Remove show_run_stats() because it has no callers
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <string.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <inttypes.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <math.h>
32
33 #include "fio.h"
34 #include "smalloc.h"
35 #include "verify.h"
36 #include "diskutil.h"
37 #include "cgroup.h"
38 #include "profile.h"
39 #include "lib/rand.h"
40 #include "lib/memalign.h"
41 #include "server.h"
42 #include "lib/getrusage.h"
43 #include "idletime.h"
44 #include "err.h"
45 #include "workqueue.h"
46 #include "lib/mountcheck.h"
47 #include "rate-submit.h"
48 #include "helper_thread.h"
49 #include "pshared.h"
50
51 static struct fio_sem *startup_sem;
52 static struct flist_head *cgroup_list;
53 static char *cgroup_mnt;
54 static int exit_value;
55 static volatile int fio_abort;
56 static unsigned int nr_process = 0;
57 static unsigned int nr_thread = 0;
58
59 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
60
61 int groupid = 0;
62 unsigned int thread_number = 0;
63 unsigned int stat_number = 0;
64 int shm_id = 0;
65 int temp_stall_ts;
66 unsigned long done_secs = 0;
67
68 #define JOB_START_TIMEOUT       (5 * 1000)
69
70 static void sig_int(int sig)
71 {
72         if (threads) {
73                 if (is_backend)
74                         fio_server_got_signal(sig);
75                 else {
76                         log_info("\nfio: terminating on signal %d\n", sig);
77                         log_info_flush();
78                         exit_value = 128;
79                 }
80
81                 fio_terminate_threads(TERMINATE_ALL);
82         }
83 }
84
85 void sig_show_status(int sig)
86 {
87         show_running_run_stats();
88 }
89
90 static void set_sig_handlers(void)
91 {
92         struct sigaction act;
93
94         memset(&act, 0, sizeof(act));
95         act.sa_handler = sig_int;
96         act.sa_flags = SA_RESTART;
97         sigaction(SIGINT, &act, NULL);
98
99         memset(&act, 0, sizeof(act));
100         act.sa_handler = sig_int;
101         act.sa_flags = SA_RESTART;
102         sigaction(SIGTERM, &act, NULL);
103
104 /* Windows uses SIGBREAK as a quit signal from other applications */
105 #ifdef WIN32
106         memset(&act, 0, sizeof(act));
107         act.sa_handler = sig_int;
108         act.sa_flags = SA_RESTART;
109         sigaction(SIGBREAK, &act, NULL);
110 #endif
111
112         memset(&act, 0, sizeof(act));
113         act.sa_handler = sig_show_status;
114         act.sa_flags = SA_RESTART;
115         sigaction(SIGUSR1, &act, NULL);
116
117         if (is_backend) {
118                 memset(&act, 0, sizeof(act));
119                 act.sa_handler = sig_int;
120                 act.sa_flags = SA_RESTART;
121                 sigaction(SIGPIPE, &act, NULL);
122         }
123 }
124
125 /*
126  * Check if we are above the minimum rate given.
127  */
128 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
129                              enum fio_ddir ddir)
130 {
131         unsigned long long bytes = 0;
132         unsigned long iops = 0;
133         unsigned long spent;
134         unsigned long rate;
135         unsigned int ratemin = 0;
136         unsigned int rate_iops = 0;
137         unsigned int rate_iops_min = 0;
138
139         assert(ddir_rw(ddir));
140
141         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
142                 return false;
143
144         /*
145          * allow a 2 second settle period in the beginning
146          */
147         if (mtime_since(&td->start, now) < 2000)
148                 return false;
149
150         iops += td->this_io_blocks[ddir];
151         bytes += td->this_io_bytes[ddir];
152         ratemin += td->o.ratemin[ddir];
153         rate_iops += td->o.rate_iops[ddir];
154         rate_iops_min += td->o.rate_iops_min[ddir];
155
156         /*
157          * if rate blocks is set, sample is running
158          */
159         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
160                 spent = mtime_since(&td->lastrate[ddir], now);
161                 if (spent < td->o.ratecycle)
162                         return false;
163
164                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
165                         /*
166                          * check bandwidth specified rate
167                          */
168                         if (bytes < td->rate_bytes[ddir]) {
169                                 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
170                                         td->o.name, ratemin, bytes);
171                                 return true;
172                         } else {
173                                 if (spent)
174                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
175                                 else
176                                         rate = 0;
177
178                                 if (rate < ratemin ||
179                                     bytes < td->rate_bytes[ddir]) {
180                                         log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
181                                                 td->o.name, ratemin, rate);
182                                         return true;
183                                 }
184                         }
185                 } else {
186                         /*
187                          * checks iops specified rate
188                          */
189                         if (iops < rate_iops) {
190                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
191                                                 td->o.name, rate_iops, iops);
192                                 return true;
193                         } else {
194                                 if (spent)
195                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
196                                 else
197                                         rate = 0;
198
199                                 if (rate < rate_iops_min ||
200                                     iops < td->rate_blocks[ddir]) {
201                                         log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
202                                                 td->o.name, rate_iops_min, rate);
203                                         return true;
204                                 }
205                         }
206                 }
207         }
208
209         td->rate_bytes[ddir] = bytes;
210         td->rate_blocks[ddir] = iops;
211         memcpy(&td->lastrate[ddir], now, sizeof(*now));
212         return false;
213 }
214
215 static bool check_min_rate(struct thread_data *td, struct timespec *now)
216 {
217         bool ret = false;
218
219         if (td->bytes_done[DDIR_READ])
220                 ret |= __check_min_rate(td, now, DDIR_READ);
221         if (td->bytes_done[DDIR_WRITE])
222                 ret |= __check_min_rate(td, now, DDIR_WRITE);
223         if (td->bytes_done[DDIR_TRIM])
224                 ret |= __check_min_rate(td, now, DDIR_TRIM);
225
226         return ret;
227 }
228
229 /*
230  * When job exits, we can cancel the in-flight IO if we are using async
231  * io. Attempt to do so.
232  */
233 static void cleanup_pending_aio(struct thread_data *td)
234 {
235         int r;
236
237         /*
238          * get immediately available events, if any
239          */
240         r = io_u_queued_complete(td, 0);
241         if (r < 0)
242                 return;
243
244         /*
245          * now cancel remaining active events
246          */
247         if (td->io_ops->cancel) {
248                 struct io_u *io_u;
249                 int i;
250
251                 io_u_qiter(&td->io_u_all, io_u, i) {
252                         if (io_u->flags & IO_U_F_FLIGHT) {
253                                 r = td->io_ops->cancel(td, io_u);
254                                 if (!r)
255                                         put_io_u(td, io_u);
256                         }
257                 }
258         }
259
260         if (td->cur_depth)
261                 r = io_u_queued_complete(td, td->cur_depth);
262 }
263
264 /*
265  * Helper to handle the final sync of a file. Works just like the normal
266  * io path, just does everything sync.
267  */
268 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
269 {
270         struct io_u *io_u = __get_io_u(td);
271         enum fio_q_status ret;
272
273         if (!io_u)
274                 return true;
275
276         io_u->ddir = DDIR_SYNC;
277         io_u->file = f;
278
279         if (td_io_prep(td, io_u)) {
280                 put_io_u(td, io_u);
281                 return true;
282         }
283
284 requeue:
285         ret = td_io_queue(td, io_u);
286         switch (ret) {
287         case FIO_Q_QUEUED:
288                 td_io_commit(td);
289                 if (io_u_queued_complete(td, 1) < 0)
290                         return true;
291                 break;
292         case FIO_Q_COMPLETED:
293                 if (io_u->error) {
294                         td_verror(td, io_u->error, "td_io_queue");
295                         return true;
296                 }
297
298                 if (io_u_sync_complete(td, io_u) < 0)
299                         return true;
300                 break;
301         case FIO_Q_BUSY:
302                 td_io_commit(td);
303                 goto requeue;
304         }
305
306         return false;
307 }
308
309 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
310 {
311         int ret;
312
313         if (fio_file_open(f))
314                 return fio_io_sync(td, f);
315
316         if (td_io_open_file(td, f))
317                 return 1;
318
319         ret = fio_io_sync(td, f);
320         td_io_close_file(td, f);
321         return ret;
322 }
323
324 static inline void __update_ts_cache(struct thread_data *td)
325 {
326         fio_gettime(&td->ts_cache, NULL);
327 }
328
329 static inline void update_ts_cache(struct thread_data *td)
330 {
331         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
332                 __update_ts_cache(td);
333 }
334
335 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
336 {
337         if (in_ramp_time(td))
338                 return false;
339         if (!td->o.timeout)
340                 return false;
341         if (utime_since(&td->epoch, t) >= td->o.timeout)
342                 return true;
343
344         return false;
345 }
346
347 /*
348  * We need to update the runtime consistently in ms, but keep a running
349  * tally of the current elapsed time in microseconds for sub millisecond
350  * updates.
351  */
352 static inline void update_runtime(struct thread_data *td,
353                                   unsigned long long *elapsed_us,
354                                   const enum fio_ddir ddir)
355 {
356         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
357                 return;
358
359         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
360         elapsed_us[ddir] += utime_since_now(&td->start);
361         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
362 }
363
364 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
365                                 int *retptr)
366 {
367         int ret = *retptr;
368
369         if (ret < 0 || td->error) {
370                 int err = td->error;
371                 enum error_type_bit eb;
372
373                 if (ret < 0)
374                         err = -ret;
375
376                 eb = td_error_type(ddir, err);
377                 if (!(td->o.continue_on_error & (1 << eb)))
378                         return true;
379
380                 if (td_non_fatal_error(td, eb, err)) {
381                         /*
382                          * Continue with the I/Os in case of
383                          * a non fatal error.
384                          */
385                         update_error_count(td, err);
386                         td_clear_error(td);
387                         *retptr = 0;
388                         return false;
389                 } else if (td->o.fill_device && err == ENOSPC) {
390                         /*
391                          * We expect to hit this error if
392                          * fill_device option is set.
393                          */
394                         td_clear_error(td);
395                         fio_mark_td_terminate(td);
396                         return true;
397                 } else {
398                         /*
399                          * Stop the I/O in case of a fatal
400                          * error.
401                          */
402                         update_error_count(td, err);
403                         return true;
404                 }
405         }
406
407         return false;
408 }
409
410 static void check_update_rusage(struct thread_data *td)
411 {
412         if (td->update_rusage) {
413                 td->update_rusage = 0;
414                 update_rusage_stat(td);
415                 fio_sem_up(td->rusage_sem);
416         }
417 }
418
419 static int wait_for_completions(struct thread_data *td, struct timespec *time)
420 {
421         const int full = queue_full(td);
422         int min_evts = 0;
423         int ret;
424
425         if (td->flags & TD_F_REGROW_LOGS)
426                 return io_u_quiesce(td);
427
428         /*
429          * if the queue is full, we MUST reap at least 1 event
430          */
431         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
432         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
433                 min_evts = 1;
434
435         if (time && (__should_check_rate(td, DDIR_READ) ||
436             __should_check_rate(td, DDIR_WRITE) ||
437             __should_check_rate(td, DDIR_TRIM)))
438                 fio_gettime(time, NULL);
439
440         do {
441                 ret = io_u_queued_complete(td, min_evts);
442                 if (ret < 0)
443                         break;
444         } while (full && (td->cur_depth > td->o.iodepth_low));
445
446         return ret;
447 }
448
449 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
450                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
451                    struct timespec *comp_time)
452 {
453         switch (*ret) {
454         case FIO_Q_COMPLETED:
455                 if (io_u->error) {
456                         *ret = -io_u->error;
457                         clear_io_u(td, io_u);
458                 } else if (io_u->resid) {
459                         int bytes = io_u->xfer_buflen - io_u->resid;
460                         struct fio_file *f = io_u->file;
461
462                         if (bytes_issued)
463                                 *bytes_issued += bytes;
464
465                         if (!from_verify)
466                                 trim_io_piece(td, io_u);
467
468                         /*
469                          * zero read, fail
470                          */
471                         if (!bytes) {
472                                 if (!from_verify)
473                                         unlog_io_piece(td, io_u);
474                                 td_verror(td, EIO, "full resid");
475                                 put_io_u(td, io_u);
476                                 break;
477                         }
478
479                         io_u->xfer_buflen = io_u->resid;
480                         io_u->xfer_buf += bytes;
481                         io_u->offset += bytes;
482
483                         if (ddir_rw(io_u->ddir))
484                                 td->ts.short_io_u[io_u->ddir]++;
485
486                         if (io_u->offset == f->real_file_size)
487                                 goto sync_done;
488
489                         requeue_io_u(td, &io_u);
490                 } else {
491 sync_done:
492                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
493                             __should_check_rate(td, DDIR_WRITE) ||
494                             __should_check_rate(td, DDIR_TRIM)))
495                                 fio_gettime(comp_time, NULL);
496
497                         *ret = io_u_sync_complete(td, io_u);
498                         if (*ret < 0)
499                                 break;
500                 }
501
502                 if (td->flags & TD_F_REGROW_LOGS)
503                         regrow_logs(td);
504
505                 /*
506                  * when doing I/O (not when verifying),
507                  * check for any errors that are to be ignored
508                  */
509                 if (!from_verify)
510                         break;
511
512                 return 0;
513         case FIO_Q_QUEUED:
514                 /*
515                  * if the engine doesn't have a commit hook,
516                  * the io_u is really queued. if it does have such
517                  * a hook, it has to call io_u_queued() itself.
518                  */
519                 if (td->io_ops->commit == NULL)
520                         io_u_queued(td, io_u);
521                 if (bytes_issued)
522                         *bytes_issued += io_u->xfer_buflen;
523                 break;
524         case FIO_Q_BUSY:
525                 if (!from_verify)
526                         unlog_io_piece(td, io_u);
527                 requeue_io_u(td, &io_u);
528                 td_io_commit(td);
529                 break;
530         default:
531                 assert(*ret < 0);
532                 td_verror(td, -(*ret), "td_io_queue");
533                 break;
534         }
535
536         if (break_on_this_error(td, ddir, ret))
537                 return 1;
538
539         return 0;
540 }
541
542 static inline bool io_in_polling(struct thread_data *td)
543 {
544         return !td->o.iodepth_batch_complete_min &&
545                    !td->o.iodepth_batch_complete_max;
546 }
547 /*
548  * Unlinks files from thread data fio_file structure
549  */
550 static int unlink_all_files(struct thread_data *td)
551 {
552         struct fio_file *f;
553         unsigned int i;
554         int ret = 0;
555
556         for_each_file(td, f, i) {
557                 if (f->filetype != FIO_TYPE_FILE)
558                         continue;
559                 ret = td_io_unlink_file(td, f);
560                 if (ret)
561                         break;
562         }
563
564         if (ret)
565                 td_verror(td, ret, "unlink_all_files");
566
567         return ret;
568 }
569
570 /*
571  * Check if io_u will overlap an in-flight IO in the queue
572  */
573 static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
574 {
575         bool overlap;
576         struct io_u *check_io_u;
577         unsigned long long x1, x2, y1, y2;
578         int i;
579
580         x1 = io_u->offset;
581         x2 = io_u->offset + io_u->buflen;
582         overlap = false;
583         io_u_qiter(q, check_io_u, i) {
584                 if (check_io_u->flags & IO_U_F_FLIGHT) {
585                         y1 = check_io_u->offset;
586                         y2 = check_io_u->offset + check_io_u->buflen;
587
588                         if (x1 < y2 && y1 < x2) {
589                                 overlap = true;
590                                 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
591                                                 x1, io_u->buflen,
592                                                 y1, check_io_u->buflen);
593                                 break;
594                         }
595                 }
596         }
597
598         return overlap;
599 }
600
601 static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
602 {
603         /*
604          * Check for overlap if the user asked us to, and we have
605          * at least one IO in flight besides this one.
606          */
607         if (td->o.serialize_overlap && td->cur_depth > 1 &&
608             in_flight_overlap(&td->io_u_all, io_u))
609                 return FIO_Q_BUSY;
610
611         return td_io_queue(td, io_u);
612 }
613
614 /*
615  * The main verify engine. Runs over the writes we previously submitted,
616  * reads the blocks back in, and checks the crc/md5 of the data.
617  */
618 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
619 {
620         struct fio_file *f;
621         struct io_u *io_u;
622         int ret, min_events;
623         unsigned int i;
624
625         dprint(FD_VERIFY, "starting loop\n");
626
627         /*
628          * sync io first and invalidate cache, to make sure we really
629          * read from disk.
630          */
631         for_each_file(td, f, i) {
632                 if (!fio_file_open(f))
633                         continue;
634                 if (fio_io_sync(td, f))
635                         break;
636                 if (file_invalidate_cache(td, f))
637                         break;
638         }
639
640         check_update_rusage(td);
641
642         if (td->error)
643                 return;
644
645         /*
646          * verify_state needs to be reset before verification
647          * proceeds so that expected random seeds match actual
648          * random seeds in headers. The main loop will reset
649          * all random number generators if randrepeat is set.
650          */
651         if (!td->o.rand_repeatable)
652                 td_fill_verify_state_seed(td);
653
654         td_set_runstate(td, TD_VERIFYING);
655
656         io_u = NULL;
657         while (!td->terminate) {
658                 enum fio_ddir ddir;
659                 int full;
660
661                 update_ts_cache(td);
662                 check_update_rusage(td);
663
664                 if (runtime_exceeded(td, &td->ts_cache)) {
665                         __update_ts_cache(td);
666                         if (runtime_exceeded(td, &td->ts_cache)) {
667                                 fio_mark_td_terminate(td);
668                                 break;
669                         }
670                 }
671
672                 if (flow_threshold_exceeded(td))
673                         continue;
674
675                 if (!td->o.experimental_verify) {
676                         io_u = __get_io_u(td);
677                         if (!io_u)
678                                 break;
679
680                         if (get_next_verify(td, io_u)) {
681                                 put_io_u(td, io_u);
682                                 break;
683                         }
684
685                         if (td_io_prep(td, io_u)) {
686                                 put_io_u(td, io_u);
687                                 break;
688                         }
689                 } else {
690                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
691                                 break;
692
693                         while ((io_u = get_io_u(td)) != NULL) {
694                                 if (IS_ERR_OR_NULL(io_u)) {
695                                         io_u = NULL;
696                                         ret = FIO_Q_BUSY;
697                                         goto reap;
698                                 }
699
700                                 /*
701                                  * We are only interested in the places where
702                                  * we wrote or trimmed IOs. Turn those into
703                                  * reads for verification purposes.
704                                  */
705                                 if (io_u->ddir == DDIR_READ) {
706                                         /*
707                                          * Pretend we issued it for rwmix
708                                          * accounting
709                                          */
710                                         td->io_issues[DDIR_READ]++;
711                                         put_io_u(td, io_u);
712                                         continue;
713                                 } else if (io_u->ddir == DDIR_TRIM) {
714                                         io_u->ddir = DDIR_READ;
715                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
716                                         break;
717                                 } else if (io_u->ddir == DDIR_WRITE) {
718                                         io_u->ddir = DDIR_READ;
719                                         populate_verify_io_u(td, io_u);
720                                         break;
721                                 } else {
722                                         put_io_u(td, io_u);
723                                         continue;
724                                 }
725                         }
726
727                         if (!io_u)
728                                 break;
729                 }
730
731                 if (verify_state_should_stop(td, io_u)) {
732                         put_io_u(td, io_u);
733                         break;
734                 }
735
736                 if (td->o.verify_async)
737                         io_u->end_io = verify_io_u_async;
738                 else
739                         io_u->end_io = verify_io_u;
740
741                 ddir = io_u->ddir;
742                 if (!td->o.disable_slat)
743                         fio_gettime(&io_u->start_time, NULL);
744
745                 ret = io_u_submit(td, io_u);
746
747                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
748                         break;
749
750                 /*
751                  * if we can queue more, do so. but check if there are
752                  * completed io_u's first. Note that we can get BUSY even
753                  * without IO queued, if the system is resource starved.
754                  */
755 reap:
756                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
757                 if (full || io_in_polling(td))
758                         ret = wait_for_completions(td, NULL);
759
760                 if (ret < 0)
761                         break;
762         }
763
764         check_update_rusage(td);
765
766         if (!td->error) {
767                 min_events = td->cur_depth;
768
769                 if (min_events)
770                         ret = io_u_queued_complete(td, min_events);
771         } else
772                 cleanup_pending_aio(td);
773
774         td_set_runstate(td, TD_RUNNING);
775
776         dprint(FD_VERIFY, "exiting loop\n");
777 }
778
779 static bool exceeds_number_ios(struct thread_data *td)
780 {
781         unsigned long long number_ios;
782
783         if (!td->o.number_ios)
784                 return false;
785
786         number_ios = ddir_rw_sum(td->io_blocks);
787         number_ios += td->io_u_queued + td->io_u_in_flight;
788
789         return number_ios >= (td->o.number_ios * td->loops);
790 }
791
792 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
793 {
794         unsigned long long bytes, limit;
795
796         if (td_rw(td))
797                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
798         else if (td_write(td))
799                 bytes = this_bytes[DDIR_WRITE];
800         else if (td_read(td))
801                 bytes = this_bytes[DDIR_READ];
802         else
803                 bytes = this_bytes[DDIR_TRIM];
804
805         if (td->o.io_size)
806                 limit = td->o.io_size;
807         else
808                 limit = td->o.size;
809
810         limit *= td->loops;
811         return bytes >= limit || exceeds_number_ios(td);
812 }
813
814 static bool io_issue_bytes_exceeded(struct thread_data *td)
815 {
816         return io_bytes_exceeded(td, td->io_issue_bytes);
817 }
818
819 static bool io_complete_bytes_exceeded(struct thread_data *td)
820 {
821         return io_bytes_exceeded(td, td->this_io_bytes);
822 }
823
824 /*
825  * used to calculate the next io time for rate control
826  *
827  */
828 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
829 {
830         uint64_t bps = td->rate_bps[ddir];
831
832         assert(!(td->flags & TD_F_CHILD));
833
834         if (td->o.rate_process == RATE_PROCESS_POISSON) {
835                 uint64_t val, iops;
836
837                 iops = bps / td->o.bs[ddir];
838                 val = (int64_t) (1000000 / iops) *
839                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
840                 if (val) {
841                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
842                                         (unsigned long long) 1000000 / val,
843                                         ddir);
844                 }
845                 td->last_usec[ddir] += val;
846                 return td->last_usec[ddir];
847         } else if (bps) {
848                 uint64_t bytes = td->rate_io_issue_bytes[ddir];
849                 uint64_t secs = bytes / bps;
850                 uint64_t remainder = bytes % bps;
851
852                 return remainder * 1000000 / bps + secs * 1000000;
853         }
854
855         return 0;
856 }
857
858 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
859 {
860         unsigned long long b;
861         uint64_t total;
862         int left;
863
864         b = ddir_rw_sum(td->io_blocks);
865         if (b % td->o.thinktime_blocks)
866                 return;
867
868         io_u_quiesce(td);
869
870         total = 0;
871         if (td->o.thinktime_spin)
872                 total = usec_spin(td->o.thinktime_spin);
873
874         left = td->o.thinktime - total;
875         if (left)
876                 total += usec_sleep(td, left);
877
878         /*
879          * If we're ignoring thinktime for the rate, add the number of bytes
880          * we would have done while sleeping, minus one block to ensure we
881          * start issuing immediately after the sleep.
882          */
883         if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
884                 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
885                 uint64_t bs = td->o.min_bs[ddir];
886                 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
887                 uint64_t over;
888
889                 if (usperop <= total)
890                         over = bs;
891                 else
892                         over = (usperop - total) / usperop * -bs;
893
894                 td->rate_io_issue_bytes[ddir] += (missed - over);
895                 /* adjust for rate_process=poisson */
896                 td->last_usec[ddir] += total;
897         }
898 }
899
900 /*
901  * Main IO worker function. It retrieves io_u's to process and queues
902  * and reaps them, checking for rate and errors along the way.
903  *
904  * Returns number of bytes written and trimmed.
905  */
906 static void do_io(struct thread_data *td, uint64_t *bytes_done)
907 {
908         unsigned int i;
909         int ret = 0;
910         uint64_t total_bytes, bytes_issued = 0;
911
912         for (i = 0; i < DDIR_RWDIR_CNT; i++)
913                 bytes_done[i] = td->bytes_done[i];
914
915         if (in_ramp_time(td))
916                 td_set_runstate(td, TD_RAMP);
917         else
918                 td_set_runstate(td, TD_RUNNING);
919
920         lat_target_init(td);
921
922         total_bytes = td->o.size;
923         /*
924         * Allow random overwrite workloads to write up to io_size
925         * before starting verification phase as 'size' doesn't apply.
926         */
927         if (td_write(td) && td_random(td) && td->o.norandommap)
928                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
929         /*
930          * If verify_backlog is enabled, we'll run the verify in this
931          * handler as well. For that case, we may need up to twice the
932          * amount of bytes.
933          */
934         if (td->o.verify != VERIFY_NONE &&
935            (td_write(td) && td->o.verify_backlog))
936                 total_bytes += td->o.size;
937
938         /* In trimwrite mode, each byte is trimmed and then written, so
939          * allow total_bytes to be twice as big */
940         if (td_trimwrite(td))
941                 total_bytes += td->total_io_size;
942
943         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
944                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
945                 td->o.time_based) {
946                 struct timespec comp_time;
947                 struct io_u *io_u;
948                 int full;
949                 enum fio_ddir ddir;
950
951                 check_update_rusage(td);
952
953                 if (td->terminate || td->done)
954                         break;
955
956                 update_ts_cache(td);
957
958                 if (runtime_exceeded(td, &td->ts_cache)) {
959                         __update_ts_cache(td);
960                         if (runtime_exceeded(td, &td->ts_cache)) {
961                                 fio_mark_td_terminate(td);
962                                 break;
963                         }
964                 }
965
966                 if (flow_threshold_exceeded(td))
967                         continue;
968
969                 /*
970                  * Break if we exceeded the bytes. The exception is time
971                  * based runs, but we still need to break out of the loop
972                  * for those to run verification, if enabled.
973                  */
974                 if (bytes_issued >= total_bytes &&
975                     (!td->o.time_based ||
976                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
977                         break;
978
979                 io_u = get_io_u(td);
980                 if (IS_ERR_OR_NULL(io_u)) {
981                         int err = PTR_ERR(io_u);
982
983                         io_u = NULL;
984                         ddir = DDIR_INVAL;
985                         if (err == -EBUSY) {
986                                 ret = FIO_Q_BUSY;
987                                 goto reap;
988                         }
989                         if (td->o.latency_target)
990                                 goto reap;
991                         break;
992                 }
993
994                 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
995                         populate_verify_io_u(td, io_u);
996
997                 ddir = io_u->ddir;
998
999                 /*
1000                  * Add verification end_io handler if:
1001                  *      - Asked to verify (!td_rw(td))
1002                  *      - Or the io_u is from our verify list (mixed write/ver)
1003                  */
1004                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1005                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1006
1007                         if (!td->o.verify_pattern_bytes) {
1008                                 io_u->rand_seed = __rand(&td->verify_state);
1009                                 if (sizeof(int) != sizeof(long *))
1010                                         io_u->rand_seed *= __rand(&td->verify_state);
1011                         }
1012
1013                         if (verify_state_should_stop(td, io_u)) {
1014                                 put_io_u(td, io_u);
1015                                 break;
1016                         }
1017
1018                         if (td->o.verify_async)
1019                                 io_u->end_io = verify_io_u_async;
1020                         else
1021                                 io_u->end_io = verify_io_u;
1022                         td_set_runstate(td, TD_VERIFYING);
1023                 } else if (in_ramp_time(td))
1024                         td_set_runstate(td, TD_RAMP);
1025                 else
1026                         td_set_runstate(td, TD_RUNNING);
1027
1028                 /*
1029                  * Always log IO before it's issued, so we know the specific
1030                  * order of it. The logged unit will track when the IO has
1031                  * completed.
1032                  */
1033                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1034                     td->o.do_verify &&
1035                     td->o.verify != VERIFY_NONE &&
1036                     !td->o.experimental_verify)
1037                         log_io_piece(td, io_u);
1038
1039                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1040                         const unsigned long blen = io_u->xfer_buflen;
1041                         const enum fio_ddir ddir = acct_ddir(io_u);
1042
1043                         if (td->error)
1044                                 break;
1045
1046                         workqueue_enqueue(&td->io_wq, &io_u->work);
1047                         ret = FIO_Q_QUEUED;
1048
1049                         if (ddir_rw(ddir)) {
1050                                 td->io_issues[ddir]++;
1051                                 td->io_issue_bytes[ddir] += blen;
1052                                 td->rate_io_issue_bytes[ddir] += blen;
1053                         }
1054
1055                         if (should_check_rate(td))
1056                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1057
1058                 } else {
1059                         ret = io_u_submit(td, io_u);
1060
1061                         if (should_check_rate(td))
1062                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1063
1064                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1065                                 break;
1066
1067                         /*
1068                          * See if we need to complete some commands. Note that
1069                          * we can get BUSY even without IO queued, if the
1070                          * system is resource starved.
1071                          */
1072 reap:
1073                         full = queue_full(td) ||
1074                                 (ret == FIO_Q_BUSY && td->cur_depth);
1075                         if (full || io_in_polling(td))
1076                                 ret = wait_for_completions(td, &comp_time);
1077                 }
1078                 if (ret < 0)
1079                         break;
1080                 if (!ddir_rw_sum(td->bytes_done) &&
1081                     !td_ioengine_flagged(td, FIO_NOIO))
1082                         continue;
1083
1084                 if (!in_ramp_time(td) && should_check_rate(td)) {
1085                         if (check_min_rate(td, &comp_time)) {
1086                                 if (exitall_on_terminate || td->o.exitall_error)
1087                                         fio_terminate_threads(td->groupid);
1088                                 td_verror(td, EIO, "check_min_rate");
1089                                 break;
1090                         }
1091                 }
1092                 if (!in_ramp_time(td) && td->o.latency_target)
1093                         lat_target_check(td);
1094
1095                 if (ddir_rw(ddir) && td->o.thinktime)
1096                         handle_thinktime(td, ddir);
1097         }
1098
1099         check_update_rusage(td);
1100
1101         if (td->trim_entries)
1102                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1103
1104         if (td->o.fill_device && td->error == ENOSPC) {
1105                 td->error = 0;
1106                 fio_mark_td_terminate(td);
1107         }
1108         if (!td->error) {
1109                 struct fio_file *f;
1110
1111                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1112                         workqueue_flush(&td->io_wq);
1113                         i = 0;
1114                 } else
1115                         i = td->cur_depth;
1116
1117                 if (i) {
1118                         ret = io_u_queued_complete(td, i);
1119                         if (td->o.fill_device && td->error == ENOSPC)
1120                                 td->error = 0;
1121                 }
1122
1123                 if (should_fsync(td) && td->o.end_fsync) {
1124                         td_set_runstate(td, TD_FSYNCING);
1125
1126                         for_each_file(td, f, i) {
1127                                 if (!fio_file_fsync(td, f))
1128                                         continue;
1129
1130                                 log_err("fio: end_fsync failed for file %s\n",
1131                                                                 f->file_name);
1132                         }
1133                 }
1134         } else
1135                 cleanup_pending_aio(td);
1136
1137         /*
1138          * stop job if we failed doing any IO
1139          */
1140         if (!ddir_rw_sum(td->this_io_bytes))
1141                 td->done = 1;
1142
1143         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1144                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1145 }
1146
1147 static void free_file_completion_logging(struct thread_data *td)
1148 {
1149         struct fio_file *f;
1150         unsigned int i;
1151
1152         for_each_file(td, f, i) {
1153                 if (!f->last_write_comp)
1154                         break;
1155                 sfree(f->last_write_comp);
1156         }
1157 }
1158
1159 static int init_file_completion_logging(struct thread_data *td,
1160                                         unsigned int depth)
1161 {
1162         struct fio_file *f;
1163         unsigned int i;
1164
1165         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1166                 return 0;
1167
1168         for_each_file(td, f, i) {
1169                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1170                 if (!f->last_write_comp)
1171                         goto cleanup;
1172         }
1173
1174         return 0;
1175
1176 cleanup:
1177         free_file_completion_logging(td);
1178         log_err("fio: failed to alloc write comp data\n");
1179         return 1;
1180 }
1181
1182 static void cleanup_io_u(struct thread_data *td)
1183 {
1184         struct io_u *io_u;
1185
1186         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1187
1188                 if (td->io_ops->io_u_free)
1189                         td->io_ops->io_u_free(td, io_u);
1190
1191                 fio_memfree(io_u, sizeof(*io_u));
1192         }
1193
1194         free_io_mem(td);
1195
1196         io_u_rexit(&td->io_u_requeues);
1197         io_u_qexit(&td->io_u_freelist);
1198         io_u_qexit(&td->io_u_all);
1199
1200         free_file_completion_logging(td);
1201 }
1202
1203 static int init_io_u(struct thread_data *td)
1204 {
1205         struct io_u *io_u;
1206         unsigned int max_bs, min_write;
1207         int cl_align, i, max_units;
1208         int data_xfer = 1, err;
1209         char *p;
1210
1211         max_units = td->o.iodepth;
1212         max_bs = td_max_bs(td);
1213         min_write = td->o.min_bs[DDIR_WRITE];
1214         td->orig_buffer_size = (unsigned long long) max_bs
1215                                         * (unsigned long long) max_units;
1216
1217         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1218                 data_xfer = 0;
1219
1220         err = 0;
1221         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1222         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1223         err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1224
1225         if (err) {
1226                 log_err("fio: failed setting up IO queues\n");
1227                 return 1;
1228         }
1229
1230         /*
1231          * if we may later need to do address alignment, then add any
1232          * possible adjustment here so that we don't cause a buffer
1233          * overflow later. this adjustment may be too much if we get
1234          * lucky and the allocator gives us an aligned address.
1235          */
1236         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1237             td_ioengine_flagged(td, FIO_RAWIO))
1238                 td->orig_buffer_size += page_mask + td->o.mem_align;
1239
1240         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1241                 unsigned long bs;
1242
1243                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1244                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1245         }
1246
1247         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1248                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1249                 return 1;
1250         }
1251
1252         if (data_xfer && allocate_io_mem(td))
1253                 return 1;
1254
1255         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1256             td_ioengine_flagged(td, FIO_RAWIO))
1257                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1258         else
1259                 p = td->orig_buffer;
1260
1261         cl_align = os_cache_line_size();
1262
1263         for (i = 0; i < max_units; i++) {
1264                 void *ptr;
1265
1266                 if (td->terminate)
1267                         return 1;
1268
1269                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1270                 if (!ptr) {
1271                         log_err("fio: unable to allocate aligned memory\n");
1272                         break;
1273                 }
1274
1275                 io_u = ptr;
1276                 memset(io_u, 0, sizeof(*io_u));
1277                 INIT_FLIST_HEAD(&io_u->verify_list);
1278                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1279
1280                 if (data_xfer) {
1281                         io_u->buf = p;
1282                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1283
1284                         if (td_write(td))
1285                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1286                         if (td_write(td) && td->o.verify_pattern_bytes) {
1287                                 /*
1288                                  * Fill the buffer with the pattern if we are
1289                                  * going to be doing writes.
1290                                  */
1291                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1292                         }
1293                 }
1294
1295                 io_u->index = i;
1296                 io_u->flags = IO_U_F_FREE;
1297                 io_u_qpush(&td->io_u_freelist, io_u);
1298
1299                 /*
1300                  * io_u never leaves this stack, used for iteration of all
1301                  * io_u buffers.
1302                  */
1303                 io_u_qpush(&td->io_u_all, io_u);
1304
1305                 if (td->io_ops->io_u_init) {
1306                         int ret = td->io_ops->io_u_init(td, io_u);
1307
1308                         if (ret) {
1309                                 log_err("fio: failed to init engine data: %d\n", ret);
1310                                 return 1;
1311                         }
1312                 }
1313
1314                 p += max_bs;
1315         }
1316
1317         if (init_file_completion_logging(td, max_units))
1318                 return 1;
1319
1320         return 0;
1321 }
1322
1323 /*
1324  * This function is Linux specific.
1325  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1326  */
1327 static int switch_ioscheduler(struct thread_data *td)
1328 {
1329 #ifdef FIO_HAVE_IOSCHED_SWITCH
1330         char tmp[256], tmp2[128], *p;
1331         FILE *f;
1332         int ret;
1333
1334         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1335                 return 0;
1336
1337         assert(td->files && td->files[0]);
1338         sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1339
1340         f = fopen(tmp, "r+");
1341         if (!f) {
1342                 if (errno == ENOENT) {
1343                         log_err("fio: os or kernel doesn't support IO scheduler"
1344                                 " switching\n");
1345                         return 0;
1346                 }
1347                 td_verror(td, errno, "fopen iosched");
1348                 return 1;
1349         }
1350
1351         /*
1352          * Set io scheduler.
1353          */
1354         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1355         if (ferror(f) || ret != 1) {
1356                 td_verror(td, errno, "fwrite");
1357                 fclose(f);
1358                 return 1;
1359         }
1360
1361         rewind(f);
1362
1363         /*
1364          * Read back and check that the selected scheduler is now the default.
1365          */
1366         ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1367         if (ferror(f) || ret < 0) {
1368                 td_verror(td, errno, "fread");
1369                 fclose(f);
1370                 return 1;
1371         }
1372         tmp[ret] = '\0';
1373         /*
1374          * either a list of io schedulers or "none\n" is expected. Strip the
1375          * trailing newline.
1376          */
1377         p = tmp;
1378         strsep(&p, "\n");
1379
1380         /*
1381          * Write to "none" entry doesn't fail, so check the result here.
1382          */
1383         if (!strcmp(tmp, "none")) {
1384                 log_err("fio: io scheduler is not tunable\n");
1385                 fclose(f);
1386                 return 0;
1387         }
1388
1389         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1390         if (!strstr(tmp, tmp2)) {
1391                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1392                 td_verror(td, EINVAL, "iosched_switch");
1393                 fclose(f);
1394                 return 1;
1395         }
1396
1397         fclose(f);
1398         return 0;
1399 #else
1400         return 0;
1401 #endif
1402 }
1403
1404 static bool keep_running(struct thread_data *td)
1405 {
1406         unsigned long long limit;
1407
1408         if (td->done)
1409                 return false;
1410         if (td->terminate)
1411                 return false;
1412         if (td->o.time_based)
1413                 return true;
1414         if (td->o.loops) {
1415                 td->o.loops--;
1416                 return true;
1417         }
1418         if (exceeds_number_ios(td))
1419                 return false;
1420
1421         if (td->o.io_size)
1422                 limit = td->o.io_size;
1423         else
1424                 limit = td->o.size;
1425
1426         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1427                 uint64_t diff;
1428
1429                 /*
1430                  * If the difference is less than the maximum IO size, we
1431                  * are done.
1432                  */
1433                 diff = limit - ddir_rw_sum(td->io_bytes);
1434                 if (diff < td_max_bs(td))
1435                         return false;
1436
1437                 if (fio_files_done(td) && !td->o.io_size)
1438                         return false;
1439
1440                 return true;
1441         }
1442
1443         return false;
1444 }
1445
1446 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1447 {
1448         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1449         int ret;
1450         char *str;
1451
1452         str = malloc(newlen);
1453         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1454
1455         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1456         ret = system(str);
1457         if (ret == -1)
1458                 log_err("fio: exec of cmd <%s> failed\n", str);
1459
1460         free(str);
1461         return ret;
1462 }
1463
1464 /*
1465  * Dry run to compute correct state of numberio for verification.
1466  */
1467 static uint64_t do_dry_run(struct thread_data *td)
1468 {
1469         td_set_runstate(td, TD_RUNNING);
1470
1471         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1472                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1473                 struct io_u *io_u;
1474                 int ret;
1475
1476                 if (td->terminate || td->done)
1477                         break;
1478
1479                 io_u = get_io_u(td);
1480                 if (IS_ERR_OR_NULL(io_u))
1481                         break;
1482
1483                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1484                 io_u->error = 0;
1485                 io_u->resid = 0;
1486                 if (ddir_rw(acct_ddir(io_u)))
1487                         td->io_issues[acct_ddir(io_u)]++;
1488                 if (ddir_rw(io_u->ddir)) {
1489                         io_u_mark_depth(td, 1);
1490                         td->ts.total_io_u[io_u->ddir]++;
1491                 }
1492
1493                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1494                     td->o.do_verify &&
1495                     td->o.verify != VERIFY_NONE &&
1496                     !td->o.experimental_verify)
1497                         log_io_piece(td, io_u);
1498
1499                 ret = io_u_sync_complete(td, io_u);
1500                 (void) ret;
1501         }
1502
1503         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1504 }
1505
1506 struct fork_data {
1507         struct thread_data *td;
1508         struct sk_out *sk_out;
1509 };
1510
1511 /*
1512  * Entry point for the thread based jobs. The process based jobs end up
1513  * here as well, after a little setup.
1514  */
1515 static void *thread_main(void *data)
1516 {
1517         struct fork_data *fd = data;
1518         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1519         struct thread_data *td = fd->td;
1520         struct thread_options *o = &td->o;
1521         struct sk_out *sk_out = fd->sk_out;
1522         uint64_t bytes_done[DDIR_RWDIR_CNT];
1523         int deadlock_loop_cnt;
1524         bool clear_state, did_some_io;
1525         int ret;
1526
1527         sk_out_assign(sk_out);
1528         free(fd);
1529
1530         if (!o->use_thread) {
1531                 setsid();
1532                 td->pid = getpid();
1533         } else
1534                 td->pid = gettid();
1535
1536         fio_local_clock_init(o->use_thread);
1537
1538         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1539
1540         if (is_backend)
1541                 fio_server_send_start(td);
1542
1543         INIT_FLIST_HEAD(&td->io_log_list);
1544         INIT_FLIST_HEAD(&td->io_hist_list);
1545         INIT_FLIST_HEAD(&td->verify_list);
1546         INIT_FLIST_HEAD(&td->trim_list);
1547         td->io_hist_tree = RB_ROOT;
1548
1549         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1550         if (ret) {
1551                 td_verror(td, ret, "mutex_cond_init_pshared");
1552                 goto err;
1553         }
1554         ret = cond_init_pshared(&td->verify_cond);
1555         if (ret) {
1556                 td_verror(td, ret, "mutex_cond_pshared");
1557                 goto err;
1558         }
1559
1560         td_set_runstate(td, TD_INITIALIZED);
1561         dprint(FD_MUTEX, "up startup_sem\n");
1562         fio_sem_up(startup_sem);
1563         dprint(FD_MUTEX, "wait on td->sem\n");
1564         fio_sem_down(td->sem);
1565         dprint(FD_MUTEX, "done waiting on td->sem\n");
1566
1567         /*
1568          * A new gid requires privilege, so we need to do this before setting
1569          * the uid.
1570          */
1571         if (o->gid != -1U && setgid(o->gid)) {
1572                 td_verror(td, errno, "setgid");
1573                 goto err;
1574         }
1575         if (o->uid != -1U && setuid(o->uid)) {
1576                 td_verror(td, errno, "setuid");
1577                 goto err;
1578         }
1579
1580         /*
1581          * Do this early, we don't want the compress threads to be limited
1582          * to the same CPUs as the IO workers. So do this before we set
1583          * any potential CPU affinity
1584          */
1585         if (iolog_compress_init(td, sk_out))
1586                 goto err;
1587
1588         /*
1589          * If we have a gettimeofday() thread, make sure we exclude that
1590          * thread from this job
1591          */
1592         if (o->gtod_cpu)
1593                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1594
1595         /*
1596          * Set affinity first, in case it has an impact on the memory
1597          * allocations.
1598          */
1599         if (fio_option_is_set(o, cpumask)) {
1600                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1601                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1602                         if (!ret) {
1603                                 log_err("fio: no CPUs set\n");
1604                                 log_err("fio: Try increasing number of available CPUs\n");
1605                                 td_verror(td, EINVAL, "cpus_split");
1606                                 goto err;
1607                         }
1608                 }
1609                 ret = fio_setaffinity(td->pid, o->cpumask);
1610                 if (ret == -1) {
1611                         td_verror(td, errno, "cpu_set_affinity");
1612                         goto err;
1613                 }
1614         }
1615
1616 #ifdef CONFIG_LIBNUMA
1617         /* numa node setup */
1618         if (fio_option_is_set(o, numa_cpunodes) ||
1619             fio_option_is_set(o, numa_memnodes)) {
1620                 struct bitmask *mask;
1621
1622                 if (numa_available() < 0) {
1623                         td_verror(td, errno, "Does not support NUMA API\n");
1624                         goto err;
1625                 }
1626
1627                 if (fio_option_is_set(o, numa_cpunodes)) {
1628                         mask = numa_parse_nodestring(o->numa_cpunodes);
1629                         ret = numa_run_on_node_mask(mask);
1630                         numa_free_nodemask(mask);
1631                         if (ret == -1) {
1632                                 td_verror(td, errno, \
1633                                         "numa_run_on_node_mask failed\n");
1634                                 goto err;
1635                         }
1636                 }
1637
1638                 if (fio_option_is_set(o, numa_memnodes)) {
1639                         mask = NULL;
1640                         if (o->numa_memnodes)
1641                                 mask = numa_parse_nodestring(o->numa_memnodes);
1642
1643                         switch (o->numa_mem_mode) {
1644                         case MPOL_INTERLEAVE:
1645                                 numa_set_interleave_mask(mask);
1646                                 break;
1647                         case MPOL_BIND:
1648                                 numa_set_membind(mask);
1649                                 break;
1650                         case MPOL_LOCAL:
1651                                 numa_set_localalloc();
1652                                 break;
1653                         case MPOL_PREFERRED:
1654                                 numa_set_preferred(o->numa_mem_prefer_node);
1655                                 break;
1656                         case MPOL_DEFAULT:
1657                         default:
1658                                 break;
1659                         }
1660
1661                         if (mask)
1662                                 numa_free_nodemask(mask);
1663
1664                 }
1665         }
1666 #endif
1667
1668         if (fio_pin_memory(td))
1669                 goto err;
1670
1671         /*
1672          * May alter parameters that init_io_u() will use, so we need to
1673          * do this first.
1674          */
1675         if (!init_iolog(td))
1676                 goto err;
1677
1678         if (init_io_u(td))
1679                 goto err;
1680
1681         if (o->verify_async && verify_async_init(td))
1682                 goto err;
1683
1684         if (fio_option_is_set(o, ioprio) ||
1685             fio_option_is_set(o, ioprio_class)) {
1686                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1687                 if (ret == -1) {
1688                         td_verror(td, errno, "ioprio_set");
1689                         goto err;
1690                 }
1691         }
1692
1693         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1694                 goto err;
1695
1696         errno = 0;
1697         if (nice(o->nice) == -1 && errno != 0) {
1698                 td_verror(td, errno, "nice");
1699                 goto err;
1700         }
1701
1702         if (o->ioscheduler && switch_ioscheduler(td))
1703                 goto err;
1704
1705         if (!o->create_serialize && setup_files(td))
1706                 goto err;
1707
1708         if (td_io_init(td))
1709                 goto err;
1710
1711         if (!init_random_map(td))
1712                 goto err;
1713
1714         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1715                 goto err;
1716
1717         if (o->pre_read && !pre_read_files(td))
1718                 goto err;
1719
1720         fio_verify_init(td);
1721
1722         if (rate_submit_init(td, sk_out))
1723                 goto err;
1724
1725         set_epoch_time(td, o->log_unix_epoch);
1726         fio_getrusage(&td->ru_start);
1727         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1728         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1729         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1730
1731         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1732                         o->ratemin[DDIR_TRIM]) {
1733                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1734                                         sizeof(td->bw_sample_time));
1735                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1736                                         sizeof(td->bw_sample_time));
1737                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1738                                         sizeof(td->bw_sample_time));
1739         }
1740
1741         memset(bytes_done, 0, sizeof(bytes_done));
1742         clear_state = false;
1743         did_some_io = false;
1744
1745         while (keep_running(td)) {
1746                 uint64_t verify_bytes;
1747
1748                 fio_gettime(&td->start, NULL);
1749                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1750
1751                 if (clear_state) {
1752                         clear_io_state(td, 0);
1753
1754                         if (o->unlink_each_loop && unlink_all_files(td))
1755                                 break;
1756                 }
1757
1758                 prune_io_piece_log(td);
1759
1760                 if (td->o.verify_only && td_write(td))
1761                         verify_bytes = do_dry_run(td);
1762                 else {
1763                         do_io(td, bytes_done);
1764
1765                         if (!ddir_rw_sum(bytes_done)) {
1766                                 fio_mark_td_terminate(td);
1767                                 verify_bytes = 0;
1768                         } else {
1769                                 verify_bytes = bytes_done[DDIR_WRITE] +
1770                                                 bytes_done[DDIR_TRIM];
1771                         }
1772                 }
1773
1774                 /*
1775                  * If we took too long to shut down, the main thread could
1776                  * already consider us reaped/exited. If that happens, break
1777                  * out and clean up.
1778                  */
1779                 if (td->runstate >= TD_EXITED)
1780                         break;
1781
1782                 clear_state = true;
1783
1784                 /*
1785                  * Make sure we've successfully updated the rusage stats
1786                  * before waiting on the stat mutex. Otherwise we could have
1787                  * the stat thread holding stat mutex and waiting for
1788                  * the rusage_sem, which would never get upped because
1789                  * this thread is waiting for the stat mutex.
1790                  */
1791                 deadlock_loop_cnt = 0;
1792                 do {
1793                         check_update_rusage(td);
1794                         if (!fio_sem_down_trylock(stat_sem))
1795                                 break;
1796                         usleep(1000);
1797                         if (deadlock_loop_cnt++ > 5000) {
1798                                 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1799                                 td->error = EDEADLK;
1800                                 goto err;
1801                         }
1802                 } while (1);
1803
1804                 if (td_read(td) && td->io_bytes[DDIR_READ])
1805                         update_runtime(td, elapsed_us, DDIR_READ);
1806                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1807                         update_runtime(td, elapsed_us, DDIR_WRITE);
1808                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1809                         update_runtime(td, elapsed_us, DDIR_TRIM);
1810                 fio_gettime(&td->start, NULL);
1811                 fio_sem_up(stat_sem);
1812
1813                 if (td->error || td->terminate)
1814                         break;
1815
1816                 if (!o->do_verify ||
1817                     o->verify == VERIFY_NONE ||
1818                     td_ioengine_flagged(td, FIO_UNIDIR))
1819                         continue;
1820
1821                 if (ddir_rw_sum(bytes_done))
1822                         did_some_io = true;
1823
1824                 clear_io_state(td, 0);
1825
1826                 fio_gettime(&td->start, NULL);
1827
1828                 do_verify(td, verify_bytes);
1829
1830                 /*
1831                  * See comment further up for why this is done here.
1832                  */
1833                 check_update_rusage(td);
1834
1835                 fio_sem_down(stat_sem);
1836                 update_runtime(td, elapsed_us, DDIR_READ);
1837                 fio_gettime(&td->start, NULL);
1838                 fio_sem_up(stat_sem);
1839
1840                 if (td->error || td->terminate)
1841                         break;
1842         }
1843
1844         /*
1845          * If td ended up with no I/O when it should have had,
1846          * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1847          * (Are we not missing other flags that can be ignored ?)
1848          */
1849         if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1850             !did_some_io && !td->o.create_only &&
1851             !(td_ioengine_flagged(td, FIO_NOIO) ||
1852               td_ioengine_flagged(td, FIO_DISKLESSIO)))
1853                 log_err("%s: No I/O performed by %s, "
1854                          "perhaps try --debug=io option for details?\n",
1855                          td->o.name, td->io_ops->name);
1856
1857         td_set_runstate(td, TD_FINISHING);
1858
1859         update_rusage_stat(td);
1860         td->ts.total_run_time = mtime_since_now(&td->epoch);
1861         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1862         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1863         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1864
1865         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1866             (td->o.verify != VERIFY_NONE && td_write(td)))
1867                 verify_save_state(td->thread_number);
1868
1869         fio_unpin_memory(td);
1870
1871         td_writeout_logs(td, true);
1872
1873         iolog_compress_exit(td);
1874         rate_submit_exit(td);
1875
1876         if (o->exec_postrun)
1877                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1878
1879         if (exitall_on_terminate || (o->exitall_error && td->error))
1880                 fio_terminate_threads(td->groupid);
1881
1882 err:
1883         if (td->error)
1884                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1885                                                         td->verror);
1886
1887         if (o->verify_async)
1888                 verify_async_exit(td);
1889
1890         close_and_free_files(td);
1891         cleanup_io_u(td);
1892         close_ioengine(td);
1893         cgroup_shutdown(td, &cgroup_mnt);
1894         verify_free_state(td);
1895
1896         if (td->zone_state_index) {
1897                 int i;
1898
1899                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1900                         free(td->zone_state_index[i]);
1901                 free(td->zone_state_index);
1902                 td->zone_state_index = NULL;
1903         }
1904
1905         if (fio_option_is_set(o, cpumask)) {
1906                 ret = fio_cpuset_exit(&o->cpumask);
1907                 if (ret)
1908                         td_verror(td, ret, "fio_cpuset_exit");
1909         }
1910
1911         /*
1912          * do this very late, it will log file closing as well
1913          */
1914         if (o->write_iolog_file)
1915                 write_iolog_close(td);
1916
1917         td_set_runstate(td, TD_EXITED);
1918
1919         /*
1920          * Do this last after setting our runstate to exited, so we
1921          * know that the stat thread is signaled.
1922          */
1923         check_update_rusage(td);
1924
1925         sk_out_drop();
1926         return (void *) (uintptr_t) td->error;
1927 }
1928
1929 /*
1930  * Run over the job map and reap the threads that have exited, if any.
1931  */
1932 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1933                          uint64_t *m_rate)
1934 {
1935         struct thread_data *td;
1936         unsigned int cputhreads, realthreads, pending;
1937         int i, status, ret;
1938
1939         /*
1940          * reap exited threads (TD_EXITED -> TD_REAPED)
1941          */
1942         realthreads = pending = cputhreads = 0;
1943         for_each_td(td, i) {
1944                 int flags = 0;
1945
1946                  if (!strcmp(td->o.ioengine, "cpuio"))
1947                         cputhreads++;
1948                 else
1949                         realthreads++;
1950
1951                 if (!td->pid) {
1952                         pending++;
1953                         continue;
1954                 }
1955                 if (td->runstate == TD_REAPED)
1956                         continue;
1957                 if (td->o.use_thread) {
1958                         if (td->runstate == TD_EXITED) {
1959                                 td_set_runstate(td, TD_REAPED);
1960                                 goto reaped;
1961                         }
1962                         continue;
1963                 }
1964
1965                 flags = WNOHANG;
1966                 if (td->runstate == TD_EXITED)
1967                         flags = 0;
1968
1969                 /*
1970                  * check if someone quit or got killed in an unusual way
1971                  */
1972                 ret = waitpid(td->pid, &status, flags);
1973                 if (ret < 0) {
1974                         if (errno == ECHILD) {
1975                                 log_err("fio: pid=%d disappeared %d\n",
1976                                                 (int) td->pid, td->runstate);
1977                                 td->sig = ECHILD;
1978                                 td_set_runstate(td, TD_REAPED);
1979                                 goto reaped;
1980                         }
1981                         perror("waitpid");
1982                 } else if (ret == td->pid) {
1983                         if (WIFSIGNALED(status)) {
1984                                 int sig = WTERMSIG(status);
1985
1986                                 if (sig != SIGTERM && sig != SIGUSR2)
1987                                         log_err("fio: pid=%d, got signal=%d\n",
1988                                                         (int) td->pid, sig);
1989                                 td->sig = sig;
1990                                 td_set_runstate(td, TD_REAPED);
1991                                 goto reaped;
1992                         }
1993                         if (WIFEXITED(status)) {
1994                                 if (WEXITSTATUS(status) && !td->error)
1995                                         td->error = WEXITSTATUS(status);
1996
1997                                 td_set_runstate(td, TD_REAPED);
1998                                 goto reaped;
1999                         }
2000                 }
2001
2002                 /*
2003                  * If the job is stuck, do a forceful timeout of it and
2004                  * move on.
2005                  */
2006                 if (td->terminate &&
2007                     td->runstate < TD_FSYNCING &&
2008                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2009                         log_err("fio: job '%s' (state=%d) hasn't exited in "
2010                                 "%lu seconds, it appears to be stuck. Doing "
2011                                 "forceful exit of this job.\n",
2012                                 td->o.name, td->runstate,
2013                                 (unsigned long) time_since_now(&td->terminate_time));
2014                         td_set_runstate(td, TD_REAPED);
2015                         goto reaped;
2016                 }
2017
2018                 /*
2019                  * thread is not dead, continue
2020                  */
2021                 pending++;
2022                 continue;
2023 reaped:
2024                 (*nr_running)--;
2025                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2026                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2027                 if (!td->pid)
2028                         pending--;
2029
2030                 if (td->error)
2031                         exit_value++;
2032
2033                 done_secs += mtime_since_now(&td->epoch) / 1000;
2034                 profile_td_exit(td);
2035         }
2036
2037         if (*nr_running == cputhreads && !pending && realthreads)
2038                 fio_terminate_threads(TERMINATE_ALL);
2039 }
2040
2041 static bool __check_trigger_file(void)
2042 {
2043         struct stat sb;
2044
2045         if (!trigger_file)
2046                 return false;
2047
2048         if (stat(trigger_file, &sb))
2049                 return false;
2050
2051         if (unlink(trigger_file) < 0)
2052                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2053                                                         strerror(errno));
2054
2055         return true;
2056 }
2057
2058 static bool trigger_timedout(void)
2059 {
2060         if (trigger_timeout)
2061                 if (time_since_genesis() >= trigger_timeout) {
2062                         trigger_timeout = 0;
2063                         return true;
2064                 }
2065
2066         return false;
2067 }
2068
2069 void exec_trigger(const char *cmd)
2070 {
2071         int ret;
2072
2073         if (!cmd || cmd[0] == '\0')
2074                 return;
2075
2076         ret = system(cmd);
2077         if (ret == -1)
2078                 log_err("fio: failed executing %s trigger\n", cmd);
2079 }
2080
2081 void check_trigger_file(void)
2082 {
2083         if (__check_trigger_file() || trigger_timedout()) {
2084                 if (nr_clients)
2085                         fio_clients_send_trigger(trigger_remote_cmd);
2086                 else {
2087                         verify_save_state(IO_LIST_ALL);
2088                         fio_terminate_threads(TERMINATE_ALL);
2089                         exec_trigger(trigger_cmd);
2090                 }
2091         }
2092 }
2093
2094 static int fio_verify_load_state(struct thread_data *td)
2095 {
2096         int ret;
2097
2098         if (!td->o.verify_state)
2099                 return 0;
2100
2101         if (is_backend) {
2102                 void *data;
2103
2104                 ret = fio_server_get_verify_state(td->o.name,
2105                                         td->thread_number - 1, &data);
2106                 if (!ret)
2107                         verify_assign_state(td, data);
2108         } else
2109                 ret = verify_load_state(td, "local");
2110
2111         return ret;
2112 }
2113
2114 static void do_usleep(unsigned int usecs)
2115 {
2116         check_for_running_stats();
2117         check_trigger_file();
2118         usleep(usecs);
2119 }
2120
2121 static bool check_mount_writes(struct thread_data *td)
2122 {
2123         struct fio_file *f;
2124         unsigned int i;
2125
2126         if (!td_write(td) || td->o.allow_mounted_write)
2127                 return false;
2128
2129         /*
2130          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2131          * are mkfs'd and mounted.
2132          */
2133         for_each_file(td, f, i) {
2134 #ifdef FIO_HAVE_CHARDEV_SIZE
2135                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2136 #else
2137                 if (f->filetype != FIO_TYPE_BLOCK)
2138 #endif
2139                         continue;
2140                 if (device_is_mounted(f->file_name))
2141                         goto mounted;
2142         }
2143
2144         return false;
2145 mounted:
2146         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2147         return true;
2148 }
2149
2150 static bool waitee_running(struct thread_data *me)
2151 {
2152         const char *waitee = me->o.wait_for;
2153         const char *self = me->o.name;
2154         struct thread_data *td;
2155         int i;
2156
2157         if (!waitee)
2158                 return false;
2159
2160         for_each_td(td, i) {
2161                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2162                         continue;
2163
2164                 if (td->runstate < TD_EXITED) {
2165                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2166                                         self, td->o.name,
2167                                         runstate_to_name(td->runstate));
2168                         return true;
2169                 }
2170         }
2171
2172         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2173         return false;
2174 }
2175
2176 /*
2177  * Main function for kicking off and reaping jobs, as needed.
2178  */
2179 static void run_threads(struct sk_out *sk_out)
2180 {
2181         struct thread_data *td;
2182         unsigned int i, todo, nr_running, nr_started;
2183         uint64_t m_rate, t_rate;
2184         uint64_t spent;
2185
2186         if (fio_gtod_offload && fio_start_gtod_thread())
2187                 return;
2188
2189         fio_idle_prof_init();
2190
2191         set_sig_handlers();
2192
2193         nr_thread = nr_process = 0;
2194         for_each_td(td, i) {
2195                 if (check_mount_writes(td))
2196                         return;
2197                 if (td->o.use_thread)
2198                         nr_thread++;
2199                 else
2200                         nr_process++;
2201         }
2202
2203         if (output_format & FIO_OUTPUT_NORMAL) {
2204                 log_info("Starting ");
2205                 if (nr_thread)
2206                         log_info("%d thread%s", nr_thread,
2207                                                 nr_thread > 1 ? "s" : "");
2208                 if (nr_process) {
2209                         if (nr_thread)
2210                                 log_info(" and ");
2211                         log_info("%d process%s", nr_process,
2212                                                 nr_process > 1 ? "es" : "");
2213                 }
2214                 log_info("\n");
2215                 log_info_flush();
2216         }
2217
2218         todo = thread_number;
2219         nr_running = 0;
2220         nr_started = 0;
2221         m_rate = t_rate = 0;
2222
2223         for_each_td(td, i) {
2224                 print_status_init(td->thread_number - 1);
2225
2226                 if (!td->o.create_serialize)
2227                         continue;
2228
2229                 if (fio_verify_load_state(td))
2230                         goto reap;
2231
2232                 /*
2233                  * do file setup here so it happens sequentially,
2234                  * we don't want X number of threads getting their
2235                  * client data interspersed on disk
2236                  */
2237                 if (setup_files(td)) {
2238 reap:
2239                         exit_value++;
2240                         if (td->error)
2241                                 log_err("fio: pid=%d, err=%d/%s\n",
2242                                         (int) td->pid, td->error, td->verror);
2243                         td_set_runstate(td, TD_REAPED);
2244                         todo--;
2245                 } else {
2246                         struct fio_file *f;
2247                         unsigned int j;
2248
2249                         /*
2250                          * for sharing to work, each job must always open
2251                          * its own files. so close them, if we opened them
2252                          * for creation
2253                          */
2254                         for_each_file(td, f, j) {
2255                                 if (fio_file_open(f))
2256                                         td_io_close_file(td, f);
2257                         }
2258                 }
2259         }
2260
2261         /* start idle threads before io threads start to run */
2262         fio_idle_prof_start();
2263
2264         set_genesis_time();
2265
2266         while (todo) {
2267                 struct thread_data *map[REAL_MAX_JOBS];
2268                 struct timespec this_start;
2269                 int this_jobs = 0, left;
2270                 struct fork_data *fd;
2271
2272                 /*
2273                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2274                  */
2275                 for_each_td(td, i) {
2276                         if (td->runstate != TD_NOT_CREATED)
2277                                 continue;
2278
2279                         /*
2280                          * never got a chance to start, killed by other
2281                          * thread for some reason
2282                          */
2283                         if (td->terminate) {
2284                                 todo--;
2285                                 continue;
2286                         }
2287
2288                         if (td->o.start_delay) {
2289                                 spent = utime_since_genesis();
2290
2291                                 if (td->o.start_delay > spent)
2292                                         continue;
2293                         }
2294
2295                         if (td->o.stonewall && (nr_started || nr_running)) {
2296                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2297                                                         td->o.name);
2298                                 break;
2299                         }
2300
2301                         if (waitee_running(td)) {
2302                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2303                                                 td->o.name, td->o.wait_for);
2304                                 continue;
2305                         }
2306
2307                         init_disk_util(td);
2308
2309                         td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2310                         td->update_rusage = 0;
2311
2312                         /*
2313                          * Set state to created. Thread will transition
2314                          * to TD_INITIALIZED when it's done setting up.
2315                          */
2316                         td_set_runstate(td, TD_CREATED);
2317                         map[this_jobs++] = td;
2318                         nr_started++;
2319
2320                         fd = calloc(1, sizeof(*fd));
2321                         fd->td = td;
2322                         fd->sk_out = sk_out;
2323
2324                         if (td->o.use_thread) {
2325                                 int ret;
2326
2327                                 dprint(FD_PROCESS, "will pthread_create\n");
2328                                 ret = pthread_create(&td->thread, NULL,
2329                                                         thread_main, fd);
2330                                 if (ret) {
2331                                         log_err("pthread_create: %s\n",
2332                                                         strerror(ret));
2333                                         free(fd);
2334                                         nr_started--;
2335                                         break;
2336                                 }
2337                                 fd = NULL;
2338                                 ret = pthread_detach(td->thread);
2339                                 if (ret)
2340                                         log_err("pthread_detach: %s",
2341                                                         strerror(ret));
2342                         } else {
2343                                 pid_t pid;
2344                                 dprint(FD_PROCESS, "will fork\n");
2345                                 pid = fork();
2346                                 if (!pid) {
2347                                         int ret;
2348
2349                                         ret = (int)(uintptr_t)thread_main(fd);
2350                                         _exit(ret);
2351                                 } else if (i == fio_debug_jobno)
2352                                         *fio_debug_jobp = pid;
2353                         }
2354                         dprint(FD_MUTEX, "wait on startup_sem\n");
2355                         if (fio_sem_down_timeout(startup_sem, 10000)) {
2356                                 log_err("fio: job startup hung? exiting.\n");
2357                                 fio_terminate_threads(TERMINATE_ALL);
2358                                 fio_abort = 1;
2359                                 nr_started--;
2360                                 free(fd);
2361                                 break;
2362                         }
2363                         dprint(FD_MUTEX, "done waiting on startup_sem\n");
2364                 }
2365
2366                 /*
2367                  * Wait for the started threads to transition to
2368                  * TD_INITIALIZED.
2369                  */
2370                 fio_gettime(&this_start, NULL);
2371                 left = this_jobs;
2372                 while (left && !fio_abort) {
2373                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2374                                 break;
2375
2376                         do_usleep(100000);
2377
2378                         for (i = 0; i < this_jobs; i++) {
2379                                 td = map[i];
2380                                 if (!td)
2381                                         continue;
2382                                 if (td->runstate == TD_INITIALIZED) {
2383                                         map[i] = NULL;
2384                                         left--;
2385                                 } else if (td->runstate >= TD_EXITED) {
2386                                         map[i] = NULL;
2387                                         left--;
2388                                         todo--;
2389                                         nr_running++; /* work-around... */
2390                                 }
2391                         }
2392                 }
2393
2394                 if (left) {
2395                         log_err("fio: %d job%s failed to start\n", left,
2396                                         left > 1 ? "s" : "");
2397                         for (i = 0; i < this_jobs; i++) {
2398                                 td = map[i];
2399                                 if (!td)
2400                                         continue;
2401                                 kill(td->pid, SIGTERM);
2402                         }
2403                         break;
2404                 }
2405
2406                 /*
2407                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2408                  */
2409                 for_each_td(td, i) {
2410                         if (td->runstate != TD_INITIALIZED)
2411                                 continue;
2412
2413                         if (in_ramp_time(td))
2414                                 td_set_runstate(td, TD_RAMP);
2415                         else
2416                                 td_set_runstate(td, TD_RUNNING);
2417                         nr_running++;
2418                         nr_started--;
2419                         m_rate += ddir_rw_sum(td->o.ratemin);
2420                         t_rate += ddir_rw_sum(td->o.rate);
2421                         todo--;
2422                         fio_sem_up(td->sem);
2423                 }
2424
2425                 reap_threads(&nr_running, &t_rate, &m_rate);
2426
2427                 if (todo)
2428                         do_usleep(100000);
2429         }
2430
2431         while (nr_running) {
2432                 reap_threads(&nr_running, &t_rate, &m_rate);
2433                 do_usleep(10000);
2434         }
2435
2436         fio_idle_prof_stop();
2437
2438         update_io_ticks();
2439 }
2440
2441 static void free_disk_util(void)
2442 {
2443         disk_util_prune_entries();
2444         helper_thread_destroy();
2445 }
2446
2447 int fio_backend(struct sk_out *sk_out)
2448 {
2449         struct thread_data *td;
2450         int i;
2451
2452         if (exec_profile) {
2453                 if (load_profile(exec_profile))
2454                         return 1;
2455                 free(exec_profile);
2456                 exec_profile = NULL;
2457         }
2458         if (!thread_number)
2459                 return 0;
2460
2461         if (write_bw_log) {
2462                 struct log_params p = {
2463                         .log_type = IO_LOG_TYPE_BW,
2464                 };
2465
2466                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2467                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2468                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2469         }
2470
2471         startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2472         if (startup_sem == NULL)
2473                 return 1;
2474
2475         set_genesis_time();
2476         stat_init();
2477         helper_thread_create(startup_sem, sk_out);
2478
2479         cgroup_list = smalloc(sizeof(*cgroup_list));
2480         if (cgroup_list)
2481                 INIT_FLIST_HEAD(cgroup_list);
2482
2483         run_threads(sk_out);
2484
2485         helper_thread_exit();
2486
2487         if (!fio_abort) {
2488                 __show_run_stats();
2489                 if (write_bw_log) {
2490                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2491                                 struct io_log *log = agg_io_log[i];
2492
2493                                 flush_log(log, false);
2494                                 free_log(log);
2495                         }
2496                 }
2497         }
2498
2499         for_each_td(td, i) {
2500                 steadystate_free(td);
2501                 fio_options_free(td);
2502                 if (td->rusage_sem) {
2503                         fio_sem_remove(td->rusage_sem);
2504                         td->rusage_sem = NULL;
2505                 }
2506                 fio_sem_remove(td->sem);
2507                 td->sem = NULL;
2508         }
2509
2510         free_disk_util();
2511         if (cgroup_list) {
2512                 cgroup_kill(cgroup_list);
2513                 sfree(cgroup_list);
2514         }
2515         sfree(cgroup_mnt);
2516
2517         fio_sem_remove(startup_sem);
2518         stat_exit();
2519         return exit_value;
2520 }