iolog: ensure we always store compressed, if log_store_compressed == 1
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "lib/tp.h"
58 #include "workqueue.h"
59 #include "lib/mountcheck.h"
60
61 static pthread_t helper_thread;
62 static pthread_mutex_t helper_lock;
63 pthread_cond_t helper_cond;
64 int helper_do_stat = 0;
65
66 static struct fio_mutex *startup_mutex;
67 static struct flist_head *cgroup_list;
68 static char *cgroup_mnt;
69 static int exit_value;
70 static volatile int fio_abort;
71 static unsigned int nr_process = 0;
72 static unsigned int nr_thread = 0;
73
74 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
75
76 int groupid = 0;
77 unsigned int thread_number = 0;
78 unsigned int stat_number = 0;
79 int shm_id = 0;
80 int temp_stall_ts;
81 unsigned long done_secs = 0;
82 volatile int helper_exit = 0;
83
84 #define PAGE_ALIGN(buf) \
85         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
86
87 #define JOB_START_TIMEOUT       (5 * 1000)
88
89 static void sig_int(int sig)
90 {
91         if (threads) {
92                 if (is_backend)
93                         fio_server_got_signal(sig);
94                 else {
95                         log_info("\nfio: terminating on signal %d\n", sig);
96                         log_info_flush();
97                         exit_value = 128;
98                 }
99
100                 fio_terminate_threads(TERMINATE_ALL);
101         }
102 }
103
104 void sig_show_status(int sig)
105 {
106         show_running_run_stats();
107 }
108
109 static void set_sig_handlers(void)
110 {
111         struct sigaction act;
112
113         memset(&act, 0, sizeof(act));
114         act.sa_handler = sig_int;
115         act.sa_flags = SA_RESTART;
116         sigaction(SIGINT, &act, NULL);
117
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_int;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGTERM, &act, NULL);
122
123 /* Windows uses SIGBREAK as a quit signal from other applications */
124 #ifdef WIN32
125         memset(&act, 0, sizeof(act));
126         act.sa_handler = sig_int;
127         act.sa_flags = SA_RESTART;
128         sigaction(SIGBREAK, &act, NULL);
129 #endif
130
131         memset(&act, 0, sizeof(act));
132         act.sa_handler = sig_show_status;
133         act.sa_flags = SA_RESTART;
134         sigaction(SIGUSR1, &act, NULL);
135
136         if (is_backend) {
137                 memset(&act, 0, sizeof(act));
138                 act.sa_handler = sig_int;
139                 act.sa_flags = SA_RESTART;
140                 sigaction(SIGPIPE, &act, NULL);
141         }
142 }
143
144 /*
145  * Check if we are above the minimum rate given.
146  */
147 static bool __check_min_rate(struct thread_data *td, struct timeval *now,
148                              enum fio_ddir ddir)
149 {
150         unsigned long long bytes = 0;
151         unsigned long iops = 0;
152         unsigned long spent;
153         unsigned long rate;
154         unsigned int ratemin = 0;
155         unsigned int rate_iops = 0;
156         unsigned int rate_iops_min = 0;
157
158         assert(ddir_rw(ddir));
159
160         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
161                 return false;
162
163         /*
164          * allow a 2 second settle period in the beginning
165          */
166         if (mtime_since(&td->start, now) < 2000)
167                 return false;
168
169         iops += td->this_io_blocks[ddir];
170         bytes += td->this_io_bytes[ddir];
171         ratemin += td->o.ratemin[ddir];
172         rate_iops += td->o.rate_iops[ddir];
173         rate_iops_min += td->o.rate_iops_min[ddir];
174
175         /*
176          * if rate blocks is set, sample is running
177          */
178         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
179                 spent = mtime_since(&td->lastrate[ddir], now);
180                 if (spent < td->o.ratecycle)
181                         return false;
182
183                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
184                         /*
185                          * check bandwidth specified rate
186                          */
187                         if (bytes < td->rate_bytes[ddir]) {
188                                 log_err("%s: min rate %u not met\n", td->o.name,
189                                                                 ratemin);
190                                 return true;
191                         } else {
192                                 if (spent)
193                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
194                                 else
195                                         rate = 0;
196
197                                 if (rate < ratemin ||
198                                     bytes < td->rate_bytes[ddir]) {
199                                         log_err("%s: min rate %u not met, got"
200                                                 " %luKB/sec\n", td->o.name,
201                                                         ratemin, rate);
202                                         return true;
203                                 }
204                         }
205                 } else {
206                         /*
207                          * checks iops specified rate
208                          */
209                         if (iops < rate_iops) {
210                                 log_err("%s: min iops rate %u not met\n",
211                                                 td->o.name, rate_iops);
212                                 return true;
213                         } else {
214                                 if (spent)
215                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
216                                 else
217                                         rate = 0;
218
219                                 if (rate < rate_iops_min ||
220                                     iops < td->rate_blocks[ddir]) {
221                                         log_err("%s: min iops rate %u not met,"
222                                                 " got %lu\n", td->o.name,
223                                                         rate_iops_min, rate);
224                                         return true;
225                                 }
226                         }
227                 }
228         }
229
230         td->rate_bytes[ddir] = bytes;
231         td->rate_blocks[ddir] = iops;
232         memcpy(&td->lastrate[ddir], now, sizeof(*now));
233         return false;
234 }
235
236 static bool check_min_rate(struct thread_data *td, struct timeval *now)
237 {
238         bool ret = false;
239
240         if (td->bytes_done[DDIR_READ])
241                 ret |= __check_min_rate(td, now, DDIR_READ);
242         if (td->bytes_done[DDIR_WRITE])
243                 ret |= __check_min_rate(td, now, DDIR_WRITE);
244         if (td->bytes_done[DDIR_TRIM])
245                 ret |= __check_min_rate(td, now, DDIR_TRIM);
246
247         return ret;
248 }
249
250 /*
251  * When job exits, we can cancel the in-flight IO if we are using async
252  * io. Attempt to do so.
253  */
254 static void cleanup_pending_aio(struct thread_data *td)
255 {
256         int r;
257
258         /*
259          * get immediately available events, if any
260          */
261         r = io_u_queued_complete(td, 0);
262         if (r < 0)
263                 return;
264
265         /*
266          * now cancel remaining active events
267          */
268         if (td->io_ops->cancel) {
269                 struct io_u *io_u;
270                 int i;
271
272                 io_u_qiter(&td->io_u_all, io_u, i) {
273                         if (io_u->flags & IO_U_F_FLIGHT) {
274                                 r = td->io_ops->cancel(td, io_u);
275                                 if (!r)
276                                         put_io_u(td, io_u);
277                         }
278                 }
279         }
280
281         if (td->cur_depth)
282                 r = io_u_queued_complete(td, td->cur_depth);
283 }
284
285 /*
286  * Helper to handle the final sync of a file. Works just like the normal
287  * io path, just does everything sync.
288  */
289 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
290 {
291         struct io_u *io_u = __get_io_u(td);
292         int ret;
293
294         if (!io_u)
295                 return true;
296
297         io_u->ddir = DDIR_SYNC;
298         io_u->file = f;
299
300         if (td_io_prep(td, io_u)) {
301                 put_io_u(td, io_u);
302                 return true;
303         }
304
305 requeue:
306         ret = td_io_queue(td, io_u);
307         if (ret < 0) {
308                 td_verror(td, io_u->error, "td_io_queue");
309                 put_io_u(td, io_u);
310                 return true;
311         } else if (ret == FIO_Q_QUEUED) {
312                 if (io_u_queued_complete(td, 1) < 0)
313                         return true;
314         } else if (ret == FIO_Q_COMPLETED) {
315                 if (io_u->error) {
316                         td_verror(td, io_u->error, "td_io_queue");
317                         return true;
318                 }
319
320                 if (io_u_sync_complete(td, io_u) < 0)
321                         return true;
322         } else if (ret == FIO_Q_BUSY) {
323                 if (td_io_commit(td))
324                         return true;
325                 goto requeue;
326         }
327
328         return false;
329 }
330
331 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
332 {
333         int ret;
334
335         if (fio_file_open(f))
336                 return fio_io_sync(td, f);
337
338         if (td_io_open_file(td, f))
339                 return 1;
340
341         ret = fio_io_sync(td, f);
342         td_io_close_file(td, f);
343         return ret;
344 }
345
346 static inline void __update_tv_cache(struct thread_data *td)
347 {
348         fio_gettime(&td->tv_cache, NULL);
349 }
350
351 static inline void update_tv_cache(struct thread_data *td)
352 {
353         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
354                 __update_tv_cache(td);
355 }
356
357 static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
358 {
359         if (in_ramp_time(td))
360                 return false;
361         if (!td->o.timeout)
362                 return false;
363         if (utime_since(&td->epoch, t) >= td->o.timeout)
364                 return true;
365
366         return false;
367 }
368
369 /*
370  * We need to update the runtime consistently in ms, but keep a running
371  * tally of the current elapsed time in microseconds for sub millisecond
372  * updates.
373  */
374 static inline void update_runtime(struct thread_data *td,
375                                   unsigned long long *elapsed_us,
376                                   const enum fio_ddir ddir)
377 {
378         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
379                 return;
380
381         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
382         elapsed_us[ddir] += utime_since_now(&td->start);
383         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
384 }
385
386 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
387                                 int *retptr)
388 {
389         int ret = *retptr;
390
391         if (ret < 0 || td->error) {
392                 int err = td->error;
393                 enum error_type_bit eb;
394
395                 if (ret < 0)
396                         err = -ret;
397
398                 eb = td_error_type(ddir, err);
399                 if (!(td->o.continue_on_error & (1 << eb)))
400                         return true;
401
402                 if (td_non_fatal_error(td, eb, err)) {
403                         /*
404                          * Continue with the I/Os in case of
405                          * a non fatal error.
406                          */
407                         update_error_count(td, err);
408                         td_clear_error(td);
409                         *retptr = 0;
410                         return false;
411                 } else if (td->o.fill_device && err == ENOSPC) {
412                         /*
413                          * We expect to hit this error if
414                          * fill_device option is set.
415                          */
416                         td_clear_error(td);
417                         fio_mark_td_terminate(td);
418                         return true;
419                 } else {
420                         /*
421                          * Stop the I/O in case of a fatal
422                          * error.
423                          */
424                         update_error_count(td, err);
425                         return true;
426                 }
427         }
428
429         return false;
430 }
431
432 static void check_update_rusage(struct thread_data *td)
433 {
434         if (td->update_rusage) {
435                 td->update_rusage = 0;
436                 update_rusage_stat(td);
437                 fio_mutex_up(td->rusage_sem);
438         }
439 }
440
441 static int wait_for_completions(struct thread_data *td, struct timeval *time)
442 {
443         const int full = queue_full(td);
444         int min_evts = 0;
445         int ret;
446
447         /*
448          * if the queue is full, we MUST reap at least 1 event
449          */
450         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
451         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
452                 min_evts = 1;
453
454         if (time && (__should_check_rate(td, DDIR_READ) ||
455             __should_check_rate(td, DDIR_WRITE) ||
456             __should_check_rate(td, DDIR_TRIM)))
457                 fio_gettime(time, NULL);
458
459         do {
460                 ret = io_u_queued_complete(td, min_evts);
461                 if (ret < 0)
462                         break;
463         } while (full && (td->cur_depth > td->o.iodepth_low));
464
465         return ret;
466 }
467
468 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
469                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
470                    struct timeval *comp_time)
471 {
472         int ret2;
473
474         switch (*ret) {
475         case FIO_Q_COMPLETED:
476                 if (io_u->error) {
477                         *ret = -io_u->error;
478                         clear_io_u(td, io_u);
479                 } else if (io_u->resid) {
480                         int bytes = io_u->xfer_buflen - io_u->resid;
481                         struct fio_file *f = io_u->file;
482
483                         if (bytes_issued)
484                                 *bytes_issued += bytes;
485
486                         if (!from_verify)
487                                 trim_io_piece(td, io_u);
488
489                         /*
490                          * zero read, fail
491                          */
492                         if (!bytes) {
493                                 if (!from_verify)
494                                         unlog_io_piece(td, io_u);
495                                 td_verror(td, EIO, "full resid");
496                                 put_io_u(td, io_u);
497                                 break;
498                         }
499
500                         io_u->xfer_buflen = io_u->resid;
501                         io_u->xfer_buf += bytes;
502                         io_u->offset += bytes;
503
504                         if (ddir_rw(io_u->ddir))
505                                 td->ts.short_io_u[io_u->ddir]++;
506
507                         f = io_u->file;
508                         if (io_u->offset == f->real_file_size)
509                                 goto sync_done;
510
511                         requeue_io_u(td, &io_u);
512                 } else {
513 sync_done:
514                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
515                             __should_check_rate(td, DDIR_WRITE) ||
516                             __should_check_rate(td, DDIR_TRIM)))
517                                 fio_gettime(comp_time, NULL);
518
519                         *ret = io_u_sync_complete(td, io_u);
520                         if (*ret < 0)
521                                 break;
522                 }
523                 return 0;
524         case FIO_Q_QUEUED:
525                 /*
526                  * if the engine doesn't have a commit hook,
527                  * the io_u is really queued. if it does have such
528                  * a hook, it has to call io_u_queued() itself.
529                  */
530                 if (td->io_ops->commit == NULL)
531                         io_u_queued(td, io_u);
532                 if (bytes_issued)
533                         *bytes_issued += io_u->xfer_buflen;
534                 break;
535         case FIO_Q_BUSY:
536                 if (!from_verify)
537                         unlog_io_piece(td, io_u);
538                 requeue_io_u(td, &io_u);
539                 ret2 = td_io_commit(td);
540                 if (ret2 < 0)
541                         *ret = ret2;
542                 break;
543         default:
544                 assert(*ret < 0);
545                 td_verror(td, -(*ret), "td_io_queue");
546                 break;
547         }
548
549         if (break_on_this_error(td, ddir, ret))
550                 return 1;
551
552         return 0;
553 }
554
555 static inline bool io_in_polling(struct thread_data *td)
556 {
557         return !td->o.iodepth_batch_complete_min &&
558                    !td->o.iodepth_batch_complete_max;
559 }
560
561 /*
562  * The main verify engine. Runs over the writes we previously submitted,
563  * reads the blocks back in, and checks the crc/md5 of the data.
564  */
565 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
566 {
567         struct fio_file *f;
568         struct io_u *io_u;
569         int ret, min_events;
570         unsigned int i;
571
572         dprint(FD_VERIFY, "starting loop\n");
573
574         /*
575          * sync io first and invalidate cache, to make sure we really
576          * read from disk.
577          */
578         for_each_file(td, f, i) {
579                 if (!fio_file_open(f))
580                         continue;
581                 if (fio_io_sync(td, f))
582                         break;
583                 if (file_invalidate_cache(td, f))
584                         break;
585         }
586
587         check_update_rusage(td);
588
589         if (td->error)
590                 return;
591
592         td_set_runstate(td, TD_VERIFYING);
593
594         io_u = NULL;
595         while (!td->terminate) {
596                 enum fio_ddir ddir;
597                 int full;
598
599                 update_tv_cache(td);
600                 check_update_rusage(td);
601
602                 if (runtime_exceeded(td, &td->tv_cache)) {
603                         __update_tv_cache(td);
604                         if (runtime_exceeded(td, &td->tv_cache)) {
605                                 fio_mark_td_terminate(td);
606                                 break;
607                         }
608                 }
609
610                 if (flow_threshold_exceeded(td))
611                         continue;
612
613                 if (!td->o.experimental_verify) {
614                         io_u = __get_io_u(td);
615                         if (!io_u)
616                                 break;
617
618                         if (get_next_verify(td, io_u)) {
619                                 put_io_u(td, io_u);
620                                 break;
621                         }
622
623                         if (td_io_prep(td, io_u)) {
624                                 put_io_u(td, io_u);
625                                 break;
626                         }
627                 } else {
628                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
629                                 break;
630
631                         while ((io_u = get_io_u(td)) != NULL) {
632                                 if (IS_ERR(io_u)) {
633                                         io_u = NULL;
634                                         ret = FIO_Q_BUSY;
635                                         goto reap;
636                                 }
637
638                                 /*
639                                  * We are only interested in the places where
640                                  * we wrote or trimmed IOs. Turn those into
641                                  * reads for verification purposes.
642                                  */
643                                 if (io_u->ddir == DDIR_READ) {
644                                         /*
645                                          * Pretend we issued it for rwmix
646                                          * accounting
647                                          */
648                                         td->io_issues[DDIR_READ]++;
649                                         put_io_u(td, io_u);
650                                         continue;
651                                 } else if (io_u->ddir == DDIR_TRIM) {
652                                         io_u->ddir = DDIR_READ;
653                                         io_u_set(io_u, IO_U_F_TRIMMED);
654                                         break;
655                                 } else if (io_u->ddir == DDIR_WRITE) {
656                                         io_u->ddir = DDIR_READ;
657                                         break;
658                                 } else {
659                                         put_io_u(td, io_u);
660                                         continue;
661                                 }
662                         }
663
664                         if (!io_u)
665                                 break;
666                 }
667
668                 if (verify_state_should_stop(td, io_u)) {
669                         put_io_u(td, io_u);
670                         break;
671                 }
672
673                 if (td->o.verify_async)
674                         io_u->end_io = verify_io_u_async;
675                 else
676                         io_u->end_io = verify_io_u;
677
678                 ddir = io_u->ddir;
679                 if (!td->o.disable_slat)
680                         fio_gettime(&io_u->start_time, NULL);
681
682                 ret = td_io_queue(td, io_u);
683
684                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
685                         break;
686
687                 /*
688                  * if we can queue more, do so. but check if there are
689                  * completed io_u's first. Note that we can get BUSY even
690                  * without IO queued, if the system is resource starved.
691                  */
692 reap:
693                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
694                 if (full || io_in_polling(td))
695                         ret = wait_for_completions(td, NULL);
696
697                 if (ret < 0)
698                         break;
699         }
700
701         check_update_rusage(td);
702
703         if (!td->error) {
704                 min_events = td->cur_depth;
705
706                 if (min_events)
707                         ret = io_u_queued_complete(td, min_events);
708         } else
709                 cleanup_pending_aio(td);
710
711         td_set_runstate(td, TD_RUNNING);
712
713         dprint(FD_VERIFY, "exiting loop\n");
714 }
715
716 static bool exceeds_number_ios(struct thread_data *td)
717 {
718         unsigned long long number_ios;
719
720         if (!td->o.number_ios)
721                 return false;
722
723         number_ios = ddir_rw_sum(td->io_blocks);
724         number_ios += td->io_u_queued + td->io_u_in_flight;
725
726         return number_ios >= (td->o.number_ios * td->loops);
727 }
728
729 static bool io_issue_bytes_exceeded(struct thread_data *td)
730 {
731         unsigned long long bytes, limit;
732
733         if (td_rw(td))
734                 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
735         else if (td_write(td))
736                 bytes = td->io_issue_bytes[DDIR_WRITE];
737         else if (td_read(td))
738                 bytes = td->io_issue_bytes[DDIR_READ];
739         else
740                 bytes = td->io_issue_bytes[DDIR_TRIM];
741
742         if (td->o.io_limit)
743                 limit = td->o.io_limit;
744         else
745                 limit = td->o.size;
746
747         limit *= td->loops;
748         return bytes >= limit || exceeds_number_ios(td);
749 }
750
751 static bool io_complete_bytes_exceeded(struct thread_data *td)
752 {
753         unsigned long long bytes, limit;
754
755         if (td_rw(td))
756                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
757         else if (td_write(td))
758                 bytes = td->this_io_bytes[DDIR_WRITE];
759         else if (td_read(td))
760                 bytes = td->this_io_bytes[DDIR_READ];
761         else
762                 bytes = td->this_io_bytes[DDIR_TRIM];
763
764         if (td->o.io_limit)
765                 limit = td->o.io_limit;
766         else
767                 limit = td->o.size;
768
769         limit *= td->loops;
770         return bytes >= limit || exceeds_number_ios(td);
771 }
772
773 /*
774  * used to calculate the next io time for rate control
775  *
776  */
777 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
778 {
779         uint64_t secs, remainder, bps, bytes, iops;
780
781         assert(!(td->flags & TD_F_CHILD));
782         bytes = td->rate_io_issue_bytes[ddir];
783         bps = td->rate_bps[ddir];
784
785         if (td->o.rate_process == RATE_PROCESS_POISSON) {
786                 uint64_t val;
787                 iops = bps / td->o.bs[ddir];
788                 val = (int64_t) (1000000 / iops) *
789                                 -logf(__rand_0_1(&td->poisson_state));
790                 if (val) {
791                         dprint(FD_RATE, "poisson rate iops=%llu\n",
792                                         (unsigned long long) 1000000 / val);
793                 }
794                 td->last_usec += val;
795                 return td->last_usec;
796         } else if (bps) {
797                 secs = bytes / bps;
798                 remainder = bytes % bps;
799                 return remainder * 1000000 / bps + secs * 1000000;
800         }
801
802         return 0;
803 }
804
805 /*
806  * Main IO worker function. It retrieves io_u's to process and queues
807  * and reaps them, checking for rate and errors along the way.
808  *
809  * Returns number of bytes written and trimmed.
810  */
811 static uint64_t do_io(struct thread_data *td)
812 {
813         unsigned int i;
814         int ret = 0;
815         uint64_t total_bytes, bytes_issued = 0;
816
817         if (in_ramp_time(td))
818                 td_set_runstate(td, TD_RAMP);
819         else
820                 td_set_runstate(td, TD_RUNNING);
821
822         lat_target_init(td);
823
824         total_bytes = td->o.size;
825         /*
826         * Allow random overwrite workloads to write up to io_limit
827         * before starting verification phase as 'size' doesn't apply.
828         */
829         if (td_write(td) && td_random(td) && td->o.norandommap)
830                 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
831         /*
832          * If verify_backlog is enabled, we'll run the verify in this
833          * handler as well. For that case, we may need up to twice the
834          * amount of bytes.
835          */
836         if (td->o.verify != VERIFY_NONE &&
837            (td_write(td) && td->o.verify_backlog))
838                 total_bytes += td->o.size;
839
840         /* In trimwrite mode, each byte is trimmed and then written, so
841          * allow total_bytes to be twice as big */
842         if (td_trimwrite(td))
843                 total_bytes += td->total_io_size;
844
845         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
846                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
847                 td->o.time_based) {
848                 struct timeval comp_time;
849                 struct io_u *io_u;
850                 int full;
851                 enum fio_ddir ddir;
852
853                 check_update_rusage(td);
854
855                 if (td->terminate || td->done)
856                         break;
857
858                 update_tv_cache(td);
859
860                 if (runtime_exceeded(td, &td->tv_cache)) {
861                         __update_tv_cache(td);
862                         if (runtime_exceeded(td, &td->tv_cache)) {
863                                 fio_mark_td_terminate(td);
864                                 break;
865                         }
866                 }
867
868                 if (flow_threshold_exceeded(td))
869                         continue;
870
871                 if (!td->o.time_based && bytes_issued >= total_bytes)
872                         break;
873
874                 io_u = get_io_u(td);
875                 if (IS_ERR_OR_NULL(io_u)) {
876                         int err = PTR_ERR(io_u);
877
878                         io_u = NULL;
879                         if (err == -EBUSY) {
880                                 ret = FIO_Q_BUSY;
881                                 goto reap;
882                         }
883                         if (td->o.latency_target)
884                                 goto reap;
885                         break;
886                 }
887
888                 ddir = io_u->ddir;
889
890                 /*
891                  * Add verification end_io handler if:
892                  *      - Asked to verify (!td_rw(td))
893                  *      - Or the io_u is from our verify list (mixed write/ver)
894                  */
895                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
896                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
897
898                         if (!td->o.verify_pattern_bytes) {
899                                 io_u->rand_seed = __rand(&td->verify_state);
900                                 if (sizeof(int) != sizeof(long *))
901                                         io_u->rand_seed *= __rand(&td->verify_state);
902                         }
903
904                         if (verify_state_should_stop(td, io_u)) {
905                                 put_io_u(td, io_u);
906                                 break;
907                         }
908
909                         if (td->o.verify_async)
910                                 io_u->end_io = verify_io_u_async;
911                         else
912                                 io_u->end_io = verify_io_u;
913                         td_set_runstate(td, TD_VERIFYING);
914                 } else if (in_ramp_time(td))
915                         td_set_runstate(td, TD_RAMP);
916                 else
917                         td_set_runstate(td, TD_RUNNING);
918
919                 /*
920                  * Always log IO before it's issued, so we know the specific
921                  * order of it. The logged unit will track when the IO has
922                  * completed.
923                  */
924                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
925                     td->o.do_verify &&
926                     td->o.verify != VERIFY_NONE &&
927                     !td->o.experimental_verify)
928                         log_io_piece(td, io_u);
929
930                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
931                         if (td->error)
932                                 break;
933                         ret = workqueue_enqueue(&td->io_wq, io_u);
934
935                         if (should_check_rate(td))
936                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
937
938                 } else {
939                         ret = td_io_queue(td, io_u);
940
941                         if (should_check_rate(td))
942                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
943
944                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
945                                 break;
946
947                         /*
948                          * See if we need to complete some commands. Note that
949                          * we can get BUSY even without IO queued, if the
950                          * system is resource starved.
951                          */
952 reap:
953                         full = queue_full(td) ||
954                                 (ret == FIO_Q_BUSY && td->cur_depth);
955                         if (full || io_in_polling(td))
956                                 ret = wait_for_completions(td, &comp_time);
957                 }
958                 if (ret < 0)
959                         break;
960                 if (!ddir_rw_sum(td->bytes_done) &&
961                     !(td->io_ops->flags & FIO_NOIO))
962                         continue;
963
964                 if (!in_ramp_time(td) && should_check_rate(td)) {
965                         if (check_min_rate(td, &comp_time)) {
966                                 if (exitall_on_terminate)
967                                         fio_terminate_threads(td->groupid);
968                                 td_verror(td, EIO, "check_min_rate");
969                                 break;
970                         }
971                 }
972                 if (!in_ramp_time(td) && td->o.latency_target)
973                         lat_target_check(td);
974
975                 if (td->o.thinktime) {
976                         unsigned long long b;
977
978                         b = ddir_rw_sum(td->io_blocks);
979                         if (!(b % td->o.thinktime_blocks)) {
980                                 int left;
981
982                                 io_u_quiesce(td);
983
984                                 if (td->o.thinktime_spin)
985                                         usec_spin(td->o.thinktime_spin);
986
987                                 left = td->o.thinktime - td->o.thinktime_spin;
988                                 if (left)
989                                         usec_sleep(td, left);
990                         }
991                 }
992         }
993
994         check_update_rusage(td);
995
996         if (td->trim_entries)
997                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
998
999         if (td->o.fill_device && td->error == ENOSPC) {
1000                 td->error = 0;
1001                 fio_mark_td_terminate(td);
1002         }
1003         if (!td->error) {
1004                 struct fio_file *f;
1005
1006                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1007                         workqueue_flush(&td->io_wq);
1008                         i = 0;
1009                 } else
1010                         i = td->cur_depth;
1011
1012                 if (i) {
1013                         ret = io_u_queued_complete(td, i);
1014                         if (td->o.fill_device && td->error == ENOSPC)
1015                                 td->error = 0;
1016                 }
1017
1018                 if (should_fsync(td) && td->o.end_fsync) {
1019                         td_set_runstate(td, TD_FSYNCING);
1020
1021                         for_each_file(td, f, i) {
1022                                 if (!fio_file_fsync(td, f))
1023                                         continue;
1024
1025                                 log_err("fio: end_fsync failed for file %s\n",
1026                                                                 f->file_name);
1027                         }
1028                 }
1029         } else
1030                 cleanup_pending_aio(td);
1031
1032         /*
1033          * stop job if we failed doing any IO
1034          */
1035         if (!ddir_rw_sum(td->this_io_bytes))
1036                 td->done = 1;
1037
1038         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1039 }
1040
1041 static void cleanup_io_u(struct thread_data *td)
1042 {
1043         struct io_u *io_u;
1044
1045         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1046
1047                 if (td->io_ops->io_u_free)
1048                         td->io_ops->io_u_free(td, io_u);
1049
1050                 fio_memfree(io_u, sizeof(*io_u));
1051         }
1052
1053         free_io_mem(td);
1054
1055         io_u_rexit(&td->io_u_requeues);
1056         io_u_qexit(&td->io_u_freelist);
1057         io_u_qexit(&td->io_u_all);
1058
1059         if (td->last_write_comp)
1060                 sfree(td->last_write_comp);
1061 }
1062
1063 static int init_io_u(struct thread_data *td)
1064 {
1065         struct io_u *io_u;
1066         unsigned int max_bs, min_write;
1067         int cl_align, i, max_units;
1068         int data_xfer = 1, err;
1069         char *p;
1070
1071         max_units = td->o.iodepth;
1072         max_bs = td_max_bs(td);
1073         min_write = td->o.min_bs[DDIR_WRITE];
1074         td->orig_buffer_size = (unsigned long long) max_bs
1075                                         * (unsigned long long) max_units;
1076
1077         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1078                 data_xfer = 0;
1079
1080         err = 0;
1081         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1082         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1083         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1084
1085         if (err) {
1086                 log_err("fio: failed setting up IO queues\n");
1087                 return 1;
1088         }
1089
1090         /*
1091          * if we may later need to do address alignment, then add any
1092          * possible adjustment here so that we don't cause a buffer
1093          * overflow later. this adjustment may be too much if we get
1094          * lucky and the allocator gives us an aligned address.
1095          */
1096         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1097             (td->io_ops->flags & FIO_RAWIO))
1098                 td->orig_buffer_size += page_mask + td->o.mem_align;
1099
1100         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1101                 unsigned long bs;
1102
1103                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1104                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1105         }
1106
1107         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1108                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1109                 return 1;
1110         }
1111
1112         if (data_xfer && allocate_io_mem(td))
1113                 return 1;
1114
1115         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1116             (td->io_ops->flags & FIO_RAWIO))
1117                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1118         else
1119                 p = td->orig_buffer;
1120
1121         cl_align = os_cache_line_size();
1122
1123         for (i = 0; i < max_units; i++) {
1124                 void *ptr;
1125
1126                 if (td->terminate)
1127                         return 1;
1128
1129                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1130                 if (!ptr) {
1131                         log_err("fio: unable to allocate aligned memory\n");
1132                         break;
1133                 }
1134
1135                 io_u = ptr;
1136                 memset(io_u, 0, sizeof(*io_u));
1137                 INIT_FLIST_HEAD(&io_u->verify_list);
1138                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1139
1140                 if (data_xfer) {
1141                         io_u->buf = p;
1142                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1143
1144                         if (td_write(td))
1145                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1146                         if (td_write(td) && td->o.verify_pattern_bytes) {
1147                                 /*
1148                                  * Fill the buffer with the pattern if we are
1149                                  * going to be doing writes.
1150                                  */
1151                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1152                         }
1153                 }
1154
1155                 io_u->index = i;
1156                 io_u->flags = IO_U_F_FREE;
1157                 io_u_qpush(&td->io_u_freelist, io_u);
1158
1159                 /*
1160                  * io_u never leaves this stack, used for iteration of all
1161                  * io_u buffers.
1162                  */
1163                 io_u_qpush(&td->io_u_all, io_u);
1164
1165                 if (td->io_ops->io_u_init) {
1166                         int ret = td->io_ops->io_u_init(td, io_u);
1167
1168                         if (ret) {
1169                                 log_err("fio: failed to init engine data: %d\n", ret);
1170                                 return 1;
1171                         }
1172                 }
1173
1174                 p += max_bs;
1175         }
1176
1177         if (td->o.verify != VERIFY_NONE) {
1178                 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1179                 if (!td->last_write_comp) {
1180                         log_err("fio: failed to alloc write comp data\n");
1181                         return 1;
1182                 }
1183         }
1184
1185         return 0;
1186 }
1187
1188 static int switch_ioscheduler(struct thread_data *td)
1189 {
1190         char tmp[256], tmp2[128];
1191         FILE *f;
1192         int ret;
1193
1194         if (td->io_ops->flags & FIO_DISKLESSIO)
1195                 return 0;
1196
1197         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1198
1199         f = fopen(tmp, "r+");
1200         if (!f) {
1201                 if (errno == ENOENT) {
1202                         log_err("fio: os or kernel doesn't support IO scheduler"
1203                                 " switching\n");
1204                         return 0;
1205                 }
1206                 td_verror(td, errno, "fopen iosched");
1207                 return 1;
1208         }
1209
1210         /*
1211          * Set io scheduler.
1212          */
1213         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1214         if (ferror(f) || ret != 1) {
1215                 td_verror(td, errno, "fwrite");
1216                 fclose(f);
1217                 return 1;
1218         }
1219
1220         rewind(f);
1221
1222         /*
1223          * Read back and check that the selected scheduler is now the default.
1224          */
1225         memset(tmp, 0, sizeof(tmp));
1226         ret = fread(tmp, sizeof(tmp), 1, f);
1227         if (ferror(f) || ret < 0) {
1228                 td_verror(td, errno, "fread");
1229                 fclose(f);
1230                 return 1;
1231         }
1232         /*
1233          * either a list of io schedulers or "none\n" is expected.
1234          */
1235         tmp[strlen(tmp) - 1] = '\0';
1236
1237
1238         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1239         if (!strstr(tmp, tmp2)) {
1240                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1241                 td_verror(td, EINVAL, "iosched_switch");
1242                 fclose(f);
1243                 return 1;
1244         }
1245
1246         fclose(f);
1247         return 0;
1248 }
1249
1250 static bool keep_running(struct thread_data *td)
1251 {
1252         unsigned long long limit;
1253
1254         if (td->done)
1255                 return false;
1256         if (td->o.time_based)
1257                 return true;
1258         if (td->o.loops) {
1259                 td->o.loops--;
1260                 return true;
1261         }
1262         if (exceeds_number_ios(td))
1263                 return false;
1264
1265         if (td->o.io_limit)
1266                 limit = td->o.io_limit;
1267         else
1268                 limit = td->o.size;
1269
1270         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1271                 uint64_t diff;
1272
1273                 /*
1274                  * If the difference is less than the minimum IO size, we
1275                  * are done.
1276                  */
1277                 diff = limit - ddir_rw_sum(td->io_bytes);
1278                 if (diff < td_max_bs(td))
1279                         return false;
1280
1281                 if (fio_files_done(td))
1282                         return false;
1283
1284                 return true;
1285         }
1286
1287         return false;
1288 }
1289
1290 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1291 {
1292         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1293         int ret;
1294         char *str;
1295
1296         str = malloc(newlen);
1297         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1298
1299         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1300         ret = system(str);
1301         if (ret == -1)
1302                 log_err("fio: exec of cmd <%s> failed\n", str);
1303
1304         free(str);
1305         return ret;
1306 }
1307
1308 /*
1309  * Dry run to compute correct state of numberio for verification.
1310  */
1311 static uint64_t do_dry_run(struct thread_data *td)
1312 {
1313         td_set_runstate(td, TD_RUNNING);
1314
1315         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1316                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1317                 struct io_u *io_u;
1318                 int ret;
1319
1320                 if (td->terminate || td->done)
1321                         break;
1322
1323                 io_u = get_io_u(td);
1324                 if (!io_u)
1325                         break;
1326
1327                 io_u_set(io_u, IO_U_F_FLIGHT);
1328                 io_u->error = 0;
1329                 io_u->resid = 0;
1330                 if (ddir_rw(acct_ddir(io_u)))
1331                         td->io_issues[acct_ddir(io_u)]++;
1332                 if (ddir_rw(io_u->ddir)) {
1333                         io_u_mark_depth(td, 1);
1334                         td->ts.total_io_u[io_u->ddir]++;
1335                 }
1336
1337                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1338                     td->o.do_verify &&
1339                     td->o.verify != VERIFY_NONE &&
1340                     !td->o.experimental_verify)
1341                         log_io_piece(td, io_u);
1342
1343                 ret = io_u_sync_complete(td, io_u);
1344                 (void) ret;
1345         }
1346
1347         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1348 }
1349
1350 static void io_workqueue_fn(struct thread_data *td, struct io_u *io_u)
1351 {
1352         const enum fio_ddir ddir = io_u->ddir;
1353         int ret;
1354
1355         dprint(FD_RATE, "io_u %p queued by %u\n", io_u, gettid());
1356
1357         io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1358
1359         td->cur_depth++;
1360
1361         do {
1362                 ret = td_io_queue(td, io_u);
1363                 if (ret != FIO_Q_BUSY)
1364                         break;
1365                 ret = io_u_queued_complete(td, 1);
1366                 if (ret > 0)
1367                         td->cur_depth -= ret;
1368                 io_u_clear(io_u, IO_U_F_FLIGHT);
1369         } while (1);
1370
1371         dprint(FD_RATE, "io_u %p ret %d by %u\n", io_u, ret, gettid());
1372
1373         io_queue_event(td, io_u, &ret, ddir, NULL, 0, NULL);
1374
1375         if (ret == FIO_Q_COMPLETED)
1376                 td->cur_depth--;
1377         else if (ret == FIO_Q_QUEUED) {
1378                 unsigned int min_evts;
1379
1380                 if (td->o.iodepth == 1)
1381                         min_evts = 1;
1382                 else
1383                         min_evts = 0;
1384
1385                 ret = io_u_queued_complete(td, min_evts);
1386                 if (ret > 0)
1387                         td->cur_depth -= ret;
1388         } else if (ret == FIO_Q_BUSY) {
1389                 ret = io_u_queued_complete(td, td->cur_depth);
1390                 if (ret > 0)
1391                         td->cur_depth -= ret;
1392         }
1393 }
1394
1395 /*
1396  * Entry point for the thread based jobs. The process based jobs end up
1397  * here as well, after a little setup.
1398  */
1399 static void *thread_main(void *data)
1400 {
1401         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1402         struct thread_data *td = data;
1403         struct thread_options *o = &td->o;
1404         pthread_condattr_t attr;
1405         int clear_state;
1406         int ret;
1407
1408         if (!o->use_thread) {
1409                 setsid();
1410                 td->pid = getpid();
1411         } else
1412                 td->pid = gettid();
1413
1414         fio_local_clock_init(o->use_thread);
1415
1416         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1417
1418         if (is_backend)
1419                 fio_server_send_start(td);
1420
1421         INIT_FLIST_HEAD(&td->io_log_list);
1422         INIT_FLIST_HEAD(&td->io_hist_list);
1423         INIT_FLIST_HEAD(&td->verify_list);
1424         INIT_FLIST_HEAD(&td->trim_list);
1425         INIT_FLIST_HEAD(&td->next_rand_list);
1426         pthread_mutex_init(&td->io_u_lock, NULL);
1427         td->io_hist_tree = RB_ROOT;
1428
1429         pthread_condattr_init(&attr);
1430         pthread_cond_init(&td->verify_cond, &attr);
1431         pthread_cond_init(&td->free_cond, &attr);
1432
1433         td_set_runstate(td, TD_INITIALIZED);
1434         dprint(FD_MUTEX, "up startup_mutex\n");
1435         fio_mutex_up(startup_mutex);
1436         dprint(FD_MUTEX, "wait on td->mutex\n");
1437         fio_mutex_down(td->mutex);
1438         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1439
1440         /*
1441          * A new gid requires privilege, so we need to do this before setting
1442          * the uid.
1443          */
1444         if (o->gid != -1U && setgid(o->gid)) {
1445                 td_verror(td, errno, "setgid");
1446                 goto err;
1447         }
1448         if (o->uid != -1U && setuid(o->uid)) {
1449                 td_verror(td, errno, "setuid");
1450                 goto err;
1451         }
1452
1453         /*
1454          * If we have a gettimeofday() thread, make sure we exclude that
1455          * thread from this job
1456          */
1457         if (o->gtod_cpu)
1458                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1459
1460         /*
1461          * Set affinity first, in case it has an impact on the memory
1462          * allocations.
1463          */
1464         if (fio_option_is_set(o, cpumask)) {
1465                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1466                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1467                         if (!ret) {
1468                                 log_err("fio: no CPUs set\n");
1469                                 log_err("fio: Try increasing number of available CPUs\n");
1470                                 td_verror(td, EINVAL, "cpus_split");
1471                                 goto err;
1472                         }
1473                 }
1474                 ret = fio_setaffinity(td->pid, o->cpumask);
1475                 if (ret == -1) {
1476                         td_verror(td, errno, "cpu_set_affinity");
1477                         goto err;
1478                 }
1479         }
1480
1481 #ifdef CONFIG_LIBNUMA
1482         /* numa node setup */
1483         if (fio_option_is_set(o, numa_cpunodes) ||
1484             fio_option_is_set(o, numa_memnodes)) {
1485                 struct bitmask *mask;
1486
1487                 if (numa_available() < 0) {
1488                         td_verror(td, errno, "Does not support NUMA API\n");
1489                         goto err;
1490                 }
1491
1492                 if (fio_option_is_set(o, numa_cpunodes)) {
1493                         mask = numa_parse_nodestring(o->numa_cpunodes);
1494                         ret = numa_run_on_node_mask(mask);
1495                         numa_free_nodemask(mask);
1496                         if (ret == -1) {
1497                                 td_verror(td, errno, \
1498                                         "numa_run_on_node_mask failed\n");
1499                                 goto err;
1500                         }
1501                 }
1502
1503                 if (fio_option_is_set(o, numa_memnodes)) {
1504                         mask = NULL;
1505                         if (o->numa_memnodes)
1506                                 mask = numa_parse_nodestring(o->numa_memnodes);
1507
1508                         switch (o->numa_mem_mode) {
1509                         case MPOL_INTERLEAVE:
1510                                 numa_set_interleave_mask(mask);
1511                                 break;
1512                         case MPOL_BIND:
1513                                 numa_set_membind(mask);
1514                                 break;
1515                         case MPOL_LOCAL:
1516                                 numa_set_localalloc();
1517                                 break;
1518                         case MPOL_PREFERRED:
1519                                 numa_set_preferred(o->numa_mem_prefer_node);
1520                                 break;
1521                         case MPOL_DEFAULT:
1522                         default:
1523                                 break;
1524                         }
1525
1526                         if (mask)
1527                                 numa_free_nodemask(mask);
1528
1529                 }
1530         }
1531 #endif
1532
1533         if (fio_pin_memory(td))
1534                 goto err;
1535
1536         /*
1537          * May alter parameters that init_io_u() will use, so we need to
1538          * do this first.
1539          */
1540         if (init_iolog(td))
1541                 goto err;
1542
1543         if (init_io_u(td))
1544                 goto err;
1545
1546         if (o->verify_async && verify_async_init(td))
1547                 goto err;
1548
1549         if (fio_option_is_set(o, ioprio) ||
1550             fio_option_is_set(o, ioprio_class)) {
1551                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1552                 if (ret == -1) {
1553                         td_verror(td, errno, "ioprio_set");
1554                         goto err;
1555                 }
1556         }
1557
1558         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1559                 goto err;
1560
1561         errno = 0;
1562         if (nice(o->nice) == -1 && errno != 0) {
1563                 td_verror(td, errno, "nice");
1564                 goto err;
1565         }
1566
1567         if (o->ioscheduler && switch_ioscheduler(td))
1568                 goto err;
1569
1570         if (!o->create_serialize && setup_files(td))
1571                 goto err;
1572
1573         if (td_io_init(td))
1574                 goto err;
1575
1576         if (init_random_map(td))
1577                 goto err;
1578
1579         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1580                 goto err;
1581
1582         if (o->pre_read) {
1583                 if (pre_read_files(td) < 0)
1584                         goto err;
1585         }
1586
1587         if (td->flags & TD_F_COMPRESS_LOG)
1588                 tp_init(&td->tp_data);
1589
1590         fio_verify_init(td);
1591
1592         if ((o->io_submit_mode == IO_MODE_OFFLOAD) &&
1593             workqueue_init(td, &td->io_wq, io_workqueue_fn, td->o.iodepth))
1594                 goto err;
1595
1596         fio_gettime(&td->epoch, NULL);
1597         fio_getrusage(&td->ru_start);
1598         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1599         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1600
1601         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1602                         o->ratemin[DDIR_TRIM]) {
1603                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1604                                         sizeof(td->bw_sample_time));
1605                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1606                                         sizeof(td->bw_sample_time));
1607                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1608                                         sizeof(td->bw_sample_time));
1609         }
1610
1611         clear_state = 0;
1612         while (keep_running(td)) {
1613                 uint64_t verify_bytes;
1614
1615                 fio_gettime(&td->start, NULL);
1616                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1617
1618                 if (clear_state)
1619                         clear_io_state(td, 0);
1620
1621                 prune_io_piece_log(td);
1622
1623                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1624                         verify_bytes = do_dry_run(td);
1625                 else
1626                         verify_bytes = do_io(td);
1627
1628                 clear_state = 1;
1629
1630                 /*
1631                  * Make sure we've successfully updated the rusage stats
1632                  * before waiting on the stat mutex. Otherwise we could have
1633                  * the stat thread holding stat mutex and waiting for
1634                  * the rusage_sem, which would never get upped because
1635                  * this thread is waiting for the stat mutex.
1636                  */
1637                 check_update_rusage(td);
1638
1639                 fio_mutex_down(stat_mutex);
1640                 if (td_read(td) && td->io_bytes[DDIR_READ])
1641                         update_runtime(td, elapsed_us, DDIR_READ);
1642                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1643                         update_runtime(td, elapsed_us, DDIR_WRITE);
1644                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1645                         update_runtime(td, elapsed_us, DDIR_TRIM);
1646                 fio_gettime(&td->start, NULL);
1647                 fio_mutex_up(stat_mutex);
1648
1649                 if (td->error || td->terminate)
1650                         break;
1651
1652                 if (!o->do_verify ||
1653                     o->verify == VERIFY_NONE ||
1654                     (td->io_ops->flags & FIO_UNIDIR))
1655                         continue;
1656
1657                 clear_io_state(td, 0);
1658
1659                 fio_gettime(&td->start, NULL);
1660
1661                 do_verify(td, verify_bytes);
1662
1663                 /*
1664                  * See comment further up for why this is done here.
1665                  */
1666                 check_update_rusage(td);
1667
1668                 fio_mutex_down(stat_mutex);
1669                 update_runtime(td, elapsed_us, DDIR_READ);
1670                 fio_gettime(&td->start, NULL);
1671                 fio_mutex_up(stat_mutex);
1672
1673                 if (td->error || td->terminate)
1674                         break;
1675         }
1676
1677         update_rusage_stat(td);
1678         td->ts.total_run_time = mtime_since_now(&td->epoch);
1679         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1680         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1681         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1682
1683         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1684             (td->o.verify != VERIFY_NONE && td_write(td)))
1685                 verify_save_state(td->thread_number);
1686
1687         fio_unpin_memory(td);
1688
1689         fio_writeout_logs(td);
1690
1691         if (o->io_submit_mode == IO_MODE_OFFLOAD)
1692                 workqueue_exit(&td->io_wq);
1693
1694         if (td->flags & TD_F_COMPRESS_LOG)
1695                 tp_exit(&td->tp_data);
1696
1697         if (o->exec_postrun)
1698                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1699
1700         if (exitall_on_terminate)
1701                 fio_terminate_threads(td->groupid);
1702
1703 err:
1704         if (td->error)
1705                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1706                                                         td->verror);
1707
1708         if (o->verify_async)
1709                 verify_async_exit(td);
1710
1711         close_and_free_files(td);
1712         cleanup_io_u(td);
1713         close_ioengine(td);
1714         cgroup_shutdown(td, &cgroup_mnt);
1715         verify_free_state(td);
1716
1717         if (fio_option_is_set(o, cpumask)) {
1718                 ret = fio_cpuset_exit(&o->cpumask);
1719                 if (ret)
1720                         td_verror(td, ret, "fio_cpuset_exit");
1721         }
1722
1723         /*
1724          * do this very late, it will log file closing as well
1725          */
1726         if (o->write_iolog_file)
1727                 write_iolog_close(td);
1728
1729         fio_mutex_remove(td->mutex);
1730         td->mutex = NULL;
1731
1732         td_set_runstate(td, TD_EXITED);
1733
1734         /*
1735          * Do this last after setting our runstate to exited, so we
1736          * know that the stat thread is signaled.
1737          */
1738         check_update_rusage(td);
1739
1740         return (void *) (uintptr_t) td->error;
1741 }
1742
1743
1744 /*
1745  * We cannot pass the td data into a forked process, so attach the td and
1746  * pass it to the thread worker.
1747  */
1748 static int fork_main(int shmid, int offset)
1749 {
1750         struct thread_data *td;
1751         void *data, *ret;
1752
1753 #if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1754         data = shmat(shmid, NULL, 0);
1755         if (data == (void *) -1) {
1756                 int __err = errno;
1757
1758                 perror("shmat");
1759                 return __err;
1760         }
1761 #else
1762         /*
1763          * HP-UX inherits shm mappings?
1764          */
1765         data = threads;
1766 #endif
1767
1768         td = data + offset * sizeof(struct thread_data);
1769         ret = thread_main(td);
1770         shmdt(data);
1771         return (int) (uintptr_t) ret;
1772 }
1773
1774 static void dump_td_info(struct thread_data *td)
1775 {
1776         log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1777                 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1778                         (unsigned long) time_since_now(&td->terminate_time));
1779 }
1780
1781 /*
1782  * Run over the job map and reap the threads that have exited, if any.
1783  */
1784 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1785                          unsigned int *m_rate)
1786 {
1787         struct thread_data *td;
1788         unsigned int cputhreads, realthreads, pending;
1789         int i, status, ret;
1790
1791         /*
1792          * reap exited threads (TD_EXITED -> TD_REAPED)
1793          */
1794         realthreads = pending = cputhreads = 0;
1795         for_each_td(td, i) {
1796                 int flags = 0;
1797
1798                 /*
1799                  * ->io_ops is NULL for a thread that has closed its
1800                  * io engine
1801                  */
1802                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1803                         cputhreads++;
1804                 else
1805                         realthreads++;
1806
1807                 if (!td->pid) {
1808                         pending++;
1809                         continue;
1810                 }
1811                 if (td->runstate == TD_REAPED)
1812                         continue;
1813                 if (td->o.use_thread) {
1814                         if (td->runstate == TD_EXITED) {
1815                                 td_set_runstate(td, TD_REAPED);
1816                                 goto reaped;
1817                         }
1818                         continue;
1819                 }
1820
1821                 flags = WNOHANG;
1822                 if (td->runstate == TD_EXITED)
1823                         flags = 0;
1824
1825                 /*
1826                  * check if someone quit or got killed in an unusual way
1827                  */
1828                 ret = waitpid(td->pid, &status, flags);
1829                 if (ret < 0) {
1830                         if (errno == ECHILD) {
1831                                 log_err("fio: pid=%d disappeared %d\n",
1832                                                 (int) td->pid, td->runstate);
1833                                 td->sig = ECHILD;
1834                                 td_set_runstate(td, TD_REAPED);
1835                                 goto reaped;
1836                         }
1837                         perror("waitpid");
1838                 } else if (ret == td->pid) {
1839                         if (WIFSIGNALED(status)) {
1840                                 int sig = WTERMSIG(status);
1841
1842                                 if (sig != SIGTERM && sig != SIGUSR2)
1843                                         log_err("fio: pid=%d, got signal=%d\n",
1844                                                         (int) td->pid, sig);
1845                                 td->sig = sig;
1846                                 td_set_runstate(td, TD_REAPED);
1847                                 goto reaped;
1848                         }
1849                         if (WIFEXITED(status)) {
1850                                 if (WEXITSTATUS(status) && !td->error)
1851                                         td->error = WEXITSTATUS(status);
1852
1853                                 td_set_runstate(td, TD_REAPED);
1854                                 goto reaped;
1855                         }
1856                 }
1857
1858                 /*
1859                  * If the job is stuck, do a forceful timeout of it and
1860                  * move on.
1861                  */
1862                 if (td->terminate &&
1863                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1864                         dump_td_info(td);
1865                         td_set_runstate(td, TD_REAPED);
1866                         goto reaped;
1867                 }
1868
1869                 /*
1870                  * thread is not dead, continue
1871                  */
1872                 pending++;
1873                 continue;
1874 reaped:
1875                 (*nr_running)--;
1876                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1877                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1878                 if (!td->pid)
1879                         pending--;
1880
1881                 if (td->error)
1882                         exit_value++;
1883
1884                 done_secs += mtime_since_now(&td->epoch) / 1000;
1885                 profile_td_exit(td);
1886         }
1887
1888         if (*nr_running == cputhreads && !pending && realthreads)
1889                 fio_terminate_threads(TERMINATE_ALL);
1890 }
1891
1892 static bool __check_trigger_file(void)
1893 {
1894         struct stat sb;
1895
1896         if (!trigger_file)
1897                 return false;
1898
1899         if (stat(trigger_file, &sb))
1900                 return false;
1901
1902         if (unlink(trigger_file) < 0)
1903                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1904                                                         strerror(errno));
1905
1906         return true;
1907 }
1908
1909 static bool trigger_timedout(void)
1910 {
1911         if (trigger_timeout)
1912                 return time_since_genesis() >= trigger_timeout;
1913
1914         return false;
1915 }
1916
1917 void exec_trigger(const char *cmd)
1918 {
1919         int ret;
1920
1921         if (!cmd)
1922                 return;
1923
1924         ret = system(cmd);
1925         if (ret == -1)
1926                 log_err("fio: failed executing %s trigger\n", cmd);
1927 }
1928
1929 void check_trigger_file(void)
1930 {
1931         if (__check_trigger_file() || trigger_timedout()) {
1932                 if (nr_clients)
1933                         fio_clients_send_trigger(trigger_remote_cmd);
1934                 else {
1935                         verify_save_state(IO_LIST_ALL);
1936                         fio_terminate_threads(TERMINATE_ALL);
1937                         exec_trigger(trigger_cmd);
1938                 }
1939         }
1940 }
1941
1942 static int fio_verify_load_state(struct thread_data *td)
1943 {
1944         int ret;
1945
1946         if (!td->o.verify_state)
1947                 return 0;
1948
1949         if (is_backend) {
1950                 void *data;
1951                 int ver;
1952
1953                 ret = fio_server_get_verify_state(td->o.name,
1954                                         td->thread_number - 1, &data, &ver);
1955                 if (!ret)
1956                         verify_convert_assign_state(td, data, ver);
1957         } else
1958                 ret = verify_load_state(td, "local");
1959
1960         return ret;
1961 }
1962
1963 static void do_usleep(unsigned int usecs)
1964 {
1965         check_for_running_stats();
1966         check_trigger_file();
1967         usleep(usecs);
1968 }
1969
1970 static bool check_mount_writes(struct thread_data *td)
1971 {
1972         struct fio_file *f;
1973         unsigned int i;
1974
1975         if (!td_write(td) || td->o.allow_mounted_write)
1976                 return false;
1977
1978         for_each_file(td, f, i) {
1979                 if (f->filetype != FIO_TYPE_BD)
1980                         continue;
1981                 if (device_is_mounted(f->file_name))
1982                         goto mounted;
1983         }
1984
1985         return false;
1986 mounted:
1987         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
1988         return true;
1989 }
1990
1991 /*
1992  * Main function for kicking off and reaping jobs, as needed.
1993  */
1994 static void run_threads(void)
1995 {
1996         struct thread_data *td;
1997         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1998         uint64_t spent;
1999
2000         if (fio_gtod_offload && fio_start_gtod_thread())
2001                 return;
2002
2003         fio_idle_prof_init();
2004
2005         set_sig_handlers();
2006
2007         nr_thread = nr_process = 0;
2008         for_each_td(td, i) {
2009                 if (check_mount_writes(td))
2010                         return;
2011                 if (td->o.use_thread)
2012                         nr_thread++;
2013                 else
2014                         nr_process++;
2015         }
2016
2017         if (output_format & FIO_OUTPUT_NORMAL) {
2018                 log_info("Starting ");
2019                 if (nr_thread)
2020                         log_info("%d thread%s", nr_thread,
2021                                                 nr_thread > 1 ? "s" : "");
2022                 if (nr_process) {
2023                         if (nr_thread)
2024                                 log_info(" and ");
2025                         log_info("%d process%s", nr_process,
2026                                                 nr_process > 1 ? "es" : "");
2027                 }
2028                 log_info("\n");
2029                 log_info_flush();
2030         }
2031
2032         todo = thread_number;
2033         nr_running = 0;
2034         nr_started = 0;
2035         m_rate = t_rate = 0;
2036
2037         for_each_td(td, i) {
2038                 print_status_init(td->thread_number - 1);
2039
2040                 if (!td->o.create_serialize)
2041                         continue;
2042
2043                 if (fio_verify_load_state(td))
2044                         goto reap;
2045
2046                 /*
2047                  * do file setup here so it happens sequentially,
2048                  * we don't want X number of threads getting their
2049                  * client data interspersed on disk
2050                  */
2051                 if (setup_files(td)) {
2052 reap:
2053                         exit_value++;
2054                         if (td->error)
2055                                 log_err("fio: pid=%d, err=%d/%s\n",
2056                                         (int) td->pid, td->error, td->verror);
2057                         td_set_runstate(td, TD_REAPED);
2058                         todo--;
2059                 } else {
2060                         struct fio_file *f;
2061                         unsigned int j;
2062
2063                         /*
2064                          * for sharing to work, each job must always open
2065                          * its own files. so close them, if we opened them
2066                          * for creation
2067                          */
2068                         for_each_file(td, f, j) {
2069                                 if (fio_file_open(f))
2070                                         td_io_close_file(td, f);
2071                         }
2072                 }
2073         }
2074
2075         /* start idle threads before io threads start to run */
2076         fio_idle_prof_start();
2077
2078         set_genesis_time();
2079
2080         while (todo) {
2081                 struct thread_data *map[REAL_MAX_JOBS];
2082                 struct timeval this_start;
2083                 int this_jobs = 0, left;
2084
2085                 /*
2086                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2087                  */
2088                 for_each_td(td, i) {
2089                         if (td->runstate != TD_NOT_CREATED)
2090                                 continue;
2091
2092                         /*
2093                          * never got a chance to start, killed by other
2094                          * thread for some reason
2095                          */
2096                         if (td->terminate) {
2097                                 todo--;
2098                                 continue;
2099                         }
2100
2101                         if (td->o.start_delay) {
2102                                 spent = utime_since_genesis();
2103
2104                                 if (td->o.start_delay > spent)
2105                                         continue;
2106                         }
2107
2108                         if (td->o.stonewall && (nr_started || nr_running)) {
2109                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2110                                                         td->o.name);
2111                                 break;
2112                         }
2113
2114                         init_disk_util(td);
2115
2116                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2117                         td->update_rusage = 0;
2118
2119                         /*
2120                          * Set state to created. Thread will transition
2121                          * to TD_INITIALIZED when it's done setting up.
2122                          */
2123                         td_set_runstate(td, TD_CREATED);
2124                         map[this_jobs++] = td;
2125                         nr_started++;
2126
2127                         if (td->o.use_thread) {
2128                                 int ret;
2129
2130                                 dprint(FD_PROCESS, "will pthread_create\n");
2131                                 ret = pthread_create(&td->thread, NULL,
2132                                                         thread_main, td);
2133                                 if (ret) {
2134                                         log_err("pthread_create: %s\n",
2135                                                         strerror(ret));
2136                                         nr_started--;
2137                                         break;
2138                                 }
2139                                 ret = pthread_detach(td->thread);
2140                                 if (ret)
2141                                         log_err("pthread_detach: %s",
2142                                                         strerror(ret));
2143                         } else {
2144                                 pid_t pid;
2145                                 dprint(FD_PROCESS, "will fork\n");
2146                                 pid = fork();
2147                                 if (!pid) {
2148                                         int ret = fork_main(shm_id, i);
2149
2150                                         _exit(ret);
2151                                 } else if (i == fio_debug_jobno)
2152                                         *fio_debug_jobp = pid;
2153                         }
2154                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2155                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
2156                                 log_err("fio: job startup hung? exiting.\n");
2157                                 fio_terminate_threads(TERMINATE_ALL);
2158                                 fio_abort = 1;
2159                                 nr_started--;
2160                                 break;
2161                         }
2162                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2163                 }
2164
2165                 /*
2166                  * Wait for the started threads to transition to
2167                  * TD_INITIALIZED.
2168                  */
2169                 fio_gettime(&this_start, NULL);
2170                 left = this_jobs;
2171                 while (left && !fio_abort) {
2172                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2173                                 break;
2174
2175                         do_usleep(100000);
2176
2177                         for (i = 0; i < this_jobs; i++) {
2178                                 td = map[i];
2179                                 if (!td)
2180                                         continue;
2181                                 if (td->runstate == TD_INITIALIZED) {
2182                                         map[i] = NULL;
2183                                         left--;
2184                                 } else if (td->runstate >= TD_EXITED) {
2185                                         map[i] = NULL;
2186                                         left--;
2187                                         todo--;
2188                                         nr_running++; /* work-around... */
2189                                 }
2190                         }
2191                 }
2192
2193                 if (left) {
2194                         log_err("fio: %d job%s failed to start\n", left,
2195                                         left > 1 ? "s" : "");
2196                         for (i = 0; i < this_jobs; i++) {
2197                                 td = map[i];
2198                                 if (!td)
2199                                         continue;
2200                                 kill(td->pid, SIGTERM);
2201                         }
2202                         break;
2203                 }
2204
2205                 /*
2206                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2207                  */
2208                 for_each_td(td, i) {
2209                         if (td->runstate != TD_INITIALIZED)
2210                                 continue;
2211
2212                         if (in_ramp_time(td))
2213                                 td_set_runstate(td, TD_RAMP);
2214                         else
2215                                 td_set_runstate(td, TD_RUNNING);
2216                         nr_running++;
2217                         nr_started--;
2218                         m_rate += ddir_rw_sum(td->o.ratemin);
2219                         t_rate += ddir_rw_sum(td->o.rate);
2220                         todo--;
2221                         fio_mutex_up(td->mutex);
2222                 }
2223
2224                 reap_threads(&nr_running, &t_rate, &m_rate);
2225
2226                 if (todo)
2227                         do_usleep(100000);
2228         }
2229
2230         while (nr_running) {
2231                 reap_threads(&nr_running, &t_rate, &m_rate);
2232                 do_usleep(10000);
2233         }
2234
2235         fio_idle_prof_stop();
2236
2237         update_io_ticks();
2238 }
2239
2240 static void wait_for_helper_thread_exit(void)
2241 {
2242         void *ret;
2243
2244         helper_exit = 1;
2245         pthread_cond_signal(&helper_cond);
2246         pthread_join(helper_thread, &ret);
2247 }
2248
2249 static void free_disk_util(void)
2250 {
2251         disk_util_prune_entries();
2252
2253         pthread_cond_destroy(&helper_cond);
2254 }
2255
2256 static void *helper_thread_main(void *data)
2257 {
2258         int ret = 0;
2259
2260         fio_mutex_up(startup_mutex);
2261
2262         while (!ret) {
2263                 uint64_t sec = DISK_UTIL_MSEC / 1000;
2264                 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2265                 struct timespec ts;
2266                 struct timeval tv;
2267
2268                 gettimeofday(&tv, NULL);
2269                 ts.tv_sec = tv.tv_sec + sec;
2270                 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2271
2272                 if (ts.tv_nsec >= 1000000000ULL) {
2273                         ts.tv_nsec -= 1000000000ULL;
2274                         ts.tv_sec++;
2275                 }
2276
2277                 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2278
2279                 ret = update_io_ticks();
2280
2281                 if (helper_do_stat) {
2282                         helper_do_stat = 0;
2283                         __show_running_run_stats();
2284                 }
2285
2286                 if (!is_backend)
2287                         print_thread_status();
2288         }
2289
2290         return NULL;
2291 }
2292
2293 static int create_helper_thread(void)
2294 {
2295         int ret;
2296
2297         setup_disk_util();
2298
2299         pthread_cond_init(&helper_cond, NULL);
2300         pthread_mutex_init(&helper_lock, NULL);
2301
2302         ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2303         if (ret) {
2304                 log_err("Can't create helper thread: %s\n", strerror(ret));
2305                 return 1;
2306         }
2307
2308         dprint(FD_MUTEX, "wait on startup_mutex\n");
2309         fio_mutex_down(startup_mutex);
2310         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2311         return 0;
2312 }
2313
2314 int fio_backend(void)
2315 {
2316         struct thread_data *td;
2317         int i;
2318
2319         if (exec_profile) {
2320                 if (load_profile(exec_profile))
2321                         return 1;
2322                 free(exec_profile);
2323                 exec_profile = NULL;
2324         }
2325         if (!thread_number)
2326                 return 0;
2327
2328         if (write_bw_log) {
2329                 struct log_params p = {
2330                         .log_type = IO_LOG_TYPE_BW,
2331                 };
2332
2333                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2334                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2335                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2336         }
2337
2338         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2339         if (startup_mutex == NULL)
2340                 return 1;
2341
2342         set_genesis_time();
2343         stat_init();
2344         create_helper_thread();
2345
2346         cgroup_list = smalloc(sizeof(*cgroup_list));
2347         INIT_FLIST_HEAD(cgroup_list);
2348
2349         run_threads();
2350
2351         wait_for_helper_thread_exit();
2352
2353         if (!fio_abort) {
2354                 __show_run_stats();
2355                 if (write_bw_log) {
2356                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2357                                 struct io_log *log = agg_io_log[i];
2358
2359                                 flush_log(log, 0);
2360                                 free_log(log);
2361                         }
2362                 }
2363         }
2364
2365         for_each_td(td, i) {
2366                 fio_options_free(td);
2367                 if (td->rusage_sem) {
2368                         fio_mutex_remove(td->rusage_sem);
2369                         td->rusage_sem = NULL;
2370                 }
2371         }
2372
2373         free_disk_util();
2374         cgroup_kill(cgroup_list);
2375         sfree(cgroup_list);
2376         sfree(cgroup_mnt);
2377
2378         fio_mutex_remove(startup_mutex);
2379         stat_exit();
2380         return exit_value;
2381 }