Fix bad pointer du->sysfs_root
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "workqueue.h"
58 #include "lib/mountcheck.h"
59 #include "rate-submit.h"
60 #include "helper_thread.h"
61
62 static struct fio_mutex *startup_mutex;
63 static struct flist_head *cgroup_list;
64 static char *cgroup_mnt;
65 static int exit_value;
66 static volatile int fio_abort;
67 static unsigned int nr_process = 0;
68 static unsigned int nr_thread = 0;
69
70 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72 int groupid = 0;
73 unsigned int thread_number = 0;
74 unsigned int stat_number = 0;
75 int shm_id = 0;
76 int temp_stall_ts;
77 unsigned long done_secs = 0;
78
79 #define JOB_START_TIMEOUT       (5 * 1000)
80
81 static void sig_int(int sig)
82 {
83         if (threads) {
84                 if (is_backend)
85                         fio_server_got_signal(sig);
86                 else {
87                         log_info("\nfio: terminating on signal %d\n", sig);
88                         log_info_flush();
89                         exit_value = 128;
90                 }
91
92                 fio_terminate_threads(TERMINATE_ALL);
93         }
94 }
95
96 void sig_show_status(int sig)
97 {
98         show_running_run_stats();
99 }
100
101 static void set_sig_handlers(void)
102 {
103         struct sigaction act;
104
105         memset(&act, 0, sizeof(act));
106         act.sa_handler = sig_int;
107         act.sa_flags = SA_RESTART;
108         sigaction(SIGINT, &act, NULL);
109
110         memset(&act, 0, sizeof(act));
111         act.sa_handler = sig_int;
112         act.sa_flags = SA_RESTART;
113         sigaction(SIGTERM, &act, NULL);
114
115 /* Windows uses SIGBREAK as a quit signal from other applications */
116 #ifdef WIN32
117         memset(&act, 0, sizeof(act));
118         act.sa_handler = sig_int;
119         act.sa_flags = SA_RESTART;
120         sigaction(SIGBREAK, &act, NULL);
121 #endif
122
123         memset(&act, 0, sizeof(act));
124         act.sa_handler = sig_show_status;
125         act.sa_flags = SA_RESTART;
126         sigaction(SIGUSR1, &act, NULL);
127
128         if (is_backend) {
129                 memset(&act, 0, sizeof(act));
130                 act.sa_handler = sig_int;
131                 act.sa_flags = SA_RESTART;
132                 sigaction(SIGPIPE, &act, NULL);
133         }
134 }
135
136 /*
137  * Check if we are above the minimum rate given.
138  */
139 static bool __check_min_rate(struct thread_data *td, struct timeval *now,
140                              enum fio_ddir ddir)
141 {
142         unsigned long long bytes = 0;
143         unsigned long iops = 0;
144         unsigned long spent;
145         unsigned long rate;
146         unsigned int ratemin = 0;
147         unsigned int rate_iops = 0;
148         unsigned int rate_iops_min = 0;
149
150         assert(ddir_rw(ddir));
151
152         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153                 return false;
154
155         /*
156          * allow a 2 second settle period in the beginning
157          */
158         if (mtime_since(&td->start, now) < 2000)
159                 return false;
160
161         iops += td->this_io_blocks[ddir];
162         bytes += td->this_io_bytes[ddir];
163         ratemin += td->o.ratemin[ddir];
164         rate_iops += td->o.rate_iops[ddir];
165         rate_iops_min += td->o.rate_iops_min[ddir];
166
167         /*
168          * if rate blocks is set, sample is running
169          */
170         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171                 spent = mtime_since(&td->lastrate[ddir], now);
172                 if (spent < td->o.ratecycle)
173                         return false;
174
175                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176                         /*
177                          * check bandwidth specified rate
178                          */
179                         if (bytes < td->rate_bytes[ddir]) {
180                                 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181                                         td->o.name, ratemin, bytes);
182                                 return true;
183                         } else {
184                                 if (spent)
185                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186                                 else
187                                         rate = 0;
188
189                                 if (rate < ratemin ||
190                                     bytes < td->rate_bytes[ddir]) {
191                                         log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192                                                 td->o.name, ratemin, rate);
193                                         return true;
194                                 }
195                         }
196                 } else {
197                         /*
198                          * checks iops specified rate
199                          */
200                         if (iops < rate_iops) {
201                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202                                                 td->o.name, rate_iops, iops);
203                                 return true;
204                         } else {
205                                 if (spent)
206                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207                                 else
208                                         rate = 0;
209
210                                 if (rate < rate_iops_min ||
211                                     iops < td->rate_blocks[ddir]) {
212                                         log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213                                                 td->o.name, rate_iops_min, rate);
214                                         return true;
215                                 }
216                         }
217                 }
218         }
219
220         td->rate_bytes[ddir] = bytes;
221         td->rate_blocks[ddir] = iops;
222         memcpy(&td->lastrate[ddir], now, sizeof(*now));
223         return false;
224 }
225
226 static bool check_min_rate(struct thread_data *td, struct timeval *now)
227 {
228         bool ret = false;
229
230         if (td->bytes_done[DDIR_READ])
231                 ret |= __check_min_rate(td, now, DDIR_READ);
232         if (td->bytes_done[DDIR_WRITE])
233                 ret |= __check_min_rate(td, now, DDIR_WRITE);
234         if (td->bytes_done[DDIR_TRIM])
235                 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237         return ret;
238 }
239
240 /*
241  * When job exits, we can cancel the in-flight IO if we are using async
242  * io. Attempt to do so.
243  */
244 static void cleanup_pending_aio(struct thread_data *td)
245 {
246         int r;
247
248         /*
249          * get immediately available events, if any
250          */
251         r = io_u_queued_complete(td, 0);
252         if (r < 0)
253                 return;
254
255         /*
256          * now cancel remaining active events
257          */
258         if (td->io_ops->cancel) {
259                 struct io_u *io_u;
260                 int i;
261
262                 io_u_qiter(&td->io_u_all, io_u, i) {
263                         if (io_u->flags & IO_U_F_FLIGHT) {
264                                 r = td->io_ops->cancel(td, io_u);
265                                 if (!r)
266                                         put_io_u(td, io_u);
267                         }
268                 }
269         }
270
271         if (td->cur_depth)
272                 r = io_u_queued_complete(td, td->cur_depth);
273 }
274
275 /*
276  * Helper to handle the final sync of a file. Works just like the normal
277  * io path, just does everything sync.
278  */
279 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280 {
281         struct io_u *io_u = __get_io_u(td);
282         int ret;
283
284         if (!io_u)
285                 return true;
286
287         io_u->ddir = DDIR_SYNC;
288         io_u->file = f;
289
290         if (td_io_prep(td, io_u)) {
291                 put_io_u(td, io_u);
292                 return true;
293         }
294
295 requeue:
296         ret = td_io_queue(td, io_u);
297         if (ret < 0) {
298                 td_verror(td, io_u->error, "td_io_queue");
299                 put_io_u(td, io_u);
300                 return true;
301         } else if (ret == FIO_Q_QUEUED) {
302                 if (td_io_commit(td))
303                         return true;
304                 if (io_u_queued_complete(td, 1) < 0)
305                         return true;
306         } else if (ret == FIO_Q_COMPLETED) {
307                 if (io_u->error) {
308                         td_verror(td, io_u->error, "td_io_queue");
309                         return true;
310                 }
311
312                 if (io_u_sync_complete(td, io_u) < 0)
313                         return true;
314         } else if (ret == FIO_Q_BUSY) {
315                 if (td_io_commit(td))
316                         return true;
317                 goto requeue;
318         }
319
320         return false;
321 }
322
323 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324 {
325         int ret;
326
327         if (fio_file_open(f))
328                 return fio_io_sync(td, f);
329
330         if (td_io_open_file(td, f))
331                 return 1;
332
333         ret = fio_io_sync(td, f);
334         td_io_close_file(td, f);
335         return ret;
336 }
337
338 static inline void __update_tv_cache(struct thread_data *td)
339 {
340         fio_gettime(&td->tv_cache, NULL);
341 }
342
343 static inline void update_tv_cache(struct thread_data *td)
344 {
345         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
346                 __update_tv_cache(td);
347 }
348
349 static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
350 {
351         if (in_ramp_time(td))
352                 return false;
353         if (!td->o.timeout)
354                 return false;
355         if (utime_since(&td->epoch, t) >= td->o.timeout)
356                 return true;
357
358         return false;
359 }
360
361 /*
362  * We need to update the runtime consistently in ms, but keep a running
363  * tally of the current elapsed time in microseconds for sub millisecond
364  * updates.
365  */
366 static inline void update_runtime(struct thread_data *td,
367                                   unsigned long long *elapsed_us,
368                                   const enum fio_ddir ddir)
369 {
370         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371                 return;
372
373         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374         elapsed_us[ddir] += utime_since_now(&td->start);
375         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376 }
377
378 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379                                 int *retptr)
380 {
381         int ret = *retptr;
382
383         if (ret < 0 || td->error) {
384                 int err = td->error;
385                 enum error_type_bit eb;
386
387                 if (ret < 0)
388                         err = -ret;
389
390                 eb = td_error_type(ddir, err);
391                 if (!(td->o.continue_on_error & (1 << eb)))
392                         return true;
393
394                 if (td_non_fatal_error(td, eb, err)) {
395                         /*
396                          * Continue with the I/Os in case of
397                          * a non fatal error.
398                          */
399                         update_error_count(td, err);
400                         td_clear_error(td);
401                         *retptr = 0;
402                         return false;
403                 } else if (td->o.fill_device && err == ENOSPC) {
404                         /*
405                          * We expect to hit this error if
406                          * fill_device option is set.
407                          */
408                         td_clear_error(td);
409                         fio_mark_td_terminate(td);
410                         return true;
411                 } else {
412                         /*
413                          * Stop the I/O in case of a fatal
414                          * error.
415                          */
416                         update_error_count(td, err);
417                         return true;
418                 }
419         }
420
421         return false;
422 }
423
424 static void check_update_rusage(struct thread_data *td)
425 {
426         if (td->update_rusage) {
427                 td->update_rusage = 0;
428                 update_rusage_stat(td);
429                 fio_mutex_up(td->rusage_sem);
430         }
431 }
432
433 static int wait_for_completions(struct thread_data *td, struct timeval *time)
434 {
435         const int full = queue_full(td);
436         int min_evts = 0;
437         int ret;
438
439         if (td->flags & TD_F_REGROW_LOGS)
440                 return io_u_quiesce(td);
441
442         /*
443          * if the queue is full, we MUST reap at least 1 event
444          */
445         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447                 min_evts = 1;
448
449         if (time && (__should_check_rate(td, DDIR_READ) ||
450             __should_check_rate(td, DDIR_WRITE) ||
451             __should_check_rate(td, DDIR_TRIM)))
452                 fio_gettime(time, NULL);
453
454         do {
455                 ret = io_u_queued_complete(td, min_evts);
456                 if (ret < 0)
457                         break;
458         } while (full && (td->cur_depth > td->o.iodepth_low));
459
460         return ret;
461 }
462
463 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465                    struct timeval *comp_time)
466 {
467         int ret2;
468
469         switch (*ret) {
470         case FIO_Q_COMPLETED:
471                 if (io_u->error) {
472                         *ret = -io_u->error;
473                         clear_io_u(td, io_u);
474                 } else if (io_u->resid) {
475                         int bytes = io_u->xfer_buflen - io_u->resid;
476                         struct fio_file *f = io_u->file;
477
478                         if (bytes_issued)
479                                 *bytes_issued += bytes;
480
481                         if (!from_verify)
482                                 trim_io_piece(td, io_u);
483
484                         /*
485                          * zero read, fail
486                          */
487                         if (!bytes) {
488                                 if (!from_verify)
489                                         unlog_io_piece(td, io_u);
490                                 td_verror(td, EIO, "full resid");
491                                 put_io_u(td, io_u);
492                                 break;
493                         }
494
495                         io_u->xfer_buflen = io_u->resid;
496                         io_u->xfer_buf += bytes;
497                         io_u->offset += bytes;
498
499                         if (ddir_rw(io_u->ddir))
500                                 td->ts.short_io_u[io_u->ddir]++;
501
502                         f = io_u->file;
503                         if (io_u->offset == f->real_file_size)
504                                 goto sync_done;
505
506                         requeue_io_u(td, &io_u);
507                 } else {
508 sync_done:
509                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
510                             __should_check_rate(td, DDIR_WRITE) ||
511                             __should_check_rate(td, DDIR_TRIM)))
512                                 fio_gettime(comp_time, NULL);
513
514                         *ret = io_u_sync_complete(td, io_u);
515                         if (*ret < 0)
516                                 break;
517                 }
518
519                 if (td->flags & TD_F_REGROW_LOGS)
520                         regrow_logs(td);
521
522                 /*
523                  * when doing I/O (not when verifying),
524                  * check for any errors that are to be ignored
525                  */
526                 if (!from_verify)
527                         break;
528
529                 return 0;
530         case FIO_Q_QUEUED:
531                 /*
532                  * if the engine doesn't have a commit hook,
533                  * the io_u is really queued. if it does have such
534                  * a hook, it has to call io_u_queued() itself.
535                  */
536                 if (td->io_ops->commit == NULL)
537                         io_u_queued(td, io_u);
538                 if (bytes_issued)
539                         *bytes_issued += io_u->xfer_buflen;
540                 break;
541         case FIO_Q_BUSY:
542                 if (!from_verify)
543                         unlog_io_piece(td, io_u);
544                 requeue_io_u(td, &io_u);
545                 ret2 = td_io_commit(td);
546                 if (ret2 < 0)
547                         *ret = ret2;
548                 break;
549         default:
550                 assert(*ret < 0);
551                 td_verror(td, -(*ret), "td_io_queue");
552                 break;
553         }
554
555         if (break_on_this_error(td, ddir, ret))
556                 return 1;
557
558         return 0;
559 }
560
561 static inline bool io_in_polling(struct thread_data *td)
562 {
563         return !td->o.iodepth_batch_complete_min &&
564                    !td->o.iodepth_batch_complete_max;
565 }
566 /*
567  * Unlinks files from thread data fio_file structure
568  */
569 static int unlink_all_files(struct thread_data *td)
570 {
571         struct fio_file *f;
572         unsigned int i;
573         int ret = 0;
574
575         for_each_file(td, f, i) {
576                 if (f->filetype != FIO_TYPE_FILE)
577                         continue;
578                 ret = td_io_unlink_file(td, f);
579                 if (ret)
580                         break;
581         }
582
583         if (ret)
584                 td_verror(td, ret, "unlink_all_files");
585
586         return ret;
587 }
588
589 /*
590  * The main verify engine. Runs over the writes we previously submitted,
591  * reads the blocks back in, and checks the crc/md5 of the data.
592  */
593 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
594 {
595         struct fio_file *f;
596         struct io_u *io_u;
597         int ret, min_events;
598         unsigned int i;
599
600         dprint(FD_VERIFY, "starting loop\n");
601
602         /*
603          * sync io first and invalidate cache, to make sure we really
604          * read from disk.
605          */
606         for_each_file(td, f, i) {
607                 if (!fio_file_open(f))
608                         continue;
609                 if (fio_io_sync(td, f))
610                         break;
611                 if (file_invalidate_cache(td, f))
612                         break;
613         }
614
615         check_update_rusage(td);
616
617         if (td->error)
618                 return;
619
620         /*
621          * verify_state needs to be reset before verification
622          * proceeds so that expected random seeds match actual
623          * random seeds in headers. The main loop will reset
624          * all random number generators if randrepeat is set.
625          */
626         if (!td->o.rand_repeatable)
627                 td_fill_verify_state_seed(td);
628
629         td_set_runstate(td, TD_VERIFYING);
630
631         io_u = NULL;
632         while (!td->terminate) {
633                 enum fio_ddir ddir;
634                 int full;
635
636                 update_tv_cache(td);
637                 check_update_rusage(td);
638
639                 if (runtime_exceeded(td, &td->tv_cache)) {
640                         __update_tv_cache(td);
641                         if (runtime_exceeded(td, &td->tv_cache)) {
642                                 fio_mark_td_terminate(td);
643                                 break;
644                         }
645                 }
646
647                 if (flow_threshold_exceeded(td))
648                         continue;
649
650                 if (!td->o.experimental_verify) {
651                         io_u = __get_io_u(td);
652                         if (!io_u)
653                                 break;
654
655                         if (get_next_verify(td, io_u)) {
656                                 put_io_u(td, io_u);
657                                 break;
658                         }
659
660                         if (td_io_prep(td, io_u)) {
661                                 put_io_u(td, io_u);
662                                 break;
663                         }
664                 } else {
665                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
666                                 break;
667
668                         while ((io_u = get_io_u(td)) != NULL) {
669                                 if (IS_ERR_OR_NULL(io_u)) {
670                                         io_u = NULL;
671                                         ret = FIO_Q_BUSY;
672                                         goto reap;
673                                 }
674
675                                 /*
676                                  * We are only interested in the places where
677                                  * we wrote or trimmed IOs. Turn those into
678                                  * reads for verification purposes.
679                                  */
680                                 if (io_u->ddir == DDIR_READ) {
681                                         /*
682                                          * Pretend we issued it for rwmix
683                                          * accounting
684                                          */
685                                         td->io_issues[DDIR_READ]++;
686                                         put_io_u(td, io_u);
687                                         continue;
688                                 } else if (io_u->ddir == DDIR_TRIM) {
689                                         io_u->ddir = DDIR_READ;
690                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
691                                         break;
692                                 } else if (io_u->ddir == DDIR_WRITE) {
693                                         io_u->ddir = DDIR_READ;
694                                         break;
695                                 } else {
696                                         put_io_u(td, io_u);
697                                         continue;
698                                 }
699                         }
700
701                         if (!io_u)
702                                 break;
703                 }
704
705                 if (verify_state_should_stop(td, io_u)) {
706                         put_io_u(td, io_u);
707                         break;
708                 }
709
710                 if (td->o.verify_async)
711                         io_u->end_io = verify_io_u_async;
712                 else
713                         io_u->end_io = verify_io_u;
714
715                 ddir = io_u->ddir;
716                 if (!td->o.disable_slat)
717                         fio_gettime(&io_u->start_time, NULL);
718
719                 ret = td_io_queue(td, io_u);
720
721                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
722                         break;
723
724                 /*
725                  * if we can queue more, do so. but check if there are
726                  * completed io_u's first. Note that we can get BUSY even
727                  * without IO queued, if the system is resource starved.
728                  */
729 reap:
730                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
731                 if (full || io_in_polling(td))
732                         ret = wait_for_completions(td, NULL);
733
734                 if (ret < 0)
735                         break;
736         }
737
738         check_update_rusage(td);
739
740         if (!td->error) {
741                 min_events = td->cur_depth;
742
743                 if (min_events)
744                         ret = io_u_queued_complete(td, min_events);
745         } else
746                 cleanup_pending_aio(td);
747
748         td_set_runstate(td, TD_RUNNING);
749
750         dprint(FD_VERIFY, "exiting loop\n");
751 }
752
753 static bool exceeds_number_ios(struct thread_data *td)
754 {
755         unsigned long long number_ios;
756
757         if (!td->o.number_ios)
758                 return false;
759
760         number_ios = ddir_rw_sum(td->io_blocks);
761         number_ios += td->io_u_queued + td->io_u_in_flight;
762
763         return number_ios >= (td->o.number_ios * td->loops);
764 }
765
766 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
767 {
768         unsigned long long bytes, limit;
769
770         if (td_rw(td))
771                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
772         else if (td_write(td))
773                 bytes = this_bytes[DDIR_WRITE];
774         else if (td_read(td))
775                 bytes = this_bytes[DDIR_READ];
776         else
777                 bytes = this_bytes[DDIR_TRIM];
778
779         if (td->o.io_limit)
780                 limit = td->o.io_limit;
781         else
782                 limit = td->o.size;
783
784         limit *= td->loops;
785         return bytes >= limit || exceeds_number_ios(td);
786 }
787
788 static bool io_issue_bytes_exceeded(struct thread_data *td)
789 {
790         return io_bytes_exceeded(td, td->io_issue_bytes);
791 }
792
793 static bool io_complete_bytes_exceeded(struct thread_data *td)
794 {
795         return io_bytes_exceeded(td, td->this_io_bytes);
796 }
797
798 /*
799  * used to calculate the next io time for rate control
800  *
801  */
802 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
803 {
804         uint64_t secs, remainder, bps, bytes, iops;
805
806         assert(!(td->flags & TD_F_CHILD));
807         bytes = td->rate_io_issue_bytes[ddir];
808         bps = td->rate_bps[ddir];
809
810         if (td->o.rate_process == RATE_PROCESS_POISSON) {
811                 uint64_t val;
812                 iops = bps / td->o.bs[ddir];
813                 val = (int64_t) (1000000 / iops) *
814                                 -logf(__rand_0_1(&td->poisson_state));
815                 if (val) {
816                         dprint(FD_RATE, "poisson rate iops=%llu\n",
817                                         (unsigned long long) 1000000 / val);
818                 }
819                 td->last_usec += val;
820                 return td->last_usec;
821         } else if (bps) {
822                 secs = bytes / bps;
823                 remainder = bytes % bps;
824                 return remainder * 1000000 / bps + secs * 1000000;
825         }
826
827         return 0;
828 }
829
830 /*
831  * Main IO worker function. It retrieves io_u's to process and queues
832  * and reaps them, checking for rate and errors along the way.
833  *
834  * Returns number of bytes written and trimmed.
835  */
836 static void do_io(struct thread_data *td, uint64_t *bytes_done)
837 {
838         unsigned int i;
839         int ret = 0;
840         uint64_t total_bytes, bytes_issued = 0;
841
842         for (i = 0; i < DDIR_RWDIR_CNT; i++)
843                 bytes_done[i] = td->bytes_done[i];
844
845         if (in_ramp_time(td))
846                 td_set_runstate(td, TD_RAMP);
847         else
848                 td_set_runstate(td, TD_RUNNING);
849
850         lat_target_init(td);
851
852         total_bytes = td->o.size;
853         /*
854         * Allow random overwrite workloads to write up to io_limit
855         * before starting verification phase as 'size' doesn't apply.
856         */
857         if (td_write(td) && td_random(td) && td->o.norandommap)
858                 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
859         /*
860          * If verify_backlog is enabled, we'll run the verify in this
861          * handler as well. For that case, we may need up to twice the
862          * amount of bytes.
863          */
864         if (td->o.verify != VERIFY_NONE &&
865            (td_write(td) && td->o.verify_backlog))
866                 total_bytes += td->o.size;
867
868         /* In trimwrite mode, each byte is trimmed and then written, so
869          * allow total_bytes to be twice as big */
870         if (td_trimwrite(td))
871                 total_bytes += td->total_io_size;
872
873         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
874                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
875                 td->o.time_based) {
876                 struct timeval comp_time;
877                 struct io_u *io_u;
878                 int full;
879                 enum fio_ddir ddir;
880
881                 check_update_rusage(td);
882
883                 if (td->terminate || td->done)
884                         break;
885
886                 update_tv_cache(td);
887
888                 if (runtime_exceeded(td, &td->tv_cache)) {
889                         __update_tv_cache(td);
890                         if (runtime_exceeded(td, &td->tv_cache)) {
891                                 fio_mark_td_terminate(td);
892                                 break;
893                         }
894                 }
895
896                 if (flow_threshold_exceeded(td))
897                         continue;
898
899                 /*
900                  * Break if we exceeded the bytes. The exception is time
901                  * based runs, but we still need to break out of the loop
902                  * for those to run verification, if enabled.
903                  */
904                 if (bytes_issued >= total_bytes &&
905                     (!td->o.time_based ||
906                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
907                         break;
908
909                 io_u = get_io_u(td);
910                 if (IS_ERR_OR_NULL(io_u)) {
911                         int err = PTR_ERR(io_u);
912
913                         io_u = NULL;
914                         if (err == -EBUSY) {
915                                 ret = FIO_Q_BUSY;
916                                 goto reap;
917                         }
918                         if (td->o.latency_target)
919                                 goto reap;
920                         break;
921                 }
922
923                 ddir = io_u->ddir;
924
925                 /*
926                  * Add verification end_io handler if:
927                  *      - Asked to verify (!td_rw(td))
928                  *      - Or the io_u is from our verify list (mixed write/ver)
929                  */
930                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
931                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
932
933                         if (!td->o.verify_pattern_bytes) {
934                                 io_u->rand_seed = __rand(&td->verify_state);
935                                 if (sizeof(int) != sizeof(long *))
936                                         io_u->rand_seed *= __rand(&td->verify_state);
937                         }
938
939                         if (verify_state_should_stop(td, io_u)) {
940                                 put_io_u(td, io_u);
941                                 break;
942                         }
943
944                         if (td->o.verify_async)
945                                 io_u->end_io = verify_io_u_async;
946                         else
947                                 io_u->end_io = verify_io_u;
948                         td_set_runstate(td, TD_VERIFYING);
949                 } else if (in_ramp_time(td))
950                         td_set_runstate(td, TD_RAMP);
951                 else
952                         td_set_runstate(td, TD_RUNNING);
953
954                 /*
955                  * Always log IO before it's issued, so we know the specific
956                  * order of it. The logged unit will track when the IO has
957                  * completed.
958                  */
959                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
960                     td->o.do_verify &&
961                     td->o.verify != VERIFY_NONE &&
962                     !td->o.experimental_verify)
963                         log_io_piece(td, io_u);
964
965                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
966                         const unsigned long blen = io_u->xfer_buflen;
967                         const enum fio_ddir ddir = acct_ddir(io_u);
968
969                         if (td->error)
970                                 break;
971
972                         workqueue_enqueue(&td->io_wq, &io_u->work);
973                         ret = FIO_Q_QUEUED;
974
975                         if (ddir_rw(ddir)) {
976                                 td->io_issues[ddir]++;
977                                 td->io_issue_bytes[ddir] += blen;
978                                 td->rate_io_issue_bytes[ddir] += blen;
979                         }
980
981                         if (should_check_rate(td))
982                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
983
984                 } else {
985                         ret = td_io_queue(td, io_u);
986
987                         if (should_check_rate(td))
988                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
989
990                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
991                                 break;
992
993                         /*
994                          * See if we need to complete some commands. Note that
995                          * we can get BUSY even without IO queued, if the
996                          * system is resource starved.
997                          */
998 reap:
999                         full = queue_full(td) ||
1000                                 (ret == FIO_Q_BUSY && td->cur_depth);
1001                         if (full || io_in_polling(td))
1002                                 ret = wait_for_completions(td, &comp_time);
1003                 }
1004                 if (ret < 0)
1005                         break;
1006                 if (!ddir_rw_sum(td->bytes_done) &&
1007                     !td_ioengine_flagged(td, FIO_NOIO))
1008                         continue;
1009
1010                 if (!in_ramp_time(td) && should_check_rate(td)) {
1011                         if (check_min_rate(td, &comp_time)) {
1012                                 if (exitall_on_terminate || td->o.exitall_error)
1013                                         fio_terminate_threads(td->groupid);
1014                                 td_verror(td, EIO, "check_min_rate");
1015                                 break;
1016                         }
1017                 }
1018                 if (!in_ramp_time(td) && td->o.latency_target)
1019                         lat_target_check(td);
1020
1021                 if (td->o.thinktime) {
1022                         unsigned long long b;
1023
1024                         b = ddir_rw_sum(td->io_blocks);
1025                         if (!(b % td->o.thinktime_blocks)) {
1026                                 int left;
1027
1028                                 io_u_quiesce(td);
1029
1030                                 if (td->o.thinktime_spin)
1031                                         usec_spin(td->o.thinktime_spin);
1032
1033                                 left = td->o.thinktime - td->o.thinktime_spin;
1034                                 if (left)
1035                                         usec_sleep(td, left);
1036                         }
1037                 }
1038         }
1039
1040         check_update_rusage(td);
1041
1042         if (td->trim_entries)
1043                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1044
1045         if (td->o.fill_device && td->error == ENOSPC) {
1046                 td->error = 0;
1047                 fio_mark_td_terminate(td);
1048         }
1049         if (!td->error) {
1050                 struct fio_file *f;
1051
1052                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1053                         workqueue_flush(&td->io_wq);
1054                         i = 0;
1055                 } else
1056                         i = td->cur_depth;
1057
1058                 if (i) {
1059                         ret = io_u_queued_complete(td, i);
1060                         if (td->o.fill_device && td->error == ENOSPC)
1061                                 td->error = 0;
1062                 }
1063
1064                 if (should_fsync(td) && td->o.end_fsync) {
1065                         td_set_runstate(td, TD_FSYNCING);
1066
1067                         for_each_file(td, f, i) {
1068                                 if (!fio_file_fsync(td, f))
1069                                         continue;
1070
1071                                 log_err("fio: end_fsync failed for file %s\n",
1072                                                                 f->file_name);
1073                         }
1074                 }
1075         } else
1076                 cleanup_pending_aio(td);
1077
1078         /*
1079          * stop job if we failed doing any IO
1080          */
1081         if (!ddir_rw_sum(td->this_io_bytes))
1082                 td->done = 1;
1083
1084         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1085                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1086 }
1087
1088 static void free_file_completion_logging(struct thread_data *td)
1089 {
1090         struct fio_file *f;
1091         unsigned int i;
1092
1093         for_each_file(td, f, i) {
1094                 if (!f->last_write_comp)
1095                         break;
1096                 sfree(f->last_write_comp);
1097         }
1098 }
1099
1100 static int init_file_completion_logging(struct thread_data *td,
1101                                         unsigned int depth)
1102 {
1103         struct fio_file *f;
1104         unsigned int i;
1105
1106         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1107                 return 0;
1108
1109         for_each_file(td, f, i) {
1110                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1111                 if (!f->last_write_comp)
1112                         goto cleanup;
1113         }
1114
1115         return 0;
1116
1117 cleanup:
1118         free_file_completion_logging(td);
1119         log_err("fio: failed to alloc write comp data\n");
1120         return 1;
1121 }
1122
1123 static void cleanup_io_u(struct thread_data *td)
1124 {
1125         struct io_u *io_u;
1126
1127         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1128
1129                 if (td->io_ops->io_u_free)
1130                         td->io_ops->io_u_free(td, io_u);
1131
1132                 fio_memfree(io_u, sizeof(*io_u));
1133         }
1134
1135         free_io_mem(td);
1136
1137         io_u_rexit(&td->io_u_requeues);
1138         io_u_qexit(&td->io_u_freelist);
1139         io_u_qexit(&td->io_u_all);
1140
1141         free_file_completion_logging(td);
1142 }
1143
1144 static int init_io_u(struct thread_data *td)
1145 {
1146         struct io_u *io_u;
1147         unsigned int max_bs, min_write;
1148         int cl_align, i, max_units;
1149         int data_xfer = 1, err;
1150         char *p;
1151
1152         max_units = td->o.iodepth;
1153         max_bs = td_max_bs(td);
1154         min_write = td->o.min_bs[DDIR_WRITE];
1155         td->orig_buffer_size = (unsigned long long) max_bs
1156                                         * (unsigned long long) max_units;
1157
1158         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1159                 data_xfer = 0;
1160
1161         err = 0;
1162         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1163         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1164         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1165
1166         if (err) {
1167                 log_err("fio: failed setting up IO queues\n");
1168                 return 1;
1169         }
1170
1171         /*
1172          * if we may later need to do address alignment, then add any
1173          * possible adjustment here so that we don't cause a buffer
1174          * overflow later. this adjustment may be too much if we get
1175          * lucky and the allocator gives us an aligned address.
1176          */
1177         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1178             td_ioengine_flagged(td, FIO_RAWIO))
1179                 td->orig_buffer_size += page_mask + td->o.mem_align;
1180
1181         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1182                 unsigned long bs;
1183
1184                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1185                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1186         }
1187
1188         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1189                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1190                 return 1;
1191         }
1192
1193         if (data_xfer && allocate_io_mem(td))
1194                 return 1;
1195
1196         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1197             td_ioengine_flagged(td, FIO_RAWIO))
1198                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1199         else
1200                 p = td->orig_buffer;
1201
1202         cl_align = os_cache_line_size();
1203
1204         for (i = 0; i < max_units; i++) {
1205                 void *ptr;
1206
1207                 if (td->terminate)
1208                         return 1;
1209
1210                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1211                 if (!ptr) {
1212                         log_err("fio: unable to allocate aligned memory\n");
1213                         break;
1214                 }
1215
1216                 io_u = ptr;
1217                 memset(io_u, 0, sizeof(*io_u));
1218                 INIT_FLIST_HEAD(&io_u->verify_list);
1219                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1220
1221                 if (data_xfer) {
1222                         io_u->buf = p;
1223                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1224
1225                         if (td_write(td))
1226                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1227                         if (td_write(td) && td->o.verify_pattern_bytes) {
1228                                 /*
1229                                  * Fill the buffer with the pattern if we are
1230                                  * going to be doing writes.
1231                                  */
1232                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1233                         }
1234                 }
1235
1236                 io_u->index = i;
1237                 io_u->flags = IO_U_F_FREE;
1238                 io_u_qpush(&td->io_u_freelist, io_u);
1239
1240                 /*
1241                  * io_u never leaves this stack, used for iteration of all
1242                  * io_u buffers.
1243                  */
1244                 io_u_qpush(&td->io_u_all, io_u);
1245
1246                 if (td->io_ops->io_u_init) {
1247                         int ret = td->io_ops->io_u_init(td, io_u);
1248
1249                         if (ret) {
1250                                 log_err("fio: failed to init engine data: %d\n", ret);
1251                                 return 1;
1252                         }
1253                 }
1254
1255                 p += max_bs;
1256         }
1257
1258         if (init_file_completion_logging(td, max_units))
1259                 return 1;
1260
1261         return 0;
1262 }
1263
1264 static int switch_ioscheduler(struct thread_data *td)
1265 {
1266 #ifdef FIO_HAVE_IOSCHED_SWITCH
1267         char tmp[256], tmp2[128];
1268         FILE *f;
1269         int ret;
1270
1271         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1272                 return 0;
1273
1274         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1275
1276         f = fopen(tmp, "r+");
1277         if (!f) {
1278                 if (errno == ENOENT) {
1279                         log_err("fio: os or kernel doesn't support IO scheduler"
1280                                 " switching\n");
1281                         return 0;
1282                 }
1283                 td_verror(td, errno, "fopen iosched");
1284                 return 1;
1285         }
1286
1287         /*
1288          * Set io scheduler.
1289          */
1290         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1291         if (ferror(f) || ret != 1) {
1292                 td_verror(td, errno, "fwrite");
1293                 fclose(f);
1294                 return 1;
1295         }
1296
1297         rewind(f);
1298
1299         /*
1300          * Read back and check that the selected scheduler is now the default.
1301          */
1302         memset(tmp, 0, sizeof(tmp));
1303         ret = fread(tmp, sizeof(tmp), 1, f);
1304         if (ferror(f) || ret < 0) {
1305                 td_verror(td, errno, "fread");
1306                 fclose(f);
1307                 return 1;
1308         }
1309         /*
1310          * either a list of io schedulers or "none\n" is expected.
1311          */
1312         tmp[strlen(tmp) - 1] = '\0';
1313
1314         /*
1315          * Write to "none" entry doesn't fail, so check the result here.
1316          */
1317         if (!strcmp(tmp, "none")) {
1318                 log_err("fio: io scheduler is not tunable\n");
1319                 fclose(f);
1320                 return 0;
1321         }
1322
1323         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1324         if (!strstr(tmp, tmp2)) {
1325                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1326                 td_verror(td, EINVAL, "iosched_switch");
1327                 fclose(f);
1328                 return 1;
1329         }
1330
1331         fclose(f);
1332         return 0;
1333 #else
1334         return 0;
1335 #endif
1336 }
1337
1338 static bool keep_running(struct thread_data *td)
1339 {
1340         unsigned long long limit;
1341
1342         if (td->done)
1343                 return false;
1344         if (td->o.time_based)
1345                 return true;
1346         if (td->o.loops) {
1347                 td->o.loops--;
1348                 return true;
1349         }
1350         if (exceeds_number_ios(td))
1351                 return false;
1352
1353         if (td->o.io_limit)
1354                 limit = td->o.io_limit;
1355         else
1356                 limit = td->o.size;
1357
1358         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1359                 uint64_t diff;
1360
1361                 /*
1362                  * If the difference is less than the maximum IO size, we
1363                  * are done.
1364                  */
1365                 diff = limit - ddir_rw_sum(td->io_bytes);
1366                 if (diff < td_max_bs(td))
1367                         return false;
1368
1369                 if (fio_files_done(td) && !td->o.io_limit)
1370                         return false;
1371
1372                 return true;
1373         }
1374
1375         return false;
1376 }
1377
1378 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1379 {
1380         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1381         int ret;
1382         char *str;
1383
1384         str = malloc(newlen);
1385         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1386
1387         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1388         ret = system(str);
1389         if (ret == -1)
1390                 log_err("fio: exec of cmd <%s> failed\n", str);
1391
1392         free(str);
1393         return ret;
1394 }
1395
1396 /*
1397  * Dry run to compute correct state of numberio for verification.
1398  */
1399 static uint64_t do_dry_run(struct thread_data *td)
1400 {
1401         td_set_runstate(td, TD_RUNNING);
1402
1403         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1404                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1405                 struct io_u *io_u;
1406                 int ret;
1407
1408                 if (td->terminate || td->done)
1409                         break;
1410
1411                 io_u = get_io_u(td);
1412                 if (IS_ERR_OR_NULL(io_u))
1413                         break;
1414
1415                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1416                 io_u->error = 0;
1417                 io_u->resid = 0;
1418                 if (ddir_rw(acct_ddir(io_u)))
1419                         td->io_issues[acct_ddir(io_u)]++;
1420                 if (ddir_rw(io_u->ddir)) {
1421                         io_u_mark_depth(td, 1);
1422                         td->ts.total_io_u[io_u->ddir]++;
1423                 }
1424
1425                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1426                     td->o.do_verify &&
1427                     td->o.verify != VERIFY_NONE &&
1428                     !td->o.experimental_verify)
1429                         log_io_piece(td, io_u);
1430
1431                 ret = io_u_sync_complete(td, io_u);
1432                 (void) ret;
1433         }
1434
1435         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1436 }
1437
1438 struct fork_data {
1439         struct thread_data *td;
1440         struct sk_out *sk_out;
1441 };
1442
1443 /*
1444  * Entry point for the thread based jobs. The process based jobs end up
1445  * here as well, after a little setup.
1446  */
1447 static void *thread_main(void *data)
1448 {
1449         struct fork_data *fd = data;
1450         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1451         struct thread_data *td = fd->td;
1452         struct thread_options *o = &td->o;
1453         struct sk_out *sk_out = fd->sk_out;
1454         int deadlock_loop_cnt;
1455         int clear_state;
1456         int ret;
1457
1458         sk_out_assign(sk_out);
1459         free(fd);
1460
1461         if (!o->use_thread) {
1462                 setsid();
1463                 td->pid = getpid();
1464         } else
1465                 td->pid = gettid();
1466
1467         fio_local_clock_init(o->use_thread);
1468
1469         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1470
1471         if (is_backend)
1472                 fio_server_send_start(td);
1473
1474         INIT_FLIST_HEAD(&td->io_log_list);
1475         INIT_FLIST_HEAD(&td->io_hist_list);
1476         INIT_FLIST_HEAD(&td->verify_list);
1477         INIT_FLIST_HEAD(&td->trim_list);
1478         INIT_FLIST_HEAD(&td->next_rand_list);
1479         td->io_hist_tree = RB_ROOT;
1480
1481         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1482         if (ret) {
1483                 td_verror(td, ret, "mutex_cond_init_pshared");
1484                 goto err;
1485         }
1486         ret = cond_init_pshared(&td->verify_cond);
1487         if (ret) {
1488                 td_verror(td, ret, "mutex_cond_pshared");
1489                 goto err;
1490         }
1491
1492         td_set_runstate(td, TD_INITIALIZED);
1493         dprint(FD_MUTEX, "up startup_mutex\n");
1494         fio_mutex_up(startup_mutex);
1495         dprint(FD_MUTEX, "wait on td->mutex\n");
1496         fio_mutex_down(td->mutex);
1497         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1498
1499         /*
1500          * A new gid requires privilege, so we need to do this before setting
1501          * the uid.
1502          */
1503         if (o->gid != -1U && setgid(o->gid)) {
1504                 td_verror(td, errno, "setgid");
1505                 goto err;
1506         }
1507         if (o->uid != -1U && setuid(o->uid)) {
1508                 td_verror(td, errno, "setuid");
1509                 goto err;
1510         }
1511
1512         /*
1513          * Do this early, we don't want the compress threads to be limited
1514          * to the same CPUs as the IO workers. So do this before we set
1515          * any potential CPU affinity
1516          */
1517         if (iolog_compress_init(td, sk_out))
1518                 goto err;
1519
1520         /*
1521          * If we have a gettimeofday() thread, make sure we exclude that
1522          * thread from this job
1523          */
1524         if (o->gtod_cpu)
1525                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1526
1527         /*
1528          * Set affinity first, in case it has an impact on the memory
1529          * allocations.
1530          */
1531         if (fio_option_is_set(o, cpumask)) {
1532                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1533                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1534                         if (!ret) {
1535                                 log_err("fio: no CPUs set\n");
1536                                 log_err("fio: Try increasing number of available CPUs\n");
1537                                 td_verror(td, EINVAL, "cpus_split");
1538                                 goto err;
1539                         }
1540                 }
1541                 ret = fio_setaffinity(td->pid, o->cpumask);
1542                 if (ret == -1) {
1543                         td_verror(td, errno, "cpu_set_affinity");
1544                         goto err;
1545                 }
1546         }
1547
1548 #ifdef CONFIG_LIBNUMA
1549         /* numa node setup */
1550         if (fio_option_is_set(o, numa_cpunodes) ||
1551             fio_option_is_set(o, numa_memnodes)) {
1552                 struct bitmask *mask;
1553
1554                 if (numa_available() < 0) {
1555                         td_verror(td, errno, "Does not support NUMA API\n");
1556                         goto err;
1557                 }
1558
1559                 if (fio_option_is_set(o, numa_cpunodes)) {
1560                         mask = numa_parse_nodestring(o->numa_cpunodes);
1561                         ret = numa_run_on_node_mask(mask);
1562                         numa_free_nodemask(mask);
1563                         if (ret == -1) {
1564                                 td_verror(td, errno, \
1565                                         "numa_run_on_node_mask failed\n");
1566                                 goto err;
1567                         }
1568                 }
1569
1570                 if (fio_option_is_set(o, numa_memnodes)) {
1571                         mask = NULL;
1572                         if (o->numa_memnodes)
1573                                 mask = numa_parse_nodestring(o->numa_memnodes);
1574
1575                         switch (o->numa_mem_mode) {
1576                         case MPOL_INTERLEAVE:
1577                                 numa_set_interleave_mask(mask);
1578                                 break;
1579                         case MPOL_BIND:
1580                                 numa_set_membind(mask);
1581                                 break;
1582                         case MPOL_LOCAL:
1583                                 numa_set_localalloc();
1584                                 break;
1585                         case MPOL_PREFERRED:
1586                                 numa_set_preferred(o->numa_mem_prefer_node);
1587                                 break;
1588                         case MPOL_DEFAULT:
1589                         default:
1590                                 break;
1591                         }
1592
1593                         if (mask)
1594                                 numa_free_nodemask(mask);
1595
1596                 }
1597         }
1598 #endif
1599
1600         if (fio_pin_memory(td))
1601                 goto err;
1602
1603         /*
1604          * May alter parameters that init_io_u() will use, so we need to
1605          * do this first.
1606          */
1607         if (init_iolog(td))
1608                 goto err;
1609
1610         if (init_io_u(td))
1611                 goto err;
1612
1613         if (o->verify_async && verify_async_init(td))
1614                 goto err;
1615
1616         if (fio_option_is_set(o, ioprio) ||
1617             fio_option_is_set(o, ioprio_class)) {
1618                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1619                 if (ret == -1) {
1620                         td_verror(td, errno, "ioprio_set");
1621                         goto err;
1622                 }
1623         }
1624
1625         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1626                 goto err;
1627
1628         errno = 0;
1629         if (nice(o->nice) == -1 && errno != 0) {
1630                 td_verror(td, errno, "nice");
1631                 goto err;
1632         }
1633
1634         if (o->ioscheduler && switch_ioscheduler(td))
1635                 goto err;
1636
1637         if (!o->create_serialize && setup_files(td))
1638                 goto err;
1639
1640         if (td_io_init(td))
1641                 goto err;
1642
1643         if (init_random_map(td))
1644                 goto err;
1645
1646         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1647                 goto err;
1648
1649         if (o->pre_read) {
1650                 if (pre_read_files(td) < 0)
1651                         goto err;
1652         }
1653
1654         fio_verify_init(td);
1655
1656         if (rate_submit_init(td, sk_out))
1657                 goto err;
1658
1659         set_epoch_time(td, o->log_unix_epoch);
1660         fio_getrusage(&td->ru_start);
1661         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1662         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1663         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1664
1665         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1666                         o->ratemin[DDIR_TRIM]) {
1667                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1668                                         sizeof(td->bw_sample_time));
1669                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1670                                         sizeof(td->bw_sample_time));
1671                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1672                                         sizeof(td->bw_sample_time));
1673         }
1674
1675         clear_state = 0;
1676         while (keep_running(td)) {
1677                 uint64_t verify_bytes;
1678
1679                 fio_gettime(&td->start, NULL);
1680                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1681
1682                 if (clear_state) {
1683                         clear_io_state(td, 0);
1684
1685                         if (o->unlink_each_loop && unlink_all_files(td))
1686                                 break;
1687                 }
1688
1689                 prune_io_piece_log(td);
1690
1691                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1692                         verify_bytes = do_dry_run(td);
1693                 else {
1694                         uint64_t bytes_done[DDIR_RWDIR_CNT];
1695
1696                         do_io(td, bytes_done);
1697
1698                         if (!ddir_rw_sum(bytes_done)) {
1699                                 fio_mark_td_terminate(td);
1700                                 verify_bytes = 0;
1701                         } else {
1702                                 verify_bytes = bytes_done[DDIR_WRITE] +
1703                                                 bytes_done[DDIR_TRIM];
1704                         }
1705                 }
1706
1707                 /*
1708                  * If we took too long to shut down, the main thread could
1709                  * already consider us reaped/exited. If that happens, break
1710                  * out and clean up.
1711                  */
1712                 if (td->runstate >= TD_EXITED)
1713                         break;
1714
1715                 clear_state = 1;
1716
1717                 /*
1718                  * Make sure we've successfully updated the rusage stats
1719                  * before waiting on the stat mutex. Otherwise we could have
1720                  * the stat thread holding stat mutex and waiting for
1721                  * the rusage_sem, which would never get upped because
1722                  * this thread is waiting for the stat mutex.
1723                  */
1724                 deadlock_loop_cnt = 0;
1725                 do {
1726                         check_update_rusage(td);
1727                         if (!fio_mutex_down_trylock(stat_mutex))
1728                                 break;
1729                         usleep(1000);
1730                         if (deadlock_loop_cnt++ > 5000) {
1731                                 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1732                                 td->error = EDEADLK;
1733                                 goto err;
1734                         }
1735                 } while (1);
1736
1737                 if (td_read(td) && td->io_bytes[DDIR_READ])
1738                         update_runtime(td, elapsed_us, DDIR_READ);
1739                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1740                         update_runtime(td, elapsed_us, DDIR_WRITE);
1741                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1742                         update_runtime(td, elapsed_us, DDIR_TRIM);
1743                 fio_gettime(&td->start, NULL);
1744                 fio_mutex_up(stat_mutex);
1745
1746                 if (td->error || td->terminate)
1747                         break;
1748
1749                 if (!o->do_verify ||
1750                     o->verify == VERIFY_NONE ||
1751                     td_ioengine_flagged(td, FIO_UNIDIR))
1752                         continue;
1753
1754                 clear_io_state(td, 0);
1755
1756                 fio_gettime(&td->start, NULL);
1757
1758                 do_verify(td, verify_bytes);
1759
1760                 /*
1761                  * See comment further up for why this is done here.
1762                  */
1763                 check_update_rusage(td);
1764
1765                 fio_mutex_down(stat_mutex);
1766                 update_runtime(td, elapsed_us, DDIR_READ);
1767                 fio_gettime(&td->start, NULL);
1768                 fio_mutex_up(stat_mutex);
1769
1770                 if (td->error || td->terminate)
1771                         break;
1772         }
1773
1774         td_set_runstate(td, TD_FINISHING);
1775
1776         update_rusage_stat(td);
1777         td->ts.total_run_time = mtime_since_now(&td->epoch);
1778         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1779         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1780         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1781
1782         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1783             (td->o.verify != VERIFY_NONE && td_write(td)))
1784                 verify_save_state(td->thread_number);
1785
1786         fio_unpin_memory(td);
1787
1788         td_writeout_logs(td, true);
1789
1790         iolog_compress_exit(td);
1791         rate_submit_exit(td);
1792
1793         if (o->exec_postrun)
1794                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1795
1796         if (exitall_on_terminate || (o->exitall_error && td->error))
1797                 fio_terminate_threads(td->groupid);
1798
1799 err:
1800         if (td->error)
1801                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1802                                                         td->verror);
1803
1804         if (o->verify_async)
1805                 verify_async_exit(td);
1806
1807         close_and_free_files(td);
1808         cleanup_io_u(td);
1809         close_ioengine(td);
1810         cgroup_shutdown(td, &cgroup_mnt);
1811         verify_free_state(td);
1812
1813         if (td->zone_state_index) {
1814                 int i;
1815
1816                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1817                         free(td->zone_state_index[i]);
1818                 free(td->zone_state_index);
1819                 td->zone_state_index = NULL;
1820         }
1821
1822         if (fio_option_is_set(o, cpumask)) {
1823                 ret = fio_cpuset_exit(&o->cpumask);
1824                 if (ret)
1825                         td_verror(td, ret, "fio_cpuset_exit");
1826         }
1827
1828         /*
1829          * do this very late, it will log file closing as well
1830          */
1831         if (o->write_iolog_file)
1832                 write_iolog_close(td);
1833
1834         fio_mutex_remove(td->mutex);
1835         td->mutex = NULL;
1836
1837         td_set_runstate(td, TD_EXITED);
1838
1839         /*
1840          * Do this last after setting our runstate to exited, so we
1841          * know that the stat thread is signaled.
1842          */
1843         check_update_rusage(td);
1844
1845         sk_out_drop();
1846         return (void *) (uintptr_t) td->error;
1847 }
1848
1849 static void dump_td_info(struct thread_data *td)
1850 {
1851         log_err("fio: job '%s' (state=%d) hasn't exited in %lu seconds, it "
1852                 "appears to be stuck. Doing forceful exit of this job.\n",
1853                         td->o.name, td->runstate,
1854                         (unsigned long) time_since_now(&td->terminate_time));
1855 }
1856
1857 /*
1858  * Run over the job map and reap the threads that have exited, if any.
1859  */
1860 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1861                          uint64_t *m_rate)
1862 {
1863         struct thread_data *td;
1864         unsigned int cputhreads, realthreads, pending;
1865         int i, status, ret;
1866
1867         /*
1868          * reap exited threads (TD_EXITED -> TD_REAPED)
1869          */
1870         realthreads = pending = cputhreads = 0;
1871         for_each_td(td, i) {
1872                 int flags = 0;
1873
1874                 /*
1875                  * ->io_ops is NULL for a thread that has closed its
1876                  * io engine
1877                  */
1878                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1879                         cputhreads++;
1880                 else
1881                         realthreads++;
1882
1883                 if (!td->pid) {
1884                         pending++;
1885                         continue;
1886                 }
1887                 if (td->runstate == TD_REAPED)
1888                         continue;
1889                 if (td->o.use_thread) {
1890                         if (td->runstate == TD_EXITED) {
1891                                 td_set_runstate(td, TD_REAPED);
1892                                 goto reaped;
1893                         }
1894                         continue;
1895                 }
1896
1897                 flags = WNOHANG;
1898                 if (td->runstate == TD_EXITED)
1899                         flags = 0;
1900
1901                 /*
1902                  * check if someone quit or got killed in an unusual way
1903                  */
1904                 ret = waitpid(td->pid, &status, flags);
1905                 if (ret < 0) {
1906                         if (errno == ECHILD) {
1907                                 log_err("fio: pid=%d disappeared %d\n",
1908                                                 (int) td->pid, td->runstate);
1909                                 td->sig = ECHILD;
1910                                 td_set_runstate(td, TD_REAPED);
1911                                 goto reaped;
1912                         }
1913                         perror("waitpid");
1914                 } else if (ret == td->pid) {
1915                         if (WIFSIGNALED(status)) {
1916                                 int sig = WTERMSIG(status);
1917
1918                                 if (sig != SIGTERM && sig != SIGUSR2)
1919                                         log_err("fio: pid=%d, got signal=%d\n",
1920                                                         (int) td->pid, sig);
1921                                 td->sig = sig;
1922                                 td_set_runstate(td, TD_REAPED);
1923                                 goto reaped;
1924                         }
1925                         if (WIFEXITED(status)) {
1926                                 if (WEXITSTATUS(status) && !td->error)
1927                                         td->error = WEXITSTATUS(status);
1928
1929                                 td_set_runstate(td, TD_REAPED);
1930                                 goto reaped;
1931                         }
1932                 }
1933
1934                 /*
1935                  * If the job is stuck, do a forceful timeout of it and
1936                  * move on.
1937                  */
1938                 if (td->terminate &&
1939                     td->runstate < TD_FSYNCING &&
1940                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1941                         dump_td_info(td);
1942                         td_set_runstate(td, TD_REAPED);
1943                         goto reaped;
1944                 }
1945
1946                 /*
1947                  * thread is not dead, continue
1948                  */
1949                 pending++;
1950                 continue;
1951 reaped:
1952                 (*nr_running)--;
1953                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1954                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1955                 if (!td->pid)
1956                         pending--;
1957
1958                 if (td->error)
1959                         exit_value++;
1960
1961                 done_secs += mtime_since_now(&td->epoch) / 1000;
1962                 profile_td_exit(td);
1963         }
1964
1965         if (*nr_running == cputhreads && !pending && realthreads)
1966                 fio_terminate_threads(TERMINATE_ALL);
1967 }
1968
1969 static bool __check_trigger_file(void)
1970 {
1971         struct stat sb;
1972
1973         if (!trigger_file)
1974                 return false;
1975
1976         if (stat(trigger_file, &sb))
1977                 return false;
1978
1979         if (unlink(trigger_file) < 0)
1980                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1981                                                         strerror(errno));
1982
1983         return true;
1984 }
1985
1986 static bool trigger_timedout(void)
1987 {
1988         if (trigger_timeout)
1989                 return time_since_genesis() >= trigger_timeout;
1990
1991         return false;
1992 }
1993
1994 void exec_trigger(const char *cmd)
1995 {
1996         int ret;
1997
1998         if (!cmd)
1999                 return;
2000
2001         ret = system(cmd);
2002         if (ret == -1)
2003                 log_err("fio: failed executing %s trigger\n", cmd);
2004 }
2005
2006 void check_trigger_file(void)
2007 {
2008         if (__check_trigger_file() || trigger_timedout()) {
2009                 if (nr_clients)
2010                         fio_clients_send_trigger(trigger_remote_cmd);
2011                 else {
2012                         verify_save_state(IO_LIST_ALL);
2013                         fio_terminate_threads(TERMINATE_ALL);
2014                         exec_trigger(trigger_cmd);
2015                 }
2016         }
2017 }
2018
2019 static int fio_verify_load_state(struct thread_data *td)
2020 {
2021         int ret;
2022
2023         if (!td->o.verify_state)
2024                 return 0;
2025
2026         if (is_backend) {
2027                 void *data;
2028
2029                 ret = fio_server_get_verify_state(td->o.name,
2030                                         td->thread_number - 1, &data);
2031                 if (!ret)
2032                         verify_assign_state(td, data);
2033         } else
2034                 ret = verify_load_state(td, "local");
2035
2036         return ret;
2037 }
2038
2039 static void do_usleep(unsigned int usecs)
2040 {
2041         check_for_running_stats();
2042         check_trigger_file();
2043         usleep(usecs);
2044 }
2045
2046 static bool check_mount_writes(struct thread_data *td)
2047 {
2048         struct fio_file *f;
2049         unsigned int i;
2050
2051         if (!td_write(td) || td->o.allow_mounted_write)
2052                 return false;
2053
2054         for_each_file(td, f, i) {
2055                 if (f->filetype != FIO_TYPE_BLOCK)
2056                         continue;
2057                 if (device_is_mounted(f->file_name))
2058                         goto mounted;
2059         }
2060
2061         return false;
2062 mounted:
2063         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2064         return true;
2065 }
2066
2067 static bool waitee_running(struct thread_data *me)
2068 {
2069         const char *waitee = me->o.wait_for;
2070         const char *self = me->o.name;
2071         struct thread_data *td;
2072         int i;
2073
2074         if (!waitee)
2075                 return false;
2076
2077         for_each_td(td, i) {
2078                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2079                         continue;
2080
2081                 if (td->runstate < TD_EXITED) {
2082                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2083                                         self, td->o.name,
2084                                         runstate_to_name(td->runstate));
2085                         return true;
2086                 }
2087         }
2088
2089         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2090         return false;
2091 }
2092
2093 /*
2094  * Main function for kicking off and reaping jobs, as needed.
2095  */
2096 static void run_threads(struct sk_out *sk_out)
2097 {
2098         struct thread_data *td;
2099         unsigned int i, todo, nr_running, nr_started;
2100         uint64_t m_rate, t_rate;
2101         uint64_t spent;
2102
2103         if (fio_gtod_offload && fio_start_gtod_thread())
2104                 return;
2105
2106         fio_idle_prof_init();
2107
2108         set_sig_handlers();
2109
2110         nr_thread = nr_process = 0;
2111         for_each_td(td, i) {
2112                 if (check_mount_writes(td))
2113                         return;
2114                 if (td->o.use_thread)
2115                         nr_thread++;
2116                 else
2117                         nr_process++;
2118         }
2119
2120         if (output_format & FIO_OUTPUT_NORMAL) {
2121                 log_info("Starting ");
2122                 if (nr_thread)
2123                         log_info("%d thread%s", nr_thread,
2124                                                 nr_thread > 1 ? "s" : "");
2125                 if (nr_process) {
2126                         if (nr_thread)
2127                                 log_info(" and ");
2128                         log_info("%d process%s", nr_process,
2129                                                 nr_process > 1 ? "es" : "");
2130                 }
2131                 log_info("\n");
2132                 log_info_flush();
2133         }
2134
2135         todo = thread_number;
2136         nr_running = 0;
2137         nr_started = 0;
2138         m_rate = t_rate = 0;
2139
2140         for_each_td(td, i) {
2141                 print_status_init(td->thread_number - 1);
2142
2143                 if (!td->o.create_serialize)
2144                         continue;
2145
2146                 if (fio_verify_load_state(td))
2147                         goto reap;
2148
2149                 /*
2150                  * do file setup here so it happens sequentially,
2151                  * we don't want X number of threads getting their
2152                  * client data interspersed on disk
2153                  */
2154                 if (setup_files(td)) {
2155 reap:
2156                         exit_value++;
2157                         if (td->error)
2158                                 log_err("fio: pid=%d, err=%d/%s\n",
2159                                         (int) td->pid, td->error, td->verror);
2160                         td_set_runstate(td, TD_REAPED);
2161                         todo--;
2162                 } else {
2163                         struct fio_file *f;
2164                         unsigned int j;
2165
2166                         /*
2167                          * for sharing to work, each job must always open
2168                          * its own files. so close them, if we opened them
2169                          * for creation
2170                          */
2171                         for_each_file(td, f, j) {
2172                                 if (fio_file_open(f))
2173                                         td_io_close_file(td, f);
2174                         }
2175                 }
2176         }
2177
2178         /* start idle threads before io threads start to run */
2179         fio_idle_prof_start();
2180
2181         set_genesis_time();
2182
2183         while (todo) {
2184                 struct thread_data *map[REAL_MAX_JOBS];
2185                 struct timeval this_start;
2186                 int this_jobs = 0, left;
2187                 struct fork_data *fd;
2188
2189                 /*
2190                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2191                  */
2192                 for_each_td(td, i) {
2193                         if (td->runstate != TD_NOT_CREATED)
2194                                 continue;
2195
2196                         /*
2197                          * never got a chance to start, killed by other
2198                          * thread for some reason
2199                          */
2200                         if (td->terminate) {
2201                                 todo--;
2202                                 continue;
2203                         }
2204
2205                         if (td->o.start_delay) {
2206                                 spent = utime_since_genesis();
2207
2208                                 if (td->o.start_delay > spent)
2209                                         continue;
2210                         }
2211
2212                         if (td->o.stonewall && (nr_started || nr_running)) {
2213                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2214                                                         td->o.name);
2215                                 break;
2216                         }
2217
2218                         if (waitee_running(td)) {
2219                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2220                                                 td->o.name, td->o.wait_for);
2221                                 continue;
2222                         }
2223
2224                         init_disk_util(td);
2225
2226                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2227                         td->update_rusage = 0;
2228
2229                         /*
2230                          * Set state to created. Thread will transition
2231                          * to TD_INITIALIZED when it's done setting up.
2232                          */
2233                         td_set_runstate(td, TD_CREATED);
2234                         map[this_jobs++] = td;
2235                         nr_started++;
2236
2237                         fd = calloc(1, sizeof(*fd));
2238                         fd->td = td;
2239                         fd->sk_out = sk_out;
2240
2241                         if (td->o.use_thread) {
2242                                 int ret;
2243
2244                                 dprint(FD_PROCESS, "will pthread_create\n");
2245                                 ret = pthread_create(&td->thread, NULL,
2246                                                         thread_main, fd);
2247                                 if (ret) {
2248                                         log_err("pthread_create: %s\n",
2249                                                         strerror(ret));
2250                                         free(fd);
2251                                         nr_started--;
2252                                         break;
2253                                 }
2254                                 ret = pthread_detach(td->thread);
2255                                 if (ret)
2256                                         log_err("pthread_detach: %s",
2257                                                         strerror(ret));
2258                         } else {
2259                                 pid_t pid;
2260                                 dprint(FD_PROCESS, "will fork\n");
2261                                 pid = fork();
2262                                 if (!pid) {
2263                                         int ret;
2264
2265                                         ret = (int)(uintptr_t)thread_main(fd);
2266                                         _exit(ret);
2267                                 } else if (i == fio_debug_jobno)
2268                                         *fio_debug_jobp = pid;
2269                         }
2270                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2271                         if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2272                                 log_err("fio: job startup hung? exiting.\n");
2273                                 fio_terminate_threads(TERMINATE_ALL);
2274                                 fio_abort = 1;
2275                                 nr_started--;
2276                                 break;
2277                         }
2278                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2279                 }
2280
2281                 /*
2282                  * Wait for the started threads to transition to
2283                  * TD_INITIALIZED.
2284                  */
2285                 fio_gettime(&this_start, NULL);
2286                 left = this_jobs;
2287                 while (left && !fio_abort) {
2288                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2289                                 break;
2290
2291                         do_usleep(100000);
2292
2293                         for (i = 0; i < this_jobs; i++) {
2294                                 td = map[i];
2295                                 if (!td)
2296                                         continue;
2297                                 if (td->runstate == TD_INITIALIZED) {
2298                                         map[i] = NULL;
2299                                         left--;
2300                                 } else if (td->runstate >= TD_EXITED) {
2301                                         map[i] = NULL;
2302                                         left--;
2303                                         todo--;
2304                                         nr_running++; /* work-around... */
2305                                 }
2306                         }
2307                 }
2308
2309                 if (left) {
2310                         log_err("fio: %d job%s failed to start\n", left,
2311                                         left > 1 ? "s" : "");
2312                         for (i = 0; i < this_jobs; i++) {
2313                                 td = map[i];
2314                                 if (!td)
2315                                         continue;
2316                                 kill(td->pid, SIGTERM);
2317                         }
2318                         break;
2319                 }
2320
2321                 /*
2322                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2323                  */
2324                 for_each_td(td, i) {
2325                         if (td->runstate != TD_INITIALIZED)
2326                                 continue;
2327
2328                         if (in_ramp_time(td))
2329                                 td_set_runstate(td, TD_RAMP);
2330                         else
2331                                 td_set_runstate(td, TD_RUNNING);
2332                         nr_running++;
2333                         nr_started--;
2334                         m_rate += ddir_rw_sum(td->o.ratemin);
2335                         t_rate += ddir_rw_sum(td->o.rate);
2336                         todo--;
2337                         fio_mutex_up(td->mutex);
2338                 }
2339
2340                 reap_threads(&nr_running, &t_rate, &m_rate);
2341
2342                 if (todo)
2343                         do_usleep(100000);
2344         }
2345
2346         while (nr_running) {
2347                 reap_threads(&nr_running, &t_rate, &m_rate);
2348                 do_usleep(10000);
2349         }
2350
2351         fio_idle_prof_stop();
2352
2353         update_io_ticks();
2354 }
2355
2356 static void free_disk_util(void)
2357 {
2358         disk_util_prune_entries();
2359         helper_thread_destroy();
2360 }
2361
2362 int fio_backend(struct sk_out *sk_out)
2363 {
2364         struct thread_data *td;
2365         int i;
2366
2367         if (exec_profile) {
2368                 if (load_profile(exec_profile))
2369                         return 1;
2370                 free(exec_profile);
2371                 exec_profile = NULL;
2372         }
2373         if (!thread_number)
2374                 return 0;
2375
2376         if (write_bw_log) {
2377                 struct log_params p = {
2378                         .log_type = IO_LOG_TYPE_BW,
2379                 };
2380
2381                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2382                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2383                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2384         }
2385
2386         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2387         if (startup_mutex == NULL)
2388                 return 1;
2389
2390         set_genesis_time();
2391         stat_init();
2392         helper_thread_create(startup_mutex, sk_out);
2393
2394         cgroup_list = smalloc(sizeof(*cgroup_list));
2395         INIT_FLIST_HEAD(cgroup_list);
2396
2397         run_threads(sk_out);
2398
2399         helper_thread_exit();
2400
2401         if (!fio_abort) {
2402                 __show_run_stats();
2403                 if (write_bw_log) {
2404                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2405                                 struct io_log *log = agg_io_log[i];
2406
2407                                 flush_log(log, false);
2408                                 free_log(log);
2409                         }
2410                 }
2411         }
2412
2413         for_each_td(td, i) {
2414                 if (td->ss.dur) {
2415                         if (td->ss.iops_data != NULL) {
2416                                 free(td->ss.iops_data);
2417                                 free(td->ss.bw_data);
2418                         }
2419                 }
2420                 fio_options_free(td);
2421                 if (td->rusage_sem) {
2422                         fio_mutex_remove(td->rusage_sem);
2423                         td->rusage_sem = NULL;
2424                 }
2425         }
2426
2427         free_disk_util();
2428         cgroup_kill(cgroup_list);
2429         sfree(cgroup_list);
2430         sfree(cgroup_mnt);
2431
2432         fio_mutex_remove(startup_mutex);
2433         stat_exit();
2434         return exit_value;
2435 }