verify: convert hdr time to sec+nsec
[fio.git] / verify.c
... / ...
CommitLineData
1/*
2 * IO verification helpers
3 */
4#include <unistd.h>
5#include <fcntl.h>
6#include <string.h>
7#include <assert.h>
8#include <pthread.h>
9#include <libgen.h>
10
11#include "fio.h"
12#include "verify.h"
13#include "trim.h"
14#include "lib/rand.h"
15#include "lib/hweight.h"
16#include "lib/pattern.h"
17
18#include "crc/md5.h"
19#include "crc/crc64.h"
20#include "crc/crc32.h"
21#include "crc/crc32c.h"
22#include "crc/crc16.h"
23#include "crc/crc7.h"
24#include "crc/sha256.h"
25#include "crc/sha512.h"
26#include "crc/sha1.h"
27#include "crc/xxhash.h"
28#include "crc/sha3.h"
29
30static void populate_hdr(struct thread_data *td, struct io_u *io_u,
31 struct verify_header *hdr, unsigned int header_num,
32 unsigned int header_len);
33static void __fill_hdr(struct thread_data *td, struct io_u *io_u,
34 struct verify_header *hdr, unsigned int header_num,
35 unsigned int header_len, uint64_t rand_seed);
36
37void fill_buffer_pattern(struct thread_data *td, void *p, unsigned int len)
38{
39 (void)cpy_pattern(td->o.buffer_pattern, td->o.buffer_pattern_bytes, p, len);
40}
41
42static void __fill_buffer(struct thread_options *o, unsigned long seed, void *p,
43 unsigned int len)
44{
45 __fill_random_buf_percentage(seed, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes);
46}
47
48static unsigned long fill_buffer(struct thread_data *td, void *p,
49 unsigned int len)
50{
51 struct frand_state *fs = &td->verify_state;
52 struct thread_options *o = &td->o;
53
54 return fill_random_buf_percentage(fs, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes);
55}
56
57void fill_verify_pattern(struct thread_data *td, void *p, unsigned int len,
58 struct io_u *io_u, unsigned long seed, int use_seed)
59{
60 struct thread_options *o = &td->o;
61
62 if (!o->verify_pattern_bytes) {
63 dprint(FD_VERIFY, "fill random bytes len=%u\n", len);
64
65 if (use_seed)
66 __fill_buffer(o, seed, p, len);
67 else
68 io_u->rand_seed = fill_buffer(td, p, len);
69 return;
70 }
71
72 /* Skip if we were here and we do not need to patch pattern
73 * with format */
74 if (!td->o.verify_fmt_sz && io_u->buf_filled_len >= len) {
75 dprint(FD_VERIFY, "using already filled verify pattern b=%d len=%u\n",
76 o->verify_pattern_bytes, len);
77 return;
78 }
79
80 (void)paste_format(td->o.verify_pattern, td->o.verify_pattern_bytes,
81 td->o.verify_fmt, td->o.verify_fmt_sz,
82 p, len, io_u);
83 io_u->buf_filled_len = len;
84}
85
86static unsigned int get_hdr_inc(struct thread_data *td, struct io_u *io_u)
87{
88 unsigned int hdr_inc;
89
90 hdr_inc = io_u->buflen;
91 if (td->o.verify_interval && td->o.verify_interval <= io_u->buflen)
92 hdr_inc = td->o.verify_interval;
93
94 return hdr_inc;
95}
96
97static void fill_pattern_headers(struct thread_data *td, struct io_u *io_u,
98 unsigned long seed, int use_seed)
99{
100 unsigned int hdr_inc, header_num;
101 struct verify_header *hdr;
102 void *p = io_u->buf;
103
104 fill_verify_pattern(td, p, io_u->buflen, io_u, seed, use_seed);
105
106 hdr_inc = get_hdr_inc(td, io_u);
107 header_num = 0;
108 for (; p < io_u->buf + io_u->buflen; p += hdr_inc) {
109 hdr = p;
110 populate_hdr(td, io_u, hdr, header_num, hdr_inc);
111 header_num++;
112 }
113}
114
115static void memswp(void *buf1, void *buf2, unsigned int len)
116{
117 char swap[200];
118
119 assert(len <= sizeof(swap));
120
121 memcpy(&swap, buf1, len);
122 memcpy(buf1, buf2, len);
123 memcpy(buf2, &swap, len);
124}
125
126static void hexdump(void *buffer, int len)
127{
128 unsigned char *p = buffer;
129 int i;
130
131 for (i = 0; i < len; i++)
132 log_err("%02x", p[i]);
133 log_err("\n");
134}
135
136/*
137 * Prepare for separation of verify_header and checksum header
138 */
139static inline unsigned int __hdr_size(int verify_type)
140{
141 unsigned int len = 0;
142
143 switch (verify_type) {
144 case VERIFY_NONE:
145 case VERIFY_HDR_ONLY:
146 case VERIFY_NULL:
147 case VERIFY_PATTERN:
148 len = 0;
149 break;
150 case VERIFY_MD5:
151 len = sizeof(struct vhdr_md5);
152 break;
153 case VERIFY_CRC64:
154 len = sizeof(struct vhdr_crc64);
155 break;
156 case VERIFY_CRC32C:
157 case VERIFY_CRC32:
158 case VERIFY_CRC32C_INTEL:
159 len = sizeof(struct vhdr_crc32);
160 break;
161 case VERIFY_CRC16:
162 len = sizeof(struct vhdr_crc16);
163 break;
164 case VERIFY_CRC7:
165 len = sizeof(struct vhdr_crc7);
166 break;
167 case VERIFY_SHA256:
168 len = sizeof(struct vhdr_sha256);
169 break;
170 case VERIFY_SHA512:
171 len = sizeof(struct vhdr_sha512);
172 break;
173 case VERIFY_SHA3_224:
174 len = sizeof(struct vhdr_sha3_224);
175 break;
176 case VERIFY_SHA3_256:
177 len = sizeof(struct vhdr_sha3_256);
178 break;
179 case VERIFY_SHA3_384:
180 len = sizeof(struct vhdr_sha3_384);
181 break;
182 case VERIFY_SHA3_512:
183 len = sizeof(struct vhdr_sha3_512);
184 break;
185 case VERIFY_XXHASH:
186 len = sizeof(struct vhdr_xxhash);
187 break;
188 case VERIFY_SHA1:
189 len = sizeof(struct vhdr_sha1);
190 break;
191 case VERIFY_PATTERN_NO_HDR:
192 return 0;
193 default:
194 log_err("fio: unknown verify header!\n");
195 assert(0);
196 }
197
198 return len + sizeof(struct verify_header);
199}
200
201static inline unsigned int hdr_size(struct thread_data *td,
202 struct verify_header *hdr)
203{
204 if (td->o.verify == VERIFY_PATTERN_NO_HDR)
205 return 0;
206
207 return __hdr_size(hdr->verify_type);
208}
209
210static void *hdr_priv(struct verify_header *hdr)
211{
212 void *priv = hdr;
213
214 return priv + sizeof(struct verify_header);
215}
216
217/*
218 * Verify container, pass info to verify handlers and allow them to
219 * pass info back in case of error
220 */
221struct vcont {
222 /*
223 * Input
224 */
225 struct io_u *io_u;
226 unsigned int hdr_num;
227 struct thread_data *td;
228
229 /*
230 * Output, only valid in case of error
231 */
232 const char *name;
233 void *good_crc;
234 void *bad_crc;
235 unsigned int crc_len;
236};
237
238#define DUMP_BUF_SZ 255
239static int dump_buf_warned;
240
241static void dump_buf(char *buf, unsigned int len, unsigned long long offset,
242 const char *type, struct fio_file *f)
243{
244 char *ptr, fname[DUMP_BUF_SZ];
245 size_t buf_left = DUMP_BUF_SZ;
246 int ret, fd;
247
248 ptr = strdup(f->file_name);
249
250 memset(fname, 0, sizeof(fname));
251 if (aux_path)
252 sprintf(fname, "%s%c", aux_path, FIO_OS_PATH_SEPARATOR);
253
254 strncpy(fname + strlen(fname), basename(ptr), buf_left - 1);
255
256 buf_left -= strlen(fname);
257 if (buf_left <= 0) {
258 if (!dump_buf_warned) {
259 log_err("fio: verify failure dump buffer too small\n");
260 dump_buf_warned = 1;
261 }
262 free(ptr);
263 return;
264 }
265
266 snprintf(fname + strlen(fname), buf_left, ".%llu.%s", offset, type);
267
268 fd = open(fname, O_CREAT | O_TRUNC | O_WRONLY, 0644);
269 if (fd < 0) {
270 perror("open verify buf file");
271 free(ptr);
272 return;
273 }
274
275 while (len) {
276 ret = write(fd, buf, len);
277 if (!ret)
278 break;
279 else if (ret < 0) {
280 perror("write verify buf file");
281 break;
282 }
283 len -= ret;
284 buf += ret;
285 }
286
287 close(fd);
288 log_err(" %s data dumped as %s\n", type, fname);
289 free(ptr);
290}
291
292/*
293 * Dump the contents of the read block and re-generate the correct data
294 * and dump that too.
295 */
296static void __dump_verify_buffers(struct verify_header *hdr, struct vcont *vc)
297{
298 struct thread_data *td = vc->td;
299 struct io_u *io_u = vc->io_u;
300 unsigned long hdr_offset;
301 struct io_u dummy;
302 void *buf;
303
304 if (!td->o.verify_dump)
305 return;
306
307 /*
308 * Dump the contents we just read off disk
309 */
310 hdr_offset = vc->hdr_num * hdr->len;
311
312 dump_buf(io_u->buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
313 "received", vc->io_u->file);
314
315 /*
316 * Allocate a new buf and re-generate the original data
317 */
318 buf = malloc(io_u->buflen);
319 dummy = *io_u;
320 dummy.buf = buf;
321 dummy.rand_seed = hdr->rand_seed;
322 dummy.buf_filled_len = 0;
323 dummy.buflen = io_u->buflen;
324
325 fill_pattern_headers(td, &dummy, hdr->rand_seed, 1);
326
327 dump_buf(buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
328 "expected", vc->io_u->file);
329 free(buf);
330}
331
332static void dump_verify_buffers(struct verify_header *hdr, struct vcont *vc)
333{
334 struct thread_data *td = vc->td;
335 struct verify_header shdr;
336
337 if (td->o.verify == VERIFY_PATTERN_NO_HDR) {
338 __fill_hdr(td, vc->io_u, &shdr, 0, vc->io_u->buflen, 0);
339 hdr = &shdr;
340 }
341
342 __dump_verify_buffers(hdr, vc);
343}
344
345static void log_verify_failure(struct verify_header *hdr, struct vcont *vc)
346{
347 unsigned long long offset;
348
349 offset = vc->io_u->offset;
350 offset += vc->hdr_num * hdr->len;
351 log_err("%.8s: verify failed at file %s offset %llu, length %u\n",
352 vc->name, vc->io_u->file->file_name, offset, hdr->len);
353
354 if (vc->good_crc && vc->bad_crc) {
355 log_err(" Expected CRC: ");
356 hexdump(vc->good_crc, vc->crc_len);
357 log_err(" Received CRC: ");
358 hexdump(vc->bad_crc, vc->crc_len);
359 }
360
361 dump_verify_buffers(hdr, vc);
362}
363
364/*
365 * Return data area 'header_num'
366 */
367static inline void *io_u_verify_off(struct verify_header *hdr, struct vcont *vc)
368{
369 return vc->io_u->buf + vc->hdr_num * hdr->len + hdr_size(vc->td, hdr);
370}
371
372static int verify_io_u_pattern(struct verify_header *hdr, struct vcont *vc)
373{
374 struct thread_data *td = vc->td;
375 struct io_u *io_u = vc->io_u;
376 char *buf, *pattern;
377 unsigned int header_size = __hdr_size(td->o.verify);
378 unsigned int len, mod, i, pattern_size;
379 int rc;
380
381 pattern = td->o.verify_pattern;
382 pattern_size = td->o.verify_pattern_bytes;
383 assert(pattern_size != 0);
384
385 (void)paste_format_inplace(pattern, pattern_size,
386 td->o.verify_fmt, td->o.verify_fmt_sz, io_u);
387
388 buf = (char *) hdr + header_size;
389 len = get_hdr_inc(td, io_u) - header_size;
390 mod = (get_hdr_inc(td, io_u) * vc->hdr_num + header_size) % pattern_size;
391
392 rc = cmp_pattern(pattern, pattern_size, mod, buf, len);
393 if (!rc)
394 return 0;
395
396 /* Slow path, compare each byte */
397 for (i = 0; i < len; i++) {
398 if (buf[i] != pattern[mod]) {
399 unsigned int bits;
400
401 bits = hweight8(buf[i] ^ pattern[mod]);
402 log_err("fio: got pattern '%02x', wanted '%02x'. Bad bits %d\n",
403 (unsigned char)buf[i],
404 (unsigned char)pattern[mod],
405 bits);
406 log_err("fio: bad pattern block offset %u\n", i);
407 vc->name = "pattern";
408 log_verify_failure(hdr, vc);
409 return EILSEQ;
410 }
411 mod++;
412 if (mod == td->o.verify_pattern_bytes)
413 mod = 0;
414 }
415
416 /* Unreachable line */
417 assert(0);
418 return EILSEQ;
419}
420
421static int verify_io_u_xxhash(struct verify_header *hdr, struct vcont *vc)
422{
423 void *p = io_u_verify_off(hdr, vc);
424 struct vhdr_xxhash *vh = hdr_priv(hdr);
425 uint32_t hash;
426 void *state;
427
428 dprint(FD_VERIFY, "xxhash verify io_u %p, len %u\n", vc->io_u, hdr->len);
429
430 state = XXH32_init(1);
431 XXH32_update(state, p, hdr->len - hdr_size(vc->td, hdr));
432 hash = XXH32_digest(state);
433
434 if (vh->hash == hash)
435 return 0;
436
437 vc->name = "xxhash";
438 vc->good_crc = &vh->hash;
439 vc->bad_crc = &hash;
440 vc->crc_len = sizeof(hash);
441 log_verify_failure(hdr, vc);
442 return EILSEQ;
443}
444
445static int verify_io_u_sha3(struct verify_header *hdr, struct vcont *vc,
446 struct fio_sha3_ctx *sha3_ctx, uint8_t *sha,
447 unsigned int sha_size, const char *name)
448{
449 void *p = io_u_verify_off(hdr, vc);
450
451 dprint(FD_VERIFY, "%s verify io_u %p, len %u\n", name, vc->io_u, hdr->len);
452
453 fio_sha3_update(sha3_ctx, p, hdr->len - hdr_size(vc->td, hdr));
454 fio_sha3_final(sha3_ctx);
455
456 if (!memcmp(sha, sha3_ctx->sha, sha_size))
457 return 0;
458
459 vc->name = name;
460 vc->good_crc = sha;
461 vc->bad_crc = sha3_ctx->sha;
462 vc->crc_len = sha_size;
463 log_verify_failure(hdr, vc);
464 return EILSEQ;
465}
466
467static int verify_io_u_sha3_224(struct verify_header *hdr, struct vcont *vc)
468{
469 struct vhdr_sha3_224 *vh = hdr_priv(hdr);
470 uint8_t sha[SHA3_224_DIGEST_SIZE];
471 struct fio_sha3_ctx sha3_ctx = {
472 .sha = sha,
473 };
474
475 fio_sha3_224_init(&sha3_ctx);
476
477 return verify_io_u_sha3(hdr, vc, &sha3_ctx, vh->sha,
478 SHA3_224_DIGEST_SIZE, "sha3-224");
479}
480
481static int verify_io_u_sha3_256(struct verify_header *hdr, struct vcont *vc)
482{
483 struct vhdr_sha3_256 *vh = hdr_priv(hdr);
484 uint8_t sha[SHA3_256_DIGEST_SIZE];
485 struct fio_sha3_ctx sha3_ctx = {
486 .sha = sha,
487 };
488
489 fio_sha3_256_init(&sha3_ctx);
490
491 return verify_io_u_sha3(hdr, vc, &sha3_ctx, vh->sha,
492 SHA3_256_DIGEST_SIZE, "sha3-256");
493}
494
495static int verify_io_u_sha3_384(struct verify_header *hdr, struct vcont *vc)
496{
497 struct vhdr_sha3_384 *vh = hdr_priv(hdr);
498 uint8_t sha[SHA3_384_DIGEST_SIZE];
499 struct fio_sha3_ctx sha3_ctx = {
500 .sha = sha,
501 };
502
503 fio_sha3_384_init(&sha3_ctx);
504
505 return verify_io_u_sha3(hdr, vc, &sha3_ctx, vh->sha,
506 SHA3_384_DIGEST_SIZE, "sha3-384");
507}
508
509static int verify_io_u_sha3_512(struct verify_header *hdr, struct vcont *vc)
510{
511 struct vhdr_sha3_512 *vh = hdr_priv(hdr);
512 uint8_t sha[SHA3_512_DIGEST_SIZE];
513 struct fio_sha3_ctx sha3_ctx = {
514 .sha = sha,
515 };
516
517 fio_sha3_512_init(&sha3_ctx);
518
519 return verify_io_u_sha3(hdr, vc, &sha3_ctx, vh->sha,
520 SHA3_512_DIGEST_SIZE, "sha3-512");
521}
522
523static int verify_io_u_sha512(struct verify_header *hdr, struct vcont *vc)
524{
525 void *p = io_u_verify_off(hdr, vc);
526 struct vhdr_sha512 *vh = hdr_priv(hdr);
527 uint8_t sha512[128];
528 struct fio_sha512_ctx sha512_ctx = {
529 .buf = sha512,
530 };
531
532 dprint(FD_VERIFY, "sha512 verify io_u %p, len %u\n", vc->io_u, hdr->len);
533
534 fio_sha512_init(&sha512_ctx);
535 fio_sha512_update(&sha512_ctx, p, hdr->len - hdr_size(vc->td, hdr));
536
537 if (!memcmp(vh->sha512, sha512_ctx.buf, sizeof(sha512)))
538 return 0;
539
540 vc->name = "sha512";
541 vc->good_crc = vh->sha512;
542 vc->bad_crc = sha512_ctx.buf;
543 vc->crc_len = sizeof(vh->sha512);
544 log_verify_failure(hdr, vc);
545 return EILSEQ;
546}
547
548static int verify_io_u_sha256(struct verify_header *hdr, struct vcont *vc)
549{
550 void *p = io_u_verify_off(hdr, vc);
551 struct vhdr_sha256 *vh = hdr_priv(hdr);
552 uint8_t sha256[64];
553 struct fio_sha256_ctx sha256_ctx = {
554 .buf = sha256,
555 };
556
557 dprint(FD_VERIFY, "sha256 verify io_u %p, len %u\n", vc->io_u, hdr->len);
558
559 fio_sha256_init(&sha256_ctx);
560 fio_sha256_update(&sha256_ctx, p, hdr->len - hdr_size(vc->td, hdr));
561 fio_sha256_final(&sha256_ctx);
562
563 if (!memcmp(vh->sha256, sha256_ctx.buf, sizeof(sha256)))
564 return 0;
565
566 vc->name = "sha256";
567 vc->good_crc = vh->sha256;
568 vc->bad_crc = sha256_ctx.buf;
569 vc->crc_len = sizeof(vh->sha256);
570 log_verify_failure(hdr, vc);
571 return EILSEQ;
572}
573
574static int verify_io_u_sha1(struct verify_header *hdr, struct vcont *vc)
575{
576 void *p = io_u_verify_off(hdr, vc);
577 struct vhdr_sha1 *vh = hdr_priv(hdr);
578 uint32_t sha1[5];
579 struct fio_sha1_ctx sha1_ctx = {
580 .H = sha1,
581 };
582
583 dprint(FD_VERIFY, "sha1 verify io_u %p, len %u\n", vc->io_u, hdr->len);
584
585 fio_sha1_init(&sha1_ctx);
586 fio_sha1_update(&sha1_ctx, p, hdr->len - hdr_size(vc->td, hdr));
587 fio_sha1_final(&sha1_ctx);
588
589 if (!memcmp(vh->sha1, sha1_ctx.H, sizeof(sha1)))
590 return 0;
591
592 vc->name = "sha1";
593 vc->good_crc = vh->sha1;
594 vc->bad_crc = sha1_ctx.H;
595 vc->crc_len = sizeof(vh->sha1);
596 log_verify_failure(hdr, vc);
597 return EILSEQ;
598}
599
600static int verify_io_u_crc7(struct verify_header *hdr, struct vcont *vc)
601{
602 void *p = io_u_verify_off(hdr, vc);
603 struct vhdr_crc7 *vh = hdr_priv(hdr);
604 unsigned char c;
605
606 dprint(FD_VERIFY, "crc7 verify io_u %p, len %u\n", vc->io_u, hdr->len);
607
608 c = fio_crc7(p, hdr->len - hdr_size(vc->td, hdr));
609
610 if (c == vh->crc7)
611 return 0;
612
613 vc->name = "crc7";
614 vc->good_crc = &vh->crc7;
615 vc->bad_crc = &c;
616 vc->crc_len = 1;
617 log_verify_failure(hdr, vc);
618 return EILSEQ;
619}
620
621static int verify_io_u_crc16(struct verify_header *hdr, struct vcont *vc)
622{
623 void *p = io_u_verify_off(hdr, vc);
624 struct vhdr_crc16 *vh = hdr_priv(hdr);
625 unsigned short c;
626
627 dprint(FD_VERIFY, "crc16 verify io_u %p, len %u\n", vc->io_u, hdr->len);
628
629 c = fio_crc16(p, hdr->len - hdr_size(vc->td, hdr));
630
631 if (c == vh->crc16)
632 return 0;
633
634 vc->name = "crc16";
635 vc->good_crc = &vh->crc16;
636 vc->bad_crc = &c;
637 vc->crc_len = 2;
638 log_verify_failure(hdr, vc);
639 return EILSEQ;
640}
641
642static int verify_io_u_crc64(struct verify_header *hdr, struct vcont *vc)
643{
644 void *p = io_u_verify_off(hdr, vc);
645 struct vhdr_crc64 *vh = hdr_priv(hdr);
646 unsigned long long c;
647
648 dprint(FD_VERIFY, "crc64 verify io_u %p, len %u\n", vc->io_u, hdr->len);
649
650 c = fio_crc64(p, hdr->len - hdr_size(vc->td, hdr));
651
652 if (c == vh->crc64)
653 return 0;
654
655 vc->name = "crc64";
656 vc->good_crc = &vh->crc64;
657 vc->bad_crc = &c;
658 vc->crc_len = 8;
659 log_verify_failure(hdr, vc);
660 return EILSEQ;
661}
662
663static int verify_io_u_crc32(struct verify_header *hdr, struct vcont *vc)
664{
665 void *p = io_u_verify_off(hdr, vc);
666 struct vhdr_crc32 *vh = hdr_priv(hdr);
667 uint32_t c;
668
669 dprint(FD_VERIFY, "crc32 verify io_u %p, len %u\n", vc->io_u, hdr->len);
670
671 c = fio_crc32(p, hdr->len - hdr_size(vc->td, hdr));
672
673 if (c == vh->crc32)
674 return 0;
675
676 vc->name = "crc32";
677 vc->good_crc = &vh->crc32;
678 vc->bad_crc = &c;
679 vc->crc_len = 4;
680 log_verify_failure(hdr, vc);
681 return EILSEQ;
682}
683
684static int verify_io_u_crc32c(struct verify_header *hdr, struct vcont *vc)
685{
686 void *p = io_u_verify_off(hdr, vc);
687 struct vhdr_crc32 *vh = hdr_priv(hdr);
688 uint32_t c;
689
690 dprint(FD_VERIFY, "crc32c verify io_u %p, len %u\n", vc->io_u, hdr->len);
691
692 c = fio_crc32c(p, hdr->len - hdr_size(vc->td, hdr));
693
694 if (c == vh->crc32)
695 return 0;
696
697 vc->name = "crc32c";
698 vc->good_crc = &vh->crc32;
699 vc->bad_crc = &c;
700 vc->crc_len = 4;
701 log_verify_failure(hdr, vc);
702 return EILSEQ;
703}
704
705static int verify_io_u_md5(struct verify_header *hdr, struct vcont *vc)
706{
707 void *p = io_u_verify_off(hdr, vc);
708 struct vhdr_md5 *vh = hdr_priv(hdr);
709 uint32_t hash[MD5_HASH_WORDS];
710 struct fio_md5_ctx md5_ctx = {
711 .hash = hash,
712 };
713
714 dprint(FD_VERIFY, "md5 verify io_u %p, len %u\n", vc->io_u, hdr->len);
715
716 fio_md5_init(&md5_ctx);
717 fio_md5_update(&md5_ctx, p, hdr->len - hdr_size(vc->td, hdr));
718 fio_md5_final(&md5_ctx);
719
720 if (!memcmp(vh->md5_digest, md5_ctx.hash, sizeof(hash)))
721 return 0;
722
723 vc->name = "md5";
724 vc->good_crc = vh->md5_digest;
725 vc->bad_crc = md5_ctx.hash;
726 vc->crc_len = sizeof(hash);
727 log_verify_failure(hdr, vc);
728 return EILSEQ;
729}
730
731/*
732 * Push IO verification to a separate thread
733 */
734int verify_io_u_async(struct thread_data *td, struct io_u **io_u_ptr)
735{
736 struct io_u *io_u = *io_u_ptr;
737
738 pthread_mutex_lock(&td->io_u_lock);
739
740 if (io_u->file)
741 put_file_log(td, io_u->file);
742
743 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
744 td->cur_depth--;
745 io_u_clear(td, io_u, IO_U_F_IN_CUR_DEPTH);
746 }
747 flist_add_tail(&io_u->verify_list, &td->verify_list);
748 *io_u_ptr = NULL;
749 pthread_mutex_unlock(&td->io_u_lock);
750
751 pthread_cond_signal(&td->verify_cond);
752 return 0;
753}
754
755/*
756 * Thanks Rusty, for spending the time so I don't have to.
757 *
758 * http://rusty.ozlabs.org/?p=560
759 */
760static int mem_is_zero(const void *data, size_t length)
761{
762 const unsigned char *p = data;
763 size_t len;
764
765 /* Check first 16 bytes manually */
766 for (len = 0; len < 16; len++) {
767 if (!length)
768 return 1;
769 if (*p)
770 return 0;
771 p++;
772 length--;
773 }
774
775 /* Now we know that's zero, memcmp with self. */
776 return memcmp(data, p, length) == 0;
777}
778
779static int mem_is_zero_slow(const void *data, size_t length, size_t *offset)
780{
781 const unsigned char *p = data;
782
783 *offset = 0;
784 while (length) {
785 if (*p)
786 break;
787 (*offset)++;
788 length--;
789 p++;
790 }
791
792 return !length;
793}
794
795static int verify_trimmed_io_u(struct thread_data *td, struct io_u *io_u)
796{
797 size_t offset;
798
799 if (!td->o.trim_zero)
800 return 0;
801
802 if (mem_is_zero(io_u->buf, io_u->buflen))
803 return 0;
804
805 mem_is_zero_slow(io_u->buf, io_u->buflen, &offset);
806
807 log_err("trim: verify failed at file %s offset %llu, length %lu"
808 ", block offset %lu\n",
809 io_u->file->file_name, io_u->offset, io_u->buflen,
810 (unsigned long) offset);
811 return EILSEQ;
812}
813
814static int verify_header(struct io_u *io_u, struct thread_data *td,
815 struct verify_header *hdr, unsigned int hdr_num,
816 unsigned int hdr_len)
817{
818 void *p = hdr;
819 uint32_t crc;
820
821 if (hdr->magic != FIO_HDR_MAGIC) {
822 log_err("verify: bad magic header %x, wanted %x",
823 hdr->magic, FIO_HDR_MAGIC);
824 goto err;
825 }
826 if (hdr->len != hdr_len) {
827 log_err("verify: bad header length %u, wanted %u",
828 hdr->len, hdr_len);
829 goto err;
830 }
831 if (hdr->rand_seed != io_u->rand_seed) {
832 log_err("verify: bad header rand_seed %"PRIu64
833 ", wanted %"PRIu64,
834 hdr->rand_seed, io_u->rand_seed);
835 goto err;
836 }
837 if (hdr->offset != io_u->offset + hdr_num * td->o.verify_interval) {
838 log_err("verify: bad header offset %"PRIu64
839 ", wanted %llu",
840 hdr->offset, io_u->offset);
841 goto err;
842 }
843
844 /*
845 * For read-only workloads, the program cannot be certain of the
846 * last numberio written to a block. Checking of numberio will be
847 * done only for workloads that write data. For verify_only,
848 * numberio will be checked in the last iteration when the correct
849 * state of numberio, that would have been written to each block
850 * in a previous run of fio, has been reached.
851 */
852 if (td_write(td) && (td_min_bs(td) == td_max_bs(td)) &&
853 !td->o.time_based)
854 if (!td->o.verify_only || td->o.loops == 0)
855 if (hdr->numberio != io_u->numberio) {
856 log_err("verify: bad header numberio %"PRIu16
857 ", wanted %"PRIu16,
858 hdr->numberio, io_u->numberio);
859 goto err;
860 }
861
862 crc = fio_crc32c(p, offsetof(struct verify_header, crc32));
863 if (crc != hdr->crc32) {
864 log_err("verify: bad header crc %x, calculated %x",
865 hdr->crc32, crc);
866 goto err;
867 }
868 return 0;
869
870err:
871 log_err(" at file %s offset %llu, length %u\n",
872 io_u->file->file_name,
873 io_u->offset + hdr_num * hdr_len, hdr_len);
874
875 if (td->o.verify_dump)
876 dump_buf(p, hdr_len, io_u->offset + hdr_num * hdr_len,
877 "hdr_fail", io_u->file);
878
879 return EILSEQ;
880}
881
882int verify_io_u(struct thread_data *td, struct io_u **io_u_ptr)
883{
884 struct verify_header *hdr;
885 struct io_u *io_u = *io_u_ptr;
886 unsigned int header_size, hdr_inc, hdr_num = 0;
887 void *p;
888 int ret;
889
890 if (td->o.verify == VERIFY_NULL || io_u->ddir != DDIR_READ)
891 return 0;
892 /*
893 * If the IO engine is faking IO (like null), then just pretend
894 * we verified everything.
895 */
896 if (td_ioengine_flagged(td, FIO_FAKEIO))
897 return 0;
898
899 if (io_u->flags & IO_U_F_TRIMMED) {
900 ret = verify_trimmed_io_u(td, io_u);
901 goto done;
902 }
903
904 hdr_inc = get_hdr_inc(td, io_u);
905
906 ret = 0;
907 for (p = io_u->buf; p < io_u->buf + io_u->buflen;
908 p += hdr_inc, hdr_num++) {
909 struct vcont vc = {
910 .io_u = io_u,
911 .hdr_num = hdr_num,
912 .td = td,
913 };
914 unsigned int verify_type;
915
916 if (ret && td->o.verify_fatal)
917 break;
918
919 header_size = __hdr_size(td->o.verify);
920 if (td->o.verify_offset)
921 memswp(p, p + td->o.verify_offset, header_size);
922 hdr = p;
923
924 /*
925 * Make rand_seed check pass when have verifysort or
926 * verify_backlog.
927 */
928 if (td->o.verifysort || (td->flags & TD_F_VER_BACKLOG))
929 io_u->rand_seed = hdr->rand_seed;
930
931 if (td->o.verify != VERIFY_PATTERN_NO_HDR) {
932 ret = verify_header(io_u, td, hdr, hdr_num, hdr_inc);
933 if (ret)
934 return ret;
935 }
936
937 if (td->o.verify != VERIFY_NONE)
938 verify_type = td->o.verify;
939 else
940 verify_type = hdr->verify_type;
941
942 switch (verify_type) {
943 case VERIFY_HDR_ONLY:
944 /* Header is always verified, check if pattern is left
945 * for verification. */
946 if (td->o.verify_pattern_bytes)
947 ret = verify_io_u_pattern(hdr, &vc);
948 break;
949 case VERIFY_MD5:
950 ret = verify_io_u_md5(hdr, &vc);
951 break;
952 case VERIFY_CRC64:
953 ret = verify_io_u_crc64(hdr, &vc);
954 break;
955 case VERIFY_CRC32C:
956 case VERIFY_CRC32C_INTEL:
957 ret = verify_io_u_crc32c(hdr, &vc);
958 break;
959 case VERIFY_CRC32:
960 ret = verify_io_u_crc32(hdr, &vc);
961 break;
962 case VERIFY_CRC16:
963 ret = verify_io_u_crc16(hdr, &vc);
964 break;
965 case VERIFY_CRC7:
966 ret = verify_io_u_crc7(hdr, &vc);
967 break;
968 case VERIFY_SHA256:
969 ret = verify_io_u_sha256(hdr, &vc);
970 break;
971 case VERIFY_SHA512:
972 ret = verify_io_u_sha512(hdr, &vc);
973 break;
974 case VERIFY_SHA3_224:
975 ret = verify_io_u_sha3_224(hdr, &vc);
976 break;
977 case VERIFY_SHA3_256:
978 ret = verify_io_u_sha3_256(hdr, &vc);
979 break;
980 case VERIFY_SHA3_384:
981 ret = verify_io_u_sha3_384(hdr, &vc);
982 break;
983 case VERIFY_SHA3_512:
984 ret = verify_io_u_sha3_512(hdr, &vc);
985 break;
986 case VERIFY_XXHASH:
987 ret = verify_io_u_xxhash(hdr, &vc);
988 break;
989 case VERIFY_SHA1:
990 ret = verify_io_u_sha1(hdr, &vc);
991 break;
992 case VERIFY_PATTERN:
993 case VERIFY_PATTERN_NO_HDR:
994 ret = verify_io_u_pattern(hdr, &vc);
995 break;
996 default:
997 log_err("Bad verify type %u\n", hdr->verify_type);
998 ret = EINVAL;
999 }
1000
1001 if (ret && verify_type != hdr->verify_type)
1002 log_err("fio: verify type mismatch (%u media, %u given)\n",
1003 hdr->verify_type, verify_type);
1004 }
1005
1006done:
1007 if (ret && td->o.verify_fatal)
1008 fio_mark_td_terminate(td);
1009
1010 return ret;
1011}
1012
1013static void fill_xxhash(struct verify_header *hdr, void *p, unsigned int len)
1014{
1015 struct vhdr_xxhash *vh = hdr_priv(hdr);
1016 void *state;
1017
1018 state = XXH32_init(1);
1019 XXH32_update(state, p, len);
1020 vh->hash = XXH32_digest(state);
1021}
1022
1023static void fill_sha3(struct fio_sha3_ctx *sha3_ctx, void *p, unsigned int len)
1024{
1025 fio_sha3_update(sha3_ctx, p, len);
1026 fio_sha3_final(sha3_ctx);
1027}
1028
1029static void fill_sha3_224(struct verify_header *hdr, void *p, unsigned int len)
1030{
1031 struct vhdr_sha3_224 *vh = hdr_priv(hdr);
1032 struct fio_sha3_ctx sha3_ctx = {
1033 .sha = vh->sha,
1034 };
1035
1036 fio_sha3_224_init(&sha3_ctx);
1037 fill_sha3(&sha3_ctx, p, len);
1038}
1039
1040static void fill_sha3_256(struct verify_header *hdr, void *p, unsigned int len)
1041{
1042 struct vhdr_sha3_256 *vh = hdr_priv(hdr);
1043 struct fio_sha3_ctx sha3_ctx = {
1044 .sha = vh->sha,
1045 };
1046
1047 fio_sha3_256_init(&sha3_ctx);
1048 fill_sha3(&sha3_ctx, p, len);
1049}
1050
1051static void fill_sha3_384(struct verify_header *hdr, void *p, unsigned int len)
1052{
1053 struct vhdr_sha3_384 *vh = hdr_priv(hdr);
1054 struct fio_sha3_ctx sha3_ctx = {
1055 .sha = vh->sha,
1056 };
1057
1058 fio_sha3_384_init(&sha3_ctx);
1059 fill_sha3(&sha3_ctx, p, len);
1060}
1061
1062static void fill_sha3_512(struct verify_header *hdr, void *p, unsigned int len)
1063{
1064 struct vhdr_sha3_512 *vh = hdr_priv(hdr);
1065 struct fio_sha3_ctx sha3_ctx = {
1066 .sha = vh->sha,
1067 };
1068
1069 fio_sha3_512_init(&sha3_ctx);
1070 fill_sha3(&sha3_ctx, p, len);
1071}
1072
1073static void fill_sha512(struct verify_header *hdr, void *p, unsigned int len)
1074{
1075 struct vhdr_sha512 *vh = hdr_priv(hdr);
1076 struct fio_sha512_ctx sha512_ctx = {
1077 .buf = vh->sha512,
1078 };
1079
1080 fio_sha512_init(&sha512_ctx);
1081 fio_sha512_update(&sha512_ctx, p, len);
1082}
1083
1084static void fill_sha256(struct verify_header *hdr, void *p, unsigned int len)
1085{
1086 struct vhdr_sha256 *vh = hdr_priv(hdr);
1087 struct fio_sha256_ctx sha256_ctx = {
1088 .buf = vh->sha256,
1089 };
1090
1091 fio_sha256_init(&sha256_ctx);
1092 fio_sha256_update(&sha256_ctx, p, len);
1093 fio_sha256_final(&sha256_ctx);
1094}
1095
1096static void fill_sha1(struct verify_header *hdr, void *p, unsigned int len)
1097{
1098 struct vhdr_sha1 *vh = hdr_priv(hdr);
1099 struct fio_sha1_ctx sha1_ctx = {
1100 .H = vh->sha1,
1101 };
1102
1103 fio_sha1_init(&sha1_ctx);
1104 fio_sha1_update(&sha1_ctx, p, len);
1105 fio_sha1_final(&sha1_ctx);
1106}
1107
1108static void fill_crc7(struct verify_header *hdr, void *p, unsigned int len)
1109{
1110 struct vhdr_crc7 *vh = hdr_priv(hdr);
1111
1112 vh->crc7 = fio_crc7(p, len);
1113}
1114
1115static void fill_crc16(struct verify_header *hdr, void *p, unsigned int len)
1116{
1117 struct vhdr_crc16 *vh = hdr_priv(hdr);
1118
1119 vh->crc16 = fio_crc16(p, len);
1120}
1121
1122static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
1123{
1124 struct vhdr_crc32 *vh = hdr_priv(hdr);
1125
1126 vh->crc32 = fio_crc32(p, len);
1127}
1128
1129static void fill_crc32c(struct verify_header *hdr, void *p, unsigned int len)
1130{
1131 struct vhdr_crc32 *vh = hdr_priv(hdr);
1132
1133 vh->crc32 = fio_crc32c(p, len);
1134}
1135
1136static void fill_crc64(struct verify_header *hdr, void *p, unsigned int len)
1137{
1138 struct vhdr_crc64 *vh = hdr_priv(hdr);
1139
1140 vh->crc64 = fio_crc64(p, len);
1141}
1142
1143static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
1144{
1145 struct vhdr_md5 *vh = hdr_priv(hdr);
1146 struct fio_md5_ctx md5_ctx = {
1147 .hash = (uint32_t *) vh->md5_digest,
1148 };
1149
1150 fio_md5_init(&md5_ctx);
1151 fio_md5_update(&md5_ctx, p, len);
1152 fio_md5_final(&md5_ctx);
1153}
1154
1155static void __fill_hdr(struct thread_data *td, struct io_u *io_u,
1156 struct verify_header *hdr, unsigned int header_num,
1157 unsigned int header_len, uint64_t rand_seed)
1158{
1159 void *p = hdr;
1160
1161 hdr->magic = FIO_HDR_MAGIC;
1162 hdr->verify_type = td->o.verify;
1163 hdr->len = header_len;
1164 hdr->rand_seed = rand_seed;
1165 hdr->offset = io_u->offset + header_num * td->o.verify_interval;
1166 hdr->time_sec = io_u->start_time.tv_sec;
1167 hdr->time_nsec = io_u->start_time.tv_nsec;
1168 hdr->thread = td->thread_number;
1169 hdr->numberio = io_u->numberio;
1170 hdr->crc32 = fio_crc32c(p, offsetof(struct verify_header, crc32));
1171}
1172
1173
1174static void fill_hdr(struct thread_data *td, struct io_u *io_u,
1175 struct verify_header *hdr, unsigned int header_num,
1176 unsigned int header_len, uint64_t rand_seed)
1177{
1178
1179 if (td->o.verify != VERIFY_PATTERN_NO_HDR)
1180 __fill_hdr(td, io_u, hdr, header_num, header_len, rand_seed);
1181}
1182
1183static void populate_hdr(struct thread_data *td, struct io_u *io_u,
1184 struct verify_header *hdr, unsigned int header_num,
1185 unsigned int header_len)
1186{
1187 unsigned int data_len;
1188 void *data;
1189 char *p;
1190
1191 p = (char *) hdr;
1192
1193 fill_hdr(td, io_u, hdr, header_num, header_len, io_u->rand_seed);
1194
1195 data_len = header_len - hdr_size(td, hdr);
1196
1197 data = p + hdr_size(td, hdr);
1198 switch (td->o.verify) {
1199 case VERIFY_MD5:
1200 dprint(FD_VERIFY, "fill md5 io_u %p, len %u\n",
1201 io_u, hdr->len);
1202 fill_md5(hdr, data, data_len);
1203 break;
1204 case VERIFY_CRC64:
1205 dprint(FD_VERIFY, "fill crc64 io_u %p, len %u\n",
1206 io_u, hdr->len);
1207 fill_crc64(hdr, data, data_len);
1208 break;
1209 case VERIFY_CRC32C:
1210 case VERIFY_CRC32C_INTEL:
1211 dprint(FD_VERIFY, "fill crc32c io_u %p, len %u\n",
1212 io_u, hdr->len);
1213 fill_crc32c(hdr, data, data_len);
1214 break;
1215 case VERIFY_CRC32:
1216 dprint(FD_VERIFY, "fill crc32 io_u %p, len %u\n",
1217 io_u, hdr->len);
1218 fill_crc32(hdr, data, data_len);
1219 break;
1220 case VERIFY_CRC16:
1221 dprint(FD_VERIFY, "fill crc16 io_u %p, len %u\n",
1222 io_u, hdr->len);
1223 fill_crc16(hdr, data, data_len);
1224 break;
1225 case VERIFY_CRC7:
1226 dprint(FD_VERIFY, "fill crc7 io_u %p, len %u\n",
1227 io_u, hdr->len);
1228 fill_crc7(hdr, data, data_len);
1229 break;
1230 case VERIFY_SHA256:
1231 dprint(FD_VERIFY, "fill sha256 io_u %p, len %u\n",
1232 io_u, hdr->len);
1233 fill_sha256(hdr, data, data_len);
1234 break;
1235 case VERIFY_SHA512:
1236 dprint(FD_VERIFY, "fill sha512 io_u %p, len %u\n",
1237 io_u, hdr->len);
1238 fill_sha512(hdr, data, data_len);
1239 break;
1240 case VERIFY_SHA3_224:
1241 dprint(FD_VERIFY, "fill sha3-224 io_u %p, len %u\n",
1242 io_u, hdr->len);
1243 fill_sha3_224(hdr, data, data_len);
1244 break;
1245 case VERIFY_SHA3_256:
1246 dprint(FD_VERIFY, "fill sha3-256 io_u %p, len %u\n",
1247 io_u, hdr->len);
1248 fill_sha3_256(hdr, data, data_len);
1249 break;
1250 case VERIFY_SHA3_384:
1251 dprint(FD_VERIFY, "fill sha3-384 io_u %p, len %u\n",
1252 io_u, hdr->len);
1253 fill_sha3_384(hdr, data, data_len);
1254 break;
1255 case VERIFY_SHA3_512:
1256 dprint(FD_VERIFY, "fill sha3-512 io_u %p, len %u\n",
1257 io_u, hdr->len);
1258 fill_sha3_512(hdr, data, data_len);
1259 break;
1260 case VERIFY_XXHASH:
1261 dprint(FD_VERIFY, "fill xxhash io_u %p, len %u\n",
1262 io_u, hdr->len);
1263 fill_xxhash(hdr, data, data_len);
1264 break;
1265 case VERIFY_SHA1:
1266 dprint(FD_VERIFY, "fill sha1 io_u %p, len %u\n",
1267 io_u, hdr->len);
1268 fill_sha1(hdr, data, data_len);
1269 break;
1270 case VERIFY_HDR_ONLY:
1271 case VERIFY_PATTERN:
1272 case VERIFY_PATTERN_NO_HDR:
1273 /* nothing to do here */
1274 break;
1275 default:
1276 log_err("fio: bad verify type: %d\n", td->o.verify);
1277 assert(0);
1278 }
1279
1280 if (td->o.verify_offset && hdr_size(td, hdr))
1281 memswp(p, p + td->o.verify_offset, hdr_size(td, hdr));
1282}
1283
1284/*
1285 * fill body of io_u->buf with random data and add a header with the
1286 * checksum of choice
1287 */
1288void populate_verify_io_u(struct thread_data *td, struct io_u *io_u)
1289{
1290 if (td->o.verify == VERIFY_NULL)
1291 return;
1292
1293 io_u->numberio = td->io_issues[io_u->ddir];
1294
1295 fill_pattern_headers(td, io_u, 0, 0);
1296}
1297
1298int get_next_verify(struct thread_data *td, struct io_u *io_u)
1299{
1300 struct io_piece *ipo = NULL;
1301
1302 /*
1303 * this io_u is from a requeue, we already filled the offsets
1304 */
1305 if (io_u->file)
1306 return 0;
1307
1308 if (!RB_EMPTY_ROOT(&td->io_hist_tree)) {
1309 struct rb_node *n = rb_first(&td->io_hist_tree);
1310
1311 ipo = rb_entry(n, struct io_piece, rb_node);
1312
1313 /*
1314 * Ensure that the associated IO has completed
1315 */
1316 read_barrier();
1317 if (ipo->flags & IP_F_IN_FLIGHT)
1318 goto nothing;
1319
1320 rb_erase(n, &td->io_hist_tree);
1321 assert(ipo->flags & IP_F_ONRB);
1322 ipo->flags &= ~IP_F_ONRB;
1323 } else if (!flist_empty(&td->io_hist_list)) {
1324 ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list);
1325
1326 /*
1327 * Ensure that the associated IO has completed
1328 */
1329 read_barrier();
1330 if (ipo->flags & IP_F_IN_FLIGHT)
1331 goto nothing;
1332
1333 flist_del(&ipo->list);
1334 assert(ipo->flags & IP_F_ONLIST);
1335 ipo->flags &= ~IP_F_ONLIST;
1336 }
1337
1338 if (ipo) {
1339 td->io_hist_len--;
1340
1341 io_u->offset = ipo->offset;
1342 io_u->buflen = ipo->len;
1343 io_u->numberio = ipo->numberio;
1344 io_u->file = ipo->file;
1345 io_u_set(td, io_u, IO_U_F_VER_LIST);
1346
1347 if (ipo->flags & IP_F_TRIMMED)
1348 io_u_set(td, io_u, IO_U_F_TRIMMED);
1349
1350 if (!fio_file_open(io_u->file)) {
1351 int r = td_io_open_file(td, io_u->file);
1352
1353 if (r) {
1354 dprint(FD_VERIFY, "failed file %s open\n",
1355 io_u->file->file_name);
1356 return 1;
1357 }
1358 }
1359
1360 get_file(ipo->file);
1361 assert(fio_file_open(io_u->file));
1362 io_u->ddir = DDIR_READ;
1363 io_u->xfer_buf = io_u->buf;
1364 io_u->xfer_buflen = io_u->buflen;
1365
1366 remove_trim_entry(td, ipo);
1367 free(ipo);
1368 dprint(FD_VERIFY, "get_next_verify: ret io_u %p\n", io_u);
1369
1370 if (!td->o.verify_pattern_bytes) {
1371 io_u->rand_seed = __rand(&td->verify_state);
1372 if (sizeof(int) != sizeof(long *))
1373 io_u->rand_seed *= __rand(&td->verify_state);
1374 }
1375 return 0;
1376 }
1377
1378nothing:
1379 dprint(FD_VERIFY, "get_next_verify: empty\n");
1380 return 1;
1381}
1382
1383void fio_verify_init(struct thread_data *td)
1384{
1385 if (td->o.verify == VERIFY_CRC32C_INTEL ||
1386 td->o.verify == VERIFY_CRC32C) {
1387 crc32c_arm64_probe();
1388 crc32c_intel_probe();
1389 }
1390}
1391
1392static void *verify_async_thread(void *data)
1393{
1394 struct thread_data *td = data;
1395 struct io_u *io_u;
1396 int ret = 0;
1397
1398 if (fio_option_is_set(&td->o, verify_cpumask) &&
1399 fio_setaffinity(td->pid, td->o.verify_cpumask)) {
1400 log_err("fio: failed setting verify thread affinity\n");
1401 goto done;
1402 }
1403
1404 do {
1405 FLIST_HEAD(list);
1406
1407 read_barrier();
1408 if (td->verify_thread_exit)
1409 break;
1410
1411 pthread_mutex_lock(&td->io_u_lock);
1412
1413 while (flist_empty(&td->verify_list) &&
1414 !td->verify_thread_exit) {
1415 ret = pthread_cond_wait(&td->verify_cond,
1416 &td->io_u_lock);
1417 if (ret) {
1418 pthread_mutex_unlock(&td->io_u_lock);
1419 break;
1420 }
1421 }
1422
1423 flist_splice_init(&td->verify_list, &list);
1424 pthread_mutex_unlock(&td->io_u_lock);
1425
1426 if (flist_empty(&list))
1427 continue;
1428
1429 while (!flist_empty(&list)) {
1430 io_u = flist_first_entry(&list, struct io_u, verify_list);
1431 flist_del_init(&io_u->verify_list);
1432
1433 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
1434 ret = verify_io_u(td, &io_u);
1435
1436 put_io_u(td, io_u);
1437 if (!ret)
1438 continue;
1439 if (td_non_fatal_error(td, ERROR_TYPE_VERIFY_BIT, ret)) {
1440 update_error_count(td, ret);
1441 td_clear_error(td);
1442 ret = 0;
1443 }
1444 }
1445 } while (!ret);
1446
1447 if (ret) {
1448 td_verror(td, ret, "async_verify");
1449 if (td->o.verify_fatal)
1450 fio_mark_td_terminate(td);
1451 }
1452
1453done:
1454 pthread_mutex_lock(&td->io_u_lock);
1455 td->nr_verify_threads--;
1456 pthread_mutex_unlock(&td->io_u_lock);
1457
1458 pthread_cond_signal(&td->free_cond);
1459 return NULL;
1460}
1461
1462int verify_async_init(struct thread_data *td)
1463{
1464 int i, ret;
1465 pthread_attr_t attr;
1466
1467 pthread_attr_init(&attr);
1468 pthread_attr_setstacksize(&attr, 2 * PTHREAD_STACK_MIN);
1469
1470 td->verify_thread_exit = 0;
1471
1472 td->verify_threads = malloc(sizeof(pthread_t) * td->o.verify_async);
1473 for (i = 0; i < td->o.verify_async; i++) {
1474 ret = pthread_create(&td->verify_threads[i], &attr,
1475 verify_async_thread, td);
1476 if (ret) {
1477 log_err("fio: async verify creation failed: %s\n",
1478 strerror(ret));
1479 break;
1480 }
1481 ret = pthread_detach(td->verify_threads[i]);
1482 if (ret) {
1483 log_err("fio: async verify thread detach failed: %s\n",
1484 strerror(ret));
1485 break;
1486 }
1487 td->nr_verify_threads++;
1488 }
1489
1490 pthread_attr_destroy(&attr);
1491
1492 if (i != td->o.verify_async) {
1493 log_err("fio: only %d verify threads started, exiting\n", i);
1494 td->verify_thread_exit = 1;
1495 write_barrier();
1496 pthread_cond_broadcast(&td->verify_cond);
1497 return 1;
1498 }
1499
1500 return 0;
1501}
1502
1503void verify_async_exit(struct thread_data *td)
1504{
1505 td->verify_thread_exit = 1;
1506 write_barrier();
1507 pthread_cond_broadcast(&td->verify_cond);
1508
1509 pthread_mutex_lock(&td->io_u_lock);
1510
1511 while (td->nr_verify_threads)
1512 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1513
1514 pthread_mutex_unlock(&td->io_u_lock);
1515 free(td->verify_threads);
1516 td->verify_threads = NULL;
1517}
1518
1519int paste_blockoff(char *buf, unsigned int len, void *priv)
1520{
1521 struct io_u *io = priv;
1522 unsigned long long off;
1523
1524 typecheck(typeof(off), io->offset);
1525 off = cpu_to_le64((uint64_t)io->offset);
1526 len = min(len, (unsigned int)sizeof(off));
1527 memcpy(buf, &off, len);
1528 return 0;
1529}
1530
1531static int __fill_file_completions(struct thread_data *td,
1532 struct thread_io_list *s,
1533 struct fio_file *f, unsigned int *index)
1534{
1535 unsigned int comps;
1536 int i, j;
1537
1538 if (!f->last_write_comp)
1539 return 0;
1540
1541 if (td->io_blocks[DDIR_WRITE] < td->o.iodepth)
1542 comps = td->io_blocks[DDIR_WRITE];
1543 else
1544 comps = td->o.iodepth;
1545
1546 j = f->last_write_idx - 1;
1547 for (i = 0; i < comps; i++) {
1548 if (j == -1)
1549 j = td->o.iodepth - 1;
1550 s->comps[*index].fileno = __cpu_to_le64(f->fileno);
1551 s->comps[*index].offset = cpu_to_le64(f->last_write_comp[j]);
1552 (*index)++;
1553 j--;
1554 }
1555
1556 return comps;
1557}
1558
1559static int fill_file_completions(struct thread_data *td,
1560 struct thread_io_list *s, unsigned int *index)
1561{
1562 struct fio_file *f;
1563 unsigned int i;
1564 int comps = 0;
1565
1566 for_each_file(td, f, i)
1567 comps += __fill_file_completions(td, s, f, index);
1568
1569 return comps;
1570}
1571
1572struct all_io_list *get_all_io_list(int save_mask, size_t *sz)
1573{
1574 struct all_io_list *rep;
1575 struct thread_data *td;
1576 size_t depth;
1577 void *next;
1578 int i, nr;
1579
1580 compiletime_assert(sizeof(struct all_io_list) == 8, "all_io_list");
1581
1582 /*
1583 * Calculate reply space needed. We need one 'io_state' per thread,
1584 * and the size will vary depending on depth.
1585 */
1586 depth = 0;
1587 nr = 0;
1588 for_each_td(td, i) {
1589 if (save_mask != IO_LIST_ALL && (i + 1) != save_mask)
1590 continue;
1591 td->stop_io = 1;
1592 td->flags |= TD_F_VSTATE_SAVED;
1593 depth += (td->o.iodepth * td->o.nr_files);
1594 nr++;
1595 }
1596
1597 if (!nr)
1598 return NULL;
1599
1600 *sz = sizeof(*rep);
1601 *sz += nr * sizeof(struct thread_io_list);
1602 *sz += depth * sizeof(struct file_comp);
1603 rep = malloc(*sz);
1604 memset(rep, 0, *sz);
1605
1606 rep->threads = cpu_to_le64((uint64_t) nr);
1607
1608 next = &rep->state[0];
1609 for_each_td(td, i) {
1610 struct thread_io_list *s = next;
1611 unsigned int comps, index = 0;
1612
1613 if (save_mask != IO_LIST_ALL && (i + 1) != save_mask)
1614 continue;
1615
1616 comps = fill_file_completions(td, s, &index);
1617
1618 s->no_comps = cpu_to_le64((uint64_t) comps);
1619 s->depth = cpu_to_le64((uint64_t) td->o.iodepth);
1620 s->nofiles = cpu_to_le64((uint64_t) td->o.nr_files);
1621 s->numberio = cpu_to_le64((uint64_t) td->io_issues[DDIR_WRITE]);
1622 s->index = cpu_to_le64((uint64_t) i);
1623 if (td->random_state.use64) {
1624 s->rand.state64.s[0] = cpu_to_le64(td->random_state.state64.s1);
1625 s->rand.state64.s[1] = cpu_to_le64(td->random_state.state64.s2);
1626 s->rand.state64.s[2] = cpu_to_le64(td->random_state.state64.s3);
1627 s->rand.state64.s[3] = cpu_to_le64(td->random_state.state64.s4);
1628 s->rand.state64.s[4] = cpu_to_le64(td->random_state.state64.s5);
1629 s->rand.state64.s[5] = 0;
1630 s->rand.use64 = cpu_to_le64((uint64_t)1);
1631 } else {
1632 s->rand.state32.s[0] = cpu_to_le32(td->random_state.state32.s1);
1633 s->rand.state32.s[1] = cpu_to_le32(td->random_state.state32.s2);
1634 s->rand.state32.s[2] = cpu_to_le32(td->random_state.state32.s3);
1635 s->rand.state32.s[3] = 0;
1636 s->rand.use64 = 0;
1637 }
1638 s->name[sizeof(s->name) - 1] = '\0';
1639 strncpy((char *) s->name, td->o.name, sizeof(s->name) - 1);
1640 next = io_list_next(s);
1641 }
1642
1643 return rep;
1644}
1645
1646static int open_state_file(const char *name, const char *prefix, int num,
1647 int for_write)
1648{
1649 char out[PATH_MAX];
1650 int flags;
1651 int fd;
1652
1653 if (for_write)
1654 flags = O_CREAT | O_TRUNC | O_WRONLY | O_SYNC;
1655 else
1656 flags = O_RDONLY;
1657
1658 verify_state_gen_name(out, sizeof(out), name, prefix, num);
1659
1660 fd = open(out, flags, 0644);
1661 if (fd == -1) {
1662 perror("fio: open state file");
1663 log_err("fio: state file: %s (for_write=%d)\n", out, for_write);
1664 return -1;
1665 }
1666
1667 return fd;
1668}
1669
1670static int write_thread_list_state(struct thread_io_list *s,
1671 const char *prefix)
1672{
1673 struct verify_state_hdr hdr;
1674 uint64_t crc;
1675 ssize_t ret;
1676 int fd;
1677
1678 fd = open_state_file((const char *) s->name, prefix, s->index, 1);
1679 if (fd == -1)
1680 return 1;
1681
1682 crc = fio_crc32c((void *)s, thread_io_list_sz(s));
1683
1684 hdr.version = cpu_to_le64((uint64_t) VSTATE_HDR_VERSION);
1685 hdr.size = cpu_to_le64((uint64_t) thread_io_list_sz(s));
1686 hdr.crc = cpu_to_le64(crc);
1687 ret = write(fd, &hdr, sizeof(hdr));
1688 if (ret != sizeof(hdr))
1689 goto write_fail;
1690
1691 ret = write(fd, s, thread_io_list_sz(s));
1692 if (ret != thread_io_list_sz(s)) {
1693write_fail:
1694 if (ret < 0)
1695 perror("fio: write state file");
1696 log_err("fio: failed to write state file\n");
1697 ret = 1;
1698 } else
1699 ret = 0;
1700
1701 close(fd);
1702 return ret;
1703}
1704
1705void __verify_save_state(struct all_io_list *state, const char *prefix)
1706{
1707 struct thread_io_list *s = &state->state[0];
1708 unsigned int i;
1709
1710 for (i = 0; i < le64_to_cpu(state->threads); i++) {
1711 write_thread_list_state(s, prefix);
1712 s = io_list_next(s);
1713 }
1714}
1715
1716void verify_save_state(int mask)
1717{
1718 struct all_io_list *state;
1719 size_t sz;
1720
1721 state = get_all_io_list(mask, &sz);
1722 if (state) {
1723 char prefix[PATH_MAX];
1724
1725 if (aux_path)
1726 sprintf(prefix, "%s%clocal", aux_path, FIO_OS_PATH_SEPARATOR);
1727 else
1728 strcpy(prefix, "local");
1729
1730 __verify_save_state(state, prefix);
1731 free(state);
1732 }
1733}
1734
1735void verify_free_state(struct thread_data *td)
1736{
1737 if (td->vstate)
1738 free(td->vstate);
1739}
1740
1741void verify_assign_state(struct thread_data *td, void *p)
1742{
1743 struct thread_io_list *s = p;
1744 int i;
1745
1746 s->no_comps = le64_to_cpu(s->no_comps);
1747 s->depth = le32_to_cpu(s->depth);
1748 s->nofiles = le32_to_cpu(s->nofiles);
1749 s->numberio = le64_to_cpu(s->numberio);
1750 s->rand.use64 = le64_to_cpu(s->rand.use64);
1751
1752 if (s->rand.use64) {
1753 for (i = 0; i < 6; i++)
1754 s->rand.state64.s[i] = le64_to_cpu(s->rand.state64.s[i]);
1755 } else {
1756 for (i = 0; i < 4; i++)
1757 s->rand.state32.s[i] = le32_to_cpu(s->rand.state32.s[i]);
1758 }
1759
1760 for (i = 0; i < s->no_comps; i++) {
1761 s->comps[i].fileno = le64_to_cpu(s->comps[i].fileno);
1762 s->comps[i].offset = le64_to_cpu(s->comps[i].offset);
1763 }
1764
1765 td->vstate = p;
1766}
1767
1768int verify_state_hdr(struct verify_state_hdr *hdr, struct thread_io_list *s)
1769{
1770 uint64_t crc;
1771
1772 hdr->version = le64_to_cpu(hdr->version);
1773 hdr->size = le64_to_cpu(hdr->size);
1774 hdr->crc = le64_to_cpu(hdr->crc);
1775
1776 if (hdr->version != VSTATE_HDR_VERSION)
1777 return 1;
1778
1779 crc = fio_crc32c((void *)s, hdr->size);
1780 if (crc != hdr->crc)
1781 return 1;
1782
1783 return 0;
1784}
1785
1786int verify_load_state(struct thread_data *td, const char *prefix)
1787{
1788 struct verify_state_hdr hdr;
1789 void *s = NULL;
1790 uint64_t crc;
1791 ssize_t ret;
1792 int fd;
1793
1794 if (!td->o.verify_state)
1795 return 0;
1796
1797 fd = open_state_file(td->o.name, prefix, td->thread_number - 1, 0);
1798 if (fd == -1)
1799 return 1;
1800
1801 ret = read(fd, &hdr, sizeof(hdr));
1802 if (ret != sizeof(hdr)) {
1803 if (ret < 0)
1804 td_verror(td, errno, "read verify state hdr");
1805 log_err("fio: failed reading verify state header\n");
1806 goto err;
1807 }
1808
1809 hdr.version = le64_to_cpu(hdr.version);
1810 hdr.size = le64_to_cpu(hdr.size);
1811 hdr.crc = le64_to_cpu(hdr.crc);
1812
1813 if (hdr.version != VSTATE_HDR_VERSION) {
1814 log_err("fio: unsupported (%d) version in verify state header\n",
1815 (unsigned int) hdr.version);
1816 goto err;
1817 }
1818
1819 s = malloc(hdr.size);
1820 ret = read(fd, s, hdr.size);
1821 if (ret != hdr.size) {
1822 if (ret < 0)
1823 td_verror(td, errno, "read verify state");
1824 log_err("fio: failed reading verity state\n");
1825 goto err;
1826 }
1827
1828 crc = fio_crc32c(s, hdr.size);
1829 if (crc != hdr.crc) {
1830 log_err("fio: verify state is corrupt\n");
1831 goto err;
1832 }
1833
1834 close(fd);
1835
1836 verify_assign_state(td, s);
1837 return 0;
1838err:
1839 if (s)
1840 free(s);
1841 close(fd);
1842 return 1;
1843}
1844
1845/*
1846 * Use the loaded verify state to know when to stop doing verification
1847 */
1848int verify_state_should_stop(struct thread_data *td, struct io_u *io_u)
1849{
1850 struct thread_io_list *s = td->vstate;
1851 struct fio_file *f = io_u->file;
1852 int i;
1853
1854 if (!s || !f)
1855 return 0;
1856
1857 /*
1858 * If we're not into the window of issues - depth yet, continue. If
1859 * issue is shorter than depth, do check.
1860 */
1861 if ((td->io_blocks[DDIR_READ] < s->depth ||
1862 s->numberio - td->io_blocks[DDIR_READ] > s->depth) &&
1863 s->numberio > s->depth)
1864 return 0;
1865
1866 /*
1867 * We're in the window of having to check if this io was
1868 * completed or not. If the IO was seen as completed, then
1869 * lets verify it.
1870 */
1871 for (i = 0; i < s->no_comps; i++) {
1872 if (s->comps[i].fileno != f->fileno)
1873 continue;
1874 if (io_u->offset == s->comps[i].offset)
1875 return 0;
1876 }
1877
1878 /*
1879 * Not found, we have to stop
1880 */
1881 return 1;
1882}