23734d595d0d60325e0d2df7aa12fa13750fcc54
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/shm.h>
38 #include <sys/mman.h>
39
40 #include "fio.h"
41 #include "hash.h"
42 #include "smalloc.h"
43 #include "verify.h"
44 #include "trim.h"
45 #include "diskutil.h"
46 #include "cgroup.h"
47 #include "profile.h"
48 #include "lib/rand.h"
49 #include "memalign.h"
50 #include "server.h"
51
52 static pthread_t disk_util_thread;
53 static struct fio_mutex *startup_mutex;
54 static struct fio_mutex *writeout_mutex;
55 static struct flist_head *cgroup_list;
56 static char *cgroup_mnt;
57 static int exit_value;
58 static volatile int fio_abort;
59
60 struct io_log *agg_io_log[2];
61
62 int groupid = 0;
63 unsigned int thread_number = 0;
64 unsigned int nr_process = 0;
65 unsigned int nr_thread = 0;
66 int shm_id = 0;
67 int temp_stall_ts;
68 unsigned long done_secs = 0;
69
70 #define PAGE_ALIGN(buf) \
71         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
72
73 #define JOB_START_TIMEOUT       (5 * 1000)
74
75 static void sig_int(int sig)
76 {
77         if (threads) {
78                 if (is_backend)
79                         fio_server_got_signal(sig);
80                 else {
81                         log_info("\nfio: terminating on signal %d\n", sig);
82                         fflush(stdout);
83                         exit_value = 128;
84                 }
85
86                 fio_terminate_threads(TERMINATE_ALL);
87         }
88 }
89
90 static void set_sig_handlers(void)
91 {
92         struct sigaction act;
93
94         memset(&act, 0, sizeof(act));
95         act.sa_handler = sig_int;
96         act.sa_flags = SA_RESTART;
97         sigaction(SIGINT, &act, NULL);
98
99         memset(&act, 0, sizeof(act));
100         act.sa_handler = sig_int;
101         act.sa_flags = SA_RESTART;
102         sigaction(SIGTERM, &act, NULL);
103
104         if (is_backend) {
105                 memset(&act, 0, sizeof(act));
106                 act.sa_handler = sig_int;
107                 act.sa_flags = SA_RESTART;
108                 sigaction(SIGPIPE, &act, NULL);
109         }
110 }
111
112 /*
113  * Check if we are above the minimum rate given.
114  */
115 static int __check_min_rate(struct thread_data *td, struct timeval *now,
116                             enum fio_ddir ddir)
117 {
118         unsigned long long bytes = 0;
119         unsigned long iops = 0;
120         unsigned long spent;
121         unsigned long rate;
122         unsigned int ratemin = 0;
123         unsigned int rate_iops = 0;
124         unsigned int rate_iops_min = 0;
125
126         assert(ddir_rw(ddir));
127
128         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
129                 return 0;
130
131         /*
132          * allow a 2 second settle period in the beginning
133          */
134         if (mtime_since(&td->start, now) < 2000)
135                 return 0;
136
137         iops += td->this_io_blocks[ddir];
138         bytes += td->this_io_bytes[ddir];
139         ratemin += td->o.ratemin[ddir];
140         rate_iops += td->o.rate_iops[ddir];
141         rate_iops_min += td->o.rate_iops_min[ddir];
142
143         /*
144          * if rate blocks is set, sample is running
145          */
146         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
147                 spent = mtime_since(&td->lastrate[ddir], now);
148                 if (spent < td->o.ratecycle)
149                         return 0;
150
151                 if (td->o.rate[ddir]) {
152                         /*
153                          * check bandwidth specified rate
154                          */
155                         if (bytes < td->rate_bytes[ddir]) {
156                                 log_err("%s: min rate %u not met\n", td->o.name,
157                                                                 ratemin);
158                                 return 1;
159                         } else {
160                                 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
161                                 if (rate < ratemin ||
162                                     bytes < td->rate_bytes[ddir]) {
163                                         log_err("%s: min rate %u not met, got"
164                                                 " %luKB/sec\n", td->o.name,
165                                                         ratemin, rate);
166                                         return 1;
167                                 }
168                         }
169                 } else {
170                         /*
171                          * checks iops specified rate
172                          */
173                         if (iops < rate_iops) {
174                                 log_err("%s: min iops rate %u not met\n",
175                                                 td->o.name, rate_iops);
176                                 return 1;
177                         } else {
178                                 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
179                                 if (rate < rate_iops_min ||
180                                     iops < td->rate_blocks[ddir]) {
181                                         log_err("%s: min iops rate %u not met,"
182                                                 " got %lu\n", td->o.name,
183                                                         rate_iops_min, rate);
184                                 }
185                         }
186                 }
187         }
188
189         td->rate_bytes[ddir] = bytes;
190         td->rate_blocks[ddir] = iops;
191         memcpy(&td->lastrate[ddir], now, sizeof(*now));
192         return 0;
193 }
194
195 static int check_min_rate(struct thread_data *td, struct timeval *now,
196                           unsigned long *bytes_done)
197 {
198         int ret = 0;
199
200         if (bytes_done[0])
201                 ret |= __check_min_rate(td, now, 0);
202         if (bytes_done[1])
203                 ret |= __check_min_rate(td, now, 1);
204
205         return ret;
206 }
207
208 /*
209  * When job exits, we can cancel the in-flight IO if we are using async
210  * io. Attempt to do so.
211  */
212 static void cleanup_pending_aio(struct thread_data *td)
213 {
214         struct flist_head *entry, *n;
215         struct io_u *io_u;
216         int r;
217
218         /*
219          * get immediately available events, if any
220          */
221         r = io_u_queued_complete(td, 0, NULL);
222         if (r < 0)
223                 return;
224
225         /*
226          * now cancel remaining active events
227          */
228         if (td->io_ops->cancel) {
229                 flist_for_each_safe(entry, n, &td->io_u_busylist) {
230                         io_u = flist_entry(entry, struct io_u, list);
231
232                         /*
233                          * if the io_u isn't in flight, then that generally
234                          * means someone leaked an io_u. complain but fix
235                          * it up, so we don't stall here.
236                          */
237                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
238                                 log_err("fio: non-busy IO on busy list\n");
239                                 put_io_u(td, io_u);
240                         } else {
241                                 r = td->io_ops->cancel(td, io_u);
242                                 if (!r)
243                                         put_io_u(td, io_u);
244                         }
245                 }
246         }
247
248         if (td->cur_depth)
249                 r = io_u_queued_complete(td, td->cur_depth, NULL);
250 }
251
252 /*
253  * Helper to handle the final sync of a file. Works just like the normal
254  * io path, just does everything sync.
255  */
256 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
257 {
258         struct io_u *io_u = __get_io_u(td);
259         int ret;
260
261         if (!io_u)
262                 return 1;
263
264         io_u->ddir = DDIR_SYNC;
265         io_u->file = f;
266
267         if (td_io_prep(td, io_u)) {
268                 put_io_u(td, io_u);
269                 return 1;
270         }
271
272 requeue:
273         ret = td_io_queue(td, io_u);
274         if (ret < 0) {
275                 td_verror(td, io_u->error, "td_io_queue");
276                 put_io_u(td, io_u);
277                 return 1;
278         } else if (ret == FIO_Q_QUEUED) {
279                 if (io_u_queued_complete(td, 1, NULL) < 0)
280                         return 1;
281         } else if (ret == FIO_Q_COMPLETED) {
282                 if (io_u->error) {
283                         td_verror(td, io_u->error, "td_io_queue");
284                         return 1;
285                 }
286
287                 if (io_u_sync_complete(td, io_u, NULL) < 0)
288                         return 1;
289         } else if (ret == FIO_Q_BUSY) {
290                 if (td_io_commit(td))
291                         return 1;
292                 goto requeue;
293         }
294
295         return 0;
296 }
297
298 static inline void __update_tv_cache(struct thread_data *td)
299 {
300         fio_gettime(&td->tv_cache, NULL);
301 }
302
303 static inline void update_tv_cache(struct thread_data *td)
304 {
305         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
306                 __update_tv_cache(td);
307 }
308
309 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
310 {
311         if (in_ramp_time(td))
312                 return 0;
313         if (!td->o.timeout)
314                 return 0;
315         if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
316                 return 1;
317
318         return 0;
319 }
320
321 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
322                                int *retptr)
323 {
324         int ret = *retptr;
325
326         if (ret < 0 || td->error) {
327                 int err;
328
329                 if (ret < 0)
330                         err = -ret;
331                 else
332                         err = td->error;
333
334                 if (!(td->o.continue_on_error & td_error_type(ddir, err)))
335                         return 1;
336
337                 if (td_non_fatal_error(err)) {
338                         /*
339                          * Continue with the I/Os in case of
340                          * a non fatal error.
341                          */
342                         update_error_count(td, err);
343                         td_clear_error(td);
344                         *retptr = 0;
345                         return 0;
346                 } else if (td->o.fill_device && err == ENOSPC) {
347                         /*
348                          * We expect to hit this error if
349                          * fill_device option is set.
350                          */
351                         td_clear_error(td);
352                         td->terminate = 1;
353                         return 1;
354                 } else {
355                         /*
356                          * Stop the I/O in case of a fatal
357                          * error.
358                          */
359                         update_error_count(td, err);
360                         return 1;
361                 }
362         }
363
364         return 0;
365 }
366
367 /*
368  * The main verify engine. Runs over the writes we previously submitted,
369  * reads the blocks back in, and checks the crc/md5 of the data.
370  */
371 static void do_verify(struct thread_data *td)
372 {
373         struct fio_file *f;
374         struct io_u *io_u;
375         int ret, min_events;
376         unsigned int i;
377
378         dprint(FD_VERIFY, "starting loop\n");
379
380         /*
381          * sync io first and invalidate cache, to make sure we really
382          * read from disk.
383          */
384         for_each_file(td, f, i) {
385                 if (!fio_file_open(f))
386                         continue;
387                 if (fio_io_sync(td, f))
388                         break;
389                 if (file_invalidate_cache(td, f))
390                         break;
391         }
392
393         if (td->error)
394                 return;
395
396         td_set_runstate(td, TD_VERIFYING);
397
398         io_u = NULL;
399         while (!td->terminate) {
400                 int ret2, full;
401
402                 update_tv_cache(td);
403
404                 if (runtime_exceeded(td, &td->tv_cache)) {
405                         __update_tv_cache(td);
406                         if (runtime_exceeded(td, &td->tv_cache)) {
407                                 td->terminate = 1;
408                                 break;
409                         }
410                 }
411
412                 if (flow_threshold_exceeded(td))
413                         continue;
414
415                 io_u = __get_io_u(td);
416                 if (!io_u)
417                         break;
418
419                 if (get_next_verify(td, io_u)) {
420                         put_io_u(td, io_u);
421                         break;
422                 }
423
424                 if (td_io_prep(td, io_u)) {
425                         put_io_u(td, io_u);
426                         break;
427                 }
428
429                 if (td->o.verify_async)
430                         io_u->end_io = verify_io_u_async;
431                 else
432                         io_u->end_io = verify_io_u;
433
434                 ret = td_io_queue(td, io_u);
435                 switch (ret) {
436                 case FIO_Q_COMPLETED:
437                         if (io_u->error) {
438                                 ret = -io_u->error;
439                                 clear_io_u(td, io_u);
440                         } else if (io_u->resid) {
441                                 int bytes = io_u->xfer_buflen - io_u->resid;
442
443                                 /*
444                                  * zero read, fail
445                                  */
446                                 if (!bytes) {
447                                         td_verror(td, EIO, "full resid");
448                                         put_io_u(td, io_u);
449                                         break;
450                                 }
451
452                                 io_u->xfer_buflen = io_u->resid;
453                                 io_u->xfer_buf += bytes;
454                                 io_u->offset += bytes;
455
456                                 if (ddir_rw(io_u->ddir))
457                                         td->ts.short_io_u[io_u->ddir]++;
458
459                                 f = io_u->file;
460                                 if (io_u->offset == f->real_file_size)
461                                         goto sync_done;
462
463                                 requeue_io_u(td, &io_u);
464                         } else {
465 sync_done:
466                                 ret = io_u_sync_complete(td, io_u, NULL);
467                                 if (ret < 0)
468                                         break;
469                         }
470                         continue;
471                 case FIO_Q_QUEUED:
472                         break;
473                 case FIO_Q_BUSY:
474                         requeue_io_u(td, &io_u);
475                         ret2 = td_io_commit(td);
476                         if (ret2 < 0)
477                                 ret = ret2;
478                         break;
479                 default:
480                         assert(ret < 0);
481                         td_verror(td, -ret, "td_io_queue");
482                         break;
483                 }
484
485                 if (break_on_this_error(td, io_u->ddir, &ret))
486                         break;
487
488                 /*
489                  * if we can queue more, do so. but check if there are
490                  * completed io_u's first. Note that we can get BUSY even
491                  * without IO queued, if the system is resource starved.
492                  */
493                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
494                 if (full || !td->o.iodepth_batch_complete) {
495                         min_events = min(td->o.iodepth_batch_complete,
496                                          td->cur_depth);
497                         /*
498                          * if the queue is full, we MUST reap at least 1 event
499                          */
500                         if (full && !min_events)
501                                 min_events = 1;
502
503                         do {
504                                 /*
505                                  * Reap required number of io units, if any,
506                                  * and do the verification on them through
507                                  * the callback handler
508                                  */
509                                 if (io_u_queued_complete(td, min_events, NULL) < 0) {
510                                         ret = -1;
511                                         break;
512                                 }
513                         } while (full && (td->cur_depth > td->o.iodepth_low));
514                 }
515                 if (ret < 0)
516                         break;
517         }
518
519         if (!td->error) {
520                 min_events = td->cur_depth;
521
522                 if (min_events)
523                         ret = io_u_queued_complete(td, min_events, NULL);
524         } else
525                 cleanup_pending_aio(td);
526
527         td_set_runstate(td, TD_RUNNING);
528
529         dprint(FD_VERIFY, "exiting loop\n");
530 }
531
532 static int io_bytes_exceeded(struct thread_data *td)
533 {
534         unsigned long long bytes;
535
536         if (td_rw(td))
537                 bytes = td->this_io_bytes[0] + td->this_io_bytes[1];
538         else if (td_write(td))
539                 bytes = td->this_io_bytes[1];
540         else
541                 bytes = td->this_io_bytes[0];
542
543         return bytes >= td->o.size;
544 }
545
546 /*
547  * Main IO worker function. It retrieves io_u's to process and queues
548  * and reaps them, checking for rate and errors along the way.
549  */
550 static void do_io(struct thread_data *td)
551 {
552         unsigned int i;
553         int ret = 0;
554
555         if (in_ramp_time(td))
556                 td_set_runstate(td, TD_RAMP);
557         else
558                 td_set_runstate(td, TD_RUNNING);
559
560         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
561                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
562                 td->o.time_based) {
563                 struct timeval comp_time;
564                 unsigned long bytes_done[2] = { 0, 0 };
565                 int min_evts = 0;
566                 struct io_u *io_u;
567                 int ret2, full;
568                 enum fio_ddir ddir;
569
570                 if (td->terminate)
571                         break;
572
573                 update_tv_cache(td);
574
575                 if (runtime_exceeded(td, &td->tv_cache)) {
576                         __update_tv_cache(td);
577                         if (runtime_exceeded(td, &td->tv_cache)) {
578                                 td->terminate = 1;
579                                 break;
580                         }
581                 }
582
583                 if (flow_threshold_exceeded(td))
584                         continue;
585
586                 io_u = get_io_u(td);
587                 if (!io_u)
588                         break;
589
590                 ddir = io_u->ddir;
591
592                 /*
593                  * Add verification end_io handler if:
594                  *      - Asked to verify (!td_rw(td))
595                  *      - Or the io_u is from our verify list (mixed write/ver)
596                  */
597                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
598                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
599                         if (td->o.verify_async)
600                                 io_u->end_io = verify_io_u_async;
601                         else
602                                 io_u->end_io = verify_io_u;
603                         td_set_runstate(td, TD_VERIFYING);
604                 } else if (in_ramp_time(td))
605                         td_set_runstate(td, TD_RAMP);
606                 else
607                         td_set_runstate(td, TD_RUNNING);
608
609                 ret = td_io_queue(td, io_u);
610                 switch (ret) {
611                 case FIO_Q_COMPLETED:
612                         if (io_u->error) {
613                                 ret = -io_u->error;
614                                 clear_io_u(td, io_u);
615                         } else if (io_u->resid) {
616                                 int bytes = io_u->xfer_buflen - io_u->resid;
617                                 struct fio_file *f = io_u->file;
618
619                                 /*
620                                  * zero read, fail
621                                  */
622                                 if (!bytes) {
623                                         td_verror(td, EIO, "full resid");
624                                         put_io_u(td, io_u);
625                                         break;
626                                 }
627
628                                 io_u->xfer_buflen = io_u->resid;
629                                 io_u->xfer_buf += bytes;
630                                 io_u->offset += bytes;
631
632                                 if (ddir_rw(io_u->ddir))
633                                         td->ts.short_io_u[io_u->ddir]++;
634
635                                 if (io_u->offset == f->real_file_size)
636                                         goto sync_done;
637
638                                 requeue_io_u(td, &io_u);
639                         } else {
640 sync_done:
641                                 if (__should_check_rate(td, 0) ||
642                                     __should_check_rate(td, 1))
643                                         fio_gettime(&comp_time, NULL);
644
645                                 ret = io_u_sync_complete(td, io_u, bytes_done);
646                                 if (ret < 0)
647                                         break;
648                         }
649                         break;
650                 case FIO_Q_QUEUED:
651                         /*
652                          * if the engine doesn't have a commit hook,
653                          * the io_u is really queued. if it does have such
654                          * a hook, it has to call io_u_queued() itself.
655                          */
656                         if (td->io_ops->commit == NULL)
657                                 io_u_queued(td, io_u);
658                         break;
659                 case FIO_Q_BUSY:
660                         requeue_io_u(td, &io_u);
661                         ret2 = td_io_commit(td);
662                         if (ret2 < 0)
663                                 ret = ret2;
664                         break;
665                 default:
666                         assert(ret < 0);
667                         put_io_u(td, io_u);
668                         break;
669                 }
670
671                 if (break_on_this_error(td, ddir, &ret))
672                         break;
673
674                 /*
675                  * See if we need to complete some commands. Note that we
676                  * can get BUSY even without IO queued, if the system is
677                  * resource starved.
678                  */
679                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
680                 if (full || !td->o.iodepth_batch_complete) {
681                         min_evts = min(td->o.iodepth_batch_complete,
682                                         td->cur_depth);
683                         /*
684                          * if the queue is full, we MUST reap at least 1 event
685                          */
686                         if (full && !min_evts)
687                                 min_evts = 1;
688
689                         if (__should_check_rate(td, 0) ||
690                             __should_check_rate(td, 1))
691                                 fio_gettime(&comp_time, NULL);
692
693                         do {
694                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
695                                 if (ret < 0)
696                                         break;
697
698                         } while (full && (td->cur_depth > td->o.iodepth_low));
699                 }
700
701                 if (ret < 0)
702                         break;
703                 if (!(bytes_done[0] + bytes_done[1]))
704                         continue;
705
706                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
707                         if (check_min_rate(td, &comp_time, bytes_done)) {
708                                 if (exitall_on_terminate)
709                                         fio_terminate_threads(td->groupid);
710                                 td_verror(td, EIO, "check_min_rate");
711                                 break;
712                         }
713                 }
714
715                 if (td->o.thinktime) {
716                         unsigned long long b;
717
718                         b = td->io_blocks[0] + td->io_blocks[1];
719                         if (!(b % td->o.thinktime_blocks)) {
720                                 int left;
721
722                                 if (td->o.thinktime_spin)
723                                         usec_spin(td->o.thinktime_spin);
724
725                                 left = td->o.thinktime - td->o.thinktime_spin;
726                                 if (left)
727                                         usec_sleep(td, left);
728                         }
729                 }
730         }
731
732         if (td->trim_entries)
733                 log_err("fio: %d trim entries leaked?\n", td->trim_entries);
734
735         if (td->o.fill_device && td->error == ENOSPC) {
736                 td->error = 0;
737                 td->terminate = 1;
738         }
739         if (!td->error) {
740                 struct fio_file *f;
741
742                 i = td->cur_depth;
743                 if (i) {
744                         ret = io_u_queued_complete(td, i, NULL);
745                         if (td->o.fill_device && td->error == ENOSPC)
746                                 td->error = 0;
747                 }
748
749                 if (should_fsync(td) && td->o.end_fsync) {
750                         td_set_runstate(td, TD_FSYNCING);
751
752                         for_each_file(td, f, i) {
753                                 if (!fio_file_open(f))
754                                         continue;
755                                 fio_io_sync(td, f);
756                         }
757                 }
758         } else
759                 cleanup_pending_aio(td);
760
761         /*
762          * stop job if we failed doing any IO
763          */
764         if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
765                 td->done = 1;
766 }
767
768 static void cleanup_io_u(struct thread_data *td)
769 {
770         struct flist_head *entry, *n;
771         struct io_u *io_u;
772
773         flist_for_each_safe(entry, n, &td->io_u_freelist) {
774                 io_u = flist_entry(entry, struct io_u, list);
775
776                 flist_del(&io_u->list);
777                 fio_memfree(io_u, sizeof(*io_u));
778         }
779
780         free_io_mem(td);
781 }
782
783 static int init_io_u(struct thread_data *td)
784 {
785         struct io_u *io_u;
786         unsigned int max_bs, min_write;
787         int cl_align, i, max_units;
788         char *p;
789
790         max_units = td->o.iodepth;
791         max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
792         min_write = td->o.min_bs[DDIR_WRITE];
793         td->orig_buffer_size = (unsigned long long) max_bs
794                                         * (unsigned long long) max_units;
795
796         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
797                 unsigned long bs;
798
799                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
800                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
801         }
802
803         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
804                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
805                 return 1;
806         }
807
808         if (allocate_io_mem(td))
809                 return 1;
810
811         if (td->o.odirect || td->o.mem_align ||
812             (td->io_ops->flags & FIO_RAWIO))
813                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
814         else
815                 p = td->orig_buffer;
816
817         cl_align = os_cache_line_size();
818
819         for (i = 0; i < max_units; i++) {
820                 void *ptr;
821
822                 if (td->terminate)
823                         return 1;
824
825                 ptr = fio_memalign(cl_align, sizeof(*io_u));
826                 if (!ptr) {
827                         log_err("fio: unable to allocate aligned memory\n");
828                         break;
829                 }
830
831                 io_u = ptr;
832                 memset(io_u, 0, sizeof(*io_u));
833                 INIT_FLIST_HEAD(&io_u->list);
834                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
835
836                 if (!(td->io_ops->flags & FIO_NOIO)) {
837                         io_u->buf = p;
838                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
839
840                         if (td_write(td))
841                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
842                         if (td_write(td) && td->o.verify_pattern_bytes) {
843                                 /*
844                                  * Fill the buffer with the pattern if we are
845                                  * going to be doing writes.
846                                  */
847                                 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
848                         }
849                 }
850
851                 io_u->index = i;
852                 io_u->flags = IO_U_F_FREE;
853                 flist_add(&io_u->list, &td->io_u_freelist);
854                 p += max_bs;
855         }
856
857         return 0;
858 }
859
860 static int switch_ioscheduler(struct thread_data *td)
861 {
862         char tmp[256], tmp2[128];
863         FILE *f;
864         int ret;
865
866         if (td->io_ops->flags & FIO_DISKLESSIO)
867                 return 0;
868
869         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
870
871         f = fopen(tmp, "r+");
872         if (!f) {
873                 if (errno == ENOENT) {
874                         log_err("fio: os or kernel doesn't support IO scheduler"
875                                 " switching\n");
876                         return 0;
877                 }
878                 td_verror(td, errno, "fopen iosched");
879                 return 1;
880         }
881
882         /*
883          * Set io scheduler.
884          */
885         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
886         if (ferror(f) || ret != 1) {
887                 td_verror(td, errno, "fwrite");
888                 fclose(f);
889                 return 1;
890         }
891
892         rewind(f);
893
894         /*
895          * Read back and check that the selected scheduler is now the default.
896          */
897         ret = fread(tmp, 1, sizeof(tmp), f);
898         if (ferror(f) || ret < 0) {
899                 td_verror(td, errno, "fread");
900                 fclose(f);
901                 return 1;
902         }
903
904         sprintf(tmp2, "[%s]", td->o.ioscheduler);
905         if (!strstr(tmp, tmp2)) {
906                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
907                 td_verror(td, EINVAL, "iosched_switch");
908                 fclose(f);
909                 return 1;
910         }
911
912         fclose(f);
913         return 0;
914 }
915
916 static int keep_running(struct thread_data *td)
917 {
918         unsigned long long io_done;
919
920         if (td->done)
921                 return 0;
922         if (td->o.time_based)
923                 return 1;
924         if (td->o.loops) {
925                 td->o.loops--;
926                 return 1;
927         }
928
929         io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
930                         + td->io_skip_bytes;
931         if (io_done < td->o.size)
932                 return 1;
933
934         return 0;
935 }
936
937 static int exec_string(const char *string)
938 {
939         int ret, newlen = strlen(string) + 1 + 8;
940         char *str;
941
942         str = malloc(newlen);
943         sprintf(str, "sh -c %s", string);
944
945         ret = system(str);
946         if (ret == -1)
947                 log_err("fio: exec of cmd <%s> failed\n", str);
948
949         free(str);
950         return ret;
951 }
952
953 /*
954  * Entry point for the thread based jobs. The process based jobs end up
955  * here as well, after a little setup.
956  */
957 static void *thread_main(void *data)
958 {
959         unsigned long long elapsed;
960         struct thread_data *td = data;
961         pthread_condattr_t attr;
962         int clear_state;
963
964         if (!td->o.use_thread) {
965                 setsid();
966                 td->pid = getpid();
967         } else
968                 td->pid = gettid();
969
970         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
971
972         INIT_FLIST_HEAD(&td->io_u_freelist);
973         INIT_FLIST_HEAD(&td->io_u_busylist);
974         INIT_FLIST_HEAD(&td->io_u_requeues);
975         INIT_FLIST_HEAD(&td->io_log_list);
976         INIT_FLIST_HEAD(&td->io_hist_list);
977         INIT_FLIST_HEAD(&td->verify_list);
978         INIT_FLIST_HEAD(&td->trim_list);
979         pthread_mutex_init(&td->io_u_lock, NULL);
980         td->io_hist_tree = RB_ROOT;
981
982         pthread_condattr_init(&attr);
983         pthread_cond_init(&td->verify_cond, &attr);
984         pthread_cond_init(&td->free_cond, &attr);
985
986         td_set_runstate(td, TD_INITIALIZED);
987         dprint(FD_MUTEX, "up startup_mutex\n");
988         fio_mutex_up(startup_mutex);
989         dprint(FD_MUTEX, "wait on td->mutex\n");
990         fio_mutex_down(td->mutex);
991         dprint(FD_MUTEX, "done waiting on td->mutex\n");
992
993         /*
994          * the ->mutex mutex is now no longer used, close it to avoid
995          * eating a file descriptor
996          */
997         fio_mutex_remove(td->mutex);
998
999         /*
1000          * A new gid requires privilege, so we need to do this before setting
1001          * the uid.
1002          */
1003         if (td->o.gid != -1U && setgid(td->o.gid)) {
1004                 td_verror(td, errno, "setgid");
1005                 goto err;
1006         }
1007         if (td->o.uid != -1U && setuid(td->o.uid)) {
1008                 td_verror(td, errno, "setuid");
1009                 goto err;
1010         }
1011
1012         /*
1013          * If we have a gettimeofday() thread, make sure we exclude that
1014          * thread from this job
1015          */
1016         if (td->o.gtod_cpu)
1017                 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1018
1019         /*
1020          * Set affinity first, in case it has an impact on the memory
1021          * allocations.
1022          */
1023         if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1024                 td_verror(td, errno, "cpu_set_affinity");
1025                 goto err;
1026         }
1027
1028         /*
1029          * May alter parameters that init_io_u() will use, so we need to
1030          * do this first.
1031          */
1032         if (init_iolog(td))
1033                 goto err;
1034
1035         if (init_io_u(td))
1036                 goto err;
1037
1038         if (td->o.verify_async && verify_async_init(td))
1039                 goto err;
1040
1041         if (td->ioprio_set) {
1042                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1043                         td_verror(td, errno, "ioprio_set");
1044                         goto err;
1045                 }
1046         }
1047
1048         if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1049                 goto err;
1050
1051         errno = 0;
1052         if (nice(td->o.nice) == -1 && errno != 0) {
1053                 td_verror(td, errno, "nice");
1054                 goto err;
1055         }
1056
1057         if (td->o.ioscheduler && switch_ioscheduler(td))
1058                 goto err;
1059
1060         if (!td->o.create_serialize && setup_files(td))
1061                 goto err;
1062
1063         if (td_io_init(td))
1064                 goto err;
1065
1066         if (init_random_map(td))
1067                 goto err;
1068
1069         if (td->o.exec_prerun) {
1070                 if (exec_string(td->o.exec_prerun))
1071                         goto err;
1072         }
1073
1074         if (td->o.pre_read) {
1075                 if (pre_read_files(td) < 0)
1076                         goto err;
1077         }
1078
1079         fio_gettime(&td->epoch, NULL);
1080         getrusage(RUSAGE_SELF, &td->ru_start);
1081
1082         clear_state = 0;
1083         while (keep_running(td)) {
1084                 fio_gettime(&td->start, NULL);
1085                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1086                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1087                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1088
1089                 if (td->o.ratemin[0] || td->o.ratemin[1]) {
1090                         memcpy(&td->lastrate[0], &td->bw_sample_time,
1091                                                 sizeof(td->bw_sample_time));
1092                         memcpy(&td->lastrate[1], &td->bw_sample_time,
1093                                                 sizeof(td->bw_sample_time));
1094                 }
1095
1096                 if (clear_state)
1097                         clear_io_state(td);
1098
1099                 prune_io_piece_log(td);
1100
1101                 do_io(td);
1102
1103                 clear_state = 1;
1104
1105                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1106                         elapsed = utime_since_now(&td->start);
1107                         td->ts.runtime[DDIR_READ] += elapsed;
1108                 }
1109                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1110                         elapsed = utime_since_now(&td->start);
1111                         td->ts.runtime[DDIR_WRITE] += elapsed;
1112                 }
1113
1114                 if (td->error || td->terminate)
1115                         break;
1116
1117                 if (!td->o.do_verify ||
1118                     td->o.verify == VERIFY_NONE ||
1119                     (td->io_ops->flags & FIO_UNIDIR))
1120                         continue;
1121
1122                 clear_io_state(td);
1123
1124                 fio_gettime(&td->start, NULL);
1125
1126                 do_verify(td);
1127
1128                 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1129
1130                 if (td->error || td->terminate)
1131                         break;
1132         }
1133
1134         update_rusage_stat(td);
1135         td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1136         td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1137         td->ts.total_run_time = mtime_since_now(&td->epoch);
1138         td->ts.io_bytes[0] = td->io_bytes[0];
1139         td->ts.io_bytes[1] = td->io_bytes[1];
1140
1141         fio_mutex_down(writeout_mutex);
1142         if (td->bw_log) {
1143                 if (td->o.bw_log_file) {
1144                         finish_log_named(td, td->bw_log,
1145                                                 td->o.bw_log_file, "bw");
1146                 } else
1147                         finish_log(td, td->bw_log, "bw");
1148         }
1149         if (td->lat_log) {
1150                 if (td->o.lat_log_file) {
1151                         finish_log_named(td, td->lat_log,
1152                                                 td->o.lat_log_file, "lat");
1153                 } else
1154                         finish_log(td, td->lat_log, "lat");
1155         }
1156         if (td->slat_log) {
1157                 if (td->o.lat_log_file) {
1158                         finish_log_named(td, td->slat_log,
1159                                                 td->o.lat_log_file, "slat");
1160                 } else
1161                         finish_log(td, td->slat_log, "slat");
1162         }
1163         if (td->clat_log) {
1164                 if (td->o.lat_log_file) {
1165                         finish_log_named(td, td->clat_log,
1166                                                 td->o.lat_log_file, "clat");
1167                 } else
1168                         finish_log(td, td->clat_log, "clat");
1169         }
1170         if (td->iops_log) {
1171                 if (td->o.iops_log_file) {
1172                         finish_log_named(td, td->iops_log,
1173                                                 td->o.iops_log_file, "iops");
1174                 } else
1175                         finish_log(td, td->iops_log, "iops");
1176         }
1177
1178         fio_mutex_up(writeout_mutex);
1179         if (td->o.exec_postrun)
1180                 exec_string(td->o.exec_postrun);
1181
1182         if (exitall_on_terminate)
1183                 fio_terminate_threads(td->groupid);
1184
1185 err:
1186         if (td->error)
1187                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1188                                                         td->verror);
1189
1190         if (td->o.verify_async)
1191                 verify_async_exit(td);
1192
1193         close_and_free_files(td);
1194         close_ioengine(td);
1195         cleanup_io_u(td);
1196         cgroup_shutdown(td, &cgroup_mnt);
1197
1198         if (td->o.cpumask_set) {
1199                 int ret = fio_cpuset_exit(&td->o.cpumask);
1200
1201                 td_verror(td, ret, "fio_cpuset_exit");
1202         }
1203
1204         /*
1205          * do this very late, it will log file closing as well
1206          */
1207         if (td->o.write_iolog_file)
1208                 write_iolog_close(td);
1209
1210         td_set_runstate(td, TD_EXITED);
1211         return (void *) (uintptr_t) td->error;
1212 }
1213
1214
1215 /*
1216  * We cannot pass the td data into a forked process, so attach the td and
1217  * pass it to the thread worker.
1218  */
1219 static int fork_main(int shmid, int offset)
1220 {
1221         struct thread_data *td;
1222         void *data, *ret;
1223
1224 #ifndef __hpux
1225         data = shmat(shmid, NULL, 0);
1226         if (data == (void *) -1) {
1227                 int __err = errno;
1228
1229                 perror("shmat");
1230                 return __err;
1231         }
1232 #else
1233         /*
1234          * HP-UX inherits shm mappings?
1235          */
1236         data = threads;
1237 #endif
1238
1239         td = data + offset * sizeof(struct thread_data);
1240         ret = thread_main(td);
1241         shmdt(data);
1242         return (int) (uintptr_t) ret;
1243 }
1244
1245 /*
1246  * Run over the job map and reap the threads that have exited, if any.
1247  */
1248 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1249                          unsigned int *m_rate)
1250 {
1251         struct thread_data *td;
1252         unsigned int cputhreads, realthreads, pending;
1253         int i, status, ret;
1254
1255         /*
1256          * reap exited threads (TD_EXITED -> TD_REAPED)
1257          */
1258         realthreads = pending = cputhreads = 0;
1259         for_each_td(td, i) {
1260                 int flags = 0;
1261
1262                 /*
1263                  * ->io_ops is NULL for a thread that has closed its
1264                  * io engine
1265                  */
1266                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1267                         cputhreads++;
1268                 else
1269                         realthreads++;
1270
1271                 if (!td->pid) {
1272                         pending++;
1273                         continue;
1274                 }
1275                 if (td->runstate == TD_REAPED)
1276                         continue;
1277                 if (td->o.use_thread) {
1278                         if (td->runstate == TD_EXITED) {
1279                                 td_set_runstate(td, TD_REAPED);
1280                                 goto reaped;
1281                         }
1282                         continue;
1283                 }
1284
1285                 flags = WNOHANG;
1286                 if (td->runstate == TD_EXITED)
1287                         flags = 0;
1288
1289                 /*
1290                  * check if someone quit or got killed in an unusual way
1291                  */
1292                 ret = waitpid(td->pid, &status, flags);
1293                 if (ret < 0) {
1294                         if (errno == ECHILD) {
1295                                 log_err("fio: pid=%d disappeared %d\n",
1296                                                 (int) td->pid, td->runstate);
1297                                 td_set_runstate(td, TD_REAPED);
1298                                 goto reaped;
1299                         }
1300                         perror("waitpid");
1301                 } else if (ret == td->pid) {
1302                         if (WIFSIGNALED(status)) {
1303                                 int sig = WTERMSIG(status);
1304
1305                                 if (sig != SIGTERM)
1306                                         log_err("fio: pid=%d, got signal=%d\n",
1307                                                         (int) td->pid, sig);
1308                                 td_set_runstate(td, TD_REAPED);
1309                                 goto reaped;
1310                         }
1311                         if (WIFEXITED(status)) {
1312                                 if (WEXITSTATUS(status) && !td->error)
1313                                         td->error = WEXITSTATUS(status);
1314
1315                                 td_set_runstate(td, TD_REAPED);
1316                                 goto reaped;
1317                         }
1318                 }
1319
1320                 /*
1321                  * thread is not dead, continue
1322                  */
1323                 pending++;
1324                 continue;
1325 reaped:
1326                 (*nr_running)--;
1327                 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1328                 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1329                 if (!td->pid)
1330                         pending--;
1331
1332                 if (td->error)
1333                         exit_value++;
1334
1335                 done_secs += mtime_since_now(&td->epoch) / 1000;
1336         }
1337
1338         if (*nr_running == cputhreads && !pending && realthreads)
1339                 fio_terminate_threads(TERMINATE_ALL);
1340 }
1341
1342 /*
1343  * Main function for kicking off and reaping jobs, as needed.
1344  */
1345 static void run_threads(void)
1346 {
1347         struct thread_data *td;
1348         unsigned long spent;
1349         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1350
1351         if (fio_pin_memory())
1352                 return;
1353
1354         if (fio_gtod_offload && fio_start_gtod_thread())
1355                 return;
1356
1357         set_sig_handlers();
1358
1359         if (!terse_output) {
1360                 log_info("Starting ");
1361                 if (nr_thread)
1362                         log_info("%d thread%s", nr_thread,
1363                                                 nr_thread > 1 ? "s" : "");
1364                 if (nr_process) {
1365                         if (nr_thread)
1366                                 log_info(" and ");
1367                         log_info("%d process%s", nr_process,
1368                                                 nr_process > 1 ? "es" : "");
1369                 }
1370                 log_info("\n");
1371                 fflush(stdout);
1372         }
1373
1374         todo = thread_number;
1375         nr_running = 0;
1376         nr_started = 0;
1377         m_rate = t_rate = 0;
1378
1379         for_each_td(td, i) {
1380                 print_status_init(td->thread_number - 1);
1381
1382                 if (!td->o.create_serialize)
1383                         continue;
1384
1385                 /*
1386                  * do file setup here so it happens sequentially,
1387                  * we don't want X number of threads getting their
1388                  * client data interspersed on disk
1389                  */
1390                 if (setup_files(td)) {
1391                         exit_value++;
1392                         if (td->error)
1393                                 log_err("fio: pid=%d, err=%d/%s\n",
1394                                         (int) td->pid, td->error, td->verror);
1395                         td_set_runstate(td, TD_REAPED);
1396                         todo--;
1397                 } else {
1398                         struct fio_file *f;
1399                         unsigned int j;
1400
1401                         /*
1402                          * for sharing to work, each job must always open
1403                          * its own files. so close them, if we opened them
1404                          * for creation
1405                          */
1406                         for_each_file(td, f, j) {
1407                                 if (fio_file_open(f))
1408                                         td_io_close_file(td, f);
1409                         }
1410                 }
1411         }
1412
1413         set_genesis_time();
1414
1415         while (todo) {
1416                 struct thread_data *map[REAL_MAX_JOBS];
1417                 struct timeval this_start;
1418                 int this_jobs = 0, left;
1419
1420                 /*
1421                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1422                  */
1423                 for_each_td(td, i) {
1424                         if (td->runstate != TD_NOT_CREATED)
1425                                 continue;
1426
1427                         /*
1428                          * never got a chance to start, killed by other
1429                          * thread for some reason
1430                          */
1431                         if (td->terminate) {
1432                                 todo--;
1433                                 continue;
1434                         }
1435
1436                         if (td->o.start_delay) {
1437                                 spent = mtime_since_genesis();
1438
1439                                 if (td->o.start_delay * 1000 > spent)
1440                                         continue;
1441                         }
1442
1443                         if (td->o.stonewall && (nr_started || nr_running)) {
1444                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1445                                                         td->o.name);
1446                                 break;
1447                         }
1448
1449                         init_disk_util(td);
1450
1451                         /*
1452                          * Set state to created. Thread will transition
1453                          * to TD_INITIALIZED when it's done setting up.
1454                          */
1455                         td_set_runstate(td, TD_CREATED);
1456                         map[this_jobs++] = td;
1457                         nr_started++;
1458
1459                         if (td->o.use_thread) {
1460                                 int ret;
1461
1462                                 dprint(FD_PROCESS, "will pthread_create\n");
1463                                 ret = pthread_create(&td->thread, NULL,
1464                                                         thread_main, td);
1465                                 if (ret) {
1466                                         log_err("pthread_create: %s\n",
1467                                                         strerror(ret));
1468                                         nr_started--;
1469                                         break;
1470                                 }
1471                                 ret = pthread_detach(td->thread);
1472                                 if (ret)
1473                                         log_err("pthread_detach: %s",
1474                                                         strerror(ret));
1475                         } else {
1476                                 pid_t pid;
1477                                 dprint(FD_PROCESS, "will fork\n");
1478                                 pid = fork();
1479                                 if (!pid) {
1480                                         int ret = fork_main(shm_id, i);
1481
1482                                         _exit(ret);
1483                                 } else if (i == fio_debug_jobno)
1484                                         *fio_debug_jobp = pid;
1485                         }
1486                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1487                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
1488                                 log_err("fio: job startup hung? exiting.\n");
1489                                 fio_terminate_threads(TERMINATE_ALL);
1490                                 fio_abort = 1;
1491                                 nr_started--;
1492                                 break;
1493                         }
1494                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1495                 }
1496
1497                 /*
1498                  * Wait for the started threads to transition to
1499                  * TD_INITIALIZED.
1500                  */
1501                 fio_gettime(&this_start, NULL);
1502                 left = this_jobs;
1503                 while (left && !fio_abort) {
1504                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1505                                 break;
1506
1507                         usleep(100000);
1508
1509                         for (i = 0; i < this_jobs; i++) {
1510                                 td = map[i];
1511                                 if (!td)
1512                                         continue;
1513                                 if (td->runstate == TD_INITIALIZED) {
1514                                         map[i] = NULL;
1515                                         left--;
1516                                 } else if (td->runstate >= TD_EXITED) {
1517                                         map[i] = NULL;
1518                                         left--;
1519                                         todo--;
1520                                         nr_running++; /* work-around... */
1521                                 }
1522                         }
1523                 }
1524
1525                 if (left) {
1526                         log_err("fio: %d job%s failed to start\n", left,
1527                                         left > 1 ? "s" : "");
1528                         for (i = 0; i < this_jobs; i++) {
1529                                 td = map[i];
1530                                 if (!td)
1531                                         continue;
1532                                 kill(td->pid, SIGTERM);
1533                         }
1534                         break;
1535                 }
1536
1537                 /*
1538                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1539                  */
1540                 for_each_td(td, i) {
1541                         if (td->runstate != TD_INITIALIZED)
1542                                 continue;
1543
1544                         if (in_ramp_time(td))
1545                                 td_set_runstate(td, TD_RAMP);
1546                         else
1547                                 td_set_runstate(td, TD_RUNNING);
1548                         nr_running++;
1549                         nr_started--;
1550                         m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1551                         t_rate += td->o.rate[0] + td->o.rate[1];
1552                         todo--;
1553                         fio_mutex_up(td->mutex);
1554                 }
1555
1556                 reap_threads(&nr_running, &t_rate, &m_rate);
1557
1558                 if (todo) {
1559                         if (is_backend)
1560                                 fio_server_idle_loop();
1561                         else
1562                                 usleep(100000);
1563                 }
1564         }
1565
1566         while (nr_running) {
1567                 reap_threads(&nr_running, &t_rate, &m_rate);
1568
1569                 if (is_backend)
1570                         fio_server_idle_loop();
1571                 else
1572                         usleep(10000);
1573         }
1574
1575         update_io_ticks();
1576         fio_unpin_memory();
1577 }
1578
1579 static void *disk_thread_main(void *data)
1580 {
1581         fio_mutex_up(startup_mutex);
1582
1583         while (threads) {
1584                 usleep(DISK_UTIL_MSEC * 1000);
1585                 if (!threads)
1586                         break;
1587                 update_io_ticks();
1588
1589                 if (!is_backend)
1590                         print_thread_status();
1591         }
1592
1593         return NULL;
1594 }
1595
1596 static int create_disk_util_thread(void)
1597 {
1598         int ret;
1599
1600         ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1601         if (ret) {
1602                 log_err("Can't create disk util thread: %s\n", strerror(ret));
1603                 return 1;
1604         }
1605
1606         ret = pthread_detach(disk_util_thread);
1607         if (ret) {
1608                 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1609                 return 1;
1610         }
1611
1612         dprint(FD_MUTEX, "wait on startup_mutex\n");
1613         fio_mutex_down(startup_mutex);
1614         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1615         return 0;
1616 }
1617
1618 int fio_backend(void)
1619 {
1620         struct thread_data *td;
1621         int i;
1622
1623         if (exec_profile) {
1624                 if (load_profile(exec_profile))
1625                         return 1;
1626                 free(exec_profile);
1627                 exec_profile = NULL;
1628         }
1629         if (!thread_number)
1630                 return 0;
1631
1632         if (write_bw_log) {
1633                 setup_log(&agg_io_log[DDIR_READ], 0);
1634                 setup_log(&agg_io_log[DDIR_WRITE], 0);
1635         }
1636
1637         startup_mutex = fio_mutex_init(0);
1638         if (startup_mutex == NULL)
1639                 return 1;
1640         writeout_mutex = fio_mutex_init(1);
1641         if (writeout_mutex == NULL)
1642                 return 1;
1643
1644         set_genesis_time();
1645         create_disk_util_thread();
1646
1647         cgroup_list = smalloc(sizeof(*cgroup_list));
1648         INIT_FLIST_HEAD(cgroup_list);
1649
1650         run_threads();
1651
1652         if (!fio_abort) {
1653                 show_run_stats();
1654                 if (write_bw_log) {
1655                         __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1656                         __finish_log(agg_io_log[DDIR_WRITE],
1657                                         "agg-write_bw.log");
1658                 }
1659         }
1660
1661         for_each_td(td, i)
1662                 fio_options_free(td);
1663
1664         cgroup_kill(cgroup_list);
1665         sfree(cgroup_list);
1666         sfree(cgroup_mnt);
1667
1668         fio_mutex_remove(startup_mutex);
1669         fio_mutex_remove(writeout_mutex);
1670         return exit_value;
1671 }