steadystate: reject job if steadystate options are not consistent within reporting...
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "workqueue.h"
58 #include "lib/mountcheck.h"
59 #include "rate-submit.h"
60 #include "helper_thread.h"
61
62 static struct fio_mutex *startup_mutex;
63 static struct flist_head *cgroup_list;
64 static char *cgroup_mnt;
65 static int exit_value;
66 static volatile int fio_abort;
67 static unsigned int nr_process = 0;
68 static unsigned int nr_thread = 0;
69
70 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72 int groupid = 0;
73 unsigned int thread_number = 0;
74 unsigned int stat_number = 0;
75 int shm_id = 0;
76 int temp_stall_ts;
77 unsigned long done_secs = 0;
78
79 #define PAGE_ALIGN(buf) \
80         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
81
82 #define JOB_START_TIMEOUT       (5 * 1000)
83
84 static void sig_int(int sig)
85 {
86         if (threads) {
87                 if (is_backend)
88                         fio_server_got_signal(sig);
89                 else {
90                         log_info("\nfio: terminating on signal %d\n", sig);
91                         log_info_flush();
92                         exit_value = 128;
93                 }
94
95                 fio_terminate_threads(TERMINATE_ALL);
96         }
97 }
98
99 void sig_show_status(int sig)
100 {
101         show_running_run_stats();
102 }
103
104 static void set_sig_handlers(void)
105 {
106         struct sigaction act;
107
108         memset(&act, 0, sizeof(act));
109         act.sa_handler = sig_int;
110         act.sa_flags = SA_RESTART;
111         sigaction(SIGINT, &act, NULL);
112
113         memset(&act, 0, sizeof(act));
114         act.sa_handler = sig_int;
115         act.sa_flags = SA_RESTART;
116         sigaction(SIGTERM, &act, NULL);
117
118 /* Windows uses SIGBREAK as a quit signal from other applications */
119 #ifdef WIN32
120         memset(&act, 0, sizeof(act));
121         act.sa_handler = sig_int;
122         act.sa_flags = SA_RESTART;
123         sigaction(SIGBREAK, &act, NULL);
124 #endif
125
126         memset(&act, 0, sizeof(act));
127         act.sa_handler = sig_show_status;
128         act.sa_flags = SA_RESTART;
129         sigaction(SIGUSR1, &act, NULL);
130
131         if (is_backend) {
132                 memset(&act, 0, sizeof(act));
133                 act.sa_handler = sig_int;
134                 act.sa_flags = SA_RESTART;
135                 sigaction(SIGPIPE, &act, NULL);
136         }
137 }
138
139 /*
140  * Check if we are above the minimum rate given.
141  */
142 static bool __check_min_rate(struct thread_data *td, struct timeval *now,
143                              enum fio_ddir ddir)
144 {
145         unsigned long long bytes = 0;
146         unsigned long iops = 0;
147         unsigned long spent;
148         unsigned long rate;
149         unsigned int ratemin = 0;
150         unsigned int rate_iops = 0;
151         unsigned int rate_iops_min = 0;
152
153         assert(ddir_rw(ddir));
154
155         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
156                 return false;
157
158         /*
159          * allow a 2 second settle period in the beginning
160          */
161         if (mtime_since(&td->start, now) < 2000)
162                 return false;
163
164         iops += td->this_io_blocks[ddir];
165         bytes += td->this_io_bytes[ddir];
166         ratemin += td->o.ratemin[ddir];
167         rate_iops += td->o.rate_iops[ddir];
168         rate_iops_min += td->o.rate_iops_min[ddir];
169
170         /*
171          * if rate blocks is set, sample is running
172          */
173         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
174                 spent = mtime_since(&td->lastrate[ddir], now);
175                 if (spent < td->o.ratecycle)
176                         return false;
177
178                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
179                         /*
180                          * check bandwidth specified rate
181                          */
182                         if (bytes < td->rate_bytes[ddir]) {
183                                 log_err("%s: min rate %u not met\n", td->o.name,
184                                                                 ratemin);
185                                 return true;
186                         } else {
187                                 if (spent)
188                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
189                                 else
190                                         rate = 0;
191
192                                 if (rate < ratemin ||
193                                     bytes < td->rate_bytes[ddir]) {
194                                         log_err("%s: min rate %u not met, got"
195                                                 " %luKB/sec\n", td->o.name,
196                                                         ratemin, rate);
197                                         return true;
198                                 }
199                         }
200                 } else {
201                         /*
202                          * checks iops specified rate
203                          */
204                         if (iops < rate_iops) {
205                                 log_err("%s: min iops rate %u not met\n",
206                                                 td->o.name, rate_iops);
207                                 return true;
208                         } else {
209                                 if (spent)
210                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
211                                 else
212                                         rate = 0;
213
214                                 if (rate < rate_iops_min ||
215                                     iops < td->rate_blocks[ddir]) {
216                                         log_err("%s: min iops rate %u not met,"
217                                                 " got %lu\n", td->o.name,
218                                                         rate_iops_min, rate);
219                                         return true;
220                                 }
221                         }
222                 }
223         }
224
225         td->rate_bytes[ddir] = bytes;
226         td->rate_blocks[ddir] = iops;
227         memcpy(&td->lastrate[ddir], now, sizeof(*now));
228         return false;
229 }
230
231 static bool check_min_rate(struct thread_data *td, struct timeval *now)
232 {
233         bool ret = false;
234
235         if (td->bytes_done[DDIR_READ])
236                 ret |= __check_min_rate(td, now, DDIR_READ);
237         if (td->bytes_done[DDIR_WRITE])
238                 ret |= __check_min_rate(td, now, DDIR_WRITE);
239         if (td->bytes_done[DDIR_TRIM])
240                 ret |= __check_min_rate(td, now, DDIR_TRIM);
241
242         return ret;
243 }
244
245 /*
246  * When job exits, we can cancel the in-flight IO if we are using async
247  * io. Attempt to do so.
248  */
249 static void cleanup_pending_aio(struct thread_data *td)
250 {
251         int r;
252
253         /*
254          * get immediately available events, if any
255          */
256         r = io_u_queued_complete(td, 0);
257         if (r < 0)
258                 return;
259
260         /*
261          * now cancel remaining active events
262          */
263         if (td->io_ops->cancel) {
264                 struct io_u *io_u;
265                 int i;
266
267                 io_u_qiter(&td->io_u_all, io_u, i) {
268                         if (io_u->flags & IO_U_F_FLIGHT) {
269                                 r = td->io_ops->cancel(td, io_u);
270                                 if (!r)
271                                         put_io_u(td, io_u);
272                         }
273                 }
274         }
275
276         if (td->cur_depth)
277                 r = io_u_queued_complete(td, td->cur_depth);
278 }
279
280 /*
281  * Helper to handle the final sync of a file. Works just like the normal
282  * io path, just does everything sync.
283  */
284 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
285 {
286         struct io_u *io_u = __get_io_u(td);
287         int ret;
288
289         if (!io_u)
290                 return true;
291
292         io_u->ddir = DDIR_SYNC;
293         io_u->file = f;
294
295         if (td_io_prep(td, io_u)) {
296                 put_io_u(td, io_u);
297                 return true;
298         }
299
300 requeue:
301         ret = td_io_queue(td, io_u);
302         if (ret < 0) {
303                 td_verror(td, io_u->error, "td_io_queue");
304                 put_io_u(td, io_u);
305                 return true;
306         } else if (ret == FIO_Q_QUEUED) {
307                 if (td_io_commit(td))
308                         return true;
309                 if (io_u_queued_complete(td, 1) < 0)
310                         return true;
311         } else if (ret == FIO_Q_COMPLETED) {
312                 if (io_u->error) {
313                         td_verror(td, io_u->error, "td_io_queue");
314                         return true;
315                 }
316
317                 if (io_u_sync_complete(td, io_u) < 0)
318                         return true;
319         } else if (ret == FIO_Q_BUSY) {
320                 if (td_io_commit(td))
321                         return true;
322                 goto requeue;
323         }
324
325         return false;
326 }
327
328 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329 {
330         int ret;
331
332         if (fio_file_open(f))
333                 return fio_io_sync(td, f);
334
335         if (td_io_open_file(td, f))
336                 return 1;
337
338         ret = fio_io_sync(td, f);
339         td_io_close_file(td, f);
340         return ret;
341 }
342
343 static inline void __update_tv_cache(struct thread_data *td)
344 {
345         fio_gettime(&td->tv_cache, NULL);
346 }
347
348 static inline void update_tv_cache(struct thread_data *td)
349 {
350         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351                 __update_tv_cache(td);
352 }
353
354 static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
355 {
356         if (in_ramp_time(td))
357                 return false;
358         if (!td->o.timeout)
359                 return false;
360         if (utime_since(&td->epoch, t) >= td->o.timeout)
361                 return true;
362
363         return false;
364 }
365
366 /*
367  * We need to update the runtime consistently in ms, but keep a running
368  * tally of the current elapsed time in microseconds for sub millisecond
369  * updates.
370  */
371 static inline void update_runtime(struct thread_data *td,
372                                   unsigned long long *elapsed_us,
373                                   const enum fio_ddir ddir)
374 {
375         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
376                 return;
377
378         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
379         elapsed_us[ddir] += utime_since_now(&td->start);
380         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
381 }
382
383 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
384                                 int *retptr)
385 {
386         int ret = *retptr;
387
388         if (ret < 0 || td->error) {
389                 int err = td->error;
390                 enum error_type_bit eb;
391
392                 if (ret < 0)
393                         err = -ret;
394
395                 eb = td_error_type(ddir, err);
396                 if (!(td->o.continue_on_error & (1 << eb)))
397                         return true;
398
399                 if (td_non_fatal_error(td, eb, err)) {
400                         /*
401                          * Continue with the I/Os in case of
402                          * a non fatal error.
403                          */
404                         update_error_count(td, err);
405                         td_clear_error(td);
406                         *retptr = 0;
407                         return false;
408                 } else if (td->o.fill_device && err == ENOSPC) {
409                         /*
410                          * We expect to hit this error if
411                          * fill_device option is set.
412                          */
413                         td_clear_error(td);
414                         fio_mark_td_terminate(td);
415                         return true;
416                 } else {
417                         /*
418                          * Stop the I/O in case of a fatal
419                          * error.
420                          */
421                         update_error_count(td, err);
422                         return true;
423                 }
424         }
425
426         return false;
427 }
428
429 static void check_update_rusage(struct thread_data *td)
430 {
431         if (td->update_rusage) {
432                 td->update_rusage = 0;
433                 update_rusage_stat(td);
434                 fio_mutex_up(td->rusage_sem);
435         }
436 }
437
438 static int wait_for_completions(struct thread_data *td, struct timeval *time)
439 {
440         const int full = queue_full(td);
441         int min_evts = 0;
442         int ret;
443
444         if (td->flags & TD_F_REGROW_LOGS) {
445                 ret = io_u_quiesce(td);
446                 regrow_logs(td);
447                 return ret;
448         }
449
450         /*
451          * if the queue is full, we MUST reap at least 1 event
452          */
453         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
454         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
455                 min_evts = 1;
456
457         if (time && (__should_check_rate(td, DDIR_READ) ||
458             __should_check_rate(td, DDIR_WRITE) ||
459             __should_check_rate(td, DDIR_TRIM)))
460                 fio_gettime(time, NULL);
461
462         do {
463                 ret = io_u_queued_complete(td, min_evts);
464                 if (ret < 0)
465                         break;
466         } while (full && (td->cur_depth > td->o.iodepth_low));
467
468         return ret;
469 }
470
471 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
472                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
473                    struct timeval *comp_time)
474 {
475         int ret2;
476
477         switch (*ret) {
478         case FIO_Q_COMPLETED:
479                 if (io_u->error) {
480                         *ret = -io_u->error;
481                         clear_io_u(td, io_u);
482                 } else if (io_u->resid) {
483                         int bytes = io_u->xfer_buflen - io_u->resid;
484                         struct fio_file *f = io_u->file;
485
486                         if (bytes_issued)
487                                 *bytes_issued += bytes;
488
489                         if (!from_verify)
490                                 trim_io_piece(td, io_u);
491
492                         /*
493                          * zero read, fail
494                          */
495                         if (!bytes) {
496                                 if (!from_verify)
497                                         unlog_io_piece(td, io_u);
498                                 td_verror(td, EIO, "full resid");
499                                 put_io_u(td, io_u);
500                                 break;
501                         }
502
503                         io_u->xfer_buflen = io_u->resid;
504                         io_u->xfer_buf += bytes;
505                         io_u->offset += bytes;
506
507                         if (ddir_rw(io_u->ddir))
508                                 td->ts.short_io_u[io_u->ddir]++;
509
510                         f = io_u->file;
511                         if (io_u->offset == f->real_file_size)
512                                 goto sync_done;
513
514                         requeue_io_u(td, &io_u);
515                 } else {
516 sync_done:
517                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
518                             __should_check_rate(td, DDIR_WRITE) ||
519                             __should_check_rate(td, DDIR_TRIM)))
520                                 fio_gettime(comp_time, NULL);
521
522                         *ret = io_u_sync_complete(td, io_u);
523                         if (*ret < 0)
524                                 break;
525                 }
526
527                 if (td->flags & TD_F_REGROW_LOGS)
528                         regrow_logs(td);
529
530                 /*
531                  * when doing I/O (not when verifying),
532                  * check for any errors that are to be ignored
533                  */
534                 if (!from_verify)
535                         break;
536
537                 return 0;
538         case FIO_Q_QUEUED:
539                 /*
540                  * if the engine doesn't have a commit hook,
541                  * the io_u is really queued. if it does have such
542                  * a hook, it has to call io_u_queued() itself.
543                  */
544                 if (td->io_ops->commit == NULL)
545                         io_u_queued(td, io_u);
546                 if (bytes_issued)
547                         *bytes_issued += io_u->xfer_buflen;
548                 break;
549         case FIO_Q_BUSY:
550                 if (!from_verify)
551                         unlog_io_piece(td, io_u);
552                 requeue_io_u(td, &io_u);
553                 ret2 = td_io_commit(td);
554                 if (ret2 < 0)
555                         *ret = ret2;
556                 break;
557         default:
558                 assert(*ret < 0);
559                 td_verror(td, -(*ret), "td_io_queue");
560                 break;
561         }
562
563         if (break_on_this_error(td, ddir, ret))
564                 return 1;
565
566         return 0;
567 }
568
569 static inline bool io_in_polling(struct thread_data *td)
570 {
571         return !td->o.iodepth_batch_complete_min &&
572                    !td->o.iodepth_batch_complete_max;
573 }
574 /*
575  * Unlinks files from thread data fio_file structure
576  */
577 static int unlink_all_files(struct thread_data *td)
578 {
579         struct fio_file *f;
580         unsigned int i;
581         int ret = 0;
582
583         for_each_file(td, f, i) {
584                 if (f->filetype != FIO_TYPE_FILE)
585                         continue;
586                 ret = td_io_unlink_file(td, f);
587                 if (ret)
588                         break;
589         }
590
591         if (ret)
592                 td_verror(td, ret, "unlink_all_files");
593
594         return ret;
595 }
596
597 /*
598  * The main verify engine. Runs over the writes we previously submitted,
599  * reads the blocks back in, and checks the crc/md5 of the data.
600  */
601 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
602 {
603         struct fio_file *f;
604         struct io_u *io_u;
605         int ret, min_events;
606         unsigned int i;
607
608         dprint(FD_VERIFY, "starting loop\n");
609
610         /*
611          * sync io first and invalidate cache, to make sure we really
612          * read from disk.
613          */
614         for_each_file(td, f, i) {
615                 if (!fio_file_open(f))
616                         continue;
617                 if (fio_io_sync(td, f))
618                         break;
619                 if (file_invalidate_cache(td, f))
620                         break;
621         }
622
623         check_update_rusage(td);
624
625         if (td->error)
626                 return;
627
628         /*
629          * verify_state needs to be reset before verification
630          * proceeds so that expected random seeds match actual
631          * random seeds in headers. The main loop will reset
632          * all random number generators if randrepeat is set.
633          */
634         if (!td->o.rand_repeatable)
635                 td_fill_verify_state_seed(td);
636
637         td_set_runstate(td, TD_VERIFYING);
638
639         io_u = NULL;
640         while (!td->terminate) {
641                 enum fio_ddir ddir;
642                 int full;
643
644                 update_tv_cache(td);
645                 check_update_rusage(td);
646
647                 if (runtime_exceeded(td, &td->tv_cache)) {
648                         __update_tv_cache(td);
649                         if (runtime_exceeded(td, &td->tv_cache)) {
650                                 fio_mark_td_terminate(td);
651                                 break;
652                         }
653                 }
654
655                 if (flow_threshold_exceeded(td))
656                         continue;
657
658                 if (!td->o.experimental_verify) {
659                         io_u = __get_io_u(td);
660                         if (!io_u)
661                                 break;
662
663                         if (get_next_verify(td, io_u)) {
664                                 put_io_u(td, io_u);
665                                 break;
666                         }
667
668                         if (td_io_prep(td, io_u)) {
669                                 put_io_u(td, io_u);
670                                 break;
671                         }
672                 } else {
673                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
674                                 break;
675
676                         while ((io_u = get_io_u(td)) != NULL) {
677                                 if (IS_ERR_OR_NULL(io_u)) {
678                                         io_u = NULL;
679                                         ret = FIO_Q_BUSY;
680                                         goto reap;
681                                 }
682
683                                 /*
684                                  * We are only interested in the places where
685                                  * we wrote or trimmed IOs. Turn those into
686                                  * reads for verification purposes.
687                                  */
688                                 if (io_u->ddir == DDIR_READ) {
689                                         /*
690                                          * Pretend we issued it for rwmix
691                                          * accounting
692                                          */
693                                         td->io_issues[DDIR_READ]++;
694                                         put_io_u(td, io_u);
695                                         continue;
696                                 } else if (io_u->ddir == DDIR_TRIM) {
697                                         io_u->ddir = DDIR_READ;
698                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
699                                         break;
700                                 } else if (io_u->ddir == DDIR_WRITE) {
701                                         io_u->ddir = DDIR_READ;
702                                         break;
703                                 } else {
704                                         put_io_u(td, io_u);
705                                         continue;
706                                 }
707                         }
708
709                         if (!io_u)
710                                 break;
711                 }
712
713                 if (verify_state_should_stop(td, io_u)) {
714                         put_io_u(td, io_u);
715                         break;
716                 }
717
718                 if (td->o.verify_async)
719                         io_u->end_io = verify_io_u_async;
720                 else
721                         io_u->end_io = verify_io_u;
722
723                 ddir = io_u->ddir;
724                 if (!td->o.disable_slat)
725                         fio_gettime(&io_u->start_time, NULL);
726
727                 ret = td_io_queue(td, io_u);
728
729                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
730                         break;
731
732                 /*
733                  * if we can queue more, do so. but check if there are
734                  * completed io_u's first. Note that we can get BUSY even
735                  * without IO queued, if the system is resource starved.
736                  */
737 reap:
738                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
739                 if (full || io_in_polling(td))
740                         ret = wait_for_completions(td, NULL);
741
742                 if (ret < 0)
743                         break;
744         }
745
746         check_update_rusage(td);
747
748         if (!td->error) {
749                 min_events = td->cur_depth;
750
751                 if (min_events)
752                         ret = io_u_queued_complete(td, min_events);
753         } else
754                 cleanup_pending_aio(td);
755
756         td_set_runstate(td, TD_RUNNING);
757
758         dprint(FD_VERIFY, "exiting loop\n");
759 }
760
761 static bool exceeds_number_ios(struct thread_data *td)
762 {
763         unsigned long long number_ios;
764
765         if (!td->o.number_ios)
766                 return false;
767
768         number_ios = ddir_rw_sum(td->io_blocks);
769         number_ios += td->io_u_queued + td->io_u_in_flight;
770
771         return number_ios >= (td->o.number_ios * td->loops);
772 }
773
774 static bool io_issue_bytes_exceeded(struct thread_data *td)
775 {
776         unsigned long long bytes, limit;
777
778         if (td_rw(td))
779                 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
780         else if (td_write(td))
781                 bytes = td->io_issue_bytes[DDIR_WRITE];
782         else if (td_read(td))
783                 bytes = td->io_issue_bytes[DDIR_READ];
784         else
785                 bytes = td->io_issue_bytes[DDIR_TRIM];
786
787         if (td->o.io_limit)
788                 limit = td->o.io_limit;
789         else
790                 limit = td->o.size;
791
792         limit *= td->loops;
793         return bytes >= limit || exceeds_number_ios(td);
794 }
795
796 static bool io_complete_bytes_exceeded(struct thread_data *td)
797 {
798         unsigned long long bytes, limit;
799
800         if (td_rw(td))
801                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
802         else if (td_write(td))
803                 bytes = td->this_io_bytes[DDIR_WRITE];
804         else if (td_read(td))
805                 bytes = td->this_io_bytes[DDIR_READ];
806         else
807                 bytes = td->this_io_bytes[DDIR_TRIM];
808
809         if (td->o.io_limit)
810                 limit = td->o.io_limit;
811         else
812                 limit = td->o.size;
813
814         limit *= td->loops;
815         return bytes >= limit || exceeds_number_ios(td);
816 }
817
818 /*
819  * used to calculate the next io time for rate control
820  *
821  */
822 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
823 {
824         uint64_t secs, remainder, bps, bytes, iops;
825
826         assert(!(td->flags & TD_F_CHILD));
827         bytes = td->rate_io_issue_bytes[ddir];
828         bps = td->rate_bps[ddir];
829
830         if (td->o.rate_process == RATE_PROCESS_POISSON) {
831                 uint64_t val;
832                 iops = bps / td->o.bs[ddir];
833                 val = (int64_t) (1000000 / iops) *
834                                 -logf(__rand_0_1(&td->poisson_state));
835                 if (val) {
836                         dprint(FD_RATE, "poisson rate iops=%llu\n",
837                                         (unsigned long long) 1000000 / val);
838                 }
839                 td->last_usec += val;
840                 return td->last_usec;
841         } else if (bps) {
842                 secs = bytes / bps;
843                 remainder = bytes % bps;
844                 return remainder * 1000000 / bps + secs * 1000000;
845         }
846
847         return 0;
848 }
849
850 /*
851  * Main IO worker function. It retrieves io_u's to process and queues
852  * and reaps them, checking for rate and errors along the way.
853  *
854  * Returns number of bytes written and trimmed.
855  */
856 static void do_io(struct thread_data *td, uint64_t *bytes_done)
857 {
858         unsigned int i;
859         int ret = 0;
860         uint64_t total_bytes, bytes_issued = 0;
861
862         for (i = 0; i < DDIR_RWDIR_CNT; i++)
863                 bytes_done[i] = td->bytes_done[i];
864
865         if (in_ramp_time(td))
866                 td_set_runstate(td, TD_RAMP);
867         else
868                 td_set_runstate(td, TD_RUNNING);
869
870         lat_target_init(td);
871
872         total_bytes = td->o.size;
873         /*
874         * Allow random overwrite workloads to write up to io_limit
875         * before starting verification phase as 'size' doesn't apply.
876         */
877         if (td_write(td) && td_random(td) && td->o.norandommap)
878                 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
879         /*
880          * If verify_backlog is enabled, we'll run the verify in this
881          * handler as well. For that case, we may need up to twice the
882          * amount of bytes.
883          */
884         if (td->o.verify != VERIFY_NONE &&
885            (td_write(td) && td->o.verify_backlog))
886                 total_bytes += td->o.size;
887
888         /* In trimwrite mode, each byte is trimmed and then written, so
889          * allow total_bytes to be twice as big */
890         if (td_trimwrite(td))
891                 total_bytes += td->total_io_size;
892
893         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
894                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
895                 td->o.time_based) {
896                 struct timeval comp_time;
897                 struct io_u *io_u;
898                 int full;
899                 enum fio_ddir ddir;
900
901                 check_update_rusage(td);
902
903                 if (td->terminate || td->done)
904                         break;
905
906                 update_tv_cache(td);
907
908                 if (runtime_exceeded(td, &td->tv_cache)) {
909                         __update_tv_cache(td);
910                         if (runtime_exceeded(td, &td->tv_cache)) {
911                                 fio_mark_td_terminate(td);
912                                 break;
913                         }
914                 }
915
916                 if (flow_threshold_exceeded(td))
917                         continue;
918
919                 /*
920                  * Break if we exceeded the bytes. The exception is time
921                  * based runs, but we still need to break out of the loop
922                  * for those to run verification, if enabled.
923                  */
924                 if (bytes_issued >= total_bytes &&
925                     (!td->o.time_based ||
926                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
927                         break;
928
929                 io_u = get_io_u(td);
930                 if (IS_ERR_OR_NULL(io_u)) {
931                         int err = PTR_ERR(io_u);
932
933                         io_u = NULL;
934                         if (err == -EBUSY) {
935                                 ret = FIO_Q_BUSY;
936                                 goto reap;
937                         }
938                         if (td->o.latency_target)
939                                 goto reap;
940                         break;
941                 }
942
943                 ddir = io_u->ddir;
944
945                 /*
946                  * Add verification end_io handler if:
947                  *      - Asked to verify (!td_rw(td))
948                  *      - Or the io_u is from our verify list (mixed write/ver)
949                  */
950                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
951                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
952
953                         if (!td->o.verify_pattern_bytes) {
954                                 io_u->rand_seed = __rand(&td->verify_state);
955                                 if (sizeof(int) != sizeof(long *))
956                                         io_u->rand_seed *= __rand(&td->verify_state);
957                         }
958
959                         if (verify_state_should_stop(td, io_u)) {
960                                 put_io_u(td, io_u);
961                                 break;
962                         }
963
964                         if (td->o.verify_async)
965                                 io_u->end_io = verify_io_u_async;
966                         else
967                                 io_u->end_io = verify_io_u;
968                         td_set_runstate(td, TD_VERIFYING);
969                 } else if (in_ramp_time(td))
970                         td_set_runstate(td, TD_RAMP);
971                 else
972                         td_set_runstate(td, TD_RUNNING);
973
974                 /*
975                  * Always log IO before it's issued, so we know the specific
976                  * order of it. The logged unit will track when the IO has
977                  * completed.
978                  */
979                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
980                     td->o.do_verify &&
981                     td->o.verify != VERIFY_NONE &&
982                     !td->o.experimental_verify)
983                         log_io_piece(td, io_u);
984
985                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
986                         const unsigned long blen = io_u->xfer_buflen;
987                         const enum fio_ddir ddir = acct_ddir(io_u);
988
989                         if (td->error)
990                                 break;
991
992                         workqueue_enqueue(&td->io_wq, &io_u->work);
993                         ret = FIO_Q_QUEUED;
994
995                         if (ddir_rw(ddir)) {
996                                 td->io_issues[ddir]++;
997                                 td->io_issue_bytes[ddir] += blen;
998                                 td->rate_io_issue_bytes[ddir] += blen;
999                         }
1000
1001                         if (should_check_rate(td))
1002                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1003
1004                 } else {
1005                         ret = td_io_queue(td, io_u);
1006
1007                         if (should_check_rate(td))
1008                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1009
1010                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1011                                 break;
1012
1013                         /*
1014                          * See if we need to complete some commands. Note that
1015                          * we can get BUSY even without IO queued, if the
1016                          * system is resource starved.
1017                          */
1018 reap:
1019                         full = queue_full(td) ||
1020                                 (ret == FIO_Q_BUSY && td->cur_depth);
1021                         if (full || io_in_polling(td))
1022                                 ret = wait_for_completions(td, &comp_time);
1023                 }
1024                 if (ret < 0)
1025                         break;
1026                 if (!ddir_rw_sum(td->bytes_done) &&
1027                     !td_ioengine_flagged(td, FIO_NOIO))
1028                         continue;
1029
1030                 if (!in_ramp_time(td) && should_check_rate(td)) {
1031                         if (check_min_rate(td, &comp_time)) {
1032                                 if (exitall_on_terminate || td->o.exitall_error)
1033                                         fio_terminate_threads(td->groupid);
1034                                 td_verror(td, EIO, "check_min_rate");
1035                                 break;
1036                         }
1037                 }
1038                 if (!in_ramp_time(td) && td->o.latency_target)
1039                         lat_target_check(td);
1040
1041                 if (td->o.thinktime) {
1042                         unsigned long long b;
1043
1044                         b = ddir_rw_sum(td->io_blocks);
1045                         if (!(b % td->o.thinktime_blocks)) {
1046                                 int left;
1047
1048                                 io_u_quiesce(td);
1049
1050                                 if (td->o.thinktime_spin)
1051                                         usec_spin(td->o.thinktime_spin);
1052
1053                                 left = td->o.thinktime - td->o.thinktime_spin;
1054                                 if (left)
1055                                         usec_sleep(td, left);
1056                         }
1057                 }
1058         }
1059
1060         check_update_rusage(td);
1061
1062         if (td->trim_entries)
1063                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1064
1065         if (td->o.fill_device && td->error == ENOSPC) {
1066                 td->error = 0;
1067                 fio_mark_td_terminate(td);
1068         }
1069         if (!td->error) {
1070                 struct fio_file *f;
1071
1072                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1073                         workqueue_flush(&td->io_wq);
1074                         i = 0;
1075                 } else
1076                         i = td->cur_depth;
1077
1078                 if (i) {
1079                         ret = io_u_queued_complete(td, i);
1080                         if (td->o.fill_device && td->error == ENOSPC)
1081                                 td->error = 0;
1082                 }
1083
1084                 if (should_fsync(td) && td->o.end_fsync) {
1085                         td_set_runstate(td, TD_FSYNCING);
1086
1087                         for_each_file(td, f, i) {
1088                                 if (!fio_file_fsync(td, f))
1089                                         continue;
1090
1091                                 log_err("fio: end_fsync failed for file %s\n",
1092                                                                 f->file_name);
1093                         }
1094                 }
1095         } else
1096                 cleanup_pending_aio(td);
1097
1098         /*
1099          * stop job if we failed doing any IO
1100          */
1101         if (!ddir_rw_sum(td->this_io_bytes))
1102                 td->done = 1;
1103
1104         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1105                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1106 }
1107
1108 static void free_file_completion_logging(struct thread_data *td)
1109 {
1110         struct fio_file *f;
1111         unsigned int i;
1112
1113         for_each_file(td, f, i) {
1114                 if (!f->last_write_comp)
1115                         break;
1116                 sfree(f->last_write_comp);
1117         }
1118 }
1119
1120 static int init_file_completion_logging(struct thread_data *td,
1121                                         unsigned int depth)
1122 {
1123         struct fio_file *f;
1124         unsigned int i;
1125
1126         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1127                 return 0;
1128
1129         for_each_file(td, f, i) {
1130                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1131                 if (!f->last_write_comp)
1132                         goto cleanup;
1133         }
1134
1135         return 0;
1136
1137 cleanup:
1138         free_file_completion_logging(td);
1139         log_err("fio: failed to alloc write comp data\n");
1140         return 1;
1141 }
1142
1143 static void cleanup_io_u(struct thread_data *td)
1144 {
1145         struct io_u *io_u;
1146
1147         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1148
1149                 if (td->io_ops->io_u_free)
1150                         td->io_ops->io_u_free(td, io_u);
1151
1152                 fio_memfree(io_u, sizeof(*io_u));
1153         }
1154
1155         free_io_mem(td);
1156
1157         io_u_rexit(&td->io_u_requeues);
1158         io_u_qexit(&td->io_u_freelist);
1159         io_u_qexit(&td->io_u_all);
1160
1161         free_file_completion_logging(td);
1162 }
1163
1164 static int init_io_u(struct thread_data *td)
1165 {
1166         struct io_u *io_u;
1167         unsigned int max_bs, min_write;
1168         int cl_align, i, max_units;
1169         int data_xfer = 1, err;
1170         char *p;
1171
1172         max_units = td->o.iodepth;
1173         max_bs = td_max_bs(td);
1174         min_write = td->o.min_bs[DDIR_WRITE];
1175         td->orig_buffer_size = (unsigned long long) max_bs
1176                                         * (unsigned long long) max_units;
1177
1178         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1179                 data_xfer = 0;
1180
1181         err = 0;
1182         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1183         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1184         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1185
1186         if (err) {
1187                 log_err("fio: failed setting up IO queues\n");
1188                 return 1;
1189         }
1190
1191         /*
1192          * if we may later need to do address alignment, then add any
1193          * possible adjustment here so that we don't cause a buffer
1194          * overflow later. this adjustment may be too much if we get
1195          * lucky and the allocator gives us an aligned address.
1196          */
1197         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1198             td_ioengine_flagged(td, FIO_RAWIO))
1199                 td->orig_buffer_size += page_mask + td->o.mem_align;
1200
1201         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1202                 unsigned long bs;
1203
1204                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1205                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1206         }
1207
1208         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1209                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1210                 return 1;
1211         }
1212
1213         if (data_xfer && allocate_io_mem(td))
1214                 return 1;
1215
1216         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1217             td_ioengine_flagged(td, FIO_RAWIO))
1218                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1219         else
1220                 p = td->orig_buffer;
1221
1222         cl_align = os_cache_line_size();
1223
1224         for (i = 0; i < max_units; i++) {
1225                 void *ptr;
1226
1227                 if (td->terminate)
1228                         return 1;
1229
1230                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1231                 if (!ptr) {
1232                         log_err("fio: unable to allocate aligned memory\n");
1233                         break;
1234                 }
1235
1236                 io_u = ptr;
1237                 memset(io_u, 0, sizeof(*io_u));
1238                 INIT_FLIST_HEAD(&io_u->verify_list);
1239                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1240
1241                 if (data_xfer) {
1242                         io_u->buf = p;
1243                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1244
1245                         if (td_write(td))
1246                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1247                         if (td_write(td) && td->o.verify_pattern_bytes) {
1248                                 /*
1249                                  * Fill the buffer with the pattern if we are
1250                                  * going to be doing writes.
1251                                  */
1252                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1253                         }
1254                 }
1255
1256                 io_u->index = i;
1257                 io_u->flags = IO_U_F_FREE;
1258                 io_u_qpush(&td->io_u_freelist, io_u);
1259
1260                 /*
1261                  * io_u never leaves this stack, used for iteration of all
1262                  * io_u buffers.
1263                  */
1264                 io_u_qpush(&td->io_u_all, io_u);
1265
1266                 if (td->io_ops->io_u_init) {
1267                         int ret = td->io_ops->io_u_init(td, io_u);
1268
1269                         if (ret) {
1270                                 log_err("fio: failed to init engine data: %d\n", ret);
1271                                 return 1;
1272                         }
1273                 }
1274
1275                 p += max_bs;
1276         }
1277
1278         if (init_file_completion_logging(td, max_units))
1279                 return 1;
1280
1281         return 0;
1282 }
1283
1284 static int switch_ioscheduler(struct thread_data *td)
1285 {
1286 #ifdef FIO_HAVE_IOSCHED_SWITCH
1287         char tmp[256], tmp2[128];
1288         FILE *f;
1289         int ret;
1290
1291         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1292                 return 0;
1293
1294         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1295
1296         f = fopen(tmp, "r+");
1297         if (!f) {
1298                 if (errno == ENOENT) {
1299                         log_err("fio: os or kernel doesn't support IO scheduler"
1300                                 " switching\n");
1301                         return 0;
1302                 }
1303                 td_verror(td, errno, "fopen iosched");
1304                 return 1;
1305         }
1306
1307         /*
1308          * Set io scheduler.
1309          */
1310         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1311         if (ferror(f) || ret != 1) {
1312                 td_verror(td, errno, "fwrite");
1313                 fclose(f);
1314                 return 1;
1315         }
1316
1317         rewind(f);
1318
1319         /*
1320          * Read back and check that the selected scheduler is now the default.
1321          */
1322         memset(tmp, 0, sizeof(tmp));
1323         ret = fread(tmp, sizeof(tmp), 1, f);
1324         if (ferror(f) || ret < 0) {
1325                 td_verror(td, errno, "fread");
1326                 fclose(f);
1327                 return 1;
1328         }
1329         /*
1330          * either a list of io schedulers or "none\n" is expected.
1331          */
1332         tmp[strlen(tmp) - 1] = '\0';
1333
1334         /*
1335          * Write to "none" entry doesn't fail, so check the result here.
1336          */
1337         if (!strcmp(tmp, "none")) {
1338                 log_err("fio: io scheduler is not tunable\n");
1339                 fclose(f);
1340                 return 0;
1341         }
1342
1343         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1344         if (!strstr(tmp, tmp2)) {
1345                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1346                 td_verror(td, EINVAL, "iosched_switch");
1347                 fclose(f);
1348                 return 1;
1349         }
1350
1351         fclose(f);
1352         return 0;
1353 #else
1354         return 0;
1355 #endif
1356 }
1357
1358 static bool keep_running(struct thread_data *td)
1359 {
1360         unsigned long long limit;
1361
1362         if (td->done)
1363                 return false;
1364         if (td->o.time_based)
1365                 return true;
1366         if (td->o.loops) {
1367                 td->o.loops--;
1368                 return true;
1369         }
1370         if (exceeds_number_ios(td))
1371                 return false;
1372
1373         if (td->o.io_limit)
1374                 limit = td->o.io_limit;
1375         else
1376                 limit = td->o.size;
1377
1378         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1379                 uint64_t diff;
1380
1381                 /*
1382                  * If the difference is less than the minimum IO size, we
1383                  * are done.
1384                  */
1385                 diff = limit - ddir_rw_sum(td->io_bytes);
1386                 if (diff < td_max_bs(td))
1387                         return false;
1388
1389                 if (fio_files_done(td) && !td->o.io_limit)
1390                         return false;
1391
1392                 return true;
1393         }
1394
1395         return false;
1396 }
1397
1398 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1399 {
1400         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1401         int ret;
1402         char *str;
1403
1404         str = malloc(newlen);
1405         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1406
1407         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1408         ret = system(str);
1409         if (ret == -1)
1410                 log_err("fio: exec of cmd <%s> failed\n", str);
1411
1412         free(str);
1413         return ret;
1414 }
1415
1416 /*
1417  * Dry run to compute correct state of numberio for verification.
1418  */
1419 static uint64_t do_dry_run(struct thread_data *td)
1420 {
1421         td_set_runstate(td, TD_RUNNING);
1422
1423         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1424                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1425                 struct io_u *io_u;
1426                 int ret;
1427
1428                 if (td->terminate || td->done)
1429                         break;
1430
1431                 io_u = get_io_u(td);
1432                 if (IS_ERR_OR_NULL(io_u))
1433                         break;
1434
1435                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1436                 io_u->error = 0;
1437                 io_u->resid = 0;
1438                 if (ddir_rw(acct_ddir(io_u)))
1439                         td->io_issues[acct_ddir(io_u)]++;
1440                 if (ddir_rw(io_u->ddir)) {
1441                         io_u_mark_depth(td, 1);
1442                         td->ts.total_io_u[io_u->ddir]++;
1443                 }
1444
1445                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1446                     td->o.do_verify &&
1447                     td->o.verify != VERIFY_NONE &&
1448                     !td->o.experimental_verify)
1449                         log_io_piece(td, io_u);
1450
1451                 ret = io_u_sync_complete(td, io_u);
1452                 (void) ret;
1453         }
1454
1455         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1456 }
1457
1458 struct fork_data {
1459         struct thread_data *td;
1460         struct sk_out *sk_out;
1461 };
1462
1463 /*
1464  * Entry point for the thread based jobs. The process based jobs end up
1465  * here as well, after a little setup.
1466  */
1467 static void *thread_main(void *data)
1468 {
1469         struct fork_data *fd = data;
1470         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1471         struct thread_data *td = fd->td;
1472         struct thread_options *o = &td->o;
1473         struct sk_out *sk_out = fd->sk_out;
1474         int clear_state;
1475         int ret;
1476
1477         sk_out_assign(sk_out);
1478         free(fd);
1479
1480         if (!o->use_thread) {
1481                 setsid();
1482                 td->pid = getpid();
1483         } else
1484                 td->pid = gettid();
1485
1486         fio_local_clock_init(o->use_thread);
1487
1488         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1489
1490         if (is_backend)
1491                 fio_server_send_start(td);
1492
1493         INIT_FLIST_HEAD(&td->io_log_list);
1494         INIT_FLIST_HEAD(&td->io_hist_list);
1495         INIT_FLIST_HEAD(&td->verify_list);
1496         INIT_FLIST_HEAD(&td->trim_list);
1497         INIT_FLIST_HEAD(&td->next_rand_list);
1498         td->io_hist_tree = RB_ROOT;
1499
1500         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1501         if (ret) {
1502                 td_verror(td, ret, "mutex_cond_init_pshared");
1503                 goto err;
1504         }
1505         ret = cond_init_pshared(&td->verify_cond);
1506         if (ret) {
1507                 td_verror(td, ret, "mutex_cond_pshared");
1508                 goto err;
1509         }
1510
1511         td_set_runstate(td, TD_INITIALIZED);
1512         dprint(FD_MUTEX, "up startup_mutex\n");
1513         fio_mutex_up(startup_mutex);
1514         dprint(FD_MUTEX, "wait on td->mutex\n");
1515         fio_mutex_down(td->mutex);
1516         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1517
1518         /*
1519          * A new gid requires privilege, so we need to do this before setting
1520          * the uid.
1521          */
1522         if (o->gid != -1U && setgid(o->gid)) {
1523                 td_verror(td, errno, "setgid");
1524                 goto err;
1525         }
1526         if (o->uid != -1U && setuid(o->uid)) {
1527                 td_verror(td, errno, "setuid");
1528                 goto err;
1529         }
1530
1531         /*
1532          * Do this early, we don't want the compress threads to be limited
1533          * to the same CPUs as the IO workers. So do this before we set
1534          * any potential CPU affinity
1535          */
1536         if (iolog_compress_init(td, sk_out))
1537                 goto err;
1538
1539         /*
1540          * If we have a gettimeofday() thread, make sure we exclude that
1541          * thread from this job
1542          */
1543         if (o->gtod_cpu)
1544                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1545
1546         /*
1547          * Set affinity first, in case it has an impact on the memory
1548          * allocations.
1549          */
1550         if (fio_option_is_set(o, cpumask)) {
1551                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1552                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1553                         if (!ret) {
1554                                 log_err("fio: no CPUs set\n");
1555                                 log_err("fio: Try increasing number of available CPUs\n");
1556                                 td_verror(td, EINVAL, "cpus_split");
1557                                 goto err;
1558                         }
1559                 }
1560                 ret = fio_setaffinity(td->pid, o->cpumask);
1561                 if (ret == -1) {
1562                         td_verror(td, errno, "cpu_set_affinity");
1563                         goto err;
1564                 }
1565         }
1566
1567 #ifdef CONFIG_LIBNUMA
1568         /* numa node setup */
1569         if (fio_option_is_set(o, numa_cpunodes) ||
1570             fio_option_is_set(o, numa_memnodes)) {
1571                 struct bitmask *mask;
1572
1573                 if (numa_available() < 0) {
1574                         td_verror(td, errno, "Does not support NUMA API\n");
1575                         goto err;
1576                 }
1577
1578                 if (fio_option_is_set(o, numa_cpunodes)) {
1579                         mask = numa_parse_nodestring(o->numa_cpunodes);
1580                         ret = numa_run_on_node_mask(mask);
1581                         numa_free_nodemask(mask);
1582                         if (ret == -1) {
1583                                 td_verror(td, errno, \
1584                                         "numa_run_on_node_mask failed\n");
1585                                 goto err;
1586                         }
1587                 }
1588
1589                 if (fio_option_is_set(o, numa_memnodes)) {
1590                         mask = NULL;
1591                         if (o->numa_memnodes)
1592                                 mask = numa_parse_nodestring(o->numa_memnodes);
1593
1594                         switch (o->numa_mem_mode) {
1595                         case MPOL_INTERLEAVE:
1596                                 numa_set_interleave_mask(mask);
1597                                 break;
1598                         case MPOL_BIND:
1599                                 numa_set_membind(mask);
1600                                 break;
1601                         case MPOL_LOCAL:
1602                                 numa_set_localalloc();
1603                                 break;
1604                         case MPOL_PREFERRED:
1605                                 numa_set_preferred(o->numa_mem_prefer_node);
1606                                 break;
1607                         case MPOL_DEFAULT:
1608                         default:
1609                                 break;
1610                         }
1611
1612                         if (mask)
1613                                 numa_free_nodemask(mask);
1614
1615                 }
1616         }
1617 #endif
1618
1619         if (fio_pin_memory(td))
1620                 goto err;
1621
1622         /*
1623          * May alter parameters that init_io_u() will use, so we need to
1624          * do this first.
1625          */
1626         if (init_iolog(td))
1627                 goto err;
1628
1629         if (init_io_u(td))
1630                 goto err;
1631
1632         if (o->verify_async && verify_async_init(td))
1633                 goto err;
1634
1635         if (fio_option_is_set(o, ioprio) ||
1636             fio_option_is_set(o, ioprio_class)) {
1637                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1638                 if (ret == -1) {
1639                         td_verror(td, errno, "ioprio_set");
1640                         goto err;
1641                 }
1642         }
1643
1644         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1645                 goto err;
1646
1647         errno = 0;
1648         if (nice(o->nice) == -1 && errno != 0) {
1649                 td_verror(td, errno, "nice");
1650                 goto err;
1651         }
1652
1653         if (o->ioscheduler && switch_ioscheduler(td))
1654                 goto err;
1655
1656         if (!o->create_serialize && setup_files(td))
1657                 goto err;
1658
1659         if (td_io_init(td))
1660                 goto err;
1661
1662         if (init_random_map(td))
1663                 goto err;
1664
1665         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1666                 goto err;
1667
1668         if (o->pre_read) {
1669                 if (pre_read_files(td) < 0)
1670                         goto err;
1671         }
1672
1673         fio_verify_init(td);
1674
1675         if (rate_submit_init(td, sk_out))
1676                 goto err;
1677
1678         fio_gettime(&td->epoch, NULL);
1679         fio_getrusage(&td->ru_start);
1680         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1681         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1682         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1683
1684         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1685                         o->ratemin[DDIR_TRIM]) {
1686                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1687                                         sizeof(td->bw_sample_time));
1688                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1689                                         sizeof(td->bw_sample_time));
1690                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1691                                         sizeof(td->bw_sample_time));
1692         }
1693
1694         clear_state = 0;
1695         while (keep_running(td)) {
1696                 uint64_t verify_bytes;
1697
1698                 fio_gettime(&td->start, NULL);
1699                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1700
1701                 if (clear_state) {
1702                         clear_io_state(td, 0);
1703
1704                         if (o->unlink_each_loop && unlink_all_files(td))
1705                                 break;
1706                 }
1707
1708                 prune_io_piece_log(td);
1709
1710                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1711                         verify_bytes = do_dry_run(td);
1712                 else {
1713                         uint64_t bytes_done[DDIR_RWDIR_CNT];
1714
1715                         do_io(td, bytes_done);
1716
1717                         if (!ddir_rw_sum(bytes_done)) {
1718                                 fio_mark_td_terminate(td);
1719                                 verify_bytes = 0;
1720                         } else {
1721                                 verify_bytes = bytes_done[DDIR_WRITE] +
1722                                                 bytes_done[DDIR_TRIM];
1723                         }
1724                 }
1725
1726                 clear_state = 1;
1727
1728                 /*
1729                  * Make sure we've successfully updated the rusage stats
1730                  * before waiting on the stat mutex. Otherwise we could have
1731                  * the stat thread holding stat mutex and waiting for
1732                  * the rusage_sem, which would never get upped because
1733                  * this thread is waiting for the stat mutex.
1734                  */
1735                 check_update_rusage(td);
1736
1737                 fio_mutex_down(stat_mutex);
1738                 if (td_read(td) && td->io_bytes[DDIR_READ])
1739                         update_runtime(td, elapsed_us, DDIR_READ);
1740                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1741                         update_runtime(td, elapsed_us, DDIR_WRITE);
1742                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1743                         update_runtime(td, elapsed_us, DDIR_TRIM);
1744                 fio_gettime(&td->start, NULL);
1745                 fio_mutex_up(stat_mutex);
1746
1747                 if (td->error || td->terminate)
1748                         break;
1749
1750                 if (!o->do_verify ||
1751                     o->verify == VERIFY_NONE ||
1752                     td_ioengine_flagged(td, FIO_UNIDIR))
1753                         continue;
1754
1755                 clear_io_state(td, 0);
1756
1757                 fio_gettime(&td->start, NULL);
1758
1759                 do_verify(td, verify_bytes);
1760
1761                 /*
1762                  * See comment further up for why this is done here.
1763                  */
1764                 check_update_rusage(td);
1765
1766                 fio_mutex_down(stat_mutex);
1767                 update_runtime(td, elapsed_us, DDIR_READ);
1768                 fio_gettime(&td->start, NULL);
1769                 fio_mutex_up(stat_mutex);
1770
1771                 if (td->error || td->terminate)
1772                         break;
1773         }
1774
1775         td_set_runstate(td, TD_FINISHING);
1776
1777         update_rusage_stat(td);
1778         td->ts.total_run_time = mtime_since_now(&td->epoch);
1779         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1780         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1781         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1782
1783         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1784             (td->o.verify != VERIFY_NONE && td_write(td)))
1785                 verify_save_state(td->thread_number);
1786
1787         fio_unpin_memory(td);
1788
1789         td_writeout_logs(td, true);
1790
1791         iolog_compress_exit(td);
1792         rate_submit_exit(td);
1793
1794         if (o->exec_postrun)
1795                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1796
1797         if (exitall_on_terminate || (o->exitall_error && td->error))
1798                 fio_terminate_threads(td->groupid);
1799
1800 err:
1801         if (td->error)
1802                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1803                                                         td->verror);
1804
1805         if (o->verify_async)
1806                 verify_async_exit(td);
1807
1808         close_and_free_files(td);
1809         cleanup_io_u(td);
1810         close_ioengine(td);
1811         cgroup_shutdown(td, &cgroup_mnt);
1812         verify_free_state(td);
1813
1814         if (td->zone_state_index) {
1815                 int i;
1816
1817                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1818                         free(td->zone_state_index[i]);
1819                 free(td->zone_state_index);
1820                 td->zone_state_index = NULL;
1821         }
1822
1823         if (fio_option_is_set(o, cpumask)) {
1824                 ret = fio_cpuset_exit(&o->cpumask);
1825                 if (ret)
1826                         td_verror(td, ret, "fio_cpuset_exit");
1827         }
1828
1829         /*
1830          * do this very late, it will log file closing as well
1831          */
1832         if (o->write_iolog_file)
1833                 write_iolog_close(td);
1834
1835         fio_mutex_remove(td->mutex);
1836         td->mutex = NULL;
1837
1838         td_set_runstate(td, TD_EXITED);
1839
1840         /*
1841          * Do this last after setting our runstate to exited, so we
1842          * know that the stat thread is signaled.
1843          */
1844         check_update_rusage(td);
1845
1846         sk_out_drop();
1847         return (void *) (uintptr_t) td->error;
1848 }
1849
1850 static void dump_td_info(struct thread_data *td)
1851 {
1852         log_err("fio: job '%s' (state=%d) hasn't exited in %lu seconds, it "
1853                 "appears to be stuck. Doing forceful exit of this job.\n",
1854                         td->o.name, td->runstate,
1855                         (unsigned long) time_since_now(&td->terminate_time));
1856 }
1857
1858 /*
1859  * Run over the job map and reap the threads that have exited, if any.
1860  */
1861 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1862                          unsigned int *m_rate)
1863 {
1864         struct thread_data *td;
1865         unsigned int cputhreads, realthreads, pending;
1866         int i, status, ret;
1867
1868         /*
1869          * reap exited threads (TD_EXITED -> TD_REAPED)
1870          */
1871         realthreads = pending = cputhreads = 0;
1872         for_each_td(td, i) {
1873                 int flags = 0;
1874
1875                 /*
1876                  * ->io_ops is NULL for a thread that has closed its
1877                  * io engine
1878                  */
1879                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1880                         cputhreads++;
1881                 else
1882                         realthreads++;
1883
1884                 if (!td->pid) {
1885                         pending++;
1886                         continue;
1887                 }
1888                 if (td->runstate == TD_REAPED)
1889                         continue;
1890                 if (td->o.use_thread) {
1891                         if (td->runstate == TD_EXITED) {
1892                                 td_set_runstate(td, TD_REAPED);
1893                                 goto reaped;
1894                         }
1895                         continue;
1896                 }
1897
1898                 flags = WNOHANG;
1899                 if (td->runstate == TD_EXITED)
1900                         flags = 0;
1901
1902                 /*
1903                  * check if someone quit or got killed in an unusual way
1904                  */
1905                 ret = waitpid(td->pid, &status, flags);
1906                 if (ret < 0) {
1907                         if (errno == ECHILD) {
1908                                 log_err("fio: pid=%d disappeared %d\n",
1909                                                 (int) td->pid, td->runstate);
1910                                 td->sig = ECHILD;
1911                                 td_set_runstate(td, TD_REAPED);
1912                                 goto reaped;
1913                         }
1914                         perror("waitpid");
1915                 } else if (ret == td->pid) {
1916                         if (WIFSIGNALED(status)) {
1917                                 int sig = WTERMSIG(status);
1918
1919                                 if (sig != SIGTERM && sig != SIGUSR2)
1920                                         log_err("fio: pid=%d, got signal=%d\n",
1921                                                         (int) td->pid, sig);
1922                                 td->sig = sig;
1923                                 td_set_runstate(td, TD_REAPED);
1924                                 goto reaped;
1925                         }
1926                         if (WIFEXITED(status)) {
1927                                 if (WEXITSTATUS(status) && !td->error)
1928                                         td->error = WEXITSTATUS(status);
1929
1930                                 td_set_runstate(td, TD_REAPED);
1931                                 goto reaped;
1932                         }
1933                 }
1934
1935                 /*
1936                  * If the job is stuck, do a forceful timeout of it and
1937                  * move on.
1938                  */
1939                 if (td->terminate &&
1940                     td->runstate < TD_FSYNCING &&
1941                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1942                         dump_td_info(td);
1943                         td_set_runstate(td, TD_REAPED);
1944                         goto reaped;
1945                 }
1946
1947                 /*
1948                  * thread is not dead, continue
1949                  */
1950                 pending++;
1951                 continue;
1952 reaped:
1953                 (*nr_running)--;
1954                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1955                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1956                 if (!td->pid)
1957                         pending--;
1958
1959                 if (td->error)
1960                         exit_value++;
1961
1962                 done_secs += mtime_since_now(&td->epoch) / 1000;
1963                 profile_td_exit(td);
1964         }
1965
1966         if (*nr_running == cputhreads && !pending && realthreads)
1967                 fio_terminate_threads(TERMINATE_ALL);
1968 }
1969
1970 static bool __check_trigger_file(void)
1971 {
1972         struct stat sb;
1973
1974         if (!trigger_file)
1975                 return false;
1976
1977         if (stat(trigger_file, &sb))
1978                 return false;
1979
1980         if (unlink(trigger_file) < 0)
1981                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1982                                                         strerror(errno));
1983
1984         return true;
1985 }
1986
1987 static bool trigger_timedout(void)
1988 {
1989         if (trigger_timeout)
1990                 return time_since_genesis() >= trigger_timeout;
1991
1992         return false;
1993 }
1994
1995 void exec_trigger(const char *cmd)
1996 {
1997         int ret;
1998
1999         if (!cmd)
2000                 return;
2001
2002         ret = system(cmd);
2003         if (ret == -1)
2004                 log_err("fio: failed executing %s trigger\n", cmd);
2005 }
2006
2007 void check_trigger_file(void)
2008 {
2009         if (__check_trigger_file() || trigger_timedout()) {
2010                 if (nr_clients)
2011                         fio_clients_send_trigger(trigger_remote_cmd);
2012                 else {
2013                         verify_save_state(IO_LIST_ALL);
2014                         fio_terminate_threads(TERMINATE_ALL);
2015                         exec_trigger(trigger_cmd);
2016                 }
2017         }
2018 }
2019
2020 static int fio_verify_load_state(struct thread_data *td)
2021 {
2022         int ret;
2023
2024         if (!td->o.verify_state)
2025                 return 0;
2026
2027         if (is_backend) {
2028                 void *data;
2029
2030                 ret = fio_server_get_verify_state(td->o.name,
2031                                         td->thread_number - 1, &data);
2032                 if (!ret)
2033                         verify_assign_state(td, data);
2034         } else
2035                 ret = verify_load_state(td, "local");
2036
2037         return ret;
2038 }
2039
2040 static void do_usleep(unsigned int usecs)
2041 {
2042         check_for_running_stats();
2043         check_trigger_file();
2044         usleep(usecs);
2045 }
2046
2047 static bool check_mount_writes(struct thread_data *td)
2048 {
2049         struct fio_file *f;
2050         unsigned int i;
2051
2052         if (!td_write(td) || td->o.allow_mounted_write)
2053                 return false;
2054
2055         for_each_file(td, f, i) {
2056                 if (f->filetype != FIO_TYPE_BD)
2057                         continue;
2058                 if (device_is_mounted(f->file_name))
2059                         goto mounted;
2060         }
2061
2062         return false;
2063 mounted:
2064         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
2065         return true;
2066 }
2067
2068 static bool waitee_running(struct thread_data *me)
2069 {
2070         const char *waitee = me->o.wait_for;
2071         const char *self = me->o.name;
2072         struct thread_data *td;
2073         int i;
2074
2075         if (!waitee)
2076                 return false;
2077
2078         for_each_td(td, i) {
2079                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2080                         continue;
2081
2082                 if (td->runstate < TD_EXITED) {
2083                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2084                                         self, td->o.name,
2085                                         runstate_to_name(td->runstate));
2086                         return true;
2087                 }
2088         }
2089
2090         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2091         return false;
2092 }
2093
2094 /*
2095  * Main function for kicking off and reaping jobs, as needed.
2096  */
2097 static void run_threads(struct sk_out *sk_out)
2098 {
2099         struct thread_data *td;
2100         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2101         uint64_t spent;
2102
2103         if (fio_gtod_offload && fio_start_gtod_thread())
2104                 return;
2105
2106         fio_idle_prof_init();
2107
2108         set_sig_handlers();
2109
2110         nr_thread = nr_process = 0;
2111         for_each_td(td, i) {
2112                 if (check_mount_writes(td))
2113                         return;
2114                 if (td->o.use_thread)
2115                         nr_thread++;
2116                 else
2117                         nr_process++;
2118         }
2119
2120         if (output_format & FIO_OUTPUT_NORMAL) {
2121                 log_info("Starting ");
2122                 if (nr_thread)
2123                         log_info("%d thread%s", nr_thread,
2124                                                 nr_thread > 1 ? "s" : "");
2125                 if (nr_process) {
2126                         if (nr_thread)
2127                                 log_info(" and ");
2128                         log_info("%d process%s", nr_process,
2129                                                 nr_process > 1 ? "es" : "");
2130                 }
2131                 log_info("\n");
2132                 log_info_flush();
2133         }
2134
2135         todo = thread_number;
2136         nr_running = 0;
2137         nr_started = 0;
2138         m_rate = t_rate = 0;
2139
2140         for_each_td(td, i) {
2141                 print_status_init(td->thread_number - 1);
2142
2143                 if (!td->o.create_serialize)
2144                         continue;
2145
2146                 if (fio_verify_load_state(td))
2147                         goto reap;
2148
2149                 /*
2150                  * do file setup here so it happens sequentially,
2151                  * we don't want X number of threads getting their
2152                  * client data interspersed on disk
2153                  */
2154                 if (setup_files(td)) {
2155 reap:
2156                         exit_value++;
2157                         if (td->error)
2158                                 log_err("fio: pid=%d, err=%d/%s\n",
2159                                         (int) td->pid, td->error, td->verror);
2160                         td_set_runstate(td, TD_REAPED);
2161                         todo--;
2162                 } else {
2163                         struct fio_file *f;
2164                         unsigned int j;
2165
2166                         /*
2167                          * for sharing to work, each job must always open
2168                          * its own files. so close them, if we opened them
2169                          * for creation
2170                          */
2171                         for_each_file(td, f, j) {
2172                                 if (fio_file_open(f))
2173                                         td_io_close_file(td, f);
2174                         }
2175                 }
2176         }
2177
2178         /* start idle threads before io threads start to run */
2179         fio_idle_prof_start();
2180
2181         set_genesis_time();
2182
2183         while (todo) {
2184                 struct thread_data *map[REAL_MAX_JOBS];
2185                 struct timeval this_start;
2186                 int this_jobs = 0, left;
2187                 struct fork_data *fd;
2188
2189                 /*
2190                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2191                  */
2192                 for_each_td(td, i) {
2193                         if (td->runstate != TD_NOT_CREATED)
2194                                 continue;
2195
2196                         /*
2197                          * never got a chance to start, killed by other
2198                          * thread for some reason
2199                          */
2200                         if (td->terminate) {
2201                                 todo--;
2202                                 continue;
2203                         }
2204
2205                         if (td->o.start_delay) {
2206                                 spent = utime_since_genesis();
2207
2208                                 if (td->o.start_delay > spent)
2209                                         continue;
2210                         }
2211
2212                         if (td->o.stonewall && (nr_started || nr_running)) {
2213                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2214                                                         td->o.name);
2215                                 break;
2216                         }
2217
2218                         if (waitee_running(td)) {
2219                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2220                                                 td->o.name, td->o.wait_for);
2221                                 continue;
2222                         }
2223
2224                         init_disk_util(td);
2225
2226                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2227                         td->update_rusage = 0;
2228
2229                         /*
2230                          * Set state to created. Thread will transition
2231                          * to TD_INITIALIZED when it's done setting up.
2232                          */
2233                         td_set_runstate(td, TD_CREATED);
2234                         map[this_jobs++] = td;
2235                         nr_started++;
2236
2237                         fd = calloc(1, sizeof(*fd));
2238                         fd->td = td;
2239                         fd->sk_out = sk_out;
2240
2241                         if (td->o.use_thread) {
2242                                 int ret;
2243
2244                                 dprint(FD_PROCESS, "will pthread_create\n");
2245                                 ret = pthread_create(&td->thread, NULL,
2246                                                         thread_main, fd);
2247                                 if (ret) {
2248                                         log_err("pthread_create: %s\n",
2249                                                         strerror(ret));
2250                                         free(fd);
2251                                         nr_started--;
2252                                         break;
2253                                 }
2254                                 ret = pthread_detach(td->thread);
2255                                 if (ret)
2256                                         log_err("pthread_detach: %s",
2257                                                         strerror(ret));
2258                         } else {
2259                                 pid_t pid;
2260                                 dprint(FD_PROCESS, "will fork\n");
2261                                 pid = fork();
2262                                 if (!pid) {
2263                                         int ret;
2264
2265                                         ret = (int)(uintptr_t)thread_main(fd);
2266                                         _exit(ret);
2267                                 } else if (i == fio_debug_jobno)
2268                                         *fio_debug_jobp = pid;
2269                         }
2270                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2271                         if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2272                                 log_err("fio: job startup hung? exiting.\n");
2273                                 fio_terminate_threads(TERMINATE_ALL);
2274                                 fio_abort = 1;
2275                                 nr_started--;
2276                                 break;
2277                         }
2278                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2279                 }
2280
2281                 /*
2282                  * Wait for the started threads to transition to
2283                  * TD_INITIALIZED.
2284                  */
2285                 fio_gettime(&this_start, NULL);
2286                 left = this_jobs;
2287                 while (left && !fio_abort) {
2288                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2289                                 break;
2290
2291                         do_usleep(100000);
2292
2293                         for (i = 0; i < this_jobs; i++) {
2294                                 td = map[i];
2295                                 if (!td)
2296                                         continue;
2297                                 if (td->runstate == TD_INITIALIZED) {
2298                                         map[i] = NULL;
2299                                         left--;
2300                                 } else if (td->runstate >= TD_EXITED) {
2301                                         map[i] = NULL;
2302                                         left--;
2303                                         todo--;
2304                                         nr_running++; /* work-around... */
2305                                 }
2306                         }
2307                 }
2308
2309                 if (left) {
2310                         log_err("fio: %d job%s failed to start\n", left,
2311                                         left > 1 ? "s" : "");
2312                         for (i = 0; i < this_jobs; i++) {
2313                                 td = map[i];
2314                                 if (!td)
2315                                         continue;
2316                                 kill(td->pid, SIGTERM);
2317                         }
2318                         break;
2319                 }
2320
2321                 /*
2322                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2323                  */
2324                 for_each_td(td, i) {
2325                         if (td->runstate != TD_INITIALIZED)
2326                                 continue;
2327
2328                         if (in_ramp_time(td))
2329                                 td_set_runstate(td, TD_RAMP);
2330                         else
2331                                 td_set_runstate(td, TD_RUNNING);
2332                         nr_running++;
2333                         nr_started--;
2334                         m_rate += ddir_rw_sum(td->o.ratemin);
2335                         t_rate += ddir_rw_sum(td->o.rate);
2336                         todo--;
2337                         fio_mutex_up(td->mutex);
2338                 }
2339
2340                 reap_threads(&nr_running, &t_rate, &m_rate);
2341
2342                 if (todo)
2343                         do_usleep(100000);
2344         }
2345
2346         while (nr_running) {
2347                 reap_threads(&nr_running, &t_rate, &m_rate);
2348                 do_usleep(10000);
2349         }
2350
2351         fio_idle_prof_stop();
2352
2353         update_io_ticks();
2354 }
2355
2356 static void free_disk_util(void)
2357 {
2358         disk_util_prune_entries();
2359         helper_thread_destroy();
2360 }
2361
2362 int fio_backend(struct sk_out *sk_out)
2363 {
2364         struct thread_data *td;
2365         int i;
2366
2367         if (exec_profile) {
2368                 if (load_profile(exec_profile))
2369                         return 1;
2370                 free(exec_profile);
2371                 exec_profile = NULL;
2372         }
2373         if (!thread_number)
2374                 return 0;
2375
2376         if (write_bw_log) {
2377                 struct log_params p = {
2378                         .log_type = IO_LOG_TYPE_BW,
2379                 };
2380
2381                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2382                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2383                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2384         }
2385
2386         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2387         if (startup_mutex == NULL)
2388                 return 1;
2389
2390         set_genesis_time();
2391         stat_init();
2392         helper_thread_create(startup_mutex, sk_out);
2393
2394         cgroup_list = smalloc(sizeof(*cgroup_list));
2395         INIT_FLIST_HEAD(cgroup_list);
2396
2397         run_threads(sk_out);
2398
2399         helper_thread_exit();
2400
2401         if (!fio_abort) {
2402                 __show_run_stats();
2403                 if (write_bw_log) {
2404                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2405                                 struct io_log *log = agg_io_log[i];
2406
2407                                 flush_log(log, false);
2408                                 free_log(log);
2409                         }
2410                 }
2411         }
2412
2413         for_each_td(td, i) {
2414                 if (td->ss.dur) {
2415                         if (td->ss.iops_data != NULL) {
2416                                 free(td->ss.iops_data);
2417                                 free(td->ss.bw_data);
2418                         }
2419                 }
2420                 fio_options_free(td);
2421                 if (td->rusage_sem) {
2422                         fio_mutex_remove(td->rusage_sem);
2423                         td->rusage_sem = NULL;
2424                 }
2425         }
2426
2427         free_disk_util();
2428         cgroup_kill(cgroup_list);
2429         sfree(cgroup_list);
2430         sfree(cgroup_mnt);
2431
2432         fio_mutex_remove(startup_mutex);
2433         stat_exit();
2434         return exit_value;
2435 }