realthreads = pending = cputhreads = 0;
1444         for_each_td(td, i) {
1445                 int flags = 0;
1446
1447                 /*
1448                  * ->io_ops is NULL for a thread that has closed its
1449                  * io engine
1450                  */
1451                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1452                         cputhreads++;
1453                 else
1454                         realthreads++;
1455
1456                 if (!td->pid) {
1457                         pending++;
1458                         continue;
1459                 }
1460                 if (td->runstate == TD_REAPED)
1461                         continue;
1462                 if (td->o.use_thread) {
1463                         if (td->runstate == TD_EXITED) {
1464                                 td_set_runstate(td, TD_REAPED);
1465                                 goto reaped;
1466                         }
1467                         continue;
1468                 }
1469
1470                 flags = WNOHANG;
1471                 if (td->runstate == TD_EXITED)
1472                         flags = 0;
1473
1474                 /*
1475                  * check if someone quit or got killed in an unusual way
1476                  */
1477                 ret = waitpid(td->pid, &status, flags);
1478                 if (ret < 0) {
1479                         if (errno == ECHILD) {
1480                                 log_err("fio: pid=%d disappeared %d\n",
1481                                                 (int) td->pid, td->runstate);
1482                                 td->sig = ECHILD;
1483                                 td_set_runstate(td, TD_REAPED);
1484                                 goto reaped;
1485                         }
1486                         perror("waitpid");
1487                 } else if (ret == td->pid) {
1488                         if (WIFSIGNALED(status)) {
1489                                 int sig = WTERMSIG(status);
1490
1491                                 if (sig != SIGTERM && sig != SIGUSR2)
1492                                         log_err("fio: pid=%d, got signal=%d\n",
1493                                                         (int) td->pid, sig);
1494                                 td->sig = sig;
1495                                 td_set_runstate(td, TD_REAPED);
1496                                 goto reaped;
1497                         }
1498                         if (WIFEXITED(status)) {
1499                                 if (WEXITSTATUS(status) && !td->error)
1500                                         td->error = WEXITSTATUS(status);
1501
1502                                 td_set_runstate(td, TD_REAPED);
1503                                 goto reaped;
1504                         }
1505                 }
1506
1507                 /*
1508                  * thread is not dead, continue
1509                  */
1510                 pending++;
1511                 continue;
1512 reaped:
1513                 (*nr_running)--;
1514                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1515                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1516                 if (!td->pid)
1517                         pending--;
1518
1519                 if (td->error)
1520                         exit_value++;
1521
1522                 done_secs += mtime_since_now(&td->epoch) / 1000;
1523         }
1524
1525         if (*nr_running == cputhreads && !pending && realthreads)
1526                 fio_terminate_threads(TERMINATE_ALL);
1527 }
1528
1529 /*
1530  * Main function for kicking off and reaping jobs, as needed.
1531  */
1532 static void run_threads(void)
1533 {
1534         struct thread_data *td;
1535         unsigned long spent;
1536         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1537
1538         if (fio_gtod_offload && fio_start_gtod_thread())
1539                 return;
1540         
1541         fio_idle_prof_init();
1542
1543         set_sig_handlers();
1544
1545         nr_thread = nr_process = 0;
1546         for_each_td(td, i) {
1547                 if (td->o.use_thread)
1548                         nr_thread++;
1549                 else
1550                         nr_process++;
1551         }
1552
1553         if (output_format == FIO_OUTPUT_NORMAL) {
1554                 log_info("Starting ");
1555                 if (nr_thread)
1556                         log_info("%d thread%s", nr_thread,
1557                                                 nr_thread > 1 ? "s" : "");
1558                 if (nr_process) {
1559                         if (nr_thread)
1560                                 log_info(" and ");
1561                         log_info("%d process%s", nr_process,
1562                                                 nr_process > 1 ? "es" : "");
1563                 }
1564                 log_info("\n");
1565                 fflush(stdout);
1566         }
1567
1568         todo = thread_number;
1569         nr_running = 0;
1570         nr_started = 0;
1571         m_rate = t_rate = 0;
1572
1573         for_each_td(td, i) {
1574                 print_status_init(td->thread_number - 1);
1575
1576                 if (!td->o.create_serialize)
1577                         continue;
1578
1579                 /*
1580                  * do file setup here so it happens sequentially,
1581                  * we don't want X number of threads getting their
1582                  * client data interspersed on disk
1583                  */
1584                 if (setup_files(td)) {
1585                         exit_value++;
1586                         if (td->error)
1587                                 log_err("fio: pid=%d, err=%d/%s\n",
1588                                         (int) td->pid, td->error, td->verror);
1589                         td_set_runstate(td, TD_REAPED);
1590                         todo--;
1591                 } else {
1592                         struct fio_file *f;
1593                         unsigned int j;
1594
1595                         /*
1596                          * for sharing to work, each job must always open
1597                          * its own files. so close them, if we opened them
1598                          * for creation
1599                          */
1600                         for_each_file(td, f, j) {
1601                                 if (fio_file_open(f))
1602                                         td_io_close_file(td, f);
1603                         }
1604                 }
1605         }
1606
1607         /* start idle threads before io threads start to run */
1608         fio_idle_prof_start();
1609
1610         set_genesis_time();
1611
1612         while (todo) {
1613                 struct thread_data *map[REAL_MAX_JOBS];
1614                 struct timeval this_start;
1615                 int this_jobs = 0, left;
1616
1617                 /*
1618                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1619                  */
1620                 for_each_td(td, i) {
1621                         if (td->runstate != TD_NOT_CREATED)
1622                                 continue;
1623
1624                         /*
1625                          * never got a chance to start, killed by other
1626                          * thread for some reason
1627                          */
1628                         if (td->terminate) {
1629                                 todo--;
1630                                 continue;
1631                         }
1632
1633                         if (td->o.start_delay) {
1634                                 spent = mtime_since_genesis();
1635
1636                                 if (td->o.start_delay * 1000 > spent)
1637                                         continue;
1638                         }
1639
1640                         if (td->o.stonewall && (nr_started || nr_running)) {
1641                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1642                                                         td->o.name);
1643                                 break;
1644                         }
1645
1646                         init_disk_util(td);
1647
1648                         /*
1649                          * Set state to created. Thread will transition
1650                          * to TD_INITIALIZED when it's done setting up.
1651                          */
1652                         td_set_runstate(td, TD_CREATED);
1653                         map[this_jobs++] = td;
1654                         nr_started++;
1655
1656                         if (td->o.use_thread) {
1657                                 int ret;
1658
1659                                 dprint(FD_PROCESS, "will pthread_create\n");
1660                                 ret = pthread_create(&td->thread, NULL,
1661                                                         thread_main, td);
1662                                 if (ret) {
1663                                         log_err("pthread_create: %s\n",
1664                                                         strerror(ret));
1665                                         nr_started--;
1666                                         break;
1667                                 }
1668                                 ret = pthread_detach(td->thread);
1669                                 if (ret)
1670                                         log_err("pthread_detach: %s",
1671                                                         strerror(ret));
1672                         } else {
1673                                 pid_t pid;
1674                                 dprint(FD_PROCESS, "will fork\n");
1675                                 pid = fork();
1676                                 if (!pid) {
1677                                         int ret = fork_main(shm_id, i);
1678
1679                                         _exit(ret);
1680                                 } else if (i == fio_debug_jobno)
1681                                         *fio_debug_jobp = pid;
1682                         }
1683                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1684                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
1685                                 log_err("fio: job startup hung? exiting.\n");
1686                                 fio_terminate_threads(TERMINATE_ALL);
1687                                 fio_abort = 1;
1688                                 nr_started--;
1689                                 break;
1690                         }
1691                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1692                 }
1693
1694                 /*
1695                  * Wait for the started threads to transition to
1696                  * TD_INITIALIZED.
1697                  */
1698                 fio_gettime(&this_start, NULL);
1699                 left = this_jobs;
1700                 while (left && !fio_abort) {
1701                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1702                                 break;
1703
1704                         usleep(100000);
1705
1706                         for (i = 0; i < this_jobs; i++) {
1707                                 td = map[i];
1708                                 if (!td)
1709                                         continue;
1710                                 if (td->runstate == TD_INITIALIZED) {
1711                                         map[i] = NULL;
1712                                         left--;
1713                                 } else if (td->runstate >= TD_EXITED) {
1714                                         map[i] = NULL;
1715                                         left--;
1716                                         todo--;
1717                                         nr_running++; /* work-around... */
1718                                 }
1719                         }
1720                 }
1721
1722                 if (left) {
1723                         log_err("fio: %d job%s failed to start\n", left,
1724                                         left > 1 ? "s" : "");
1725                         for (i = 0; i < this_jobs; i++) {
1726                                 td = map[i];
1727                                 if (!td)
1728                                         continue;
1729                                 kill(td->pid, SIGTERM);
1730                         }
1731                         break;
1732                 }
1733
1734                 /*
1735                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1736                  */
1737                 for_each_td(td, i) {
1738                         if (td->runstate != TD_INITIALIZED)
1739                                 continue;
1740
1741                         if (in_ramp_time(td))
1742                                 td_set_runstate(td, TD_RAMP);
1743                         else
1744                                 td_set_runstate(td, TD_RUNNING);
1745                         nr_running++;
1746                         nr_started--;
1747                         m_rate += ddir_rw_sum(td->o.ratemin);
1748                         t_rate += ddir_rw_sum(td->o.rate);
1749                         todo--;
1750                         fio_mutex_up(td->mutex);
1751                 }
1752
1753                 reap_threads(&nr_running, &t_rate, &m_rate);
1754
1755                 if (todo)
1756                         usleep(100000);
1757         }
1758
1759         while (nr_running) {
1760                 reap_threads(&nr_running, &t_rate, &m_rate);
1761                 usleep(10000);
1762         }
1763
1764         fio_idle_prof_stop();
1765
1766         update_io_ticks();
1767 }
1768
1769 void wait_for_disk_thread_exit(void)
1770 {
1771         fio_mutex_down(disk_thread_mutex);
1772 }
1773
1774 static void free_disk_util(void)
1775 {
1776         disk_util_start_exit();
1777         wait_for_disk_thread_exit();
1778         disk_util_prune_entries();
1779 }
1780
1781 static void *disk_thread_main(void *data)
1782 {
1783         int ret = 0;
1784
1785         fio_mutex_up(startup_mutex);
1786
1787         while (threads && !ret) {
1788                 usleep(DISK_UTIL_MSEC * 1000);
1789                 if (!threads)
1790                         break;
1791                 ret = update_io_ticks();
1792
1793                 if (!is_backend)
1794                         print_thread_status();
1795         }
1796
1797         fio_mutex_up(disk_thread_mutex);
1798         return NULL;
1799 }
1800
1801 static int create_disk_util_thread(void)
1802 {
1803         int ret;
1804
1805         setup_disk_util();
1806
1807         disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1808
1809         ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1810         if (ret) {
1811                 fio_mutex_remove(disk_thread_mutex);
1812                 log_err("Can't create disk util thread: %s\n", strerror(ret));
1813                 return 1;
1814         }
1815
1816         ret = pthread_detach(disk_util_thread);
1817         if (ret) {
1818                 fio_mutex_remove(disk_thread_mutex);
1819                 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1820                 return 1;
1821         }
1822
1823         dprint(FD_MUTEX, "wait on startup_mutex\n");
1824         fio_mutex_down(startup_mutex);
1825         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1826         return 0;
1827 }
1828
1829 int fio_backend(void)
1830 {
1831         struct thread_data *td;
1832         int i;
1833
1834         if (exec_profile) {
1835                 if (load_profile(exec_profile))
1836                         return 1;
1837                 free(exec_profile);
1838                 exec_profile = NULL;
1839         }
1840         if (!thread_number)
1841                 return 0;
1842
1843         if (write_bw_log) {
1844                 setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
1845                 setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
1846                 setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
1847         }
1848
1849         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1850         if (startup_mutex == NULL)
1851                 return 1;
1852         writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
1853         if (writeout_mutex == NULL)
1854                 return 1;
1855
1856         set_genesis_time();
1857         create_disk_util_thread();
1858
1859         cgroup_list = smalloc(sizeof(*cgroup_list));
1860         INIT_FLIST_HEAD(cgroup_list);
1861
1862         run_threads();
1863
1864         if (!fio_abort) {
1865                 show_run_stats();
1866                 if (write_bw_log) {
1867                         __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1868                         __finish_log(agg_io_log[DDIR_WRITE],
1869                                         "agg-write_bw.log");
1870                         __finish_log(agg_io_log[DDIR_TRIM],
1871                                         "agg-write_bw.log");
1872                 }
1873         }
1874
1875         for_each_td(td, i)
1876                 fio_options_free(td);
1877
1878         free_disk_util();
1879         cgroup_kill(cgroup_list);
1880         sfree(cgroup_list);
1881         sfree(cgroup_mnt);
1882
1883         fio_mutex_remove(startup_mutex);
1884         fio_mutex_remove(writeout_mutex);
1885         fio_mutex_remove(disk_thread_mutex);
1886         return exit_value;
1887 }