clean up argparse usage
[fio.git] / tools / hist / fio-histo-log-pctiles.py
... / ...
CommitLineData
1#!/usr/bin/env python
2
3# module to parse fio histogram log files, not using pandas
4# runs in python v2 or v3
5# to get help with the CLI: $ python fio-histo-log-pctiles.py -h
6# this can be run standalone as a script but is callable
7# assumes all threads run for same time duration
8# assumes all threads are doing the same thing for the entire run
9
10# percentiles:
11# 0 - min latency
12# 50 - median
13# 100 - max latency
14
15# TO-DO:
16# separate read and write stats for randrw mixed workload
17# report average latency if needed
18# prove that it works (partially done with unit tests)
19
20# to run unit tests, set UNITTEST environment variable to anything
21# if you do this, don't pass normal CLI parameters to it
22# otherwise it runs the CLI
23
24import sys, os, math, copy
25from copy import deepcopy
26import argparse
27import unittest2
28
29msec_per_sec = 1000
30nsec_per_usec = 1000
31
32class FioHistoLogExc(Exception):
33 pass
34
35# if there is an error, print message, and exit with error status
36
37def myabort(msg):
38 print('ERROR: ' + msg)
39 sys.exit(1)
40
41# convert histogram log file into a list of
42# (time_ms, direction, bsz, buckets) tuples where
43# - time_ms is the time in msec at which the log record was written
44# - direction is 0 (read) or 1 (write)
45# - bsz is block size (not used)
46# - buckets is a CSV list of counters that make up the histogram
47# caller decides if the expected number of counters are present
48
49
50def exception_suffix( record_num, pathname ):
51 return 'in histogram record %d file %s' % (record_num+1, pathname)
52
53# log file parser raises FioHistoLogExc exceptions
54# it returns histogram buckets in whatever unit fio uses
55
56def parse_hist_file(logfn, buckets_per_interval):
57 max_timestamp_ms = 0.0
58
59 with open(logfn, 'r') as f:
60 records = [ l.strip() for l in f.readlines() ]
61 intervals = []
62 for k, r in enumerate(records):
63 if r == '':
64 continue
65 tokens = r.split(',')
66 try:
67 int_tokens = [ int(t) for t in tokens ]
68 except ValueError as e:
69 raise FioHistoLogExc('non-integer value %s' % exception_suffix(k+1, logfn))
70
71 neg_ints = list(filter( lambda tk : tk < 0, int_tokens ))
72 if len(neg_ints) > 0:
73 raise FioHistoLogExc('negative integer value %s' % exception_suffix(k+1, logfn))
74
75 if len(int_tokens) < 3:
76 raise FioHistoLogExc('too few numbers %s' % exception_suffix(k+1, logfn))
77
78 time_ms = int_tokens[0]
79 if time_ms > max_timestamp_ms:
80 max_timestamp_ms = time_ms
81
82 direction = int_tokens[1]
83 if direction != 0 and direction != 1:
84 raise FioHistoLogExc('invalid I/O direction %s' % exception_suffix(k+1, logfn))
85
86 bsz = int_tokens[2]
87 if bsz > (1 << 24):
88 raise FioHistoLogExc('block size too large %s' % exception_suffix(k+1, logfn))
89
90 buckets = int_tokens[3:]
91 if len(buckets) != buckets_per_interval:
92 raise FioHistoLogExc('%d buckets per interval but %d expected in %s' %
93 (len(buckets), buckets_per_interval, exception_suffix(k+1, logfn)))
94 intervals.append((time_ms, direction, bsz, buckets))
95 if len(intervals) == 0:
96 raise FioHistoLogExc('no records in %s' % logfn)
97 return (intervals, max_timestamp_ms)
98
99
100# compute time range for each bucket index in histogram record
101# see comments in https://github.com/axboe/fio/blob/master/stat.h
102# for description of bucket groups and buckets
103# fio v3 bucket ranges are in nanosec (since response times are measured in nanosec)
104# but we convert fio v3 nanosecs to floating-point microseconds
105
106def time_ranges(groups, counters_per_group, fio_version=3):
107 bucket_width = 1
108 bucket_base = 0
109 bucket_intervals = []
110 for g in range(0, groups):
111 for b in range(0, counters_per_group):
112 rmin = float(bucket_base)
113 rmax = rmin + bucket_width
114 if fio_version == 3:
115 rmin /= nsec_per_usec
116 rmax /= nsec_per_usec
117 bucket_intervals.append( [rmin, rmax] )
118 bucket_base += bucket_width
119 if g != 0:
120 bucket_width *= 2
121 return bucket_intervals
122
123
124# compute number of time quantum intervals in the test
125
126def get_time_intervals(time_quantum, max_timestamp_ms):
127 # round down to nearest second
128 max_timestamp = max_timestamp_ms // msec_per_sec
129 # round up to nearest whole multiple of time_quantum
130 time_interval_count = (max_timestamp + time_quantum) // time_quantum
131 end_time = time_interval_count * time_quantum
132 return (end_time, time_interval_count)
133
134# align raw histogram log data to time quantum so
135# we can then combine histograms from different threads with addition
136# for randrw workload we count both reads and writes in same output bucket
137# but we separate reads and writes for purposes of calculating
138# end time for histogram record.
139# this requires us to weight a raw histogram bucket by the
140# fraction of time quantum that the bucket overlaps the current
141# time quantum interval
142# for example, if we have a bucket with 515 samples for time interval
143# [ 1010, 2014 ] msec since start of test, and time quantum is 1 sec, then
144# for time quantum interval [ 1000, 2000 ] msec, the overlap is
145# (2000 - 1010) / (2000 - 1000) = 0.99
146# so the contribution of this bucket to this time quantum is
147# 515 x 0.99 = 509.85
148
149def align_histo_log(raw_histogram_log, time_quantum, bucket_count, max_timestamp_ms):
150
151 # slice up test time int intervals of time_quantum seconds
152
153 (end_time, time_interval_count) = get_time_intervals(time_quantum, max_timestamp_ms)
154 time_qtm_ms = time_quantum * msec_per_sec
155 end_time_ms = end_time * msec_per_sec
156 aligned_intervals = []
157 for j in range(0, time_interval_count):
158 aligned_intervals.append((
159 j * time_qtm_ms,
160 [ 0.0 for j in range(0, bucket_count) ] ))
161
162 log_record_count = len(raw_histogram_log)
163 for k, record in enumerate(raw_histogram_log):
164
165 # find next record with same direction to get end-time
166 # have to avoid going past end of array
167 # for fio randrw workload,
168 # we have read and write records on same time interval
169 # sometimes read and write records are in opposite order
170 # assertion checks that next read/write record
171 # can be separated by at most 2 other records
172
173 (time_msec, direction, sz, interval_buckets) = record
174 if k+1 < log_record_count:
175 (time_msec_end, direction2, _, _) = raw_histogram_log[k+1]
176 if direction2 != direction:
177 if k+2 < log_record_count:
178 (time_msec_end, direction2, _, _) = raw_histogram_log[k+2]
179 if direction2 != direction:
180 if k+3 < log_record_count:
181 (time_msec_end, direction2, _, _) = raw_histogram_log[k+3]
182 assert direction2 == direction
183 else:
184 time_msec_end = end_time_ms
185 else:
186 time_msec_end = end_time_ms
187 else:
188 time_msec_end = end_time_ms
189
190 # calculate first quantum that overlaps this histogram record
191
192 qtm_start_ms = (time_msec // time_qtm_ms) * time_qtm_ms
193 qtm_end_ms = ((time_msec + time_qtm_ms) // time_qtm_ms) * time_qtm_ms
194 qtm_index = qtm_start_ms // time_qtm_ms
195
196 # for each quantum that overlaps this histogram record's time interval
197
198 while qtm_start_ms < time_msec_end: # while quantum overlaps record
199
200 # calculate fraction of time that this quantum
201 # overlaps histogram record's time interval
202
203 overlap_start = max(qtm_start_ms, time_msec)
204 overlap_end = min(qtm_end_ms, time_msec_end)
205 weight = float(overlap_end - overlap_start)
206 weight /= (time_msec_end - time_msec)
207 (_,aligned_histogram) = aligned_intervals[qtm_index]
208 for bx, b in enumerate(interval_buckets):
209 weighted_bucket = weight * b
210 aligned_histogram[bx] += weighted_bucket
211
212 # advance to the next time quantum
213
214 qtm_start_ms += time_qtm_ms
215 qtm_end_ms += time_qtm_ms
216 qtm_index += 1
217
218 return aligned_intervals
219
220# add histogram in "source" to histogram in "target"
221# it is assumed that the 2 histograms are precisely time-aligned
222
223def add_to_histo_from( target, source ):
224 for b in range(0, len(source)):
225 target[b] += source[b]
226
227# compute percentiles
228# inputs:
229# buckets: histogram bucket array
230# wanted: list of floating-pt percentiles to calculate
231# time_ranges: [tmin,tmax) time interval for each bucket
232# returns None if no I/O reported.
233# otherwise we would be dividing by zero
234# think of buckets as probability distribution function
235# and this loop is integrating to get cumulative distribution function
236
237def get_pctiles(buckets, wanted, time_ranges):
238
239 # get total of IO requests done
240 total_ios = 0
241 for io_count in buckets:
242 total_ios += io_count
243
244 # don't return percentiles if no I/O was done during interval
245 if total_ios == 0.0:
246 return None
247
248 pctile_count = len(wanted)
249
250 # results returned as dictionary keyed by percentile
251 pctile_result = {}
252
253 # index of next percentile in list
254 pctile_index = 0
255
256 # next percentile
257 next_pctile = wanted[pctile_index]
258
259 # no one is interested in percentiles bigger than this but not 100.0
260 # this prevents floating-point error from preventing loop exit
261 almost_100 = 99.9999
262
263 # pct is the percentile corresponding to
264 # all I/O requests up through bucket b
265 pct = 0.0
266 total_so_far = 0
267 for b, io_count in enumerate(buckets):
268 if io_count == 0:
269 continue
270 total_so_far += io_count
271 # last_pct_lt is the percentile corresponding to
272 # all I/O requests up to, but not including, bucket b
273 last_pct = pct
274 pct = 100.0 * float(total_so_far) / total_ios
275 # a single bucket could satisfy multiple pctiles
276 # so this must be a while loop
277 # for 100-percentile (max latency) case, no bucket exceeds it
278 # so we must stop there.
279 while ((next_pctile == 100.0 and pct >= almost_100) or
280 (next_pctile < 100.0 and pct > next_pctile)):
281 # interpolate between min and max time for bucket time interval
282 # we keep the time_ranges access inside this loop,
283 # even though it could be above the loop,
284 # because in many cases we will not be even entering
285 # the loop so we optimize out these accesses
286 range_max_time = time_ranges[b][1]
287 range_min_time = time_ranges[b][0]
288 offset_frac = (next_pctile - last_pct)/(pct - last_pct)
289 interpolation = range_min_time + (offset_frac*(range_max_time - range_min_time))
290 pctile_result[next_pctile] = interpolation
291 pctile_index += 1
292 if pctile_index == pctile_count:
293 break
294 next_pctile = wanted[pctile_index]
295 if pctile_index == pctile_count:
296 break
297 assert pctile_index == pctile_count
298 return pctile_result
299
300
301# this is really the main program
302
303def compute_percentiles_from_logs():
304 parser = argparse.ArgumentParser()
305 parser.add_argument("--fio-version", dest="fio_version",
306 default="3", choices=[2,3], type=int,
307 help="fio version (default=3)")
308 parser.add_argument("--bucket-groups", dest="bucket_groups", default="29", type=int,
309 help="fio histogram bucket groups (default=29)")
310 parser.add_argument("--bucket-bits", dest="bucket_bits",
311 default="6", type=int,
312 help="fio histogram buckets-per-group bits (default=6 means 64 buckets/group)")
313 parser.add_argument("--percentiles", dest="pctiles_wanted",
314 default=[ 0., 50., 95., 99., 100.], type=float, nargs='+',
315 help="fio histogram buckets-per-group bits (default=6 means 64 buckets/group)")
316 parser.add_argument("--time-quantum", dest="time_quantum",
317 default="1", type=int,
318 help="time quantum in seconds (default=1)")
319 parser.add_argument("--output-unit", dest="output_unit",
320 default="usec", type=str,
321 help="Latency percentile output unit: msec|usec|nsec (default usec)")
322 parser.add_argument("file_list", nargs='+',
323 help='list of files, preceded by " -- " if necessary')
324 args = parser.parse_args()
325
326 # default changes based on fio version
327 if args.fio_version == 2:
328 args.bucket_groups = 19
329
330 # print parameters
331
332 print('fio version = %d' % args.fio_version)
333 print('bucket groups = %d' % args.bucket_groups)
334 print('bucket bits = %d' % args.bucket_bits)
335 print('time quantum = %d sec' % args.time_quantum)
336 print('percentiles = %s' % ','.join([ str(p) for p in args.pctiles_wanted ]))
337 buckets_per_group = 1 << args.bucket_bits
338 print('buckets per group = %d' % buckets_per_group)
339 buckets_per_interval = buckets_per_group * args.bucket_groups
340 print('buckets per interval = %d ' % buckets_per_interval)
341 bucket_index_range = range(0, buckets_per_interval)
342 if args.time_quantum == 0:
343 print('ERROR: time-quantum must be a positive number of seconds')
344 print('output unit = ' + args.output_unit)
345 if args.output_unit == 'msec':
346 time_divisor = 1000.0
347 elif args.output_unit == 'usec':
348 time_divisor = 1.0
349
350 # calculate response time interval associated with each histogram bucket
351
352 bucket_times = time_ranges(args.bucket_groups, buckets_per_group, fio_version=args.fio_version)
353
354 # construct template for each histogram bucket array with buckets all zeroes
355 # we just copy this for each new histogram
356
357 zeroed_buckets = [ 0.0 for r in bucket_index_range ]
358
359 # print CSV header just like fiologparser_hist does
360
361 header = 'msec, '
362 for p in args.pctiles_wanted:
363 header += '%3.1f, ' % p
364 print('time (millisec), percentiles in increasing order with values in ' + args.output_unit)
365 print(header)
366
367 # parse the histogram logs
368 # assumption: each bucket has a monotonically increasing time
369 # assumption: time ranges do not overlap for a single thread's records
370 # (exception: if randrw workload, then there is a read and a write
371 # record for the same time interval)
372
373 max_timestamp_all_logs = 0
374 hist_files = {}
375 for fn in args.file_list:
376 try:
377 (hist_files[fn], max_timestamp_ms) = parse_hist_file(fn, buckets_per_interval)
378 except FioHistoLogExc as e:
379 myabort(str(e))
380 max_timestamp_all_logs = max(max_timestamp_all_logs, max_timestamp_ms)
381
382 (end_time, time_interval_count) = get_time_intervals(args.time_quantum, max_timestamp_all_logs)
383 all_threads_histograms = [ ((j*args.time_quantum*msec_per_sec), deepcopy(zeroed_buckets))
384 for j in range(0, time_interval_count) ]
385
386 for logfn in hist_files.keys():
387 aligned_per_thread = align_histo_log(hist_files[logfn],
388 args.time_quantum,
389 buckets_per_interval,
390 max_timestamp_all_logs)
391 for t in range(0, time_interval_count):
392 (_, all_threads_histo_t) = all_threads_histograms[t]
393 (_, log_histo_t) = aligned_per_thread[t]
394 add_to_histo_from( all_threads_histo_t, log_histo_t )
395
396 # calculate percentiles across aggregate histogram for all threads
397
398 for (t_msec, all_threads_histo_t) in all_threads_histograms:
399 record = '%d, ' % t_msec
400 pct = get_pctiles(all_threads_histo_t, args.pctiles_wanted, bucket_times)
401 if not pct:
402 for w in args.pctiles_wanted:
403 record += ', '
404 else:
405 pct_keys = [ k for k in pct.keys() ]
406 pct_values = [ str(pct[wanted]/time_divisor) for wanted in sorted(pct_keys) ]
407 record += ', '.join(pct_values)
408 print(record)
409
410
411
412#end of MAIN PROGRAM
413
414
415
416##### below are unit tests ##############
417
418import tempfile, shutil
419from os.path import join
420should_not_get_here = False
421
422class Test(unittest2.TestCase):
423 tempdir = None
424
425 # a little less typing please
426 def A(self, boolean_val):
427 self.assertTrue(boolean_val)
428
429 # initialize unit test environment
430
431 @classmethod
432 def setUpClass(cls):
433 d = tempfile.mkdtemp()
434 Test.tempdir = d
435
436 # remove anything left by unit test environment
437 # unless user sets UNITTEST_LEAVE_FILES environment variable
438
439 @classmethod
440 def tearDownClass(cls):
441 if not os.getenv("UNITTEST_LEAVE_FILES"):
442 shutil.rmtree(cls.tempdir)
443
444 def setUp(self):
445 self.fn = join(Test.tempdir, self.id())
446
447 def test_a_add_histos(self):
448 a = [ 1.0, 2.0 ]
449 b = [ 1.5, 2.5 ]
450 add_to_histo_from( a, b )
451 self.A(a == [2.5, 4.5])
452 self.A(b == [1.5, 2.5])
453
454 def test_b1_parse_log(self):
455 with open(self.fn, 'w') as f:
456 f.write('1234, 0, 4096, 1, 2, 3, 4\n')
457 f.write('5678,1,16384,5,6,7,8 \n')
458 (raw_histo_log, max_timestamp) = parse_hist_file(self.fn, 4) # 4 buckets per interval
459 self.A(len(raw_histo_log) == 2 and max_timestamp == 5678)
460 (time_ms, direction, bsz, histo) = raw_histo_log[0]
461 self.A(time_ms == 1234 and direction == 0 and bsz == 4096 and histo == [ 1, 2, 3, 4 ])
462 (time_ms, direction, bsz, histo) = raw_histo_log[1]
463 self.A(time_ms == 5678 and direction == 1 and bsz == 16384 and histo == [ 5, 6, 7, 8 ])
464
465 def test_b2_parse_empty_log(self):
466 with open(self.fn, 'w') as f:
467 pass
468 try:
469 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4)
470 self.A(should_not_get_here)
471 except FioHistoLogExc as e:
472 self.A(str(e).startswith('no records'))
473
474 def test_b3_parse_empty_records(self):
475 with open(self.fn, 'w') as f:
476 f.write('\n')
477 f.write('1234, 0, 4096, 1, 2, 3, 4\n')
478 f.write('5678,1,16384,5,6,7,8 \n')
479 f.write('\n')
480 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4)
481 self.A(len(raw_histo_log) == 2 and max_timestamp_ms == 5678)
482 (time_ms, direction, bsz, histo) = raw_histo_log[0]
483 self.A(time_ms == 1234 and direction == 0 and bsz == 4096 and histo == [ 1, 2, 3, 4 ])
484 (time_ms, direction, bsz, histo) = raw_histo_log[1]
485 self.A(time_ms == 5678 and direction == 1 and bsz == 16384 and histo == [ 5, 6, 7, 8 ])
486
487 def test_b4_parse_non_int(self):
488 with open(self.fn, 'w') as f:
489 f.write('12, 0, 4096, 1a, 2, 3, 4\n')
490 try:
491 (raw_histo_log, _) = parse_hist_file(self.fn, 4)
492 self.A(False)
493 except FioHistoLogExc as e:
494 self.A(str(e).startswith('non-integer'))
495
496 def test_b5_parse_neg_int(self):
497 with open(self.fn, 'w') as f:
498 f.write('-12, 0, 4096, 1, 2, 3, 4\n')
499 try:
500 (raw_histo_log, _) = parse_hist_file(self.fn, 4)
501 self.A(False)
502 except FioHistoLogExc as e:
503 self.A(str(e).startswith('negative integer'))
504
505 def test_b6_parse_too_few_int(self):
506 with open(self.fn, 'w') as f:
507 f.write('0, 0\n')
508 try:
509 (raw_histo_log, _) = parse_hist_file(self.fn, 4)
510 self.A(False)
511 except FioHistoLogExc as e:
512 self.A(str(e).startswith('too few numbers'))
513
514 def test_b7_parse_invalid_direction(self):
515 with open(self.fn, 'w') as f:
516 f.write('100, 2, 4096, 1, 2, 3, 4\n')
517 try:
518 (raw_histo_log, _) = parse_hist_file(self.fn, 4)
519 self.A(False)
520 except FioHistoLogExc as e:
521 self.A(str(e).startswith('invalid I/O direction'))
522
523 def test_b8_parse_bsz_too_big(self):
524 with open(self.fn+'_good', 'w') as f:
525 f.write('100, 1, %d, 1, 2, 3, 4\n' % (1<<24))
526 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn+'_good', 4)
527 with open(self.fn+'_bad', 'w') as f:
528 f.write('100, 1, 20000000, 1, 2, 3, 4\n')
529 try:
530 (raw_histo_log, _) = parse_hist_file(self.fn+'_bad', 4)
531 self.A(False)
532 except FioHistoLogExc as e:
533 self.A(str(e).startswith('block size too large'))
534
535 def test_b9_parse_wrong_bucket_count(self):
536 with open(self.fn, 'w') as f:
537 f.write('100, 1, %d, 1, 2, 3, 4, 5\n' % (1<<24))
538 try:
539 (raw_histo_log, _) = parse_hist_file(self.fn, 4)
540 self.A(False)
541 except FioHistoLogExc as e:
542 self.A(str(e).__contains__('buckets per interval'))
543
544 def test_c1_time_ranges(self):
545 ranges = time_ranges(3, 2) # fio_version defaults to 3
546 expected_ranges = [ # fio_version 3 is in nanoseconds
547 [0.000, 0.001], [0.001, 0.002], # first group
548 [0.002, 0.003], [0.003, 0.004], # second group same width
549 [0.004, 0.006], [0.006, 0.008]] # subsequent groups double width
550 self.A(ranges == expected_ranges)
551 ranges = time_ranges(3, 2, fio_version=3)
552 self.A(ranges == expected_ranges)
553 ranges = time_ranges(3, 2, fio_version=2)
554 expected_ranges_v2 = [ [ 1000.0 * min_or_max for min_or_max in time_range ]
555 for time_range in expected_ranges ]
556 self.A(ranges == expected_ranges_v2)
557 # see fio V3 stat.h for why 29 groups and 2^6 buckets/group
558 normal_ranges_v3 = time_ranges(29, 64)
559 # for v3, bucket time intervals are measured in nanoseconds
560 self.A(len(normal_ranges_v3) == 29 * 64 and normal_ranges_v3[-1][1] == 64*(1<<(29-1))/1000.0)
561 normal_ranges_v2 = time_ranges(19, 64, fio_version=2)
562 # for v2, bucket time intervals are measured in microseconds so we have fewer buckets
563 self.A(len(normal_ranges_v2) == 19 * 64 and normal_ranges_v2[-1][1] == 64*(1<<(19-1)))
564
565 def test_d1_align_histo_log_1_quantum(self):
566 with open(self.fn, 'w') as f:
567 f.write('100, 1, 4096, 1, 2, 3, 4')
568 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4)
569 self.A(max_timestamp_ms == 100)
570 aligned_log = align_histo_log(raw_histo_log, 5, 4, max_timestamp_ms)
571 self.A(len(aligned_log) == 1)
572 (time_ms0, h) = aligned_log[0]
573 self.A(time_ms0 == 0 and h == [1.0, 2.0, 3.0, 4.0])
574
575 # we need this to compare 2 lists of floating point numbers for equality
576 # because of floating-point imprecision
577
578 def compare_2_floats(self, x, y):
579 if x == 0.0 or y == 0.0:
580 return (x+y) < 0.0000001
581 else:
582 return (math.fabs(x-y)/x) < 0.00001
583
584 def is_close(self, buckets, buckets_expected):
585 if len(buckets) != len(buckets_expected):
586 return False
587 compare_buckets = lambda k: self.compare_2_floats(buckets[k], buckets_expected[k])
588 indices_close = list(filter(compare_buckets, range(0, len(buckets))))
589 return len(indices_close) == len(buckets)
590
591 def test_d2_align_histo_log_2_quantum(self):
592 with open(self.fn, 'w') as f:
593 f.write('2000, 1, 4096, 1, 2, 3, 4\n')
594 f.write('7000, 1, 4096, 1, 2, 3, 4\n')
595 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4)
596 self.A(max_timestamp_ms == 7000)
597 (_, _, _, raw_buckets1) = raw_histo_log[0]
598 (_, _, _, raw_buckets2) = raw_histo_log[1]
599 aligned_log = align_histo_log(raw_histo_log, 5, 4, max_timestamp_ms)
600 self.A(len(aligned_log) == 2)
601 (time_ms1, h1) = aligned_log[0]
602 (time_ms2, h2) = aligned_log[1]
603 # because first record is from time interval [2000, 7000]
604 # we weight it according
605 expect1 = [float(b) * 0.6 for b in raw_buckets1]
606 expect2 = [float(b) * 0.4 for b in raw_buckets1]
607 for e in range(0, len(expect2)):
608 expect2[e] += raw_buckets2[e]
609 self.A(time_ms1 == 0 and self.is_close(h1, expect1))
610 self.A(time_ms2 == 5000 and self.is_close(h2, expect2))
611
612 # what to expect if histogram buckets are all equal
613 def test_e1_get_pctiles_flat_histo(self):
614 with open(self.fn, 'w') as f:
615 buckets = [ 100 for j in range(0, 128) ]
616 f.write('9000, 1, 4096, %s\n' % ', '.join([str(b) for b in buckets]))
617 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 128)
618 self.A(max_timestamp_ms == 9000)
619 aligned_log = align_histo_log(raw_histo_log, 5, 128, max_timestamp_ms)
620 time_intervals = time_ranges(4, 32)
621 # since buckets are all equal, then median is halfway through time_intervals
622 # and max latency interval is at end of time_intervals
623 self.A(time_intervals[64][1] == 0.066 and time_intervals[127][1] == 0.256)
624 pctiles_wanted = [ 0, 50, 100 ]
625 pct_vs_time = []
626 for (time_ms, histo) in aligned_log:
627 pct_vs_time.append(get_pctiles(histo, pctiles_wanted, time_intervals))
628 self.A(pct_vs_time[0] == None) # no I/O in this time interval
629 expected_pctiles = { 0:0.000, 50:0.064, 100:0.256 }
630 self.A(pct_vs_time[1] == expected_pctiles)
631
632 # what to expect if just the highest histogram bucket is used
633 def test_e2_get_pctiles_highest_pct(self):
634 fio_v3_bucket_count = 29 * 64
635 with open(self.fn, 'w') as f:
636 # make a empty fio v3 histogram
637 buckets = [ 0 for j in range(0, fio_v3_bucket_count) ]
638 # add one I/O request to last bucket
639 buckets[-1] = 1
640 f.write('9000, 1, 4096, %s\n' % ', '.join([str(b) for b in buckets]))
641 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, fio_v3_bucket_count)
642 self.A(max_timestamp_ms == 9000)
643 aligned_log = align_histo_log(raw_histo_log, 5, fio_v3_bucket_count, max_timestamp_ms)
644 (time_ms, histo) = aligned_log[1]
645 time_intervals = time_ranges(29, 64)
646 expected_pctiles = { 100.0:(64*(1<<28))/1000.0 }
647 pct = get_pctiles( histo, [ 100.0 ], time_intervals )
648 self.A(pct == expected_pctiles)
649
650# we are using this module as a standalone program
651
652if __name__ == '__main__':
653 if os.getenv('UNITTEST'):
654 sys.exit(unittest2.main())
655 else:
656 compute_percentiles_from_logs()
657