Modify RDMA engine to print strerror messages.
[fio.git] / verify.c
... / ...
CommitLineData
1/*
2 * IO verification helpers
3 */
4#include <unistd.h>
5#include <fcntl.h>
6#include <string.h>
7#include <assert.h>
8#include <pthread.h>
9#include <libgen.h>
10
11#include "fio.h"
12#include "verify.h"
13#include "trim.h"
14#include "lib/rand.h"
15#include "lib/hweight.h"
16#include "lib/pattern.h"
17
18#include "crc/md5.h"
19#include "crc/crc64.h"
20#include "crc/crc32.h"
21#include "crc/crc32c.h"
22#include "crc/crc16.h"
23#include "crc/crc7.h"
24#include "crc/sha256.h"
25#include "crc/sha512.h"
26#include "crc/sha1.h"
27#include "crc/xxhash.h"
28
29static void populate_hdr(struct thread_data *td, struct io_u *io_u,
30 struct verify_header *hdr, unsigned int header_num,
31 unsigned int header_len);
32static void fill_hdr(struct thread_data *td, struct io_u *io_u,
33 struct verify_header *hdr, unsigned int header_num,
34 unsigned int header_len, uint64_t rand_seed);
35static void __fill_hdr(struct thread_data *td, struct io_u *io_u,
36 struct verify_header *hdr, unsigned int header_num,
37 unsigned int header_len, uint64_t rand_seed);
38
39void fill_buffer_pattern(struct thread_data *td, void *p, unsigned int len)
40{
41 (void)cpy_pattern(td->o.buffer_pattern, td->o.buffer_pattern_bytes, p, len);
42}
43
44void __fill_buffer(struct thread_options *o, unsigned long seed, void *p,
45 unsigned int len)
46{
47 __fill_random_buf_percentage(seed, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes);
48}
49
50unsigned long fill_buffer(struct thread_data *td, void *p, unsigned int len)
51{
52 struct frand_state *fs = &td->verify_state;
53 struct thread_options *o = &td->o;
54
55 return fill_random_buf_percentage(fs, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes);
56}
57
58void fill_verify_pattern(struct thread_data *td, void *p, unsigned int len,
59 struct io_u *io_u, unsigned long seed, int use_seed)
60{
61 struct thread_options *o = &td->o;
62
63 if (!o->verify_pattern_bytes) {
64 dprint(FD_VERIFY, "fill random bytes len=%u\n", len);
65
66 if (use_seed)
67 __fill_buffer(o, seed, p, len);
68 else
69 io_u->rand_seed = fill_buffer(td, p, len);
70 return;
71 }
72
73 /* Skip if we were here and we do not need to patch pattern
74 * with format */
75 if (!td->o.verify_fmt_sz && io_u->buf_filled_len >= len) {
76 dprint(FD_VERIFY, "using already filled verify pattern b=%d len=%u\n",
77 o->verify_pattern_bytes, len);
78 return;
79 }
80
81 (void)paste_format(td->o.verify_pattern, td->o.verify_pattern_bytes,
82 td->o.verify_fmt, td->o.verify_fmt_sz,
83 p, len, io_u);
84 io_u->buf_filled_len = len;
85}
86
87static unsigned int get_hdr_inc(struct thread_data *td, struct io_u *io_u)
88{
89 unsigned int hdr_inc;
90
91 hdr_inc = io_u->buflen;
92 if (td->o.verify_interval && td->o.verify_interval <= io_u->buflen)
93 hdr_inc = td->o.verify_interval;
94
95 return hdr_inc;
96}
97
98static void fill_pattern_headers(struct thread_data *td, struct io_u *io_u,
99 unsigned long seed, int use_seed)
100{
101 unsigned int hdr_inc, header_num;
102 struct verify_header *hdr;
103 void *p = io_u->buf;
104
105 fill_verify_pattern(td, p, io_u->buflen, io_u, seed, use_seed);
106
107 hdr_inc = get_hdr_inc(td, io_u);
108 header_num = 0;
109 for (; p < io_u->buf + io_u->buflen; p += hdr_inc) {
110 hdr = p;
111 populate_hdr(td, io_u, hdr, header_num, hdr_inc);
112 header_num++;
113 }
114}
115
116static void memswp(void *buf1, void *buf2, unsigned int len)
117{
118 char swap[200];
119
120 assert(len <= sizeof(swap));
121
122 memcpy(&swap, buf1, len);
123 memcpy(buf1, buf2, len);
124 memcpy(buf2, &swap, len);
125}
126
127static void hexdump(void *buffer, int len)
128{
129 unsigned char *p = buffer;
130 int i;
131
132 for (i = 0; i < len; i++)
133 log_err("%02x", p[i]);
134 log_err("\n");
135}
136
137/*
138 * Prepare for separation of verify_header and checksum header
139 */
140static inline unsigned int __hdr_size(int verify_type)
141{
142 unsigned int len = 0;
143
144 switch (verify_type) {
145 case VERIFY_NONE:
146 case VERIFY_HDR_ONLY:
147 case VERIFY_NULL:
148 case VERIFY_PATTERN:
149 len = 0;
150 break;
151 case VERIFY_MD5:
152 len = sizeof(struct vhdr_md5);
153 break;
154 case VERIFY_CRC64:
155 len = sizeof(struct vhdr_crc64);
156 break;
157 case VERIFY_CRC32C:
158 case VERIFY_CRC32:
159 case VERIFY_CRC32C_INTEL:
160 len = sizeof(struct vhdr_crc32);
161 break;
162 case VERIFY_CRC16:
163 len = sizeof(struct vhdr_crc16);
164 break;
165 case VERIFY_CRC7:
166 len = sizeof(struct vhdr_crc7);
167 break;
168 case VERIFY_SHA256:
169 len = sizeof(struct vhdr_sha256);
170 break;
171 case VERIFY_SHA512:
172 len = sizeof(struct vhdr_sha512);
173 break;
174 case VERIFY_XXHASH:
175 len = sizeof(struct vhdr_xxhash);
176 break;
177 case VERIFY_SHA1:
178 len = sizeof(struct vhdr_sha1);
179 break;
180 case VERIFY_PATTERN_NO_HDR:
181 return 0;
182 default:
183 log_err("fio: unknown verify header!\n");
184 assert(0);
185 }
186
187 return len + sizeof(struct verify_header);
188}
189
190static inline unsigned int hdr_size(struct thread_data *td,
191 struct verify_header *hdr)
192{
193 if (td->o.verify == VERIFY_PATTERN_NO_HDR)
194 return 0;
195
196 return __hdr_size(hdr->verify_type);
197}
198
199static void *hdr_priv(struct verify_header *hdr)
200{
201 void *priv = hdr;
202
203 return priv + sizeof(struct verify_header);
204}
205
206/*
207 * Verify container, pass info to verify handlers and allow them to
208 * pass info back in case of error
209 */
210struct vcont {
211 /*
212 * Input
213 */
214 struct io_u *io_u;
215 unsigned int hdr_num;
216 struct thread_data *td;
217
218 /*
219 * Output, only valid in case of error
220 */
221 const char *name;
222 void *good_crc;
223 void *bad_crc;
224 unsigned int crc_len;
225};
226
227#define DUMP_BUF_SZ 255
228static int dump_buf_warned;
229
230static void dump_buf(char *buf, unsigned int len, unsigned long long offset,
231 const char *type, struct fio_file *f)
232{
233 char *ptr, fname[DUMP_BUF_SZ];
234 size_t buf_left = DUMP_BUF_SZ;
235 int ret, fd;
236
237 ptr = strdup(f->file_name);
238
239 memset(fname, 0, sizeof(fname));
240 if (aux_path)
241 sprintf(fname, "%s%s", aux_path, FIO_OS_PATH_SEPARATOR);
242
243 strncpy(fname + strlen(fname), basename(ptr), buf_left - 1);
244
245 buf_left -= strlen(fname);
246 if (buf_left <= 0) {
247 if (!dump_buf_warned) {
248 log_err("fio: verify failure dump buffer too small\n");
249 dump_buf_warned = 1;
250 }
251 free(ptr);
252 return;
253 }
254
255 snprintf(fname + strlen(fname), buf_left, ".%llu.%s", offset, type);
256
257 fd = open(fname, O_CREAT | O_TRUNC | O_WRONLY, 0644);
258 if (fd < 0) {
259 perror("open verify buf file");
260 return;
261 }
262
263 while (len) {
264 ret = write(fd, buf, len);
265 if (!ret)
266 break;
267 else if (ret < 0) {
268 perror("write verify buf file");
269 break;
270 }
271 len -= ret;
272 buf += ret;
273 }
274
275 close(fd);
276 log_err(" %s data dumped as %s\n", type, fname);
277 free(ptr);
278}
279
280/*
281 * Dump the contents of the read block and re-generate the correct data
282 * and dump that too.
283 */
284static void __dump_verify_buffers(struct verify_header *hdr, struct vcont *vc)
285{
286 struct thread_data *td = vc->td;
287 struct io_u *io_u = vc->io_u;
288 unsigned long hdr_offset;
289 struct io_u dummy;
290 void *buf;
291
292 if (!td->o.verify_dump)
293 return;
294
295 /*
296 * Dump the contents we just read off disk
297 */
298 hdr_offset = vc->hdr_num * hdr->len;
299
300 dump_buf(io_u->buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
301 "received", vc->io_u->file);
302
303 /*
304 * Allocate a new buf and re-generate the original data
305 */
306 buf = malloc(io_u->buflen);
307 dummy = *io_u;
308 dummy.buf = buf;
309 dummy.rand_seed = hdr->rand_seed;
310 dummy.buf_filled_len = 0;
311 dummy.buflen = io_u->buflen;
312
313 fill_pattern_headers(td, &dummy, hdr->rand_seed, 1);
314
315 dump_buf(buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
316 "expected", vc->io_u->file);
317 free(buf);
318}
319
320static void dump_verify_buffers(struct verify_header *hdr, struct vcont *vc)
321{
322 struct thread_data *td = vc->td;
323 struct verify_header shdr;
324
325 if (td->o.verify == VERIFY_PATTERN_NO_HDR) {
326 __fill_hdr(td, vc->io_u, &shdr, 0, vc->io_u->buflen, 0);
327 hdr = &shdr;
328 }
329
330 __dump_verify_buffers(hdr, vc);
331}
332
333static void log_verify_failure(struct verify_header *hdr, struct vcont *vc)
334{
335 unsigned long long offset;
336
337 offset = vc->io_u->offset;
338 offset += vc->hdr_num * hdr->len;
339 log_err("%.8s: verify failed at file %s offset %llu, length %u\n",
340 vc->name, vc->io_u->file->file_name, offset, hdr->len);
341
342 if (vc->good_crc && vc->bad_crc) {
343 log_err(" Expected CRC: ");
344 hexdump(vc->good_crc, vc->crc_len);
345 log_err(" Received CRC: ");
346 hexdump(vc->bad_crc, vc->crc_len);
347 }
348
349 dump_verify_buffers(hdr, vc);
350}
351
352/*
353 * Return data area 'header_num'
354 */
355static inline void *io_u_verify_off(struct verify_header *hdr, struct vcont *vc)
356{
357 return vc->io_u->buf + vc->hdr_num * hdr->len + hdr_size(vc->td, hdr);
358}
359
360static int verify_io_u_pattern(struct verify_header *hdr, struct vcont *vc)
361{
362 struct thread_data *td = vc->td;
363 struct io_u *io_u = vc->io_u;
364 char *buf, *pattern;
365 unsigned int header_size = __hdr_size(td->o.verify);
366 unsigned int len, mod, i, pattern_size;
367 int rc;
368
369 pattern = td->o.verify_pattern;
370 pattern_size = td->o.verify_pattern_bytes;
371 assert(pattern_size != 0);
372
373 (void)paste_format_inplace(pattern, pattern_size,
374 td->o.verify_fmt, td->o.verify_fmt_sz, io_u);
375
376 buf = (void *) hdr + header_size;
377 len = get_hdr_inc(td, io_u) - header_size;
378 mod = (get_hdr_inc(td, io_u) * vc->hdr_num + header_size) % pattern_size;
379
380 rc = cmp_pattern(pattern, pattern_size, mod, buf, len);
381 if (!rc)
382 return 0;
383
384 /* Slow path, compare each byte */
385 for (i = 0; i < len; i++) {
386 if (buf[i] != pattern[mod]) {
387 unsigned int bits;
388
389 bits = hweight8(buf[i] ^ pattern[mod]);
390 log_err("fio: got pattern '%02x', wanted '%02x'. Bad bits %d\n",
391 (unsigned char)buf[i],
392 (unsigned char)pattern[mod],
393 bits);
394 log_err("fio: bad pattern block offset %u\n", i);
395 dump_verify_buffers(hdr, vc);
396 return EILSEQ;
397 }
398 mod++;
399 if (mod == td->o.verify_pattern_bytes)
400 mod = 0;
401 }
402
403 /* Unreachable line */
404 assert(0);
405 return EILSEQ;
406}
407
408static int verify_io_u_xxhash(struct verify_header *hdr, struct vcont *vc)
409{
410 void *p = io_u_verify_off(hdr, vc);
411 struct vhdr_xxhash *vh = hdr_priv(hdr);
412 uint32_t hash;
413 void *state;
414
415 dprint(FD_VERIFY, "xxhash verify io_u %p, len %u\n", vc->io_u, hdr->len);
416
417 state = XXH32_init(1);
418 XXH32_update(state, p, hdr->len - hdr_size(vc->td, hdr));
419 hash = XXH32_digest(state);
420
421 if (vh->hash == hash)
422 return 0;
423
424 vc->name = "xxhash";
425 vc->good_crc = &vh->hash;
426 vc->bad_crc = &hash;
427 vc->crc_len = sizeof(hash);
428 log_verify_failure(hdr, vc);
429 return EILSEQ;
430}
431
432static int verify_io_u_sha512(struct verify_header *hdr, struct vcont *vc)
433{
434 void *p = io_u_verify_off(hdr, vc);
435 struct vhdr_sha512 *vh = hdr_priv(hdr);
436 uint8_t sha512[128];
437 struct fio_sha512_ctx sha512_ctx = {
438 .buf = sha512,
439 };
440
441 dprint(FD_VERIFY, "sha512 verify io_u %p, len %u\n", vc->io_u, hdr->len);
442
443 fio_sha512_init(&sha512_ctx);
444 fio_sha512_update(&sha512_ctx, p, hdr->len - hdr_size(vc->td, hdr));
445
446 if (!memcmp(vh->sha512, sha512_ctx.buf, sizeof(sha512)))
447 return 0;
448
449 vc->name = "sha512";
450 vc->good_crc = vh->sha512;
451 vc->bad_crc = sha512_ctx.buf;
452 vc->crc_len = sizeof(vh->sha512);
453 log_verify_failure(hdr, vc);
454 return EILSEQ;
455}
456
457static int verify_io_u_sha256(struct verify_header *hdr, struct vcont *vc)
458{
459 void *p = io_u_verify_off(hdr, vc);
460 struct vhdr_sha256 *vh = hdr_priv(hdr);
461 uint8_t sha256[64];
462 struct fio_sha256_ctx sha256_ctx = {
463 .buf = sha256,
464 };
465
466 dprint(FD_VERIFY, "sha256 verify io_u %p, len %u\n", vc->io_u, hdr->len);
467
468 fio_sha256_init(&sha256_ctx);
469 fio_sha256_update(&sha256_ctx, p, hdr->len - hdr_size(vc->td, hdr));
470 fio_sha256_final(&sha256_ctx);
471
472 if (!memcmp(vh->sha256, sha256_ctx.buf, sizeof(sha256)))
473 return 0;
474
475 vc->name = "sha256";
476 vc->good_crc = vh->sha256;
477 vc->bad_crc = sha256_ctx.buf;
478 vc->crc_len = sizeof(vh->sha256);
479 log_verify_failure(hdr, vc);
480 return EILSEQ;
481}
482
483static int verify_io_u_sha1(struct verify_header *hdr, struct vcont *vc)
484{
485 void *p = io_u_verify_off(hdr, vc);
486 struct vhdr_sha1 *vh = hdr_priv(hdr);
487 uint32_t sha1[5];
488 struct fio_sha1_ctx sha1_ctx = {
489 .H = sha1,
490 };
491
492 dprint(FD_VERIFY, "sha1 verify io_u %p, len %u\n", vc->io_u, hdr->len);
493
494 fio_sha1_init(&sha1_ctx);
495 fio_sha1_update(&sha1_ctx, p, hdr->len - hdr_size(vc->td, hdr));
496 fio_sha1_final(&sha1_ctx);
497
498 if (!memcmp(vh->sha1, sha1_ctx.H, sizeof(sha1)))
499 return 0;
500
501 vc->name = "sha1";
502 vc->good_crc = vh->sha1;
503 vc->bad_crc = sha1_ctx.H;
504 vc->crc_len = sizeof(vh->sha1);
505 log_verify_failure(hdr, vc);
506 return EILSEQ;
507}
508
509static int verify_io_u_crc7(struct verify_header *hdr, struct vcont *vc)
510{
511 void *p = io_u_verify_off(hdr, vc);
512 struct vhdr_crc7 *vh = hdr_priv(hdr);
513 unsigned char c;
514
515 dprint(FD_VERIFY, "crc7 verify io_u %p, len %u\n", vc->io_u, hdr->len);
516
517 c = fio_crc7(p, hdr->len - hdr_size(vc->td, hdr));
518
519 if (c == vh->crc7)
520 return 0;
521
522 vc->name = "crc7";
523 vc->good_crc = &vh->crc7;
524 vc->bad_crc = &c;
525 vc->crc_len = 1;
526 log_verify_failure(hdr, vc);
527 return EILSEQ;
528}
529
530static int verify_io_u_crc16(struct verify_header *hdr, struct vcont *vc)
531{
532 void *p = io_u_verify_off(hdr, vc);
533 struct vhdr_crc16 *vh = hdr_priv(hdr);
534 unsigned short c;
535
536 dprint(FD_VERIFY, "crc16 verify io_u %p, len %u\n", vc->io_u, hdr->len);
537
538 c = fio_crc16(p, hdr->len - hdr_size(vc->td, hdr));
539
540 if (c == vh->crc16)
541 return 0;
542
543 vc->name = "crc16";
544 vc->good_crc = &vh->crc16;
545 vc->bad_crc = &c;
546 vc->crc_len = 2;
547 log_verify_failure(hdr, vc);
548 return EILSEQ;
549}
550
551static int verify_io_u_crc64(struct verify_header *hdr, struct vcont *vc)
552{
553 void *p = io_u_verify_off(hdr, vc);
554 struct vhdr_crc64 *vh = hdr_priv(hdr);
555 unsigned long long c;
556
557 dprint(FD_VERIFY, "crc64 verify io_u %p, len %u\n", vc->io_u, hdr->len);
558
559 c = fio_crc64(p, hdr->len - hdr_size(vc->td, hdr));
560
561 if (c == vh->crc64)
562 return 0;
563
564 vc->name = "crc64";
565 vc->good_crc = &vh->crc64;
566 vc->bad_crc = &c;
567 vc->crc_len = 8;
568 log_verify_failure(hdr, vc);
569 return EILSEQ;
570}
571
572static int verify_io_u_crc32(struct verify_header *hdr, struct vcont *vc)
573{
574 void *p = io_u_verify_off(hdr, vc);
575 struct vhdr_crc32 *vh = hdr_priv(hdr);
576 uint32_t c;
577
578 dprint(FD_VERIFY, "crc32 verify io_u %p, len %u\n", vc->io_u, hdr->len);
579
580 c = fio_crc32(p, hdr->len - hdr_size(vc->td, hdr));
581
582 if (c == vh->crc32)
583 return 0;
584
585 vc->name = "crc32";
586 vc->good_crc = &vh->crc32;
587 vc->bad_crc = &c;
588 vc->crc_len = 4;
589 log_verify_failure(hdr, vc);
590 return EILSEQ;
591}
592
593static int verify_io_u_crc32c(struct verify_header *hdr, struct vcont *vc)
594{
595 void *p = io_u_verify_off(hdr, vc);
596 struct vhdr_crc32 *vh = hdr_priv(hdr);
597 uint32_t c;
598
599 dprint(FD_VERIFY, "crc32c verify io_u %p, len %u\n", vc->io_u, hdr->len);
600
601 c = fio_crc32c(p, hdr->len - hdr_size(vc->td, hdr));
602
603 if (c == vh->crc32)
604 return 0;
605
606 vc->name = "crc32c";
607 vc->good_crc = &vh->crc32;
608 vc->bad_crc = &c;
609 vc->crc_len = 4;
610 log_verify_failure(hdr, vc);
611 return EILSEQ;
612}
613
614static int verify_io_u_md5(struct verify_header *hdr, struct vcont *vc)
615{
616 void *p = io_u_verify_off(hdr, vc);
617 struct vhdr_md5 *vh = hdr_priv(hdr);
618 uint32_t hash[MD5_HASH_WORDS];
619 struct fio_md5_ctx md5_ctx = {
620 .hash = hash,
621 };
622
623 dprint(FD_VERIFY, "md5 verify io_u %p, len %u\n", vc->io_u, hdr->len);
624
625 fio_md5_init(&md5_ctx);
626 fio_md5_update(&md5_ctx, p, hdr->len - hdr_size(vc->td, hdr));
627 fio_md5_final(&md5_ctx);
628
629 if (!memcmp(vh->md5_digest, md5_ctx.hash, sizeof(hash)))
630 return 0;
631
632 vc->name = "md5";
633 vc->good_crc = vh->md5_digest;
634 vc->bad_crc = md5_ctx.hash;
635 vc->crc_len = sizeof(hash);
636 log_verify_failure(hdr, vc);
637 return EILSEQ;
638}
639
640/*
641 * Push IO verification to a separate thread
642 */
643int verify_io_u_async(struct thread_data *td, struct io_u **io_u_ptr)
644{
645 struct io_u *io_u = *io_u_ptr;
646
647 pthread_mutex_lock(&td->io_u_lock);
648
649 if (io_u->file)
650 put_file_log(td, io_u->file);
651
652 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
653 td->cur_depth--;
654 io_u_clear(io_u, IO_U_F_IN_CUR_DEPTH);
655 }
656 flist_add_tail(&io_u->verify_list, &td->verify_list);
657 *io_u_ptr = NULL;
658 pthread_mutex_unlock(&td->io_u_lock);
659
660 pthread_cond_signal(&td->verify_cond);
661 return 0;
662}
663
664/*
665 * Thanks Rusty, for spending the time so I don't have to.
666 *
667 * http://rusty.ozlabs.org/?p=560
668 */
669static int mem_is_zero(const void *data, size_t length)
670{
671 const unsigned char *p = data;
672 size_t len;
673
674 /* Check first 16 bytes manually */
675 for (len = 0; len < 16; len++) {
676 if (!length)
677 return 1;
678 if (*p)
679 return 0;
680 p++;
681 length--;
682 }
683
684 /* Now we know that's zero, memcmp with self. */
685 return memcmp(data, p, length) == 0;
686}
687
688static int mem_is_zero_slow(const void *data, size_t length, size_t *offset)
689{
690 const unsigned char *p = data;
691
692 *offset = 0;
693 while (length) {
694 if (*p)
695 break;
696 (*offset)++;
697 length--;
698 p++;
699 }
700
701 return !length;
702}
703
704static int verify_trimmed_io_u(struct thread_data *td, struct io_u *io_u)
705{
706 size_t offset;
707
708 if (!td->o.trim_zero)
709 return 0;
710
711 if (mem_is_zero(io_u->buf, io_u->buflen))
712 return 0;
713
714 mem_is_zero_slow(io_u->buf, io_u->buflen, &offset);
715
716 log_err("trim: verify failed at file %s offset %llu, length %lu"
717 ", block offset %lu\n",
718 io_u->file->file_name, io_u->offset, io_u->buflen,
719 (unsigned long) offset);
720 return EILSEQ;
721}
722
723static int verify_header(struct io_u *io_u, struct thread_data *td,
724 struct verify_header *hdr, unsigned int hdr_num,
725 unsigned int hdr_len)
726{
727 void *p = hdr;
728 uint32_t crc;
729
730 if (hdr->magic != FIO_HDR_MAGIC) {
731 log_err("verify: bad magic header %x, wanted %x",
732 hdr->magic, FIO_HDR_MAGIC);
733 goto err;
734 }
735 if (hdr->len != hdr_len) {
736 log_err("verify: bad header length %u, wanted %u",
737 hdr->len, hdr_len);
738 goto err;
739 }
740 if (hdr->rand_seed != io_u->rand_seed) {
741 log_err("verify: bad header rand_seed %"PRIu64
742 ", wanted %"PRIu64,
743 hdr->rand_seed, io_u->rand_seed);
744 goto err;
745 }
746 if (hdr->offset != io_u->offset + hdr_num * td->o.verify_interval) {
747 log_err("verify: bad header offset %"PRIu64
748 ", wanted %llu",
749 hdr->offset, io_u->offset);
750 goto err;
751 }
752
753 /*
754 * For read-only workloads, the program cannot be certain of the
755 * last numberio written to a block. Checking of numberio will be
756 * done only for workloads that write data. For verify_only,
757 * numberio will be checked in the last iteration when the correct
758 * state of numberio, that would have been written to each block
759 * in a previous run of fio, has been reached.
760 */
761 if ((td_write(td) || td_rw(td)) && (td_min_bs(td) == td_max_bs(td)) &&
762 !td->o.time_based)
763 if (!td->o.verify_only || td->o.loops == 0)
764 if (hdr->numberio != io_u->numberio) {
765 log_err("verify: bad header numberio %"PRIu16
766 ", wanted %"PRIu16,
767 hdr->numberio, io_u->numberio);
768 goto err;
769 }
770
771 crc = fio_crc32c(p, offsetof(struct verify_header, crc32));
772 if (crc != hdr->crc32) {
773 log_err("verify: bad header crc %x, calculated %x",
774 hdr->crc32, crc);
775 goto err;
776 }
777 return 0;
778
779err:
780 log_err(" at file %s offset %llu, length %u\n",
781 io_u->file->file_name,
782 io_u->offset + hdr_num * hdr_len, hdr_len);
783
784 if (td->o.verify_dump)
785 dump_buf(p, hdr_len, io_u->offset + hdr_num * hdr_len,
786 "hdr_fail", io_u->file);
787
788 return EILSEQ;
789}
790
791int verify_io_u(struct thread_data *td, struct io_u **io_u_ptr)
792{
793 struct verify_header *hdr;
794 struct io_u *io_u = *io_u_ptr;
795 unsigned int header_size, hdr_inc, hdr_num = 0;
796 void *p;
797 int ret;
798
799 if (td->o.verify == VERIFY_NULL || io_u->ddir != DDIR_READ)
800 return 0;
801 /*
802 * If the IO engine is faking IO (like null), then just pretend
803 * we verified everything.
804 */
805 if (td->io_ops->flags & FIO_FAKEIO)
806 return 0;
807
808 if (io_u->flags & IO_U_F_TRIMMED) {
809 ret = verify_trimmed_io_u(td, io_u);
810 goto done;
811 }
812
813 hdr_inc = get_hdr_inc(td, io_u);
814
815 ret = 0;
816 for (p = io_u->buf; p < io_u->buf + io_u->buflen;
817 p += hdr_inc, hdr_num++) {
818 struct vcont vc = {
819 .io_u = io_u,
820 .hdr_num = hdr_num,
821 .td = td,
822 };
823 unsigned int verify_type;
824
825 if (ret && td->o.verify_fatal)
826 break;
827
828 header_size = __hdr_size(td->o.verify);
829 if (td->o.verify_offset)
830 memswp(p, p + td->o.verify_offset, header_size);
831 hdr = p;
832
833 /*
834 * Make rand_seed check pass when have verifysort or
835 * verify_backlog.
836 */
837 if (td->o.verifysort || (td->flags & TD_F_VER_BACKLOG))
838 io_u->rand_seed = hdr->rand_seed;
839
840 if (td->o.verify != VERIFY_PATTERN_NO_HDR) {
841 ret = verify_header(io_u, td, hdr, hdr_num, hdr_inc);
842 if (ret)
843 return ret;
844 }
845
846 if (td->o.verify != VERIFY_NONE)
847 verify_type = td->o.verify;
848 else
849 verify_type = hdr->verify_type;
850
851 switch (verify_type) {
852 case VERIFY_HDR_ONLY:
853 /* Header is always verified, check if pattern is left
854 * for verification. */
855 if (td->o.verify_pattern_bytes)
856 ret = verify_io_u_pattern(hdr, &vc);
857 break;
858 case VERIFY_MD5:
859 ret = verify_io_u_md5(hdr, &vc);
860 break;
861 case VERIFY_CRC64:
862 ret = verify_io_u_crc64(hdr, &vc);
863 break;
864 case VERIFY_CRC32C:
865 case VERIFY_CRC32C_INTEL:
866 ret = verify_io_u_crc32c(hdr, &vc);
867 break;
868 case VERIFY_CRC32:
869 ret = verify_io_u_crc32(hdr, &vc);
870 break;
871 case VERIFY_CRC16:
872 ret = verify_io_u_crc16(hdr, &vc);
873 break;
874 case VERIFY_CRC7:
875 ret = verify_io_u_crc7(hdr, &vc);
876 break;
877 case VERIFY_SHA256:
878 ret = verify_io_u_sha256(hdr, &vc);
879 break;
880 case VERIFY_SHA512:
881 ret = verify_io_u_sha512(hdr, &vc);
882 break;
883 case VERIFY_XXHASH:
884 ret = verify_io_u_xxhash(hdr, &vc);
885 break;
886 case VERIFY_SHA1:
887 ret = verify_io_u_sha1(hdr, &vc);
888 break;
889 case VERIFY_PATTERN:
890 case VERIFY_PATTERN_NO_HDR:
891 ret = verify_io_u_pattern(hdr, &vc);
892 break;
893 default:
894 log_err("Bad verify type %u\n", hdr->verify_type);
895 ret = EINVAL;
896 }
897
898 if (ret && verify_type != hdr->verify_type)
899 log_err("fio: verify type mismatch (%u media, %u given)\n",
900 hdr->verify_type, verify_type);
901 }
902
903done:
904 if (ret && td->o.verify_fatal)
905 fio_mark_td_terminate(td);
906
907 return ret;
908}
909
910static void fill_xxhash(struct verify_header *hdr, void *p, unsigned int len)
911{
912 struct vhdr_xxhash *vh = hdr_priv(hdr);
913 void *state;
914
915 state = XXH32_init(1);
916 XXH32_update(state, p, len);
917 vh->hash = XXH32_digest(state);
918}
919
920static void fill_sha512(struct verify_header *hdr, void *p, unsigned int len)
921{
922 struct vhdr_sha512 *vh = hdr_priv(hdr);
923 struct fio_sha512_ctx sha512_ctx = {
924 .buf = vh->sha512,
925 };
926
927 fio_sha512_init(&sha512_ctx);
928 fio_sha512_update(&sha512_ctx, p, len);
929}
930
931static void fill_sha256(struct verify_header *hdr, void *p, unsigned int len)
932{
933 struct vhdr_sha256 *vh = hdr_priv(hdr);
934 struct fio_sha256_ctx sha256_ctx = {
935 .buf = vh->sha256,
936 };
937
938 fio_sha256_init(&sha256_ctx);
939 fio_sha256_update(&sha256_ctx, p, len);
940 fio_sha256_final(&sha256_ctx);
941}
942
943static void fill_sha1(struct verify_header *hdr, void *p, unsigned int len)
944{
945 struct vhdr_sha1 *vh = hdr_priv(hdr);
946 struct fio_sha1_ctx sha1_ctx = {
947 .H = vh->sha1,
948 };
949
950 fio_sha1_init(&sha1_ctx);
951 fio_sha1_update(&sha1_ctx, p, len);
952 fio_sha1_final(&sha1_ctx);
953}
954
955static void fill_crc7(struct verify_header *hdr, void *p, unsigned int len)
956{
957 struct vhdr_crc7 *vh = hdr_priv(hdr);
958
959 vh->crc7 = fio_crc7(p, len);
960}
961
962static void fill_crc16(struct verify_header *hdr, void *p, unsigned int len)
963{
964 struct vhdr_crc16 *vh = hdr_priv(hdr);
965
966 vh->crc16 = fio_crc16(p, len);
967}
968
969static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
970{
971 struct vhdr_crc32 *vh = hdr_priv(hdr);
972
973 vh->crc32 = fio_crc32(p, len);
974}
975
976static void fill_crc32c(struct verify_header *hdr, void *p, unsigned int len)
977{
978 struct vhdr_crc32 *vh = hdr_priv(hdr);
979
980 vh->crc32 = fio_crc32c(p, len);
981}
982
983static void fill_crc64(struct verify_header *hdr, void *p, unsigned int len)
984{
985 struct vhdr_crc64 *vh = hdr_priv(hdr);
986
987 vh->crc64 = fio_crc64(p, len);
988}
989
990static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
991{
992 struct vhdr_md5 *vh = hdr_priv(hdr);
993 struct fio_md5_ctx md5_ctx = {
994 .hash = (uint32_t *) vh->md5_digest,
995 };
996
997 fio_md5_init(&md5_ctx);
998 fio_md5_update(&md5_ctx, p, len);
999 fio_md5_final(&md5_ctx);
1000}
1001
1002static void __fill_hdr(struct thread_data *td, struct io_u *io_u,
1003 struct verify_header *hdr, unsigned int header_num,
1004 unsigned int header_len, uint64_t rand_seed)
1005{
1006 void *p = hdr;
1007
1008 hdr->magic = FIO_HDR_MAGIC;
1009 hdr->verify_type = td->o.verify;
1010 hdr->len = header_len;
1011 hdr->rand_seed = rand_seed;
1012 hdr->offset = io_u->offset + header_num * td->o.verify_interval;
1013 hdr->time_sec = io_u->start_time.tv_sec;
1014 hdr->time_usec = io_u->start_time.tv_usec;
1015 hdr->thread = td->thread_number;
1016 hdr->numberio = io_u->numberio;
1017 hdr->crc32 = fio_crc32c(p, offsetof(struct verify_header, crc32));
1018}
1019
1020
1021static void fill_hdr(struct thread_data *td, struct io_u *io_u,
1022 struct verify_header *hdr, unsigned int header_num,
1023 unsigned int header_len, uint64_t rand_seed)
1024{
1025
1026 if (td->o.verify != VERIFY_PATTERN_NO_HDR)
1027 __fill_hdr(td, io_u, hdr, header_num, header_len, rand_seed);
1028}
1029
1030static void populate_hdr(struct thread_data *td, struct io_u *io_u,
1031 struct verify_header *hdr, unsigned int header_num,
1032 unsigned int header_len)
1033{
1034 unsigned int data_len;
1035 void *data, *p;
1036
1037 p = (void *) hdr;
1038
1039 fill_hdr(td, io_u, hdr, header_num, header_len, io_u->rand_seed);
1040
1041 data_len = header_len - hdr_size(td, hdr);
1042
1043 data = p + hdr_size(td, hdr);
1044 switch (td->o.verify) {
1045 case VERIFY_MD5:
1046 dprint(FD_VERIFY, "fill md5 io_u %p, len %u\n",
1047 io_u, hdr->len);
1048 fill_md5(hdr, data, data_len);
1049 break;
1050 case VERIFY_CRC64:
1051 dprint(FD_VERIFY, "fill crc64 io_u %p, len %u\n",
1052 io_u, hdr->len);
1053 fill_crc64(hdr, data, data_len);
1054 break;
1055 case VERIFY_CRC32C:
1056 case VERIFY_CRC32C_INTEL:
1057 dprint(FD_VERIFY, "fill crc32c io_u %p, len %u\n",
1058 io_u, hdr->len);
1059 fill_crc32c(hdr, data, data_len);
1060 break;
1061 case VERIFY_CRC32:
1062 dprint(FD_VERIFY, "fill crc32 io_u %p, len %u\n",
1063 io_u, hdr->len);
1064 fill_crc32(hdr, data, data_len);
1065 break;
1066 case VERIFY_CRC16:
1067 dprint(FD_VERIFY, "fill crc16 io_u %p, len %u\n",
1068 io_u, hdr->len);
1069 fill_crc16(hdr, data, data_len);
1070 break;
1071 case VERIFY_CRC7:
1072 dprint(FD_VERIFY, "fill crc7 io_u %p, len %u\n",
1073 io_u, hdr->len);
1074 fill_crc7(hdr, data, data_len);
1075 break;
1076 case VERIFY_SHA256:
1077 dprint(FD_VERIFY, "fill sha256 io_u %p, len %u\n",
1078 io_u, hdr->len);
1079 fill_sha256(hdr, data, data_len);
1080 break;
1081 case VERIFY_SHA512:
1082 dprint(FD_VERIFY, "fill sha512 io_u %p, len %u\n",
1083 io_u, hdr->len);
1084 fill_sha512(hdr, data, data_len);
1085 break;
1086 case VERIFY_XXHASH:
1087 dprint(FD_VERIFY, "fill xxhash io_u %p, len %u\n",
1088 io_u, hdr->len);
1089 fill_xxhash(hdr, data, data_len);
1090 break;
1091 case VERIFY_SHA1:
1092 dprint(FD_VERIFY, "fill sha1 io_u %p, len %u\n",
1093 io_u, hdr->len);
1094 fill_sha1(hdr, data, data_len);
1095 break;
1096 case VERIFY_HDR_ONLY:
1097 case VERIFY_PATTERN:
1098 case VERIFY_PATTERN_NO_HDR:
1099 /* nothing to do here */
1100 break;
1101 default:
1102 log_err("fio: bad verify type: %d\n", td->o.verify);
1103 assert(0);
1104 }
1105
1106 if (td->o.verify_offset && hdr_size(td, hdr))
1107 memswp(p, p + td->o.verify_offset, hdr_size(td, hdr));
1108}
1109
1110/*
1111 * fill body of io_u->buf with random data and add a header with the
1112 * checksum of choice
1113 */
1114void populate_verify_io_u(struct thread_data *td, struct io_u *io_u)
1115{
1116 if (td->o.verify == VERIFY_NULL)
1117 return;
1118
1119 io_u->numberio = td->io_issues[io_u->ddir];
1120
1121 fill_pattern_headers(td, io_u, 0, 0);
1122}
1123
1124int get_next_verify(struct thread_data *td, struct io_u *io_u)
1125{
1126 struct io_piece *ipo = NULL;
1127
1128 /*
1129 * this io_u is from a requeue, we already filled the offsets
1130 */
1131 if (io_u->file)
1132 return 0;
1133
1134 if (!RB_EMPTY_ROOT(&td->io_hist_tree)) {
1135 struct rb_node *n = rb_first(&td->io_hist_tree);
1136
1137 ipo = rb_entry(n, struct io_piece, rb_node);
1138
1139 /*
1140 * Ensure that the associated IO has completed
1141 */
1142 read_barrier();
1143 if (ipo->flags & IP_F_IN_FLIGHT)
1144 goto nothing;
1145
1146 rb_erase(n, &td->io_hist_tree);
1147 assert(ipo->flags & IP_F_ONRB);
1148 ipo->flags &= ~IP_F_ONRB;
1149 } else if (!flist_empty(&td->io_hist_list)) {
1150 ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list);
1151
1152 /*
1153 * Ensure that the associated IO has completed
1154 */
1155 read_barrier();
1156 if (ipo->flags & IP_F_IN_FLIGHT)
1157 goto nothing;
1158
1159 flist_del(&ipo->list);
1160 assert(ipo->flags & IP_F_ONLIST);
1161 ipo->flags &= ~IP_F_ONLIST;
1162 }
1163
1164 if (ipo) {
1165 td->io_hist_len--;
1166
1167 io_u->offset = ipo->offset;
1168 io_u->buflen = ipo->len;
1169 io_u->numberio = ipo->numberio;
1170 io_u->file = ipo->file;
1171 io_u_set(io_u, IO_U_F_VER_LIST);
1172
1173 if (ipo->flags & IP_F_TRIMMED)
1174 io_u_set(io_u, IO_U_F_TRIMMED);
1175
1176 if (!fio_file_open(io_u->file)) {
1177 int r = td_io_open_file(td, io_u->file);
1178
1179 if (r) {
1180 dprint(FD_VERIFY, "failed file %s open\n",
1181 io_u->file->file_name);
1182 return 1;
1183 }
1184 }
1185
1186 get_file(ipo->file);
1187 assert(fio_file_open(io_u->file));
1188 io_u->ddir = DDIR_READ;
1189 io_u->xfer_buf = io_u->buf;
1190 io_u->xfer_buflen = io_u->buflen;
1191
1192 remove_trim_entry(td, ipo);
1193 free(ipo);
1194 dprint(FD_VERIFY, "get_next_verify: ret io_u %p\n", io_u);
1195
1196 if (!td->o.verify_pattern_bytes) {
1197 io_u->rand_seed = __rand(&td->verify_state);
1198 if (sizeof(int) != sizeof(long *))
1199 io_u->rand_seed *= __rand(&td->verify_state);
1200 }
1201 return 0;
1202 }
1203
1204nothing:
1205 dprint(FD_VERIFY, "get_next_verify: empty\n");
1206 return 1;
1207}
1208
1209void fio_verify_init(struct thread_data *td)
1210{
1211 if (td->o.verify == VERIFY_CRC32C_INTEL ||
1212 td->o.verify == VERIFY_CRC32C) {
1213 crc32c_intel_probe();
1214 }
1215}
1216
1217static void *verify_async_thread(void *data)
1218{
1219 struct thread_data *td = data;
1220 struct io_u *io_u;
1221 int ret = 0;
1222
1223 if (fio_option_is_set(&td->o, verify_cpumask) &&
1224 fio_setaffinity(td->pid, td->o.verify_cpumask)) {
1225 log_err("fio: failed setting verify thread affinity\n");
1226 goto done;
1227 }
1228
1229 do {
1230 FLIST_HEAD(list);
1231
1232 read_barrier();
1233 if (td->verify_thread_exit)
1234 break;
1235
1236 pthread_mutex_lock(&td->io_u_lock);
1237
1238 while (flist_empty(&td->verify_list) &&
1239 !td->verify_thread_exit) {
1240 ret = pthread_cond_wait(&td->verify_cond,
1241 &td->io_u_lock);
1242 if (ret) {
1243 pthread_mutex_unlock(&td->io_u_lock);
1244 break;
1245 }
1246 }
1247
1248 flist_splice_init(&td->verify_list, &list);
1249 pthread_mutex_unlock(&td->io_u_lock);
1250
1251 if (flist_empty(&list))
1252 continue;
1253
1254 while (!flist_empty(&list)) {
1255 io_u = flist_first_entry(&list, struct io_u, verify_list);
1256 flist_del_init(&io_u->verify_list);
1257
1258 io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1259 ret = verify_io_u(td, &io_u);
1260
1261 put_io_u(td, io_u);
1262 if (!ret)
1263 continue;
1264 if (td_non_fatal_error(td, ERROR_TYPE_VERIFY_BIT, ret)) {
1265 update_error_count(td, ret);
1266 td_clear_error(td);
1267 ret = 0;
1268 }
1269 }
1270 } while (!ret);
1271
1272 if (ret) {
1273 td_verror(td, ret, "async_verify");
1274 if (td->o.verify_fatal)
1275 fio_mark_td_terminate(td);
1276 }
1277
1278done:
1279 pthread_mutex_lock(&td->io_u_lock);
1280 td->nr_verify_threads--;
1281 pthread_mutex_unlock(&td->io_u_lock);
1282
1283 pthread_cond_signal(&td->free_cond);
1284 return NULL;
1285}
1286
1287int verify_async_init(struct thread_data *td)
1288{
1289 int i, ret;
1290 pthread_attr_t attr;
1291
1292 pthread_attr_init(&attr);
1293 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1294
1295 td->verify_thread_exit = 0;
1296
1297 td->verify_threads = malloc(sizeof(pthread_t) * td->o.verify_async);
1298 for (i = 0; i < td->o.verify_async; i++) {
1299 ret = pthread_create(&td->verify_threads[i], &attr,
1300 verify_async_thread, td);
1301 if (ret) {
1302 log_err("fio: async verify creation failed: %s\n",
1303 strerror(ret));
1304 break;
1305 }
1306 ret = pthread_detach(td->verify_threads[i]);
1307 if (ret) {
1308 log_err("fio: async verify thread detach failed: %s\n",
1309 strerror(ret));
1310 break;
1311 }
1312 td->nr_verify_threads++;
1313 }
1314
1315 pthread_attr_destroy(&attr);
1316
1317 if (i != td->o.verify_async) {
1318 log_err("fio: only %d verify threads started, exiting\n", i);
1319 td->verify_thread_exit = 1;
1320 write_barrier();
1321 pthread_cond_broadcast(&td->verify_cond);
1322 return 1;
1323 }
1324
1325 return 0;
1326}
1327
1328void verify_async_exit(struct thread_data *td)
1329{
1330 td->verify_thread_exit = 1;
1331 write_barrier();
1332 pthread_cond_broadcast(&td->verify_cond);
1333
1334 pthread_mutex_lock(&td->io_u_lock);
1335
1336 while (td->nr_verify_threads)
1337 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1338
1339 pthread_mutex_unlock(&td->io_u_lock);
1340 free(td->verify_threads);
1341 td->verify_threads = NULL;
1342}
1343
1344int paste_blockoff(char *buf, unsigned int len, void *priv)
1345{
1346 struct io_u *io = priv;
1347 unsigned long long off;
1348
1349 typecheck(typeof(off), io->offset);
1350 off = cpu_to_le64((uint64_t)io->offset);
1351 len = min(len, (unsigned int)sizeof(off));
1352 memcpy(buf, &off, len);
1353 return 0;
1354}
1355
1356struct all_io_list *get_all_io_list(int save_mask, size_t *sz)
1357{
1358 struct all_io_list *rep;
1359 struct thread_data *td;
1360 size_t depth;
1361 void *next;
1362 int i, nr;
1363
1364 compiletime_assert(sizeof(struct all_io_list) == 8, "all_io_list");
1365
1366 /*
1367 * Calculate reply space needed. We need one 'io_state' per thread,
1368 * and the size will vary depending on depth.
1369 */
1370 depth = 0;
1371 nr = 0;
1372 for_each_td(td, i) {
1373 if (save_mask != IO_LIST_ALL && (i + 1) != save_mask)
1374 continue;
1375 td->stop_io = 1;
1376 td->flags |= TD_F_VSTATE_SAVED;
1377 depth += td->o.iodepth;
1378 nr++;
1379 }
1380
1381 if (!nr)
1382 return NULL;
1383
1384 *sz = sizeof(*rep);
1385 *sz += nr * sizeof(struct thread_io_list);
1386 *sz += depth * sizeof(uint64_t);
1387 rep = malloc(*sz);
1388 memset(rep, 0, *sz);
1389
1390 rep->threads = cpu_to_le64((uint64_t) nr);
1391
1392 next = &rep->state[0];
1393 for_each_td(td, i) {
1394 struct thread_io_list *s = next;
1395 unsigned int comps;
1396
1397 if (save_mask != IO_LIST_ALL && (i + 1) != save_mask)
1398 continue;
1399
1400 if (td->last_write_comp) {
1401 int j, k;
1402
1403 if (td->io_blocks[DDIR_WRITE] < td->o.iodepth)
1404 comps = td->io_blocks[DDIR_WRITE];
1405 else
1406 comps = td->o.iodepth;
1407
1408 k = td->last_write_idx - 1;
1409 for (j = 0; j < comps; j++) {
1410 if (k == -1)
1411 k = td->o.iodepth - 1;
1412 s->offsets[j] = cpu_to_le64(td->last_write_comp[k]);
1413 k--;
1414 }
1415 } else
1416 comps = 0;
1417
1418 s->no_comps = cpu_to_le64((uint64_t) comps);
1419 s->depth = cpu_to_le64((uint64_t) td->o.iodepth);
1420 s->numberio = cpu_to_le64((uint64_t) td->io_issues[DDIR_WRITE]);
1421 s->index = cpu_to_le64((uint64_t) i);
1422 if (td->random_state.use64) {
1423 s->rand.state64.s[0] = cpu_to_le64(td->random_state.state64.s1);
1424 s->rand.state64.s[1] = cpu_to_le64(td->random_state.state64.s2);
1425 s->rand.state64.s[2] = cpu_to_le64(td->random_state.state64.s3);
1426 s->rand.state64.s[3] = cpu_to_le64(td->random_state.state64.s4);
1427 s->rand.state64.s[4] = cpu_to_le64(td->random_state.state64.s5);
1428 s->rand.state64.s[5] = 0;
1429 s->rand.use64 = cpu_to_le64((uint64_t)1);
1430 } else {
1431 s->rand.state32.s[0] = cpu_to_le32(td->random_state.state32.s1);
1432 s->rand.state32.s[1] = cpu_to_le32(td->random_state.state32.s2);
1433 s->rand.state32.s[2] = cpu_to_le32(td->random_state.state32.s3);
1434 s->rand.state32.s[3] = 0;
1435 s->rand.use64 = 0;
1436 }
1437 s->name[sizeof(s->name) - 1] = '\0';
1438 strncpy((char *) s->name, td->o.name, sizeof(s->name) - 1);
1439 next = io_list_next(s);
1440 }
1441
1442 return rep;
1443}
1444
1445static int open_state_file(const char *name, const char *prefix, int num,
1446 int for_write)
1447{
1448 char out[64];
1449 int flags;
1450 int fd;
1451
1452 if (for_write)
1453 flags = O_CREAT | O_TRUNC | O_WRONLY | O_SYNC;
1454 else
1455 flags = O_RDONLY;
1456
1457 verify_state_gen_name(out, sizeof(out), name, prefix, num);
1458
1459 fd = open(out, flags, 0644);
1460 if (fd == -1) {
1461 perror("fio: open state file");
1462 return -1;
1463 }
1464
1465 return fd;
1466}
1467
1468static int write_thread_list_state(struct thread_io_list *s,
1469 const char *prefix)
1470{
1471 struct verify_state_hdr hdr;
1472 uint64_t crc;
1473 ssize_t ret;
1474 int fd;
1475
1476 fd = open_state_file((const char *) s->name, prefix, s->index, 1);
1477 if (fd == -1)
1478 return 1;
1479
1480 crc = fio_crc32c((void *)s, thread_io_list_sz(s));
1481
1482 hdr.version = cpu_to_le64((uint64_t) VSTATE_HDR_VERSION);
1483 hdr.size = cpu_to_le64((uint64_t) thread_io_list_sz(s));
1484 hdr.crc = cpu_to_le64(crc);
1485 ret = write(fd, &hdr, sizeof(hdr));
1486 if (ret != sizeof(hdr))
1487 goto write_fail;
1488
1489 ret = write(fd, s, thread_io_list_sz(s));
1490 if (ret != thread_io_list_sz(s)) {
1491write_fail:
1492 if (ret < 0)
1493 perror("fio: write state file");
1494 log_err("fio: failed to write state file\n");
1495 ret = 1;
1496 } else
1497 ret = 0;
1498
1499 close(fd);
1500 return ret;
1501}
1502
1503void __verify_save_state(struct all_io_list *state, const char *prefix)
1504{
1505 struct thread_io_list *s = &state->state[0];
1506 unsigned int i;
1507
1508 for (i = 0; i < le64_to_cpu(state->threads); i++) {
1509 write_thread_list_state(s, prefix);
1510 s = io_list_next(s);
1511 }
1512}
1513
1514void verify_save_state(int mask)
1515{
1516 struct all_io_list *state;
1517 size_t sz;
1518
1519 state = get_all_io_list(mask, &sz);
1520 if (state) {
1521 char prefix[PATH_MAX];
1522
1523 if (aux_path)
1524 sprintf(prefix, "%s%slocal", aux_path, FIO_OS_PATH_SEPARATOR);
1525 else
1526 strcpy(prefix, "local");
1527
1528 __verify_save_state(state, prefix);
1529 free(state);
1530 }
1531}
1532
1533void verify_free_state(struct thread_data *td)
1534{
1535 if (td->vstate)
1536 free(td->vstate);
1537}
1538
1539static struct thread_io_list *convert_v1_list(struct thread_io_list_v1 *s)
1540{
1541 struct thread_io_list *til;
1542 int i;
1543
1544 til = malloc(__thread_io_list_sz(s->no_comps));
1545 til->no_comps = s->no_comps;
1546 til->depth = s->depth;
1547 til->numberio = s->numberio;
1548 til->index = s->index;
1549 memcpy(til->name, s->name, sizeof(til->name));
1550
1551 til->rand.use64 = 0;
1552 for (i = 0; i < 4; i++)
1553 til->rand.state32.s[i] = s->rand.s[i];
1554
1555 for (i = 0; i < s->no_comps; i++)
1556 til->offsets[i] = s->offsets[i];
1557
1558 return til;
1559}
1560
1561void verify_convert_assign_state(struct thread_data *td, void *p, int version)
1562{
1563 struct thread_io_list *til;
1564 int i;
1565
1566 if (version == 1) {
1567 struct thread_io_list_v1 *s = p;
1568
1569 s->no_comps = le64_to_cpu(s->no_comps);
1570 s->depth = le64_to_cpu(s->depth);
1571 s->numberio = le64_to_cpu(s->numberio);
1572 for (i = 0; i < 4; i++)
1573 s->rand.s[i] = le32_to_cpu(s->rand.s[i]);
1574 for (i = 0; i < s->no_comps; i++)
1575 s->offsets[i] = le64_to_cpu(s->offsets[i]);
1576
1577 til = convert_v1_list(s);
1578 free(s);
1579 } else {
1580 struct thread_io_list *s = p;
1581
1582 s->no_comps = le64_to_cpu(s->no_comps);
1583 s->depth = le64_to_cpu(s->depth);
1584 s->numberio = le64_to_cpu(s->numberio);
1585 s->rand.use64 = le64_to_cpu(s->rand.use64);
1586
1587 if (s->rand.use64) {
1588 for (i = 0; i < 6; i++)
1589 s->rand.state64.s[i] = le64_to_cpu(s->rand.state64.s[i]);
1590 } else {
1591 for (i = 0; i < 4; i++)
1592 s->rand.state32.s[i] = le32_to_cpu(s->rand.state32.s[i]);
1593 }
1594 for (i = 0; i < s->no_comps; i++)
1595 s->offsets[i] = le64_to_cpu(s->offsets[i]);
1596
1597 til = p;
1598 }
1599
1600 td->vstate = til;
1601}
1602
1603int verify_state_hdr(struct verify_state_hdr *hdr, struct thread_io_list *s,
1604 int *version)
1605{
1606 uint64_t crc;
1607
1608 hdr->version = le64_to_cpu(hdr->version);
1609 hdr->size = le64_to_cpu(hdr->size);
1610 hdr->crc = le64_to_cpu(hdr->crc);
1611
1612 if (hdr->version != VSTATE_HDR_VERSION &&
1613 hdr->version != VSTATE_HDR_VERSION_V1)
1614 return 1;
1615
1616 crc = fio_crc32c((void *)s, hdr->size);
1617 if (crc != hdr->crc)
1618 return 1;
1619
1620 *version = hdr->version;
1621 return 0;
1622}
1623
1624int verify_load_state(struct thread_data *td, const char *prefix)
1625{
1626 struct verify_state_hdr hdr;
1627 void *s = NULL;
1628 uint64_t crc;
1629 ssize_t ret;
1630 int fd;
1631
1632 if (!td->o.verify_state)
1633 return 0;
1634
1635 fd = open_state_file(td->o.name, prefix, td->thread_number - 1, 0);
1636 if (fd == -1)
1637 return 1;
1638
1639 ret = read(fd, &hdr, sizeof(hdr));
1640 if (ret != sizeof(hdr)) {
1641 if (ret < 0)
1642 td_verror(td, errno, "read verify state hdr");
1643 log_err("fio: failed reading verify state header\n");
1644 goto err;
1645 }
1646
1647 hdr.version = le64_to_cpu(hdr.version);
1648 hdr.size = le64_to_cpu(hdr.size);
1649 hdr.crc = le64_to_cpu(hdr.crc);
1650
1651 if (hdr.version != VSTATE_HDR_VERSION &&
1652 hdr.version != VSTATE_HDR_VERSION_V1) {
1653 log_err("fio: bad version in verify state header\n");
1654 goto err;
1655 }
1656
1657 s = malloc(hdr.size);
1658 ret = read(fd, s, hdr.size);
1659 if (ret != hdr.size) {
1660 if (ret < 0)
1661 td_verror(td, errno, "read verify state");
1662 log_err("fio: failed reading verity state\n");
1663 goto err;
1664 }
1665
1666 crc = fio_crc32c(s, hdr.size);
1667 if (crc != hdr.crc) {
1668 log_err("fio: verify state is corrupt\n");
1669 goto err;
1670 }
1671
1672 close(fd);
1673
1674 verify_convert_assign_state(td, s, hdr.version);
1675 return 0;
1676err:
1677 if (s)
1678 free(s);
1679 close(fd);
1680 return 1;
1681}
1682
1683/*
1684 * Use the loaded verify state to know when to stop doing verification
1685 */
1686int verify_state_should_stop(struct thread_data *td, struct io_u *io_u)
1687{
1688 struct thread_io_list *s = td->vstate;
1689 int i;
1690
1691 if (!s)
1692 return 0;
1693
1694 /*
1695 * If we're not into the window of issues - depth yet, continue. If
1696 * issue is shorter than depth, do check.
1697 */
1698 if ((td->io_blocks[DDIR_READ] < s->depth ||
1699 s->numberio - td->io_blocks[DDIR_READ] > s->depth) &&
1700 s->numberio > s->depth)
1701 return 0;
1702
1703 /*
1704 * We're in the window of having to check if this io was
1705 * completed or not. If the IO was seen as completed, then
1706 * lets verify it.
1707 */
1708 for (i = 0; i < s->no_comps; i++)
1709 if (io_u->offset == s->offsets[i])
1710 return 0;
1711
1712 /*
1713 * Not found, we have to stop
1714 */
1715 return 1;
1716}