to_kmg() -> fio_uint_to_kmg()
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38
39 #include "fio.h"
40 #ifndef FIO_NO_HAVE_SHM_H
41 #include <sys/shm.h>
42 #endif
43 #include "hash.h"
44 #include "smalloc.h"
45 #include "verify.h"
46 #include "trim.h"
47 #include "diskutil.h"
48 #include "cgroup.h"
49 #include "profile.h"
50 #include "lib/rand.h"
51 #include "memalign.h"
52 #include "server.h"
53 #include "lib/getrusage.h"
54 #include "idletime.h"
55
56 static pthread_t disk_util_thread;
57 static struct fio_mutex *disk_thread_mutex;
58 static struct fio_mutex *startup_mutex;
59 static struct fio_mutex *writeout_mutex;
60 static struct flist_head *cgroup_list;
61 static char *cgroup_mnt;
62 static int exit_value;
63 static volatile int fio_abort;
64 static unsigned int nr_process = 0;
65 static unsigned int nr_thread = 0;
66
67 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69 int groupid = 0;
70 unsigned int thread_number = 0;
71 unsigned int stat_number = 0;
72 int shm_id = 0;
73 int temp_stall_ts;
74 unsigned long done_secs = 0;
75 volatile int disk_util_exit = 0;
76
77 #define PAGE_ALIGN(buf) \
78         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80 #define JOB_START_TIMEOUT       (5 * 1000)
81
82 static void sig_int(int sig)
83 {
84         if (threads) {
85                 if (is_backend)
86                         fio_server_got_signal(sig);
87                 else {
88                         log_info("\nfio: terminating on signal %d\n", sig);
89                         fflush(stdout);
90                         exit_value = 128;
91                 }
92
93                 fio_terminate_threads(TERMINATE_ALL);
94         }
95 }
96
97 static void sig_show_status(int sig)
98 {
99         show_running_run_stats();
100 }
101
102 static void set_sig_handlers(void)
103 {
104         struct sigaction act;
105
106         memset(&act, 0, sizeof(act));
107         act.sa_handler = sig_int;
108         act.sa_flags = SA_RESTART;
109         sigaction(SIGINT, &act, NULL);
110
111         memset(&act, 0, sizeof(act));
112         act.sa_handler = sig_int;
113         act.sa_flags = SA_RESTART;
114         sigaction(SIGTERM, &act, NULL);
115
116 /* Windows uses SIGBREAK as a quit signal from other applications */
117 #ifdef WIN32
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_int;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGBREAK, &act, NULL);
122 #endif
123
124         memset(&act, 0, sizeof(act));
125         act.sa_handler = sig_show_status;
126         act.sa_flags = SA_RESTART;
127         sigaction(SIGUSR1, &act, NULL);
128
129         if (is_backend) {
130                 memset(&act, 0, sizeof(act));
131                 act.sa_handler = sig_int;
132                 act.sa_flags = SA_RESTART;
133                 sigaction(SIGPIPE, &act, NULL);
134         }
135 }
136
137 /*
138  * Check if we are above the minimum rate given.
139  */
140 static int __check_min_rate(struct thread_data *td, struct timeval *now,
141                             enum fio_ddir ddir)
142 {
143         unsigned long long bytes = 0;
144         unsigned long iops = 0;
145         unsigned long spent;
146         unsigned long rate;
147         unsigned int ratemin = 0;
148         unsigned int rate_iops = 0;
149         unsigned int rate_iops_min = 0;
150
151         assert(ddir_rw(ddir));
152
153         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154                 return 0;
155
156         /*
157          * allow a 2 second settle period in the beginning
158          */
159         if (mtime_since(&td->start, now) < 2000)
160                 return 0;
161
162         iops += td->this_io_blocks[ddir];
163         bytes += td->this_io_bytes[ddir];
164         ratemin += td->o.ratemin[ddir];
165         rate_iops += td->o.rate_iops[ddir];
166         rate_iops_min += td->o.rate_iops_min[ddir];
167
168         /*
169          * if rate blocks is set, sample is running
170          */
171         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172                 spent = mtime_since(&td->lastrate[ddir], now);
173                 if (spent < td->o.ratecycle)
174                         return 0;
175
176                 if (td->o.rate[ddir]) {
177                         /*
178                          * check bandwidth specified rate
179                          */
180                         if (bytes < td->rate_bytes[ddir]) {
181                                 log_err("%s: min rate %u not met\n", td->o.name,
182                                                                 ratemin);
183                                 return 1;
184                         } else {
185                                 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186                                 if (rate < ratemin ||
187                                     bytes < td->rate_bytes[ddir]) {
188                                         log_err("%s: min rate %u not met, got"
189                                                 " %luKB/sec\n", td->o.name,
190                                                         ratemin, rate);
191                                         return 1;
192                                 }
193                         }
194                 } else {
195                         /*
196                          * checks iops specified rate
197                          */
198                         if (iops < rate_iops) {
199                                 log_err("%s: min iops rate %u not met\n",
200                                                 td->o.name, rate_iops);
201                                 return 1;
202                         } else {
203                                 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204                                 if (rate < rate_iops_min ||
205                                     iops < td->rate_blocks[ddir]) {
206                                         log_err("%s: min iops rate %u not met,"
207                                                 " got %lu\n", td->o.name,
208                                                         rate_iops_min, rate);
209                                 }
210                         }
211                 }
212         }
213
214         td->rate_bytes[ddir] = bytes;
215         td->rate_blocks[ddir] = iops;
216         memcpy(&td->lastrate[ddir], now, sizeof(*now));
217         return 0;
218 }
219
220 static int check_min_rate(struct thread_data *td, struct timeval *now,
221                           uint64_t *bytes_done)
222 {
223         int ret = 0;
224
225         if (bytes_done[DDIR_READ])
226                 ret |= __check_min_rate(td, now, DDIR_READ);
227         if (bytes_done[DDIR_WRITE])
228                 ret |= __check_min_rate(td, now, DDIR_WRITE);
229         if (bytes_done[DDIR_TRIM])
230                 ret |= __check_min_rate(td, now, DDIR_TRIM);
231
232         return ret;
233 }
234
235 /*
236  * When job exits, we can cancel the in-flight IO if we are using async
237  * io. Attempt to do so.
238  */
239 static void cleanup_pending_aio(struct thread_data *td)
240 {
241         struct flist_head *entry, *n;
242         struct io_u *io_u;
243         int r;
244
245         /*
246          * get immediately available events, if any
247          */
248         r = io_u_queued_complete(td, 0, NULL);
249         if (r < 0)
250                 return;
251
252         /*
253          * now cancel remaining active events
254          */
255         if (td->io_ops->cancel) {
256                 flist_for_each_safe(entry, n, &td->io_u_busylist) {
257                         io_u = flist_entry(entry, struct io_u, list);
258
259                         /*
260                          * if the io_u isn't in flight, then that generally
261                          * means someone leaked an io_u. complain but fix
262                          * it up, so we don't stall here.
263                          */
264                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
265                                 log_err("fio: non-busy IO on busy list\n");
266                                 put_io_u(td, io_u);
267                         } else {
268                                 r = td->io_ops->cancel(td, io_u);
269                                 if (!r)
270                                         put_io_u(td, io_u);
271                         }
272                 }
273         }
274
275         if (td->cur_depth)
276                 r = io_u_queued_complete(td, td->cur_depth, NULL);
277 }
278
279 /*
280  * Helper to handle the final sync of a file. Works just like the normal
281  * io path, just does everything sync.
282  */
283 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
284 {
285         struct io_u *io_u = __get_io_u(td);
286         int ret;
287
288         if (!io_u)
289                 return 1;
290
291         io_u->ddir = DDIR_SYNC;
292         io_u->file = f;
293
294         if (td_io_prep(td, io_u)) {
295                 put_io_u(td, io_u);
296                 return 1;
297         }
298
299 requeue:
300         ret = td_io_queue(td, io_u);
301         if (ret < 0) {
302                 td_verror(td, io_u->error, "td_io_queue");
303                 put_io_u(td, io_u);
304                 return 1;
305         } else if (ret == FIO_Q_QUEUED) {
306                 if (io_u_queued_complete(td, 1, NULL) < 0)
307                         return 1;
308         } else if (ret == FIO_Q_COMPLETED) {
309                 if (io_u->error) {
310                         td_verror(td, io_u->error, "td_io_queue");
311                         return 1;
312                 }
313
314                 if (io_u_sync_complete(td, io_u, NULL) < 0)
315                         return 1;
316         } else if (ret == FIO_Q_BUSY) {
317                 if (td_io_commit(td))
318                         return 1;
319                 goto requeue;
320         }
321
322         return 0;
323 }
324
325 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
326 {
327         int ret;
328
329         if (fio_file_open(f))
330                 return fio_io_sync(td, f);
331
332         if (td_io_open_file(td, f))
333                 return 1;
334
335         ret = fio_io_sync(td, f);
336         td_io_close_file(td, f);
337         return ret;
338 }
339
340 static inline void __update_tv_cache(struct thread_data *td)
341 {
342         fio_gettime(&td->tv_cache, NULL);
343 }
344
345 static inline void update_tv_cache(struct thread_data *td)
346 {
347         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
348                 __update_tv_cache(td);
349 }
350
351 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
352 {
353         if (in_ramp_time(td))
354                 return 0;
355         if (!td->o.timeout)
356                 return 0;
357         if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
358                 return 1;
359
360         return 0;
361 }
362
363 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
364                                int *retptr)
365 {
366         int ret = *retptr;
367
368         if (ret < 0 || td->error) {
369                 int err = td->error;
370                 enum error_type_bit eb;
371
372                 if (ret < 0)
373                         err = -ret;
374
375                 eb = td_error_type(ddir, err);
376                 if (!(td->o.continue_on_error & (1 << eb)))
377                         return 1;
378
379                 if (td_non_fatal_error(td, eb, err)) {
380                         /*
381                          * Continue with the I/Os in case of
382                          * a non fatal error.
383                          */
384                         update_error_count(td, err);
385                         td_clear_error(td);
386                         *retptr = 0;
387                         return 0;
388                 } else if (td->o.fill_device && err == ENOSPC) {
389                         /*
390                          * We expect to hit this error if
391                          * fill_device option is set.
392                          */
393                         td_clear_error(td);
394                         td->terminate = 1;
395                         return 1;
396                 } else {
397                         /*
398                          * Stop the I/O in case of a fatal
399                          * error.
400                          */
401                         update_error_count(td, err);
402                         return 1;
403                 }
404         }
405
406         return 0;
407 }
408
409 static void check_update_rusage(struct thread_data *td)
410 {
411         if (td->update_rusage) {
412                 td->update_rusage = 0;
413                 update_rusage_stat(td);
414                 fio_mutex_up(td->rusage_sem);
415         }
416 }
417
418 /*
419  * The main verify engine. Runs over the writes we previously submitted,
420  * reads the blocks back in, and checks the crc/md5 of the data.
421  */
422 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
423 {
424         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
425         struct fio_file *f;
426         struct io_u *io_u;
427         int ret, min_events;
428         unsigned int i;
429
430         dprint(FD_VERIFY, "starting loop\n");
431
432         /*
433          * sync io first and invalidate cache, to make sure we really
434          * read from disk.
435          */
436         for_each_file(td, f, i) {
437                 if (!fio_file_open(f))
438                         continue;
439                 if (fio_io_sync(td, f))
440                         break;
441                 if (file_invalidate_cache(td, f))
442                         break;
443         }
444
445         check_update_rusage(td);
446
447         if (td->error)
448                 return;
449
450         td_set_runstate(td, TD_VERIFYING);
451
452         io_u = NULL;
453         while (!td->terminate) {
454                 enum fio_ddir ddir;
455                 int ret2, full;
456
457                 update_tv_cache(td);
458                 check_update_rusage(td);
459
460                 if (runtime_exceeded(td, &td->tv_cache)) {
461                         __update_tv_cache(td);
462                         if (runtime_exceeded(td, &td->tv_cache)) {
463                                 td->terminate = 1;
464                                 break;
465                         }
466                 }
467
468                 if (flow_threshold_exceeded(td))
469                         continue;
470
471                 if (!td->o.experimental_verify) {
472                         io_u = __get_io_u(td);
473                         if (!io_u)
474                                 break;
475
476                         if (get_next_verify(td, io_u)) {
477                                 put_io_u(td, io_u);
478                                 break;
479                         }
480
481                         if (td_io_prep(td, io_u)) {
482                                 put_io_u(td, io_u);
483                                 break;
484                         }
485                 } else {
486                         if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
487                                 break;
488
489                         while ((io_u = get_io_u(td)) != NULL) {
490                                 /*
491                                  * We are only interested in the places where
492                                  * we wrote or trimmed IOs. Turn those into
493                                  * reads for verification purposes.
494                                  */
495                                 if (io_u->ddir == DDIR_READ) {
496                                         /*
497                                          * Pretend we issued it for rwmix
498                                          * accounting
499                                          */
500                                         td->io_issues[DDIR_READ]++;
501                                         put_io_u(td, io_u);
502                                         continue;
503                                 } else if (io_u->ddir == DDIR_TRIM) {
504                                         io_u->ddir = DDIR_READ;
505                                         io_u->flags |= IO_U_F_TRIMMED;
506                                         break;
507                                 } else if (io_u->ddir == DDIR_WRITE) {
508                                         io_u->ddir = DDIR_READ;
509                                         break;
510                                 } else {
511                                         put_io_u(td, io_u);
512                                         continue;
513                                 }
514                         }
515
516                         if (!io_u)
517                                 break;
518                 }
519
520                 if (td->o.verify_async)
521                         io_u->end_io = verify_io_u_async;
522                 else
523                         io_u->end_io = verify_io_u;
524
525                 ddir = io_u->ddir;
526
527                 ret = td_io_queue(td, io_u);
528                 switch (ret) {
529                 case FIO_Q_COMPLETED:
530                         if (io_u->error) {
531                                 ret = -io_u->error;
532                                 clear_io_u(td, io_u);
533                         } else if (io_u->resid) {
534                                 int bytes = io_u->xfer_buflen - io_u->resid;
535
536                                 /*
537                                  * zero read, fail
538                                  */
539                                 if (!bytes) {
540                                         td_verror(td, EIO, "full resid");
541                                         put_io_u(td, io_u);
542                                         break;
543                                 }
544
545                                 io_u->xfer_buflen = io_u->resid;
546                                 io_u->xfer_buf += bytes;
547                                 io_u->offset += bytes;
548
549                                 if (ddir_rw(io_u->ddir))
550                                         td->ts.short_io_u[io_u->ddir]++;
551
552                                 f = io_u->file;
553                                 if (io_u->offset == f->real_file_size)
554                                         goto sync_done;
555
556                                 requeue_io_u(td, &io_u);
557                         } else {
558 sync_done:
559                                 ret = io_u_sync_complete(td, io_u, bytes_done);
560                                 if (ret < 0)
561                                         break;
562                         }
563                         continue;
564                 case FIO_Q_QUEUED:
565                         break;
566                 case FIO_Q_BUSY:
567                         requeue_io_u(td, &io_u);
568                         ret2 = td_io_commit(td);
569                         if (ret2 < 0)
570                                 ret = ret2;
571                         break;
572                 default:
573                         assert(ret < 0);
574                         td_verror(td, -ret, "td_io_queue");
575                         break;
576                 }
577
578                 if (break_on_this_error(td, ddir, &ret))
579                         break;
580
581                 /*
582                  * if we can queue more, do so. but check if there are
583                  * completed io_u's first. Note that we can get BUSY even
584                  * without IO queued, if the system is resource starved.
585                  */
586                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
587                 if (full || !td->o.iodepth_batch_complete) {
588                         min_events = min(td->o.iodepth_batch_complete,
589                                          td->cur_depth);
590                         /*
591                          * if the queue is full, we MUST reap at least 1 event
592                          */
593                         if (full && !min_events)
594                                 min_events = 1;
595
596                         do {
597                                 /*
598                                  * Reap required number of io units, if any,
599                                  * and do the verification on them through
600                                  * the callback handler
601                                  */
602                                 if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
603                                         ret = -1;
604                                         break;
605                                 }
606                         } while (full && (td->cur_depth > td->o.iodepth_low));
607                 }
608                 if (ret < 0)
609                         break;
610         }
611
612         check_update_rusage(td);
613
614         if (!td->error) {
615                 min_events = td->cur_depth;
616
617                 if (min_events)
618                         ret = io_u_queued_complete(td, min_events, NULL);
619         } else
620                 cleanup_pending_aio(td);
621
622         td_set_runstate(td, TD_RUNNING);
623
624         dprint(FD_VERIFY, "exiting loop\n");
625 }
626
627 static int io_bytes_exceeded(struct thread_data *td)
628 {
629         unsigned long long bytes;
630
631         if (td_rw(td))
632                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
633         else if (td_write(td))
634                 bytes = td->this_io_bytes[DDIR_WRITE];
635         else if (td_read(td))
636                 bytes = td->this_io_bytes[DDIR_READ];
637         else
638                 bytes = td->this_io_bytes[DDIR_TRIM];
639
640         return bytes >= td->o.size;
641 }
642
643 /*
644  * Main IO worker function. It retrieves io_u's to process and queues
645  * and reaps them, checking for rate and errors along the way.
646  *
647  * Returns number of bytes written and trimmed.
648  */
649 static uint64_t do_io(struct thread_data *td)
650 {
651         uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
652         unsigned int i;
653         int ret = 0;
654
655         if (in_ramp_time(td))
656                 td_set_runstate(td, TD_RAMP);
657         else
658                 td_set_runstate(td, TD_RUNNING);
659
660         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
661                 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
662                 td->o.time_based) {
663                 struct timeval comp_time;
664                 int min_evts = 0;
665                 struct io_u *io_u;
666                 int ret2, full;
667                 enum fio_ddir ddir;
668
669                 check_update_rusage(td);
670
671                 if (td->terminate || td->done)
672                         break;
673
674                 update_tv_cache(td);
675
676                 if (runtime_exceeded(td, &td->tv_cache)) {
677                         __update_tv_cache(td);
678                         if (runtime_exceeded(td, &td->tv_cache)) {
679                                 td->terminate = 1;
680                                 break;
681                         }
682                 }
683
684                 if (flow_threshold_exceeded(td))
685                         continue;
686
687                 io_u = get_io_u(td);
688                 if (!io_u)
689                         break;
690
691                 ddir = io_u->ddir;
692
693                 /*
694                  * Add verification end_io handler if:
695                  *      - Asked to verify (!td_rw(td))
696                  *      - Or the io_u is from our verify list (mixed write/ver)
697                  */
698                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
699                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
700                         if (td->o.verify_async)
701                                 io_u->end_io = verify_io_u_async;
702                         else
703                                 io_u->end_io = verify_io_u;
704                         td_set_runstate(td, TD_VERIFYING);
705                 } else if (in_ramp_time(td))
706                         td_set_runstate(td, TD_RAMP);
707                 else
708                         td_set_runstate(td, TD_RUNNING);
709
710                 ret = td_io_queue(td, io_u);
711                 switch (ret) {
712                 case FIO_Q_COMPLETED:
713                         if (io_u->error) {
714                                 ret = -io_u->error;
715                                 clear_io_u(td, io_u);
716                         } else if (io_u->resid) {
717                                 int bytes = io_u->xfer_buflen - io_u->resid;
718                                 struct fio_file *f = io_u->file;
719
720                                 /*
721                                  * zero read, fail
722                                  */
723                                 if (!bytes) {
724                                         td_verror(td, EIO, "full resid");
725                                         put_io_u(td, io_u);
726                                         break;
727                                 }
728
729                                 io_u->xfer_buflen = io_u->resid;
730                                 io_u->xfer_buf += bytes;
731                                 io_u->offset += bytes;
732
733                                 if (ddir_rw(io_u->ddir))
734                                         td->ts.short_io_u[io_u->ddir]++;
735
736                                 if (io_u->offset == f->real_file_size)
737                                         goto sync_done;
738
739                                 requeue_io_u(td, &io_u);
740                         } else {
741 sync_done:
742                                 if (__should_check_rate(td, DDIR_READ) ||
743                                     __should_check_rate(td, DDIR_WRITE) ||
744                                     __should_check_rate(td, DDIR_TRIM))
745                                         fio_gettime(&comp_time, NULL);
746
747                                 ret = io_u_sync_complete(td, io_u, bytes_done);
748                                 if (ret < 0)
749                                         break;
750                         }
751                         break;
752                 case FIO_Q_QUEUED:
753                         /*
754                          * if the engine doesn't have a commit hook,
755                          * the io_u is really queued. if it does have such
756                          * a hook, it has to call io_u_queued() itself.
757                          */
758                         if (td->io_ops->commit == NULL)
759                                 io_u_queued(td, io_u);
760                         break;
761                 case FIO_Q_BUSY:
762                         requeue_io_u(td, &io_u);
763                         ret2 = td_io_commit(td);
764                         if (ret2 < 0)
765                                 ret = ret2;
766                         break;
767                 default:
768                         assert(ret < 0);
769                         put_io_u(td, io_u);
770                         break;
771                 }
772
773                 if (break_on_this_error(td, ddir, &ret))
774                         break;
775
776                 /*
777                  * See if we need to complete some commands. Note that we
778                  * can get BUSY even without IO queued, if the system is
779                  * resource starved.
780                  */
781                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
782                 if (full || !td->o.iodepth_batch_complete) {
783                         min_evts = min(td->o.iodepth_batch_complete,
784                                         td->cur_depth);
785                         /*
786                          * if the queue is full, we MUST reap at least 1 event
787                          */
788                         if (full && !min_evts)
789                                 min_evts = 1;
790
791                         if (__should_check_rate(td, DDIR_READ) ||
792                             __should_check_rate(td, DDIR_WRITE) ||
793                             __should_check_rate(td, DDIR_TRIM))
794                                 fio_gettime(&comp_time, NULL);
795
796                         do {
797                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
798                                 if (ret < 0)
799                                         break;
800
801                         } while (full && (td->cur_depth > td->o.iodepth_low));
802                 }
803
804                 if (ret < 0)
805                         break;
806                 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
807                         continue;
808
809                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
810                         if (check_min_rate(td, &comp_time, bytes_done)) {
811                                 if (exitall_on_terminate)
812                                         fio_terminate_threads(td->groupid);
813                                 td_verror(td, EIO, "check_min_rate");
814                                 break;
815                         }
816                 }
817
818                 if (td->o.thinktime) {
819                         unsigned long long b;
820
821                         b = ddir_rw_sum(td->io_blocks);
822                         if (!(b % td->o.thinktime_blocks)) {
823                                 int left;
824
825                                 if (td->o.thinktime_spin)
826                                         usec_spin(td->o.thinktime_spin);
827
828                                 left = td->o.thinktime - td->o.thinktime_spin;
829                                 if (left)
830                                         usec_sleep(td, left);
831                         }
832                 }
833         }
834
835         check_update_rusage(td);
836
837         if (td->trim_entries)
838                 log_err("fio: %d trim entries leaked?\n", td->trim_entries);
839
840         if (td->o.fill_device && td->error == ENOSPC) {
841                 td->error = 0;
842                 td->terminate = 1;
843         }
844         if (!td->error) {
845                 struct fio_file *f;
846
847                 i = td->cur_depth;
848                 if (i) {
849                         ret = io_u_queued_complete(td, i, bytes_done);
850                         if (td->o.fill_device && td->error == ENOSPC)
851                                 td->error = 0;
852                 }
853
854                 if (should_fsync(td) && td->o.end_fsync) {
855                         td_set_runstate(td, TD_FSYNCING);
856
857                         for_each_file(td, f, i) {
858                                 if (!fio_file_fsync(td, f))
859                                         continue;
860
861                                 log_err("fio: end_fsync failed for file %s\n",
862                                                                 f->file_name);
863                         }
864                 }
865         } else
866                 cleanup_pending_aio(td);
867
868         /*
869          * stop job if we failed doing any IO
870          */
871         if (!ddir_rw_sum(td->this_io_bytes))
872                 td->done = 1;
873
874         return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
875 }
876
877 static void cleanup_io_u(struct thread_data *td)
878 {
879         struct flist_head *entry, *n;
880         struct io_u *io_u;
881
882         flist_for_each_safe(entry, n, &td->io_u_freelist) {
883                 io_u = flist_entry(entry, struct io_u, list);
884
885                 flist_del(&io_u->list);
886
887                 if (td->io_ops->io_u_free)
888                         td->io_ops->io_u_free(td, io_u);
889
890                 fio_memfree(io_u, sizeof(*io_u));
891         }
892
893         free_io_mem(td);
894 }
895
896 static int init_io_u(struct thread_data *td)
897 {
898         struct io_u *io_u;
899         unsigned int max_bs, min_write;
900         int cl_align, i, max_units;
901         int data_xfer = 1;
902         char *p;
903
904         max_units = td->o.iodepth;
905         max_bs = td_max_bs(td);
906         min_write = td->o.min_bs[DDIR_WRITE];
907         td->orig_buffer_size = (unsigned long long) max_bs
908                                         * (unsigned long long) max_units;
909
910         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
911                 data_xfer = 0;
912
913         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
914                 unsigned long bs;
915
916                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
917                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
918         }
919
920         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
921                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
922                 return 1;
923         }
924
925         if (data_xfer && allocate_io_mem(td))
926                 return 1;
927
928         if (td->o.odirect || td->o.mem_align ||
929             (td->io_ops->flags & FIO_RAWIO))
930                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
931         else
932                 p = td->orig_buffer;
933
934         cl_align = os_cache_line_size();
935
936         for (i = 0; i < max_units; i++) {
937                 void *ptr;
938
939                 if (td->terminate)
940                         return 1;
941
942                 ptr = fio_memalign(cl_align, sizeof(*io_u));
943                 if (!ptr) {
944                         log_err("fio: unable to allocate aligned memory\n");
945                         break;
946                 }
947
948                 io_u = ptr;
949                 memset(io_u, 0, sizeof(*io_u));
950                 INIT_FLIST_HEAD(&io_u->list);
951                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
952
953                 if (data_xfer) {
954                         io_u->buf = p;
955                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
956
957                         if (td_write(td))
958                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
959                         if (td_write(td) && td->o.verify_pattern_bytes) {
960                                 /*
961                                  * Fill the buffer with the pattern if we are
962                                  * going to be doing writes.
963                                  */
964                                 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
965                         }
966                 }
967
968                 io_u->index = i;
969                 io_u->flags = IO_U_F_FREE;
970                 flist_add(&io_u->list, &td->io_u_freelist);
971
972                 if (td->io_ops->io_u_init) {
973                         int ret = td->io_ops->io_u_init(td, io_u);
974
975                         if (ret) {
976                                 log_err("fio: failed to init engine data: %d\n", ret);
977                                 return 1;
978                         }
979                 }
980
981                 p += max_bs;
982         }
983
984         return 0;
985 }
986
987 static int switch_ioscheduler(struct thread_data *td)
988 {
989         char tmp[256], tmp2[128];
990         FILE *f;
991         int ret;
992
993         if (td->io_ops->flags & FIO_DISKLESSIO)
994                 return 0;
995
996         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
997
998         f = fopen(tmp, "r+");
999         if (!f) {
1000                 if (errno == ENOENT) {
1001                         log_err("fio: os or kernel doesn't support IO scheduler"
1002                                 " switching\n");
1003                         return 0;
1004                 }
1005                 td_verror(td, errno, "fopen iosched");
1006                 return 1;
1007         }
1008
1009         /*
1010          * Set io scheduler.
1011          */
1012         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1013         if (ferror(f) || ret != 1) {
1014                 td_verror(td, errno, "fwrite");
1015                 fclose(f);
1016                 return 1;
1017         }
1018
1019         rewind(f);
1020
1021         /*
1022          * Read back and check that the selected scheduler is now the default.
1023          */
1024         ret = fread(tmp, 1, sizeof(tmp), f);
1025         if (ferror(f) || ret < 0) {
1026                 td_verror(td, errno, "fread");
1027                 fclose(f);
1028                 return 1;
1029         }
1030
1031         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1032         if (!strstr(tmp, tmp2)) {
1033                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1034                 td_verror(td, EINVAL, "iosched_switch");
1035                 fclose(f);
1036                 return 1;
1037         }
1038
1039         fclose(f);
1040         return 0;
1041 }
1042
1043 static int keep_running(struct thread_data *td)
1044 {
1045         if (td->done)
1046                 return 0;
1047         if (td->o.time_based)
1048                 return 1;
1049         if (td->o.loops) {
1050                 td->o.loops--;
1051                 return 1;
1052         }
1053
1054         if (td->o.size != -1ULL && ddir_rw_sum(td->io_bytes) < td->o.size) {
1055                 uint64_t diff;
1056
1057                 /*
1058                  * If the difference is less than the minimum IO size, we
1059                  * are done.
1060                  */
1061                 diff = td->o.size - ddir_rw_sum(td->io_bytes);
1062                 if (diff < td_max_bs(td))
1063                         return 0;
1064
1065                 return 1;
1066         }
1067
1068         return 0;
1069 }
1070
1071 static int exec_string(const char *string)
1072 {
1073         int ret, newlen = strlen(string) + 1 + 8;
1074         char *str;
1075
1076         str = malloc(newlen);
1077         sprintf(str, "sh -c %s", string);
1078
1079         ret = system(str);
1080         if (ret == -1)
1081                 log_err("fio: exec of cmd <%s> failed\n", str);
1082
1083         free(str);
1084         return ret;
1085 }
1086
1087 /*
1088  * Entry point for the thread based jobs. The process based jobs end up
1089  * here as well, after a little setup.
1090  */
1091 static void *thread_main(void *data)
1092 {
1093         unsigned long long elapsed;
1094         struct thread_data *td = data;
1095         struct thread_options *o = &td->o;
1096         pthread_condattr_t attr;
1097         int clear_state;
1098
1099         if (!o->use_thread) {
1100                 setsid();
1101                 td->pid = getpid();
1102         } else
1103                 td->pid = gettid();
1104
1105         fio_local_clock_init(o->use_thread);
1106
1107         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1108
1109         INIT_FLIST_HEAD(&td->io_u_freelist);
1110         INIT_FLIST_HEAD(&td->io_u_busylist);
1111         INIT_FLIST_HEAD(&td->io_u_requeues);
1112         INIT_FLIST_HEAD(&td->io_log_list);
1113         INIT_FLIST_HEAD(&td->io_hist_list);
1114         INIT_FLIST_HEAD(&td->verify_list);
1115         INIT_FLIST_HEAD(&td->trim_list);
1116         INIT_FLIST_HEAD(&td->next_rand_list);
1117         pthread_mutex_init(&td->io_u_lock, NULL);
1118         td->io_hist_tree = RB_ROOT;
1119
1120         pthread_condattr_init(&attr);
1121         pthread_cond_init(&td->verify_cond, &attr);
1122         pthread_cond_init(&td->free_cond, &attr);
1123
1124         td_set_runstate(td, TD_INITIALIZED);
1125         dprint(FD_MUTEX, "up startup_mutex\n");
1126         fio_mutex_up(startup_mutex);
1127         dprint(FD_MUTEX, "wait on td->mutex\n");
1128         fio_mutex_down(td->mutex);
1129         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1130
1131         /*
1132          * the ->mutex mutex is now no longer used, close it to avoid
1133          * eating a file descriptor
1134          */
1135         fio_mutex_remove(td->mutex);
1136
1137         /*
1138          * A new gid requires privilege, so we need to do this before setting
1139          * the uid.
1140          */
1141         if (o->gid != -1U && setgid(o->gid)) {
1142                 td_verror(td, errno, "setgid");
1143                 goto err;
1144         }
1145         if (o->uid != -1U && setuid(o->uid)) {
1146                 td_verror(td, errno, "setuid");
1147                 goto err;
1148         }
1149
1150         /*
1151          * If we have a gettimeofday() thread, make sure we exclude that
1152          * thread from this job
1153          */
1154         if (o->gtod_cpu)
1155                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1156
1157         /*
1158          * Set affinity first, in case it has an impact on the memory
1159          * allocations.
1160          */
1161         if (o->cpumask_set) {
1162                 if (fio_setaffinity(td->pid, o->cpumask) == -1) {
1163                         td_verror(td, errno, "cpu_set_affinity");
1164                         goto err;
1165                 }
1166         }
1167
1168 #ifdef CONFIG_LIBNUMA
1169         /* numa node setup */
1170         if (o->numa_cpumask_set || o->numa_memmask_set) {
1171                 int ret;
1172
1173                 if (numa_available() < 0) {
1174                         td_verror(td, errno, "Does not support NUMA API\n");
1175                         goto err;
1176                 }
1177
1178                 if (o->numa_cpumask_set) {
1179                         ret = numa_run_on_node_mask(o->numa_cpunodesmask);
1180                         if (ret == -1) {
1181                                 td_verror(td, errno, \
1182                                         "numa_run_on_node_mask failed\n");
1183                                 goto err;
1184                         }
1185                 }
1186
1187                 if (o->numa_memmask_set) {
1188
1189                         switch (o->numa_mem_mode) {
1190                         case MPOL_INTERLEAVE:
1191                                 numa_set_interleave_mask(o->numa_memnodesmask);
1192                                 break;
1193                         case MPOL_BIND:
1194                                 numa_set_membind(o->numa_memnodesmask);
1195                                 break;
1196                         case MPOL_LOCAL:
1197                                 numa_set_localalloc();
1198                                 break;
1199                         case MPOL_PREFERRED:
1200                                 numa_set_preferred(o->numa_mem_prefer_node);
1201                                 break;
1202                         case MPOL_DEFAULT:
1203                         default:
1204                                 break;
1205                         }
1206
1207                 }
1208         }
1209 #endif
1210
1211         if (fio_pin_memory(td))
1212                 goto err;
1213
1214         /*
1215          * May alter parameters that init_io_u() will use, so we need to
1216          * do this first.
1217          */
1218         if (init_iolog(td))
1219                 goto err;
1220
1221         if (init_io_u(td))
1222                 goto err;
1223
1224         if (o->verify_async && verify_async_init(td))
1225                 goto err;
1226
1227         if (td->ioprio_set) {
1228                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1229                         td_verror(td, errno, "ioprio_set");
1230                         goto err;
1231                 }
1232         }
1233
1234         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1235                 goto err;
1236
1237         errno = 0;
1238         if (nice(o->nice) == -1 && errno != 0) {
1239                 td_verror(td, errno, "nice");
1240                 goto err;
1241         }
1242
1243         if (o->ioscheduler && switch_ioscheduler(td))
1244                 goto err;
1245
1246         if (!o->create_serialize && setup_files(td))
1247                 goto err;
1248
1249         if (td_io_init(td))
1250                 goto err;
1251
1252         if (init_random_map(td))
1253                 goto err;
1254
1255         if (o->exec_prerun && exec_string(o->exec_prerun))
1256                 goto err;
1257
1258         if (o->pre_read) {
1259                 if (pre_read_files(td) < 0)
1260                         goto err;
1261         }
1262
1263         fio_verify_init(td);
1264
1265         fio_gettime(&td->epoch, NULL);
1266         fio_getrusage(&td->ru_start);
1267         clear_state = 0;
1268         while (keep_running(td)) {
1269                 uint64_t verify_bytes;
1270
1271                 fio_gettime(&td->start, NULL);
1272                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1273                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1274                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1275
1276                 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1277                                 o->ratemin[DDIR_TRIM]) {
1278                         memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1279                                                 sizeof(td->bw_sample_time));
1280                         memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1281                                                 sizeof(td->bw_sample_time));
1282                         memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1283                                                 sizeof(td->bw_sample_time));
1284                 }
1285
1286                 if (clear_state)
1287                         clear_io_state(td);
1288
1289                 prune_io_piece_log(td);
1290
1291                 verify_bytes = do_io(td);
1292
1293                 clear_state = 1;
1294
1295                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1296                         elapsed = utime_since_now(&td->start);
1297                         td->ts.runtime[DDIR_READ] += elapsed;
1298                 }
1299                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1300                         elapsed = utime_since_now(&td->start);
1301                         td->ts.runtime[DDIR_WRITE] += elapsed;
1302                 }
1303                 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1304                         elapsed = utime_since_now(&td->start);
1305                         td->ts.runtime[DDIR_TRIM] += elapsed;
1306                 }
1307
1308                 if (td->error || td->terminate)
1309                         break;
1310
1311                 if (!o->do_verify ||
1312                     o->verify == VERIFY_NONE ||
1313                     (td->io_ops->flags & FIO_UNIDIR))
1314                         continue;
1315
1316                 clear_io_state(td);
1317
1318                 fio_gettime(&td->start, NULL);
1319
1320                 do_verify(td, verify_bytes);
1321
1322                 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1323
1324                 if (td->error || td->terminate)
1325                         break;
1326         }
1327
1328         update_rusage_stat(td);
1329         td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1330         td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1331         td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1332         td->ts.total_run_time = mtime_since_now(&td->epoch);
1333         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1334         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1335         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1336
1337         fio_unpin_memory(td);
1338
1339         fio_mutex_down(writeout_mutex);
1340         if (td->bw_log) {
1341                 if (o->bw_log_file) {
1342                         finish_log_named(td, td->bw_log,
1343                                                 o->bw_log_file, "bw");
1344                 } else
1345                         finish_log(td, td->bw_log, "bw");
1346         }
1347         if (td->lat_log) {
1348                 if (o->lat_log_file) {
1349                         finish_log_named(td, td->lat_log,
1350                                                 o->lat_log_file, "lat");
1351                 } else
1352                         finish_log(td, td->lat_log, "lat");
1353         }
1354         if (td->slat_log) {
1355                 if (o->lat_log_file) {
1356                         finish_log_named(td, td->slat_log,
1357                                                 o->lat_log_file, "slat");
1358                 } else
1359                         finish_log(td, td->slat_log, "slat");
1360         }
1361         if (td->clat_log) {
1362                 if (o->lat_log_file) {
1363                         finish_log_named(td, td->clat_log,
1364                                                 o->lat_log_file, "clat");
1365                 } else
1366                         finish_log(td, td->clat_log, "clat");
1367         }
1368         if (td->iops_log) {
1369                 if (o->iops_log_file) {
1370                         finish_log_named(td, td->iops_log,
1371                                                 o->iops_log_file, "iops");
1372                 } else
1373                         finish_log(td, td->iops_log, "iops");
1374         }
1375
1376         fio_mutex_up(writeout_mutex);
1377         if (o->exec_postrun)
1378                 exec_string(o->exec_postrun);
1379
1380         if (exitall_on_terminate)
1381                 fio_terminate_threads(td->groupid);
1382
1383 err:
1384         if (td->error)
1385                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1386                                                         td->verror);
1387
1388         if (o->verify_async)
1389                 verify_async_exit(td);
1390
1391         close_and_free_files(td);
1392         cleanup_io_u(td);
1393         close_ioengine(td);
1394         cgroup_shutdown(td, &cgroup_mnt);
1395
1396         if (o->cpumask_set) {
1397                 int ret = fio_cpuset_exit(&o->cpumask);
1398
1399                 td_verror(td, ret, "fio_cpuset_exit");
1400         }
1401
1402         /*
1403          * do this very late, it will log file closing as well
1404          */
1405         if (o->write_iolog_file)
1406                 write_iolog_close(td);
1407
1408         fio_mutex_remove(td->rusage_sem);
1409         td->rusage_sem = NULL;
1410
1411         td_set_runstate(td, TD_EXITED);
1412         return (void *) (uintptr_t) td->error;
1413 }
1414
1415
1416 /*
1417  * We cannot pass the td data into a forked process, so attach the td and
1418  * pass it to the thread worker.
1419  */
1420 static int fork_main(int shmid, int offset)
1421 {
1422         struct thread_data *td;
1423         void *data, *ret;
1424
1425 #ifndef __hpux
1426         data = shmat(shmid, NULL, 0);
1427         if (data == (void *) -1) {
1428                 int __err = errno;
1429
1430                 perror("shmat");
1431                 return __err;
1432         }
1433 #else
1434         /*
1435          * HP-UX inherits shm mappings?
1436          */
1437         data = threads;
1438 #endif
1439
1440         td = data + offset * sizeof(struct thread_data);
1441         ret = thread_main(td);
1442         shmdt(data);
1443         return (int) (uintptr_t) ret;
1444 }
1445
1446 /*
1447  * Run over the job map and reap the threads that have exited, if any.
1448  */
1449 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1450                          unsigned int *m_rate)
1451 {
1452         struct thread_data *td;
1453         unsigned int cputhreads, realthreads, pending;
1454         int i, status, ret;
1455
1456         /*
1457          * reap exited threads (TD_EXITED -> TD_REAPED)
1458          */
1459         realthreads = pending = cputhreads = 0;
1460         for_each_td(td, i) {
1461                 int flags = 0;
1462
1463                 /*
1464                  * ->io_ops is NULL for a thread that has closed its
1465                  * io engine
1466                  */
1467                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1468                         cputhreads++;
1469                 else
1470                         realthreads++;
1471
1472                 if (!td->pid) {
1473                         pending++;
1474                         continue;
1475                 }
1476                 if (td->runstate == TD_REAPED)
1477                         continue;
1478                 if (td->o.use_thread) {
1479                         if (td->runstate == TD_EXITED) {
1480                                 td_set_runstate(td, TD_REAPED);
1481                                 goto reaped;
1482                         }
1483                         continue;
1484                 }
1485
1486                 flags = WNOHANG;
1487                 if (td->runstate == TD_EXITED)
1488                         flags = 0;
1489
1490                 /*
1491                  * check if someone quit or got killed in an unusual way
1492                  */
1493                 ret = waitpid(td->pid, &status, flags);
1494                 if (ret < 0) {
1495                         if (errno == ECHILD) {
1496                                 log_err("fio: pid=%d disappeared %d\n",
1497                                                 (int) td->pid, td->runstate);
1498                                 td->sig = ECHILD;
1499                                 td_set_runstate(td, TD_REAPED);
1500                                 goto reaped;
1501                         }
1502                         perror("waitpid");
1503                 } else if (ret == td->pid) {
1504                         if (WIFSIGNALED(status)) {
1505                                 int sig = WTERMSIG(status);
1506
1507                                 if (sig != SIGTERM && sig != SIGUSR2)
1508                                         log_err("fio: pid=%d, got signal=%d\n",
1509                                                         (int) td->pid, sig);
1510                                 td->sig = sig;
1511                                 td_set_runstate(td, TD_REAPED);
1512                                 goto reaped;
1513                         }
1514                         if (WIFEXITED(status)) {
1515                                 if (WEXITSTATUS(status) && !td->error)
1516                                         td->error = WEXITSTATUS(status);
1517
1518                                 td_set_runstate(td, TD_REAPED);
1519                                 goto reaped;
1520                         }
1521                 }
1522
1523                 /*
1524                  * thread is not dead, continue
1525                  */
1526                 pending++;
1527                 continue;
1528 reaped:
1529                 (*nr_running)--;
1530                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1531                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1532                 if (!td->pid)
1533                         pending--;
1534
1535                 if (td->error)
1536                         exit_value++;
1537
1538                 done_secs += mtime_since_now(&td->epoch) / 1000;
1539         }
1540
1541         if (*nr_running == cputhreads && !pending && realthreads)
1542                 fio_terminate_threads(TERMINATE_ALL);
1543 }
1544
1545 /*
1546  * Main function for kicking off and reaping jobs, as needed.
1547  */
1548 static void run_threads(void)
1549 {
1550         struct thread_data *td;
1551         unsigned long spent;
1552         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1553
1554         if (fio_gtod_offload && fio_start_gtod_thread())
1555                 return;
1556         
1557         fio_idle_prof_init();
1558
1559         set_sig_handlers();
1560
1561         nr_thread = nr_process = 0;
1562         for_each_td(td, i) {
1563                 if (td->o.use_thread)
1564                         nr_thread++;
1565                 else
1566                         nr_process++;
1567         }
1568
1569         if (output_format == FIO_OUTPUT_NORMAL) {
1570                 log_info("Starting ");
1571                 if (nr_thread)
1572                         log_info("%d thread%s", nr_thread,
1573                                                 nr_thread > 1 ? "s" : "");
1574                 if (nr_process) {
1575                         if (nr_thread)
1576                                 log_info(" and ");
1577                         log_info("%d process%s", nr_process,
1578                                                 nr_process > 1 ? "es" : "");
1579                 }
1580                 log_info("\n");
1581                 fflush(stdout);
1582         }
1583
1584         todo = thread_number;
1585         nr_running = 0;
1586         nr_started = 0;
1587         m_rate = t_rate = 0;
1588
1589         for_each_td(td, i) {
1590                 print_status_init(td->thread_number - 1);
1591
1592                 if (!td->o.create_serialize)
1593                         continue;
1594
1595                 /*
1596                  * do file setup here so it happens sequentially,
1597                  * we don't want X number of threads getting their
1598                  * client data interspersed on disk
1599                  */
1600                 if (setup_files(td)) {
1601                         exit_value++;
1602                         if (td->error)
1603                                 log_err("fio: pid=%d, err=%d/%s\n",
1604                                         (int) td->pid, td->error, td->verror);
1605                         td_set_runstate(td, TD_REAPED);
1606                         todo--;
1607                 } else {
1608                         struct fio_file *f;
1609                         unsigned int j;
1610
1611                         /*
1612                          * for sharing to work, each job must always open
1613                          * its own files. so close them, if we opened them
1614                          * for creation
1615                          */
1616                         for_each_file(td, f, j) {
1617                                 if (fio_file_open(f))
1618                                         td_io_close_file(td, f);
1619                         }
1620                 }
1621         }
1622
1623         /* start idle threads before io threads start to run */
1624         fio_idle_prof_start();
1625
1626         set_genesis_time();
1627
1628         while (todo) {
1629                 struct thread_data *map[REAL_MAX_JOBS];
1630                 struct timeval this_start;
1631                 int this_jobs = 0, left;
1632
1633                 /*
1634                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1635                  */
1636                 for_each_td(td, i) {
1637                         if (td->runstate != TD_NOT_CREATED)
1638                                 continue;
1639
1640                         /*
1641                          * never got a chance to start, killed by other
1642                          * thread for some reason
1643                          */
1644                         if (td->terminate) {
1645                                 todo--;
1646                                 continue;
1647                         }
1648
1649                         if (td->o.start_delay) {
1650                                 spent = mtime_since_genesis();
1651
1652                                 if (td->o.start_delay * 1000 > spent)
1653                                         continue;
1654                         }
1655
1656                         if (td->o.stonewall && (nr_started || nr_running)) {
1657                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1658                                                         td->o.name);
1659                                 break;
1660                         }
1661
1662                         init_disk_util(td);
1663
1664                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1665                         td->update_rusage = 0;
1666
1667                         /*
1668                          * Set state to created. Thread will transition
1669                          * to TD_INITIALIZED when it's done setting up.
1670                          */
1671                         td_set_runstate(td, TD_CREATED);
1672                         map[this_jobs++] = td;
1673                         nr_started++;
1674
1675                         if (td->o.use_thread) {
1676                                 int ret;
1677
1678                                 dprint(FD_PROCESS, "will pthread_create\n");
1679                                 ret = pthread_create(&td->thread, NULL,
1680                                                         thread_main, td);
1681                                 if (ret) {
1682                                         log_err("pthread_create: %s\n",
1683                                                         strerror(ret));
1684                                         nr_started--;
1685                                         break;
1686                                 }
1687                                 ret = pthread_detach(td->thread);
1688                                 if (ret)
1689                                         log_err("pthread_detach: %s",
1690                                                         strerror(ret));
1691                         } else {
1692                                 pid_t pid;
1693                                 dprint(FD_PROCESS, "will fork\n");
1694                                 pid = fork();
1695                                 if (!pid) {
1696                                         int ret = fork_main(shm_id, i);
1697
1698                                         _exit(ret);
1699                                 } else if (i == fio_debug_jobno)
1700                                         *fio_debug_jobp = pid;
1701                         }
1702                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1703                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
1704                                 log_err("fio: job startup hung? exiting.\n");
1705                                 fio_terminate_threads(TERMINATE_ALL);
1706                                 fio_abort = 1;
1707                                 nr_started--;
1708                                 break;
1709                         }
1710                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1711                 }
1712
1713                 /*
1714                  * Wait for the started threads to transition to
1715                  * TD_INITIALIZED.
1716                  */
1717                 fio_gettime(&this_start, NULL);
1718                 left = this_jobs;
1719                 while (left && !fio_abort) {
1720                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1721                                 break;
1722
1723                         usleep(100000);
1724
1725                         for (i = 0; i < this_jobs; i++) {
1726                                 td = map[i];
1727                                 if (!td)
1728                                         continue;
1729                                 if (td->runstate == TD_INITIALIZED) {
1730                                         map[i] = NULL;
1731                                         left--;
1732                                 } else if (td->runstate >= TD_EXITED) {
1733                                         map[i] = NULL;
1734                                         left--;
1735                                         todo--;
1736                                         nr_running++; /* work-around... */
1737                                 }
1738                         }
1739                 }
1740
1741                 if (left) {
1742                         log_err("fio: %d job%s failed to start\n", left,
1743                                         left > 1 ? "s" : "");
1744                         for (i = 0; i < this_jobs; i++) {
1745                                 td = map[i];
1746                                 if (!td)
1747                                         continue;
1748                                 kill(td->pid, SIGTERM);
1749                         }
1750                         break;
1751                 }
1752
1753                 /*
1754                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1755                  */
1756                 for_each_td(td, i) {
1757                         if (td->runstate != TD_INITIALIZED)
1758                                 continue;
1759
1760                         if (in_ramp_time(td))
1761                                 td_set_runstate(td, TD_RAMP);
1762                         else
1763                                 td_set_runstate(td, TD_RUNNING);
1764                         nr_running++;
1765                         nr_started--;
1766                         m_rate += ddir_rw_sum(td->o.ratemin);
1767                         t_rate += ddir_rw_sum(td->o.rate);
1768                         todo--;
1769                         fio_mutex_up(td->mutex);
1770                 }
1771
1772                 reap_threads(&nr_running, &t_rate, &m_rate);
1773
1774                 if (todo) {
1775                         if (is_backend)
1776                                 fio_server_idle_loop();
1777                         else
1778                                 usleep(100000);
1779                 }
1780         }
1781
1782         while (nr_running) {
1783                 reap_threads(&nr_running, &t_rate, &m_rate);
1784
1785                 if (is_backend)
1786                         fio_server_idle_loop();
1787                 else
1788                         usleep(10000);
1789         }
1790
1791         fio_idle_prof_stop();
1792
1793         update_io_ticks();
1794 }
1795
1796 void wait_for_disk_thread_exit(void)
1797 {
1798         fio_mutex_down(disk_thread_mutex);
1799 }
1800
1801 static void free_disk_util(void)
1802 {
1803         disk_util_start_exit();
1804         wait_for_disk_thread_exit();
1805         disk_util_prune_entries();
1806 }
1807
1808 static void *disk_thread_main(void *data)
1809 {
1810         int ret = 0;
1811
1812         fio_mutex_up(startup_mutex);
1813
1814         while (threads && !ret) {
1815                 usleep(DISK_UTIL_MSEC * 1000);
1816                 if (!threads)
1817                         break;
1818                 ret = update_io_ticks();
1819
1820                 if (!is_backend)
1821                         print_thread_status();
1822         }
1823
1824         fio_mutex_up(disk_thread_mutex);
1825         return NULL;
1826 }
1827
1828 static int create_disk_util_thread(void)
1829 {
1830         int ret;
1831
1832         setup_disk_util();
1833
1834         disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1835
1836         ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1837         if (ret) {
1838                 fio_mutex_remove(disk_thread_mutex);
1839                 log_err("Can't create disk util thread: %s\n", strerror(ret));
1840                 return 1;
1841         }
1842
1843         ret = pthread_detach(disk_util_thread);
1844         if (ret) {
1845                 fio_mutex_remove(disk_thread_mutex);
1846                 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1847                 return 1;
1848         }
1849
1850         dprint(FD_MUTEX, "wait on startup_mutex\n");
1851         fio_mutex_down(startup_mutex);
1852         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1853         return 0;
1854 }
1855
1856 int fio_backend(void)
1857 {
1858         struct thread_data *td;
1859         int i;
1860
1861         if (exec_profile) {
1862                 if (load_profile(exec_profile))
1863                         return 1;
1864                 free(exec_profile);
1865                 exec_profile = NULL;
1866         }
1867         if (!thread_number)
1868                 return 0;
1869
1870         if (write_bw_log) {
1871                 setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
1872                 setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
1873                 setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
1874         }
1875
1876         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1877         if (startup_mutex == NULL)
1878                 return 1;
1879         writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
1880         if (writeout_mutex == NULL)
1881                 return 1;
1882
1883         set_genesis_time();
1884         create_disk_util_thread();
1885
1886         cgroup_list = smalloc(sizeof(*cgroup_list));
1887         INIT_FLIST_HEAD(cgroup_list);
1888
1889         run_threads();
1890
1891         if (!fio_abort) {
1892                 show_run_stats();
1893                 if (write_bw_log) {
1894                         __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1895                         __finish_log(agg_io_log[DDIR_WRITE],
1896                                         "agg-write_bw.log");
1897                         __finish_log(agg_io_log[DDIR_TRIM],
1898                                         "agg-write_bw.log");
1899                 }
1900         }
1901
1902         for_each_td(td, i)
1903                 fio_options_free(td);
1904
1905         free_disk_util();
1906         cgroup_kill(cgroup_list);
1907         sfree(cgroup_list);
1908         sfree(cgroup_mnt);
1909
1910         fio_mutex_remove(startup_mutex);
1911         fio_mutex_remove(writeout_mutex);
1912         fio_mutex_remove(disk_thread_mutex);
1913         return exit_value;
1914 }