steadystate: add line for output-format=normal
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/types.h>
5#include <sys/stat.h>
6#include <dirent.h>
7#include <libgen.h>
8#include <math.h>
9
10#include "fio.h"
11#include "diskutil.h"
12#include "lib/ieee754.h"
13#include "json.h"
14#include "lib/getrusage.h"
15#include "idletime.h"
16#include "lib/pow2.h"
17#include "lib/output_buffer.h"
18#include "helper_thread.h"
19#include "smalloc.h"
20
21#define LOG_MSEC_SLACK 10
22
23struct fio_mutex *stat_mutex;
24
25void clear_rusage_stat(struct thread_data *td)
26{
27 struct thread_stat *ts = &td->ts;
28
29 fio_getrusage(&td->ru_start);
30 ts->usr_time = ts->sys_time = 0;
31 ts->ctx = 0;
32 ts->minf = ts->majf = 0;
33}
34
35void update_rusage_stat(struct thread_data *td)
36{
37 struct thread_stat *ts = &td->ts;
38
39 fio_getrusage(&td->ru_end);
40 ts->usr_time += mtime_since(&td->ru_start.ru_utime,
41 &td->ru_end.ru_utime);
42 ts->sys_time += mtime_since(&td->ru_start.ru_stime,
43 &td->ru_end.ru_stime);
44 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50}
51
52/*
53 * Given a latency, return the index of the corresponding bucket in
54 * the structure tracking percentiles.
55 *
56 * (1) find the group (and error bits) that the value (latency)
57 * belongs to by looking at its MSB. (2) find the bucket number in the
58 * group by looking at the index bits.
59 *
60 */
61static unsigned int plat_val_to_idx(unsigned int val)
62{
63 unsigned int msb, error_bits, base, offset, idx;
64
65 /* Find MSB starting from bit 0 */
66 if (val == 0)
67 msb = 0;
68 else
69 msb = (sizeof(val)*8) - __builtin_clz(val) - 1;
70
71 /*
72 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73 * all bits of the sample as index
74 */
75 if (msb <= FIO_IO_U_PLAT_BITS)
76 return val;
77
78 /* Compute the number of error bits to discard*/
79 error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81 /* Compute the number of buckets before the group */
82 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84 /*
85 * Discard the error bits and apply the mask to find the
86 * index for the buckets in the group
87 */
88 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90 /* Make sure the index does not exceed (array size - 1) */
91 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94 return idx;
95}
96
97/*
98 * Convert the given index of the bucket array to the value
99 * represented by the bucket
100 */
101static unsigned int plat_idx_to_val(unsigned int idx)
102{
103 unsigned int error_bits, k, base;
104
105 assert(idx < FIO_IO_U_PLAT_NR);
106
107 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108 * all bits of the sample as index */
109 if (idx < (FIO_IO_U_PLAT_VAL << 1))
110 return idx;
111
112 /* Find the group and compute the minimum value of that group */
113 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114 base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116 /* Find its bucket number of the group */
117 k = idx % FIO_IO_U_PLAT_VAL;
118
119 /* Return the mean of the range of the bucket */
120 return base + ((k + 0.5) * (1 << error_bits));
121}
122
123static int double_cmp(const void *a, const void *b)
124{
125 const fio_fp64_t fa = *(const fio_fp64_t *) a;
126 const fio_fp64_t fb = *(const fio_fp64_t *) b;
127 int cmp = 0;
128
129 if (fa.u.f > fb.u.f)
130 cmp = 1;
131 else if (fa.u.f < fb.u.f)
132 cmp = -1;
133
134 return cmp;
135}
136
137unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138 fio_fp64_t *plist, unsigned int **output,
139 unsigned int *maxv, unsigned int *minv)
140{
141 unsigned long sum = 0;
142 unsigned int len, i, j = 0;
143 unsigned int oval_len = 0;
144 unsigned int *ovals = NULL;
145 int is_last;
146
147 *minv = -1U;
148 *maxv = 0;
149
150 len = 0;
151 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152 len++;
153
154 if (!len)
155 return 0;
156
157 /*
158 * Sort the percentile list. Note that it may already be sorted if
159 * we are using the default values, but since it's a short list this
160 * isn't a worry. Also note that this does not work for NaN values.
161 */
162 if (len > 1)
163 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165 /*
166 * Calculate bucket values, note down max and min values
167 */
168 is_last = 0;
169 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170 sum += io_u_plat[i];
171 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172 assert(plist[j].u.f <= 100.0);
173
174 if (j == oval_len) {
175 oval_len += 100;
176 ovals = realloc(ovals, oval_len * sizeof(unsigned int));
177 }
178
179 ovals[j] = plat_idx_to_val(i);
180 if (ovals[j] < *minv)
181 *minv = ovals[j];
182 if (ovals[j] > *maxv)
183 *maxv = ovals[j];
184
185 is_last = (j == len - 1);
186 if (is_last)
187 break;
188
189 j++;
190 }
191 }
192
193 *output = ovals;
194 return len;
195}
196
197/*
198 * Find and display the p-th percentile of clat
199 */
200static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201 fio_fp64_t *plist, unsigned int precision,
202 struct buf_output *out)
203{
204 unsigned int len, j = 0, minv, maxv;
205 unsigned int *ovals;
206 int is_last, per_line, scale_down;
207 char fmt[32];
208
209 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
210 if (!len)
211 goto out;
212
213 /*
214 * We default to usecs, but if the value range is such that we
215 * should scale down to msecs, do that.
216 */
217 if (minv > 2000 && maxv > 99999) {
218 scale_down = 1;
219 log_buf(out, " clat percentiles (msec):\n |");
220 } else {
221 scale_down = 0;
222 log_buf(out, " clat percentiles (usec):\n |");
223 }
224
225 snprintf(fmt, sizeof(fmt), "%%1.%uf", precision);
226 per_line = (80 - 7) / (precision + 14);
227
228 for (j = 0; j < len; j++) {
229 char fbuf[16], *ptr = fbuf;
230
231 /* for formatting */
232 if (j != 0 && (j % per_line) == 0)
233 log_buf(out, " |");
234
235 /* end of the list */
236 is_last = (j == len - 1);
237
238 if (plist[j].u.f < 10.0)
239 ptr += sprintf(fbuf, " ");
240
241 snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f);
242
243 if (scale_down)
244 ovals[j] = (ovals[j] + 999) / 1000;
245
246 log_buf(out, " %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ',');
247
248 if (is_last)
249 break;
250
251 if ((j % per_line) == per_line - 1) /* for formatting */
252 log_buf(out, "\n");
253 }
254
255out:
256 if (ovals)
257 free(ovals);
258}
259
260int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max,
261 double *mean, double *dev)
262{
263 double n = (double) is->samples;
264
265 if (n == 0)
266 return 0;
267
268 *min = is->min_val;
269 *max = is->max_val;
270 *mean = is->mean.u.f;
271
272 if (n > 1.0)
273 *dev = sqrt(is->S.u.f / (n - 1.0));
274 else
275 *dev = 0;
276
277 return 1;
278}
279
280void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
281{
282 char *p1, *p2, *p3, *p4;
283 const char *str[] = { " READ", " WRITE" , " TRIM"};
284 int i;
285
286 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
287
288 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
289 const int i2p = is_power_of_2(rs->kb_base);
290
291 if (!rs->max_run[i])
292 continue;
293
294 p1 = num2str(rs->io_kb[i], 6, rs->kb_base, i2p, 8);
295 p2 = num2str(rs->agg[i], 6, rs->kb_base, i2p, rs->unit_base);
296 p3 = num2str(rs->min_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
297 p4 = num2str(rs->max_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
298
299 log_buf(out, "%s: io=%s, aggrb=%s/s, minb=%s/s, maxb=%s/s,"
300 " mint=%llumsec, maxt=%llumsec\n",
301 rs->unified_rw_rep ? " MIXED" : str[i],
302 p1, p2, p3, p4,
303 (unsigned long long) rs->min_run[i],
304 (unsigned long long) rs->max_run[i]);
305
306 free(p1);
307 free(p2);
308 free(p3);
309 free(p4);
310 }
311}
312
313void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
314{
315 int i;
316
317 /*
318 * Do depth distribution calculations
319 */
320 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
321 if (total) {
322 io_u_dist[i] = (double) map[i] / (double) total;
323 io_u_dist[i] *= 100.0;
324 if (io_u_dist[i] < 0.1 && map[i])
325 io_u_dist[i] = 0.1;
326 } else
327 io_u_dist[i] = 0.0;
328 }
329}
330
331static void stat_calc_lat(struct thread_stat *ts, double *dst,
332 unsigned int *src, int nr)
333{
334 unsigned long total = ddir_rw_sum(ts->total_io_u);
335 int i;
336
337 /*
338 * Do latency distribution calculations
339 */
340 for (i = 0; i < nr; i++) {
341 if (total) {
342 dst[i] = (double) src[i] / (double) total;
343 dst[i] *= 100.0;
344 if (dst[i] < 0.01 && src[i])
345 dst[i] = 0.01;
346 } else
347 dst[i] = 0.0;
348 }
349}
350
351void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
352{
353 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
354}
355
356void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
357{
358 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
359}
360
361static void display_lat(const char *name, unsigned long min, unsigned long max,
362 double mean, double dev, struct buf_output *out)
363{
364 const char *base = "(usec)";
365 char *minp, *maxp;
366
367 if (!usec_to_msec(&min, &max, &mean, &dev))
368 base = "(msec)";
369
370 minp = num2str(min, 6, 1, 0, 0);
371 maxp = num2str(max, 6, 1, 0, 0);
372
373 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
374 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
375
376 free(minp);
377 free(maxp);
378}
379
380static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
381 int ddir, struct buf_output *out)
382{
383 const char *str[] = { "read ", "write", "trim" };
384 unsigned long min, max, runt;
385 unsigned long long bw, iops;
386 double mean, dev;
387 char *io_p, *bw_p, *iops_p;
388 int i2p;
389
390 assert(ddir_rw(ddir));
391
392 if (!ts->runtime[ddir])
393 return;
394
395 i2p = is_power_of_2(rs->kb_base);
396 runt = ts->runtime[ddir];
397
398 bw = (1000 * ts->io_bytes[ddir]) / runt;
399 io_p = num2str(ts->io_bytes[ddir], 6, 1, i2p, 8);
400 bw_p = num2str(bw, 6, 1, i2p, ts->unit_base);
401
402 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
403 iops_p = num2str(iops, 6, 1, 0, 0);
404
405 log_buf(out, " %s: io=%s, bw=%s/s, iops=%s, runt=%6llumsec\n",
406 rs->unified_rw_rep ? "mixed" : str[ddir],
407 io_p, bw_p, iops_p,
408 (unsigned long long) ts->runtime[ddir]);
409
410 free(io_p);
411 free(bw_p);
412 free(iops_p);
413
414 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
415 display_lat("slat", min, max, mean, dev, out);
416 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
417 display_lat("clat", min, max, mean, dev, out);
418 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
419 display_lat(" lat", min, max, mean, dev, out);
420
421 if (ts->clat_percentiles) {
422 show_clat_percentiles(ts->io_u_plat[ddir],
423 ts->clat_stat[ddir].samples,
424 ts->percentile_list,
425 ts->percentile_precision, out);
426 }
427 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
428 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
429 const char *bw_str = (rs->unit_base == 1 ? "Kbit" : "KB");
430
431 if (rs->unit_base == 1) {
432 min *= 8.0;
433 max *= 8.0;
434 mean *= 8.0;
435 dev *= 8.0;
436 }
437
438 if (rs->agg[ddir]) {
439 p_of_agg = mean * 100 / (double) rs->agg[ddir];
440 if (p_of_agg > 100.0)
441 p_of_agg = 100.0;
442 }
443
444 if (mean > fkb_base * fkb_base) {
445 min /= fkb_base;
446 max /= fkb_base;
447 mean /= fkb_base;
448 dev /= fkb_base;
449 bw_str = (rs->unit_base == 1 ? "Mbit" : "MB");
450 }
451
452 log_buf(out, " bw (%-4s/s): min=%5lu, max=%5lu, per=%3.2f%%,"
453 " avg=%5.02f, stdev=%5.02f\n", bw_str, min, max,
454 p_of_agg, mean, dev);
455 }
456}
457
458static int show_lat(double *io_u_lat, int nr, const char **ranges,
459 const char *msg, struct buf_output *out)
460{
461 int new_line = 1, i, line = 0, shown = 0;
462
463 for (i = 0; i < nr; i++) {
464 if (io_u_lat[i] <= 0.0)
465 continue;
466 shown = 1;
467 if (new_line) {
468 if (line)
469 log_buf(out, "\n");
470 log_buf(out, " lat (%s) : ", msg);
471 new_line = 0;
472 line = 0;
473 }
474 if (line)
475 log_buf(out, ", ");
476 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
477 line++;
478 if (line == 5)
479 new_line = 1;
480 }
481
482 if (shown)
483 log_buf(out, "\n");
484
485 return shown;
486}
487
488static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
489{
490 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
491 "250=", "500=", "750=", "1000=", };
492
493 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
494}
495
496static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
497{
498 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
499 "250=", "500=", "750=", "1000=", "2000=",
500 ">=2000=", };
501
502 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
503}
504
505static void show_latencies(struct thread_stat *ts, struct buf_output *out)
506{
507 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
508 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
509
510 stat_calc_lat_u(ts, io_u_lat_u);
511 stat_calc_lat_m(ts, io_u_lat_m);
512
513 show_lat_u(io_u_lat_u, out);
514 show_lat_m(io_u_lat_m, out);
515}
516
517static int block_state_category(int block_state)
518{
519 switch (block_state) {
520 case BLOCK_STATE_UNINIT:
521 return 0;
522 case BLOCK_STATE_TRIMMED:
523 case BLOCK_STATE_WRITTEN:
524 return 1;
525 case BLOCK_STATE_WRITE_FAILURE:
526 case BLOCK_STATE_TRIM_FAILURE:
527 return 2;
528 default:
529 /* Silence compile warning on some BSDs and have a return */
530 assert(0);
531 return -1;
532 }
533}
534
535static int compare_block_infos(const void *bs1, const void *bs2)
536{
537 uint32_t block1 = *(uint32_t *)bs1;
538 uint32_t block2 = *(uint32_t *)bs2;
539 int state1 = BLOCK_INFO_STATE(block1);
540 int state2 = BLOCK_INFO_STATE(block2);
541 int bscat1 = block_state_category(state1);
542 int bscat2 = block_state_category(state2);
543 int cycles1 = BLOCK_INFO_TRIMS(block1);
544 int cycles2 = BLOCK_INFO_TRIMS(block2);
545
546 if (bscat1 < bscat2)
547 return -1;
548 if (bscat1 > bscat2)
549 return 1;
550
551 if (cycles1 < cycles2)
552 return -1;
553 if (cycles1 > cycles2)
554 return 1;
555
556 if (state1 < state2)
557 return -1;
558 if (state1 > state2)
559 return 1;
560
561 assert(block1 == block2);
562 return 0;
563}
564
565static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
566 fio_fp64_t *plist, unsigned int **percentiles,
567 unsigned int *types)
568{
569 int len = 0;
570 int i, nr_uninit;
571
572 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
573
574 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
575 len++;
576
577 if (!len)
578 return 0;
579
580 /*
581 * Sort the percentile list. Note that it may already be sorted if
582 * we are using the default values, but since it's a short list this
583 * isn't a worry. Also note that this does not work for NaN values.
584 */
585 if (len > 1)
586 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
587
588 nr_uninit = 0;
589 /* Start only after the uninit entries end */
590 for (nr_uninit = 0;
591 nr_uninit < nr_block_infos
592 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
593 nr_uninit ++)
594 ;
595
596 if (nr_uninit == nr_block_infos)
597 return 0;
598
599 *percentiles = calloc(len, sizeof(**percentiles));
600
601 for (i = 0; i < len; i++) {
602 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
603 + nr_uninit;
604 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
605 }
606
607 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
608 for (i = 0; i < nr_block_infos; i++)
609 types[BLOCK_INFO_STATE(block_infos[i])]++;
610
611 return len;
612}
613
614static const char *block_state_names[] = {
615 [BLOCK_STATE_UNINIT] = "unwritten",
616 [BLOCK_STATE_TRIMMED] = "trimmed",
617 [BLOCK_STATE_WRITTEN] = "written",
618 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
619 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
620};
621
622static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
623 fio_fp64_t *plist, struct buf_output *out)
624{
625 int len, pos, i;
626 unsigned int *percentiles = NULL;
627 unsigned int block_state_counts[BLOCK_STATE_COUNT];
628
629 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
630 &percentiles, block_state_counts);
631
632 log_buf(out, " block lifetime percentiles :\n |");
633 pos = 0;
634 for (i = 0; i < len; i++) {
635 uint32_t block_info = percentiles[i];
636#define LINE_LENGTH 75
637 char str[LINE_LENGTH];
638 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
639 plist[i].u.f, block_info,
640 i == len - 1 ? '\n' : ',');
641 assert(strln < LINE_LENGTH);
642 if (pos + strln > LINE_LENGTH) {
643 pos = 0;
644 log_buf(out, "\n |");
645 }
646 log_buf(out, "%s", str);
647 pos += strln;
648#undef LINE_LENGTH
649 }
650 if (percentiles)
651 free(percentiles);
652
653 log_buf(out, " states :");
654 for (i = 0; i < BLOCK_STATE_COUNT; i++)
655 log_buf(out, " %s=%u%c",
656 block_state_names[i], block_state_counts[i],
657 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
658}
659
660static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
661{
662 char *p1, *p2;
663 struct steadystate_data *ss = ts->ss;
664 unsigned long long bw_mean, iops_mean;
665 const int i2p = is_power_of_2(ts->kb_base);
666
667 if (!ss->state)
668 return;
669
670 bw_mean = steadystate_bw_mean(ss);
671 iops_mean = steadystate_iops_mean(ss);
672
673 p1 = num2str(bw_mean / ts->kb_base, 6, ts->kb_base, i2p, ts->unit_base);
674 p2 = num2str(iops_mean, 6, 1, 0, 0);
675
676 log_buf(out, " steadystate : attained=%s, bw=%s/s, iops=%s, %s%s=%.3f%s\n",
677 ss->state & __FIO_SS_ATTAINED ? "yes" : "no",
678 p1, p2,
679 ss->state & __FIO_SS_IOPS ? "iops" : "bw",
680 ss->state & __FIO_SS_SLOPE ? " slope": " mean dev",
681 ss->criterion,
682 ss->state & __FIO_SS_PCT ? "%" : "");
683
684 free(p1);
685 free(p2);
686}
687
688static void show_thread_status_normal(struct thread_stat *ts,
689 struct group_run_stats *rs,
690 struct buf_output *out)
691{
692 double usr_cpu, sys_cpu;
693 unsigned long runtime;
694 double io_u_dist[FIO_IO_U_MAP_NR];
695 time_t time_p;
696 char time_buf[32];
697
698 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
699 return;
700
701 time(&time_p);
702 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
703
704 if (!ts->error) {
705 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
706 ts->name, ts->groupid, ts->members,
707 ts->error, (int) ts->pid, time_buf);
708 } else {
709 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
710 ts->name, ts->groupid, ts->members,
711 ts->error, ts->verror, (int) ts->pid,
712 time_buf);
713 }
714
715 if (strlen(ts->description))
716 log_buf(out, " Description : [%s]\n", ts->description);
717
718 if (ts->io_bytes[DDIR_READ])
719 show_ddir_status(rs, ts, DDIR_READ, out);
720 if (ts->io_bytes[DDIR_WRITE])
721 show_ddir_status(rs, ts, DDIR_WRITE, out);
722 if (ts->io_bytes[DDIR_TRIM])
723 show_ddir_status(rs, ts, DDIR_TRIM, out);
724
725 show_latencies(ts, out);
726
727 runtime = ts->total_run_time;
728 if (runtime) {
729 double runt = (double) runtime;
730
731 usr_cpu = (double) ts->usr_time * 100 / runt;
732 sys_cpu = (double) ts->sys_time * 100 / runt;
733 } else {
734 usr_cpu = 0;
735 sys_cpu = 0;
736 }
737
738 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
739 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
740 (unsigned long long) ts->ctx,
741 (unsigned long long) ts->majf,
742 (unsigned long long) ts->minf);
743
744 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
745 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
746 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
747 io_u_dist[1], io_u_dist[2],
748 io_u_dist[3], io_u_dist[4],
749 io_u_dist[5], io_u_dist[6]);
750
751 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
752 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
753 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
754 io_u_dist[1], io_u_dist[2],
755 io_u_dist[3], io_u_dist[4],
756 io_u_dist[5], io_u_dist[6]);
757 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
758 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
759 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
760 io_u_dist[1], io_u_dist[2],
761 io_u_dist[3], io_u_dist[4],
762 io_u_dist[5], io_u_dist[6]);
763 log_buf(out, " issued : total=r=%llu/w=%llu/d=%llu,"
764 " short=r=%llu/w=%llu/d=%llu,"
765 " drop=r=%llu/w=%llu/d=%llu\n",
766 (unsigned long long) ts->total_io_u[0],
767 (unsigned long long) ts->total_io_u[1],
768 (unsigned long long) ts->total_io_u[2],
769 (unsigned long long) ts->short_io_u[0],
770 (unsigned long long) ts->short_io_u[1],
771 (unsigned long long) ts->short_io_u[2],
772 (unsigned long long) ts->drop_io_u[0],
773 (unsigned long long) ts->drop_io_u[1],
774 (unsigned long long) ts->drop_io_u[2]);
775 if (ts->continue_on_error) {
776 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
777 (unsigned long long)ts->total_err_count,
778 ts->first_error,
779 strerror(ts->first_error));
780 }
781 if (ts->latency_depth) {
782 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
783 (unsigned long long)ts->latency_target,
784 (unsigned long long)ts->latency_window,
785 ts->latency_percentile.u.f,
786 ts->latency_depth);
787 }
788
789 if (ts->nr_block_infos)
790 show_block_infos(ts->nr_block_infos, ts->block_infos,
791 ts->percentile_list, out);
792
793 if (ts->ss)
794 show_ss_normal(ts, out);
795}
796
797static void show_ddir_status_terse(struct thread_stat *ts,
798 struct group_run_stats *rs, int ddir,
799 struct buf_output *out)
800{
801 unsigned long min, max;
802 unsigned long long bw, iops;
803 unsigned int *ovals = NULL;
804 double mean, dev;
805 unsigned int len, minv, maxv;
806 int i;
807
808 assert(ddir_rw(ddir));
809
810 iops = bw = 0;
811 if (ts->runtime[ddir]) {
812 uint64_t runt = ts->runtime[ddir];
813
814 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
815 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
816 }
817
818 log_buf(out, ";%llu;%llu;%llu;%llu",
819 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
820 (unsigned long long) ts->runtime[ddir]);
821
822 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
823 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
824 else
825 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
826
827 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
828 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
829 else
830 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
831
832 if (ts->clat_percentiles) {
833 len = calc_clat_percentiles(ts->io_u_plat[ddir],
834 ts->clat_stat[ddir].samples,
835 ts->percentile_list, &ovals, &maxv,
836 &minv);
837 } else
838 len = 0;
839
840 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
841 if (i >= len) {
842 log_buf(out, ";0%%=0");
843 continue;
844 }
845 log_buf(out, ";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]);
846 }
847
848 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
849 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
850 else
851 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
852
853 if (ovals)
854 free(ovals);
855
856 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
857 double p_of_agg = 100.0;
858
859 if (rs->agg[ddir]) {
860 p_of_agg = mean * 100 / (double) rs->agg[ddir];
861 if (p_of_agg > 100.0)
862 p_of_agg = 100.0;
863 }
864
865 log_buf(out, ";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
866 } else
867 log_buf(out, ";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0);
868}
869
870static void add_ddir_status_json(struct thread_stat *ts,
871 struct group_run_stats *rs, int ddir, struct json_object *parent)
872{
873 unsigned long min, max;
874 unsigned long long bw;
875 unsigned int *ovals = NULL;
876 double mean, dev, iops;
877 unsigned int len, minv, maxv;
878 int i;
879 const char *ddirname[] = {"read", "write", "trim"};
880 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
881 char buf[120];
882 double p_of_agg = 100.0;
883
884 assert(ddir_rw(ddir));
885
886 if (ts->unified_rw_rep && ddir != DDIR_READ)
887 return;
888
889 dir_object = json_create_object();
890 json_object_add_value_object(parent,
891 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
892
893 bw = 0;
894 iops = 0.0;
895 if (ts->runtime[ddir]) {
896 uint64_t runt = ts->runtime[ddir];
897
898 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
899 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
900 }
901
902 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10);
903 json_object_add_value_int(dir_object, "bw", bw);
904 json_object_add_value_float(dir_object, "iops", iops);
905 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
906 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
907 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
908 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
909
910 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
911 min = max = 0;
912 mean = dev = 0.0;
913 }
914 tmp_object = json_create_object();
915 json_object_add_value_object(dir_object, "slat", tmp_object);
916 json_object_add_value_int(tmp_object, "min", min);
917 json_object_add_value_int(tmp_object, "max", max);
918 json_object_add_value_float(tmp_object, "mean", mean);
919 json_object_add_value_float(tmp_object, "stddev", dev);
920
921 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
922 min = max = 0;
923 mean = dev = 0.0;
924 }
925 tmp_object = json_create_object();
926 json_object_add_value_object(dir_object, "clat", tmp_object);
927 json_object_add_value_int(tmp_object, "min", min);
928 json_object_add_value_int(tmp_object, "max", max);
929 json_object_add_value_float(tmp_object, "mean", mean);
930 json_object_add_value_float(tmp_object, "stddev", dev);
931
932 if (ts->clat_percentiles) {
933 len = calc_clat_percentiles(ts->io_u_plat[ddir],
934 ts->clat_stat[ddir].samples,
935 ts->percentile_list, &ovals, &maxv,
936 &minv);
937 } else
938 len = 0;
939
940 percentile_object = json_create_object();
941 json_object_add_value_object(tmp_object, "percentile", percentile_object);
942 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
943 if (i >= len) {
944 json_object_add_value_int(percentile_object, "0.00", 0);
945 continue;
946 }
947 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
948 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
949 }
950
951 if (output_format & FIO_OUTPUT_JSON_PLUS) {
952 clat_bins_object = json_create_object();
953 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
954 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
955 snprintf(buf, sizeof(buf), "%d", i);
956 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
957 }
958 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_BITS", FIO_IO_U_PLAT_BITS);
959 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_VAL", FIO_IO_U_PLAT_VAL);
960 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_NR", FIO_IO_U_PLAT_NR);
961 }
962
963 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
964 min = max = 0;
965 mean = dev = 0.0;
966 }
967 tmp_object = json_create_object();
968 json_object_add_value_object(dir_object, "lat", tmp_object);
969 json_object_add_value_int(tmp_object, "min", min);
970 json_object_add_value_int(tmp_object, "max", max);
971 json_object_add_value_float(tmp_object, "mean", mean);
972 json_object_add_value_float(tmp_object, "stddev", dev);
973 if (ovals)
974 free(ovals);
975
976 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
977 if (rs->agg[ddir]) {
978 p_of_agg = mean * 100 / (double) rs->agg[ddir];
979 if (p_of_agg > 100.0)
980 p_of_agg = 100.0;
981 }
982 } else {
983 min = max = 0;
984 p_of_agg = mean = dev = 0.0;
985 }
986 json_object_add_value_int(dir_object, "bw_min", min);
987 json_object_add_value_int(dir_object, "bw_max", max);
988 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
989 json_object_add_value_float(dir_object, "bw_mean", mean);
990 json_object_add_value_float(dir_object, "bw_dev", dev);
991}
992
993static void show_thread_status_terse_v2(struct thread_stat *ts,
994 struct group_run_stats *rs,
995 struct buf_output *out)
996{
997 double io_u_dist[FIO_IO_U_MAP_NR];
998 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
999 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1000 double usr_cpu, sys_cpu;
1001 int i;
1002
1003 /* General Info */
1004 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1005 /* Log Read Status */
1006 show_ddir_status_terse(ts, rs, DDIR_READ, out);
1007 /* Log Write Status */
1008 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1009 /* Log Trim Status */
1010 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1011
1012 /* CPU Usage */
1013 if (ts->total_run_time) {
1014 double runt = (double) ts->total_run_time;
1015
1016 usr_cpu = (double) ts->usr_time * 100 / runt;
1017 sys_cpu = (double) ts->sys_time * 100 / runt;
1018 } else {
1019 usr_cpu = 0;
1020 sys_cpu = 0;
1021 }
1022
1023 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1024 (unsigned long long) ts->ctx,
1025 (unsigned long long) ts->majf,
1026 (unsigned long long) ts->minf);
1027
1028 /* Calc % distribution of IO depths, usecond, msecond latency */
1029 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1030 stat_calc_lat_u(ts, io_u_lat_u);
1031 stat_calc_lat_m(ts, io_u_lat_m);
1032
1033 /* Only show fixed 7 I/O depth levels*/
1034 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1035 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1036 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1037
1038 /* Microsecond latency */
1039 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1040 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1041 /* Millisecond latency */
1042 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1043 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1044 /* Additional output if continue_on_error set - default off*/
1045 if (ts->continue_on_error)
1046 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1047 log_buf(out, "\n");
1048
1049 /* Additional output if description is set */
1050 if (strlen(ts->description))
1051 log_buf(out, ";%s", ts->description);
1052
1053 log_buf(out, "\n");
1054}
1055
1056static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1057 struct group_run_stats *rs, int ver,
1058 struct buf_output *out)
1059{
1060 double io_u_dist[FIO_IO_U_MAP_NR];
1061 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1062 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1063 double usr_cpu, sys_cpu;
1064 int i;
1065
1066 /* General Info */
1067 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1068 ts->name, ts->groupid, ts->error);
1069 /* Log Read Status */
1070 show_ddir_status_terse(ts, rs, DDIR_READ, out);
1071 /* Log Write Status */
1072 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1073 /* Log Trim Status */
1074 if (ver == 4)
1075 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1076
1077 /* CPU Usage */
1078 if (ts->total_run_time) {
1079 double runt = (double) ts->total_run_time;
1080
1081 usr_cpu = (double) ts->usr_time * 100 / runt;
1082 sys_cpu = (double) ts->sys_time * 100 / runt;
1083 } else {
1084 usr_cpu = 0;
1085 sys_cpu = 0;
1086 }
1087
1088 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1089 (unsigned long long) ts->ctx,
1090 (unsigned long long) ts->majf,
1091 (unsigned long long) ts->minf);
1092
1093 /* Calc % distribution of IO depths, usecond, msecond latency */
1094 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1095 stat_calc_lat_u(ts, io_u_lat_u);
1096 stat_calc_lat_m(ts, io_u_lat_m);
1097
1098 /* Only show fixed 7 I/O depth levels*/
1099 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1100 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1101 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1102
1103 /* Microsecond latency */
1104 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1105 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1106 /* Millisecond latency */
1107 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1108 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1109
1110 /* disk util stats, if any */
1111 show_disk_util(1, NULL, out);
1112
1113 /* Additional output if continue_on_error set - default off*/
1114 if (ts->continue_on_error)
1115 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1116
1117 /* Additional output if description is set */
1118 if (strlen(ts->description))
1119 log_buf(out, ";%s", ts->description);
1120
1121 log_buf(out, "\n");
1122}
1123
1124void json_add_job_opts(struct json_object *root, const char *name,
1125 struct flist_head *opt_list, bool num_jobs)
1126{
1127 struct json_object *dir_object;
1128 struct flist_head *entry;
1129 struct print_option *p;
1130
1131 if (flist_empty(opt_list))
1132 return;
1133
1134 dir_object = json_create_object();
1135 json_object_add_value_object(root, name, dir_object);
1136
1137 flist_for_each(entry, opt_list) {
1138 const char *pos = "";
1139
1140 p = flist_entry(entry, struct print_option, list);
1141 if (!num_jobs && !strcmp(p->name, "numjobs"))
1142 continue;
1143 if (p->value)
1144 pos = p->value;
1145 json_object_add_value_string(dir_object, p->name, pos);
1146 }
1147}
1148
1149static struct json_object *show_thread_status_json(struct thread_stat *ts,
1150 struct group_run_stats *rs,
1151 struct flist_head *opt_list)
1152{
1153 struct json_object *root, *tmp;
1154 struct jobs_eta *je;
1155 double io_u_dist[FIO_IO_U_MAP_NR];
1156 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1157 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1158 double usr_cpu, sys_cpu;
1159 int i;
1160 size_t size;
1161
1162 root = json_create_object();
1163 json_object_add_value_string(root, "jobname", ts->name);
1164 json_object_add_value_int(root, "groupid", ts->groupid);
1165 json_object_add_value_int(root, "error", ts->error);
1166
1167 /* ETA Info */
1168 je = get_jobs_eta(true, &size);
1169 if (je) {
1170 json_object_add_value_int(root, "eta", je->eta_sec);
1171 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1172 }
1173
1174 if (opt_list)
1175 json_add_job_opts(root, "job options", opt_list, true);
1176
1177 add_ddir_status_json(ts, rs, DDIR_READ, root);
1178 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1179 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1180
1181 /* CPU Usage */
1182 if (ts->total_run_time) {
1183 double runt = (double) ts->total_run_time;
1184
1185 usr_cpu = (double) ts->usr_time * 100 / runt;
1186 sys_cpu = (double) ts->sys_time * 100 / runt;
1187 } else {
1188 usr_cpu = 0;
1189 sys_cpu = 0;
1190 }
1191 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1192 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1193 json_object_add_value_int(root, "ctx", ts->ctx);
1194 json_object_add_value_int(root, "majf", ts->majf);
1195 json_object_add_value_int(root, "minf", ts->minf);
1196
1197
1198 /* Calc % distribution of IO depths, usecond, msecond latency */
1199 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1200 stat_calc_lat_u(ts, io_u_lat_u);
1201 stat_calc_lat_m(ts, io_u_lat_m);
1202
1203 tmp = json_create_object();
1204 json_object_add_value_object(root, "iodepth_level", tmp);
1205 /* Only show fixed 7 I/O depth levels*/
1206 for (i = 0; i < 7; i++) {
1207 char name[20];
1208 if (i < 6)
1209 snprintf(name, 20, "%d", 1 << i);
1210 else
1211 snprintf(name, 20, ">=%d", 1 << i);
1212 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1213 }
1214
1215 tmp = json_create_object();
1216 json_object_add_value_object(root, "latency_us", tmp);
1217 /* Microsecond latency */
1218 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1219 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1220 "250", "500", "750", "1000", };
1221 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1222 }
1223 /* Millisecond latency */
1224 tmp = json_create_object();
1225 json_object_add_value_object(root, "latency_ms", tmp);
1226 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1227 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1228 "250", "500", "750", "1000", "2000",
1229 ">=2000", };
1230 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1231 }
1232
1233 /* Additional output if continue_on_error set - default off*/
1234 if (ts->continue_on_error) {
1235 json_object_add_value_int(root, "total_err", ts->total_err_count);
1236 json_object_add_value_int(root, "first_error", ts->first_error);
1237 }
1238
1239 if (ts->latency_depth) {
1240 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1241 json_object_add_value_int(root, "latency_target", ts->latency_target);
1242 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1243 json_object_add_value_int(root, "latency_window", ts->latency_window);
1244 }
1245
1246 /* Additional output if description is set */
1247 if (strlen(ts->description))
1248 json_object_add_value_string(root, "desc", ts->description);
1249
1250 if (ts->nr_block_infos) {
1251 /* Block error histogram and types */
1252 int len;
1253 unsigned int *percentiles = NULL;
1254 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1255
1256 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1257 ts->percentile_list,
1258 &percentiles, block_state_counts);
1259
1260 if (len) {
1261 struct json_object *block, *percentile_object, *states;
1262 int state;
1263 block = json_create_object();
1264 json_object_add_value_object(root, "block", block);
1265
1266 percentile_object = json_create_object();
1267 json_object_add_value_object(block, "percentiles",
1268 percentile_object);
1269 for (i = 0; i < len; i++) {
1270 char buf[20];
1271 snprintf(buf, sizeof(buf), "%f",
1272 ts->percentile_list[i].u.f);
1273 json_object_add_value_int(percentile_object,
1274 (const char *)buf,
1275 percentiles[i]);
1276 }
1277
1278 states = json_create_object();
1279 json_object_add_value_object(block, "states", states);
1280 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1281 json_object_add_value_int(states,
1282 block_state_names[state],
1283 block_state_counts[state]);
1284 }
1285 free(percentiles);
1286 }
1287 }
1288
1289 if (ts->ss) {
1290 struct json_object *data;
1291 struct json_array *iops, *bw;
1292 struct steadystate_data *ss = ts->ss;
1293 int i, j, k;
1294 char ss_buf[64];
1295
1296 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1297 ss->state & __FIO_SS_IOPS ? "iops" : "bw",
1298 ss->state & __FIO_SS_SLOPE ? "_slope" : "",
1299 (float) ss->limit,
1300 ss->state & __FIO_SS_PCT ? "%" : "");
1301
1302 tmp = json_create_object();
1303 json_object_add_value_object(root, "steadystate", tmp);
1304 json_object_add_value_string(tmp, "ss", ss_buf);
1305 json_object_add_value_int(tmp, "duration", (int)ss->dur);
1306 json_object_add_value_int(tmp, "steadystate_ramptime", ss->ramp_time / 1000000L);
1307 json_object_add_value_int(tmp, "attained", (ss->state & __FIO_SS_ATTAINED) > 0);
1308
1309 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ss->criterion,
1310 ss->state & __FIO_SS_PCT ? "%" : "");
1311 json_object_add_value_string(tmp, "criterion", ss_buf);
1312 json_object_add_value_float(tmp, "max_deviation", ss->deviation);
1313 json_object_add_value_float(tmp, "slope", ss->slope);
1314
1315 data = json_create_object();
1316 json_object_add_value_object(tmp, "data", data);
1317 bw = json_create_array();
1318 iops = json_create_array();
1319
1320 /*
1321 ** if ss was attained or the buffer is not full,
1322 ** ss->head points to the first element in the list.
1323 ** otherwise it actually points to the second element
1324 ** in the list
1325 */
1326 if ((ss->state & __FIO_SS_ATTAINED) || ss->sum_y == 0)
1327 j = ss->head;
1328 else
1329 j = ss->head == 0 ? ss->dur - 1 : ss->head - 1;
1330 for (i = 0; i < ss->dur; i++) {
1331 k = (j + i) % ss->dur;
1332 json_array_add_value_int(bw, ss->bw_data[k]);
1333 json_array_add_value_int(iops, ss->iops_data[k]);
1334 }
1335 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ss));
1336 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ss));
1337 json_object_add_value_array(data, "iops", iops);
1338 json_object_add_value_array(data, "bw", bw);
1339 }
1340
1341 return root;
1342}
1343
1344static void show_thread_status_terse(struct thread_stat *ts,
1345 struct group_run_stats *rs,
1346 struct buf_output *out)
1347{
1348 if (terse_version == 2)
1349 show_thread_status_terse_v2(ts, rs, out);
1350 else if (terse_version == 3 || terse_version == 4)
1351 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1352 else
1353 log_err("fio: bad terse version!? %d\n", terse_version);
1354}
1355
1356struct json_object *show_thread_status(struct thread_stat *ts,
1357 struct group_run_stats *rs,
1358 struct flist_head *opt_list,
1359 struct buf_output *out)
1360{
1361 struct json_object *ret = NULL;
1362
1363 if (output_format & FIO_OUTPUT_TERSE)
1364 show_thread_status_terse(ts, rs, out);
1365 if (output_format & FIO_OUTPUT_JSON)
1366 ret = show_thread_status_json(ts, rs, opt_list);
1367 if (output_format & FIO_OUTPUT_NORMAL)
1368 show_thread_status_normal(ts, rs, out);
1369
1370 return ret;
1371}
1372
1373static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1374{
1375 double mean, S;
1376
1377 if (src->samples == 0)
1378 return;
1379
1380 dst->min_val = min(dst->min_val, src->min_val);
1381 dst->max_val = max(dst->max_val, src->max_val);
1382
1383 /*
1384 * Compute new mean and S after the merge
1385 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1386 * #Parallel_algorithm>
1387 */
1388 if (first) {
1389 mean = src->mean.u.f;
1390 S = src->S.u.f;
1391 } else {
1392 double delta = src->mean.u.f - dst->mean.u.f;
1393
1394 mean = ((src->mean.u.f * src->samples) +
1395 (dst->mean.u.f * dst->samples)) /
1396 (dst->samples + src->samples);
1397
1398 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1399 (dst->samples * src->samples) /
1400 (dst->samples + src->samples);
1401 }
1402
1403 dst->samples += src->samples;
1404 dst->mean.u.f = mean;
1405 dst->S.u.f = S;
1406}
1407
1408void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1409{
1410 int i;
1411
1412 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1413 if (dst->max_run[i] < src->max_run[i])
1414 dst->max_run[i] = src->max_run[i];
1415 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1416 dst->min_run[i] = src->min_run[i];
1417 if (dst->max_bw[i] < src->max_bw[i])
1418 dst->max_bw[i] = src->max_bw[i];
1419 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1420 dst->min_bw[i] = src->min_bw[i];
1421
1422 dst->io_kb[i] += src->io_kb[i];
1423 dst->agg[i] += src->agg[i];
1424 }
1425
1426 if (!dst->kb_base)
1427 dst->kb_base = src->kb_base;
1428 if (!dst->unit_base)
1429 dst->unit_base = src->unit_base;
1430}
1431
1432void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1433 bool first)
1434{
1435 int l, k;
1436
1437 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1438 if (!dst->unified_rw_rep) {
1439 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1440 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1441 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1442 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1443
1444 dst->io_bytes[l] += src->io_bytes[l];
1445
1446 if (dst->runtime[l] < src->runtime[l])
1447 dst->runtime[l] = src->runtime[l];
1448 } else {
1449 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1450 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1451 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1452 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1453
1454 dst->io_bytes[0] += src->io_bytes[l];
1455
1456 if (dst->runtime[0] < src->runtime[l])
1457 dst->runtime[0] = src->runtime[l];
1458
1459 /*
1460 * We're summing to the same destination, so override
1461 * 'first' after the first iteration of the loop
1462 */
1463 first = false;
1464 }
1465 }
1466
1467 dst->usr_time += src->usr_time;
1468 dst->sys_time += src->sys_time;
1469 dst->ctx += src->ctx;
1470 dst->majf += src->majf;
1471 dst->minf += src->minf;
1472
1473 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1474 dst->io_u_map[k] += src->io_u_map[k];
1475 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1476 dst->io_u_submit[k] += src->io_u_submit[k];
1477 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1478 dst->io_u_complete[k] += src->io_u_complete[k];
1479 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1480 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1481 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1482 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1483
1484 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1485 if (!dst->unified_rw_rep) {
1486 dst->total_io_u[k] += src->total_io_u[k];
1487 dst->short_io_u[k] += src->short_io_u[k];
1488 dst->drop_io_u[k] += src->drop_io_u[k];
1489 } else {
1490 dst->total_io_u[0] += src->total_io_u[k];
1491 dst->short_io_u[0] += src->short_io_u[k];
1492 dst->drop_io_u[0] += src->drop_io_u[k];
1493 }
1494 }
1495
1496 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1497 int m;
1498
1499 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1500 if (!dst->unified_rw_rep)
1501 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1502 else
1503 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1504 }
1505 }
1506
1507 dst->total_run_time += src->total_run_time;
1508 dst->total_submit += src->total_submit;
1509 dst->total_complete += src->total_complete;
1510}
1511
1512void init_group_run_stat(struct group_run_stats *gs)
1513{
1514 int i;
1515 memset(gs, 0, sizeof(*gs));
1516
1517 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1518 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1519}
1520
1521void init_thread_stat(struct thread_stat *ts)
1522{
1523 int j;
1524
1525 memset(ts, 0, sizeof(*ts));
1526
1527 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1528 ts->lat_stat[j].min_val = -1UL;
1529 ts->clat_stat[j].min_val = -1UL;
1530 ts->slat_stat[j].min_val = -1UL;
1531 ts->bw_stat[j].min_val = -1UL;
1532 }
1533 ts->groupid = -1;
1534}
1535
1536void __show_run_stats(void)
1537{
1538 struct group_run_stats *runstats, *rs;
1539 struct thread_data *td;
1540 struct thread_stat *threadstats, *ts;
1541 int i, j, k, nr_ts, last_ts, idx;
1542 int kb_base_warned = 0;
1543 int unit_base_warned = 0;
1544 struct json_object *root = NULL;
1545 struct json_array *array = NULL;
1546 struct buf_output output[FIO_OUTPUT_NR];
1547 struct flist_head **opt_lists;
1548
1549 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1550
1551 for (i = 0; i < groupid + 1; i++)
1552 init_group_run_stat(&runstats[i]);
1553
1554 /*
1555 * find out how many threads stats we need. if group reporting isn't
1556 * enabled, it's one-per-td.
1557 */
1558 nr_ts = 0;
1559 last_ts = -1;
1560 for_each_td(td, i) {
1561 if (!td->o.group_reporting) {
1562 nr_ts++;
1563 continue;
1564 }
1565 if (last_ts == td->groupid)
1566 continue;
1567
1568 last_ts = td->groupid;
1569 nr_ts++;
1570 }
1571
1572 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1573 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1574
1575 for (i = 0; i < nr_ts; i++) {
1576 init_thread_stat(&threadstats[i]);
1577 opt_lists[i] = NULL;
1578 }
1579
1580 j = 0;
1581 last_ts = -1;
1582 idx = 0;
1583 for_each_td(td, i) {
1584 if (idx && (!td->o.group_reporting ||
1585 (td->o.group_reporting && last_ts != td->groupid))) {
1586 idx = 0;
1587 j++;
1588 }
1589
1590 last_ts = td->groupid;
1591
1592 ts = &threadstats[j];
1593
1594 ts->clat_percentiles = td->o.clat_percentiles;
1595 ts->percentile_precision = td->o.percentile_precision;
1596 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1597 opt_lists[j] = &td->opt_list;
1598
1599 idx++;
1600 ts->members++;
1601
1602 if (ts->groupid == -1) {
1603 /*
1604 * These are per-group shared already
1605 */
1606 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1607 if (td->o.description)
1608 strncpy(ts->description, td->o.description,
1609 FIO_JOBDESC_SIZE - 1);
1610 else
1611 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1612
1613 /*
1614 * If multiple entries in this group, this is
1615 * the first member.
1616 */
1617 ts->thread_number = td->thread_number;
1618 ts->groupid = td->groupid;
1619
1620 /*
1621 * first pid in group, not very useful...
1622 */
1623 ts->pid = td->pid;
1624
1625 ts->kb_base = td->o.kb_base;
1626 ts->unit_base = td->o.unit_base;
1627 ts->unified_rw_rep = td->o.unified_rw_rep;
1628 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1629 log_info("fio: kb_base differs for jobs in group, using"
1630 " %u as the base\n", ts->kb_base);
1631 kb_base_warned = 1;
1632 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1633 log_info("fio: unit_base differs for jobs in group, using"
1634 " %u as the base\n", ts->unit_base);
1635 unit_base_warned = 1;
1636 }
1637
1638 ts->continue_on_error = td->o.continue_on_error;
1639 ts->total_err_count += td->total_err_count;
1640 ts->first_error = td->first_error;
1641 if (!ts->error) {
1642 if (!td->error && td->o.continue_on_error &&
1643 td->first_error) {
1644 ts->error = td->first_error;
1645 ts->verror[sizeof(ts->verror) - 1] = '\0';
1646 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1647 } else if (td->error) {
1648 ts->error = td->error;
1649 ts->verror[sizeof(ts->verror) - 1] = '\0';
1650 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1651 }
1652 }
1653
1654 ts->latency_depth = td->latency_qd;
1655 ts->latency_target = td->o.latency_target;
1656 ts->latency_percentile = td->o.latency_percentile;
1657 ts->latency_window = td->o.latency_window;
1658
1659 ts->nr_block_infos = td->ts.nr_block_infos;
1660 for (k = 0; k < ts->nr_block_infos; k++)
1661 ts->block_infos[k] = td->ts.block_infos[k];
1662
1663 sum_thread_stats(ts, &td->ts, idx == 1);
1664
1665 if (td->o.ss_dur)
1666 ts->ss = &td->ss;
1667 else
1668 ts->ss = NULL;
1669 }
1670
1671 for (i = 0; i < nr_ts; i++) {
1672 unsigned long long bw;
1673
1674 ts = &threadstats[i];
1675 if (ts->groupid == -1)
1676 continue;
1677 rs = &runstats[ts->groupid];
1678 rs->kb_base = ts->kb_base;
1679 rs->unit_base = ts->unit_base;
1680 rs->unified_rw_rep += ts->unified_rw_rep;
1681
1682 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1683 if (!ts->runtime[j])
1684 continue;
1685 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1686 rs->min_run[j] = ts->runtime[j];
1687 if (ts->runtime[j] > rs->max_run[j])
1688 rs->max_run[j] = ts->runtime[j];
1689
1690 bw = 0;
1691 if (ts->runtime[j]) {
1692 unsigned long runt = ts->runtime[j];
1693 unsigned long long kb;
1694
1695 kb = ts->io_bytes[j] / rs->kb_base;
1696 bw = kb * 1000 / runt;
1697 }
1698 if (bw < rs->min_bw[j])
1699 rs->min_bw[j] = bw;
1700 if (bw > rs->max_bw[j])
1701 rs->max_bw[j] = bw;
1702
1703 rs->io_kb[j] += ts->io_bytes[j] / rs->kb_base;
1704 }
1705 }
1706
1707 for (i = 0; i < groupid + 1; i++) {
1708 int ddir;
1709
1710 rs = &runstats[i];
1711
1712 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1713 if (rs->max_run[ddir])
1714 rs->agg[ddir] = (rs->io_kb[ddir] * 1000) /
1715 rs->max_run[ddir];
1716 }
1717 }
1718
1719 for (i = 0; i < FIO_OUTPUT_NR; i++)
1720 buf_output_init(&output[i]);
1721
1722 /*
1723 * don't overwrite last signal output
1724 */
1725 if (output_format & FIO_OUTPUT_NORMAL)
1726 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1727 if (output_format & FIO_OUTPUT_JSON) {
1728 struct thread_data *global;
1729 char time_buf[32];
1730 struct timeval now;
1731 unsigned long long ms_since_epoch;
1732
1733 gettimeofday(&now, NULL);
1734 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1735 (unsigned long long)(now.tv_usec) / 1000;
1736
1737 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1738 sizeof(time_buf));
1739 time_buf[strlen(time_buf) - 1] = '\0';
1740
1741 root = json_create_object();
1742 json_object_add_value_string(root, "fio version", fio_version_string);
1743 json_object_add_value_int(root, "timestamp", now.tv_sec);
1744 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1745 json_object_add_value_string(root, "time", time_buf);
1746 global = get_global_options();
1747 json_add_job_opts(root, "global options", &global->opt_list, false);
1748 array = json_create_array();
1749 json_object_add_value_array(root, "jobs", array);
1750 }
1751
1752 if (is_backend)
1753 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1754
1755 for (i = 0; i < nr_ts; i++) {
1756 ts = &threadstats[i];
1757 rs = &runstats[ts->groupid];
1758
1759 if (is_backend) {
1760 fio_server_send_job_options(opt_lists[i], i);
1761 fio_server_send_ts(ts, rs);
1762 } else {
1763 if (output_format & FIO_OUTPUT_TERSE)
1764 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1765 if (output_format & FIO_OUTPUT_JSON) {
1766 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1767 json_array_add_value_object(array, tmp);
1768 }
1769 if (output_format & FIO_OUTPUT_NORMAL)
1770 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1771 }
1772 }
1773 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1774 /* disk util stats, if any */
1775 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1776
1777 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1778
1779 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1780 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1781 json_free_object(root);
1782 }
1783
1784 for (i = 0; i < groupid + 1; i++) {
1785 rs = &runstats[i];
1786
1787 rs->groupid = i;
1788 if (is_backend)
1789 fio_server_send_gs(rs);
1790 else if (output_format & FIO_OUTPUT_NORMAL)
1791 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1792 }
1793
1794 if (is_backend)
1795 fio_server_send_du();
1796 else if (output_format & FIO_OUTPUT_NORMAL) {
1797 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1798 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1799 }
1800
1801 for (i = 0; i < FIO_OUTPUT_NR; i++) {
1802 buf_output_flush(&output[i]);
1803 buf_output_free(&output[i]);
1804 }
1805
1806 log_info_flush();
1807 free(runstats);
1808 free(threadstats);
1809 free(opt_lists);
1810}
1811
1812void show_run_stats(void)
1813{
1814 fio_mutex_down(stat_mutex);
1815 __show_run_stats();
1816 fio_mutex_up(stat_mutex);
1817}
1818
1819void __show_running_run_stats(void)
1820{
1821 struct thread_data *td;
1822 unsigned long long *rt;
1823 struct timeval tv;
1824 int i;
1825
1826 fio_mutex_down(stat_mutex);
1827
1828 rt = malloc(thread_number * sizeof(unsigned long long));
1829 fio_gettime(&tv, NULL);
1830
1831 for_each_td(td, i) {
1832 td->update_rusage = 1;
1833 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1834 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1835 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1836 td->ts.total_run_time = mtime_since(&td->epoch, &tv);
1837
1838 rt[i] = mtime_since(&td->start, &tv);
1839 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1840 td->ts.runtime[DDIR_READ] += rt[i];
1841 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1842 td->ts.runtime[DDIR_WRITE] += rt[i];
1843 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1844 td->ts.runtime[DDIR_TRIM] += rt[i];
1845 }
1846
1847 for_each_td(td, i) {
1848 if (td->runstate >= TD_EXITED)
1849 continue;
1850 if (td->rusage_sem) {
1851 td->update_rusage = 1;
1852 fio_mutex_down(td->rusage_sem);
1853 }
1854 td->update_rusage = 0;
1855 }
1856
1857 __show_run_stats();
1858
1859 for_each_td(td, i) {
1860 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1861 td->ts.runtime[DDIR_READ] -= rt[i];
1862 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1863 td->ts.runtime[DDIR_WRITE] -= rt[i];
1864 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1865 td->ts.runtime[DDIR_TRIM] -= rt[i];
1866 }
1867
1868 free(rt);
1869 fio_mutex_up(stat_mutex);
1870}
1871
1872static int status_interval_init;
1873static struct timeval status_time;
1874static int status_file_disabled;
1875
1876#define FIO_STATUS_FILE "fio-dump-status"
1877
1878static int check_status_file(void)
1879{
1880 struct stat sb;
1881 const char *temp_dir;
1882 char fio_status_file_path[PATH_MAX];
1883
1884 if (status_file_disabled)
1885 return 0;
1886
1887 temp_dir = getenv("TMPDIR");
1888 if (temp_dir == NULL) {
1889 temp_dir = getenv("TEMP");
1890 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1891 temp_dir = NULL;
1892 }
1893 if (temp_dir == NULL)
1894 temp_dir = "/tmp";
1895
1896 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1897
1898 if (stat(fio_status_file_path, &sb))
1899 return 0;
1900
1901 if (unlink(fio_status_file_path) < 0) {
1902 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1903 strerror(errno));
1904 log_err("fio: disabling status file updates\n");
1905 status_file_disabled = 1;
1906 }
1907
1908 return 1;
1909}
1910
1911void check_for_running_stats(void)
1912{
1913 if (status_interval) {
1914 if (!status_interval_init) {
1915 fio_gettime(&status_time, NULL);
1916 status_interval_init = 1;
1917 } else if (mtime_since_now(&status_time) >= status_interval) {
1918 show_running_run_stats();
1919 fio_gettime(&status_time, NULL);
1920 return;
1921 }
1922 }
1923 if (check_status_file()) {
1924 show_running_run_stats();
1925 return;
1926 }
1927}
1928
1929static inline void add_stat_sample(struct io_stat *is, unsigned long data)
1930{
1931 double val = data;
1932 double delta;
1933
1934 if (data > is->max_val)
1935 is->max_val = data;
1936 if (data < is->min_val)
1937 is->min_val = data;
1938
1939 delta = val - is->mean.u.f;
1940 if (delta) {
1941 is->mean.u.f += delta / (is->samples + 1.0);
1942 is->S.u.f += delta * (val - is->mean.u.f);
1943 }
1944
1945 is->samples++;
1946}
1947
1948/*
1949 * Return a struct io_logs, which is added to the tail of the log
1950 * list for 'iolog'.
1951 */
1952static struct io_logs *get_new_log(struct io_log *iolog)
1953{
1954 size_t new_size, new_samples;
1955 struct io_logs *cur_log;
1956
1957 /*
1958 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
1959 * forever
1960 */
1961 if (!iolog->cur_log_max)
1962 new_samples = DEF_LOG_ENTRIES;
1963 else {
1964 new_samples = iolog->cur_log_max * 2;
1965 if (new_samples > MAX_LOG_ENTRIES)
1966 new_samples = MAX_LOG_ENTRIES;
1967 }
1968
1969 new_size = new_samples * log_entry_sz(iolog);
1970
1971 cur_log = smalloc(sizeof(*cur_log));
1972 if (cur_log) {
1973 INIT_FLIST_HEAD(&cur_log->list);
1974 cur_log->log = malloc(new_size);
1975 if (cur_log->log) {
1976 cur_log->nr_samples = 0;
1977 cur_log->max_samples = new_samples;
1978 flist_add_tail(&cur_log->list, &iolog->io_logs);
1979 iolog->cur_log_max = new_samples;
1980 return cur_log;
1981 }
1982 sfree(cur_log);
1983 }
1984
1985 return NULL;
1986}
1987
1988/*
1989 * Add and return a new log chunk, or return current log if big enough
1990 */
1991static struct io_logs *regrow_log(struct io_log *iolog)
1992{
1993 struct io_logs *cur_log;
1994 int i;
1995
1996 if (!iolog || iolog->disabled)
1997 goto disable;
1998
1999 cur_log = iolog_cur_log(iolog);
2000 if (!cur_log) {
2001 cur_log = get_new_log(iolog);
2002 if (!cur_log)
2003 return NULL;
2004 }
2005
2006 if (cur_log->nr_samples < cur_log->max_samples)
2007 return cur_log;
2008
2009 /*
2010 * No room for a new sample. If we're compressing on the fly, flush
2011 * out the current chunk
2012 */
2013 if (iolog->log_gz) {
2014 if (iolog_cur_flush(iolog, cur_log)) {
2015 log_err("fio: failed flushing iolog! Will stop logging.\n");
2016 return NULL;
2017 }
2018 }
2019
2020 /*
2021 * Get a new log array, and add to our list
2022 */
2023 cur_log = get_new_log(iolog);
2024 if (!cur_log) {
2025 log_err("fio: failed extending iolog! Will stop logging.\n");
2026 return NULL;
2027 }
2028
2029 if (!iolog->pending || !iolog->pending->nr_samples)
2030 return cur_log;
2031
2032 /*
2033 * Flush pending items to new log
2034 */
2035 for (i = 0; i < iolog->pending->nr_samples; i++) {
2036 struct io_sample *src, *dst;
2037
2038 src = get_sample(iolog, iolog->pending, i);
2039 dst = get_sample(iolog, cur_log, i);
2040 memcpy(dst, src, log_entry_sz(iolog));
2041 }
2042 cur_log->nr_samples = iolog->pending->nr_samples;
2043
2044 iolog->pending->nr_samples = 0;
2045 return cur_log;
2046disable:
2047 if (iolog)
2048 iolog->disabled = true;
2049 return NULL;
2050}
2051
2052void regrow_logs(struct thread_data *td)
2053{
2054 regrow_log(td->slat_log);
2055 regrow_log(td->clat_log);
2056 regrow_log(td->clat_hist_log);
2057 regrow_log(td->lat_log);
2058 regrow_log(td->bw_log);
2059 regrow_log(td->iops_log);
2060 td->flags &= ~TD_F_REGROW_LOGS;
2061}
2062
2063static struct io_logs *get_cur_log(struct io_log *iolog)
2064{
2065 struct io_logs *cur_log;
2066
2067 cur_log = iolog_cur_log(iolog);
2068 if (!cur_log) {
2069 cur_log = get_new_log(iolog);
2070 if (!cur_log)
2071 return NULL;
2072 }
2073
2074 if (cur_log->nr_samples < cur_log->max_samples)
2075 return cur_log;
2076
2077 /*
2078 * Out of space. If we're in IO offload mode, or we're not doing
2079 * per unit logging (hence logging happens outside of the IO thread
2080 * as well), add a new log chunk inline. If we're doing inline
2081 * submissions, flag 'td' as needing a log regrow and we'll take
2082 * care of it on the submission side.
2083 */
2084 if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2085 !per_unit_log(iolog))
2086 return regrow_log(iolog);
2087
2088 iolog->td->flags |= TD_F_REGROW_LOGS;
2089 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2090 return iolog->pending;
2091}
2092
2093static void __add_log_sample(struct io_log *iolog, unsigned long val,
2094 enum fio_ddir ddir, unsigned int bs,
2095 unsigned long t, uint64_t offset)
2096{
2097 struct io_logs *cur_log;
2098
2099 if (iolog->disabled)
2100 return;
2101 if (flist_empty(&iolog->io_logs))
2102 iolog->avg_last = t;
2103
2104 cur_log = get_cur_log(iolog);
2105 if (cur_log) {
2106 struct io_sample *s;
2107
2108 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2109
2110 s->val = val;
2111 s->time = t;
2112 io_sample_set_ddir(iolog, s, ddir);
2113 s->bs = bs;
2114
2115 if (iolog->log_offset) {
2116 struct io_sample_offset *so = (void *) s;
2117
2118 so->offset = offset;
2119 }
2120
2121 cur_log->nr_samples++;
2122 return;
2123 }
2124
2125 iolog->disabled = true;
2126}
2127
2128static inline void reset_io_stat(struct io_stat *ios)
2129{
2130 ios->max_val = ios->min_val = ios->samples = 0;
2131 ios->mean.u.f = ios->S.u.f = 0;
2132}
2133
2134void reset_io_stats(struct thread_data *td)
2135{
2136 struct thread_stat *ts = &td->ts;
2137 int i, j;
2138
2139 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2140 reset_io_stat(&ts->clat_stat[i]);
2141 reset_io_stat(&ts->slat_stat[i]);
2142 reset_io_stat(&ts->lat_stat[i]);
2143 reset_io_stat(&ts->bw_stat[i]);
2144 reset_io_stat(&ts->iops_stat[i]);
2145
2146 ts->io_bytes[i] = 0;
2147 ts->runtime[i] = 0;
2148
2149 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2150 ts->io_u_plat[i][j] = 0;
2151 }
2152
2153 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2154 ts->io_u_map[i] = 0;
2155 ts->io_u_submit[i] = 0;
2156 ts->io_u_complete[i] = 0;
2157 ts->io_u_lat_u[i] = 0;
2158 ts->io_u_lat_m[i] = 0;
2159 ts->total_submit = 0;
2160 ts->total_complete = 0;
2161 }
2162
2163 for (i = 0; i < 3; i++) {
2164 ts->total_io_u[i] = 0;
2165 ts->short_io_u[i] = 0;
2166 ts->drop_io_u[i] = 0;
2167 }
2168}
2169
2170static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2171 unsigned long elapsed, bool log_max)
2172{
2173 /*
2174 * Note an entry in the log. Use the mean from the logged samples,
2175 * making sure to properly round up. Only write a log entry if we
2176 * had actual samples done.
2177 */
2178 if (iolog->avg_window[ddir].samples) {
2179 unsigned long val;
2180
2181 if (log_max)
2182 val = iolog->avg_window[ddir].max_val;
2183 else
2184 val = iolog->avg_window[ddir].mean.u.f + 0.50;
2185
2186 __add_log_sample(iolog, val, ddir, 0, elapsed, 0);
2187 }
2188
2189 reset_io_stat(&iolog->avg_window[ddir]);
2190}
2191
2192static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2193 bool log_max)
2194{
2195 int ddir;
2196
2197 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2198 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2199}
2200
2201static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2202 unsigned long val, enum fio_ddir ddir,
2203 unsigned int bs, uint64_t offset)
2204{
2205 unsigned long elapsed, this_window;
2206
2207 if (!ddir_rw(ddir))
2208 return 0;
2209
2210 elapsed = mtime_since_now(&td->epoch);
2211
2212 /*
2213 * If no time averaging, just add the log sample.
2214 */
2215 if (!iolog->avg_msec) {
2216 __add_log_sample(iolog, val, ddir, bs, elapsed, offset);
2217 return 0;
2218 }
2219
2220 /*
2221 * Add the sample. If the time period has passed, then
2222 * add that entry to the log and clear.
2223 */
2224 add_stat_sample(&iolog->avg_window[ddir], val);
2225
2226 /*
2227 * If period hasn't passed, adding the above sample is all we
2228 * need to do.
2229 */
2230 this_window = elapsed - iolog->avg_last;
2231 if (elapsed < iolog->avg_last)
2232 return iolog->avg_last - elapsed;
2233 else if (this_window < iolog->avg_msec) {
2234 int diff = iolog->avg_msec - this_window;
2235
2236 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2237 return diff;
2238 }
2239
2240 _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2241
2242 iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2243 return iolog->avg_msec;
2244}
2245
2246void finalize_logs(struct thread_data *td, bool unit_logs)
2247{
2248 unsigned long elapsed;
2249
2250 elapsed = mtime_since_now(&td->epoch);
2251
2252 if (td->clat_log && unit_logs)
2253 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2254 if (td->slat_log && unit_logs)
2255 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2256 if (td->lat_log && unit_logs)
2257 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2258 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2259 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2260 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2261 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2262}
2263
2264void add_agg_sample(unsigned long val, enum fio_ddir ddir, unsigned int bs)
2265{
2266 struct io_log *iolog;
2267
2268 if (!ddir_rw(ddir))
2269 return;
2270
2271 iolog = agg_io_log[ddir];
2272 __add_log_sample(iolog, val, ddir, bs, mtime_since_genesis(), 0);
2273}
2274
2275static void add_clat_percentile_sample(struct thread_stat *ts,
2276 unsigned long usec, enum fio_ddir ddir)
2277{
2278 unsigned int idx = plat_val_to_idx(usec);
2279 assert(idx < FIO_IO_U_PLAT_NR);
2280
2281 ts->io_u_plat[ddir][idx]++;
2282}
2283
2284void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2285 unsigned long usec, unsigned int bs, uint64_t offset)
2286{
2287 unsigned long elapsed, this_window;
2288 struct thread_stat *ts = &td->ts;
2289 struct io_log *iolog = td->clat_hist_log;
2290
2291 td_io_u_lock(td);
2292
2293 add_stat_sample(&ts->clat_stat[ddir], usec);
2294
2295 if (td->clat_log)
2296 add_log_sample(td, td->clat_log, usec, ddir, bs, offset);
2297
2298 if (ts->clat_percentiles)
2299 add_clat_percentile_sample(ts, usec, ddir);
2300
2301 if (iolog && iolog->hist_msec) {
2302 struct io_hist *hw = &iolog->hist_window[ddir];
2303
2304 hw->samples++;
2305 elapsed = mtime_since_now(&td->epoch);
2306 if (!hw->hist_last)
2307 hw->hist_last = elapsed;
2308 this_window = elapsed - hw->hist_last;
2309
2310 if (this_window >= iolog->hist_msec) {
2311 unsigned int *io_u_plat;
2312 unsigned int *dst;
2313
2314 /*
2315 * Make a byte-for-byte copy of the latency histogram
2316 * stored in td->ts.io_u_plat[ddir], recording it in a
2317 * log sample. Note that the matching call to free() is
2318 * located in iolog.c after printing this sample to the
2319 * log file.
2320 */
2321 io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2322 dst = malloc(FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2323 memcpy(dst, io_u_plat,
2324 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2325 __add_log_sample(iolog, (unsigned long )dst, ddir, bs,
2326 elapsed, offset);
2327
2328 /*
2329 * Update the last time we recorded as being now, minus
2330 * any drift in time we encountered before actually
2331 * making the record.
2332 */
2333 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2334 hw->samples = 0;
2335 }
2336 }
2337
2338 td_io_u_unlock(td);
2339}
2340
2341void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2342 unsigned long usec, unsigned int bs, uint64_t offset)
2343{
2344 struct thread_stat *ts = &td->ts;
2345
2346 if (!ddir_rw(ddir))
2347 return;
2348
2349 td_io_u_lock(td);
2350
2351 add_stat_sample(&ts->slat_stat[ddir], usec);
2352
2353 if (td->slat_log)
2354 add_log_sample(td, td->slat_log, usec, ddir, bs, offset);
2355
2356 td_io_u_unlock(td);
2357}
2358
2359void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2360 unsigned long usec, unsigned int bs, uint64_t offset)
2361{
2362 struct thread_stat *ts = &td->ts;
2363
2364 if (!ddir_rw(ddir))
2365 return;
2366
2367 td_io_u_lock(td);
2368
2369 add_stat_sample(&ts->lat_stat[ddir], usec);
2370
2371 if (td->lat_log)
2372 add_log_sample(td, td->lat_log, usec, ddir, bs, offset);
2373
2374 td_io_u_unlock(td);
2375}
2376
2377void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2378 unsigned int bytes, unsigned long spent)
2379{
2380 struct thread_stat *ts = &td->ts;
2381 unsigned long rate;
2382
2383 if (spent)
2384 rate = bytes * 1000 / spent;
2385 else
2386 rate = 0;
2387
2388 td_io_u_lock(td);
2389
2390 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2391
2392 if (td->bw_log)
2393 add_log_sample(td, td->bw_log, rate, io_u->ddir, bytes, io_u->offset);
2394
2395 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2396 td_io_u_unlock(td);
2397}
2398
2399static int add_bw_samples(struct thread_data *td, struct timeval *t)
2400{
2401 struct thread_stat *ts = &td->ts;
2402 unsigned long spent, rate;
2403 enum fio_ddir ddir;
2404 unsigned int next, next_log;
2405
2406 next_log = td->o.bw_avg_time;
2407
2408 spent = mtime_since(&td->bw_sample_time, t);
2409 if (spent < td->o.bw_avg_time &&
2410 td->o.bw_avg_time - spent >= LOG_MSEC_SLACK)
2411 return td->o.bw_avg_time - spent;
2412
2413 td_io_u_lock(td);
2414
2415 /*
2416 * Compute both read and write rates for the interval.
2417 */
2418 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2419 uint64_t delta;
2420
2421 delta = td->this_io_bytes[ddir] - td->stat_io_bytes[ddir];
2422 if (!delta)
2423 continue; /* No entries for interval */
2424
2425 if (spent)
2426 rate = delta * 1000 / spent / 1024;
2427 else
2428 rate = 0;
2429
2430 add_stat_sample(&ts->bw_stat[ddir], rate);
2431
2432 if (td->bw_log) {
2433 unsigned int bs = 0;
2434
2435 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2436 bs = td->o.min_bs[ddir];
2437
2438 next = add_log_sample(td, td->bw_log, rate, ddir, bs, 0);
2439 next_log = min(next_log, next);
2440 }
2441
2442 td->stat_io_bytes[ddir] = td->this_io_bytes[ddir];
2443 }
2444
2445 timeval_add_msec(&td->bw_sample_time, td->o.bw_avg_time);
2446
2447 td_io_u_unlock(td);
2448
2449 if (spent <= td->o.bw_avg_time)
2450 return min(next_log, td->o.bw_avg_time);
2451
2452 next = td->o.bw_avg_time - (1 + spent - td->o.bw_avg_time);
2453 return min(next, next_log);
2454}
2455
2456void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2457 unsigned int bytes)
2458{
2459 struct thread_stat *ts = &td->ts;
2460
2461 td_io_u_lock(td);
2462
2463 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2464
2465 if (td->iops_log)
2466 add_log_sample(td, td->iops_log, 1, io_u->ddir, bytes, io_u->offset);
2467
2468 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2469 td_io_u_unlock(td);
2470}
2471
2472static int add_iops_samples(struct thread_data *td, struct timeval *t)
2473{
2474 struct thread_stat *ts = &td->ts;
2475 unsigned long spent, iops;
2476 enum fio_ddir ddir;
2477 unsigned int next, next_log;
2478
2479 next_log = td->o.iops_avg_time;
2480
2481 spent = mtime_since(&td->iops_sample_time, t);
2482 if (spent < td->o.iops_avg_time &&
2483 td->o.iops_avg_time - spent >= LOG_MSEC_SLACK)
2484 return td->o.iops_avg_time - spent;
2485
2486 td_io_u_lock(td);
2487
2488 /*
2489 * Compute both read and write rates for the interval.
2490 */
2491 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2492 uint64_t delta;
2493
2494 delta = td->this_io_blocks[ddir] - td->stat_io_blocks[ddir];
2495 if (!delta)
2496 continue; /* No entries for interval */
2497
2498 if (spent)
2499 iops = (delta * 1000) / spent;
2500 else
2501 iops = 0;
2502
2503 add_stat_sample(&ts->iops_stat[ddir], iops);
2504
2505 if (td->iops_log) {
2506 unsigned int bs = 0;
2507
2508 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2509 bs = td->o.min_bs[ddir];
2510
2511 next = add_log_sample(td, td->iops_log, iops, ddir, bs, 0);
2512 next_log = min(next_log, next);
2513 }
2514
2515 td->stat_io_blocks[ddir] = td->this_io_blocks[ddir];
2516 }
2517
2518 timeval_add_msec(&td->iops_sample_time, td->o.iops_avg_time);
2519
2520 td_io_u_unlock(td);
2521
2522 if (spent <= td->o.iops_avg_time)
2523 return min(next_log, td->o.iops_avg_time);
2524
2525 next = td->o.iops_avg_time - (1 + spent - td->o.iops_avg_time);
2526 return min(next, next_log);
2527}
2528
2529/*
2530 * Returns msecs to next event
2531 */
2532int calc_log_samples(void)
2533{
2534 struct thread_data *td;
2535 unsigned int next = ~0U, tmp;
2536 struct timeval now;
2537 int i;
2538
2539 fio_gettime(&now, NULL);
2540
2541 for_each_td(td, i) {
2542 if (in_ramp_time(td) ||
2543 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2544 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2545 continue;
2546 }
2547 if (!per_unit_log(td->bw_log)) {
2548 tmp = add_bw_samples(td, &now);
2549 if (tmp < next)
2550 next = tmp;
2551 }
2552 if (!per_unit_log(td->iops_log)) {
2553 tmp = add_iops_samples(td, &now);
2554 if (tmp < next)
2555 next = tmp;
2556 }
2557 }
2558
2559 return next == ~0U ? 0 : next;
2560}
2561
2562void stat_init(void)
2563{
2564 stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2565}
2566
2567void stat_exit(void)
2568{
2569 /*
2570 * When we have the mutex, we know out-of-band access to it
2571 * have ended.
2572 */
2573 fio_mutex_down(stat_mutex);
2574 fio_mutex_remove(stat_mutex);
2575}
2576
2577/*
2578 * Called from signal handler. Wake up status thread.
2579 */
2580void show_running_run_stats(void)
2581{
2582 helper_do_stat();
2583}
2584
2585uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2586{
2587 /* Ignore io_u's which span multiple blocks--they will just get
2588 * inaccurate counts. */
2589 int idx = (io_u->offset - io_u->file->file_offset)
2590 / td->o.bs[DDIR_TRIM];
2591 uint32_t *info = &td->ts.block_infos[idx];
2592 assert(idx < td->ts.nr_block_infos);
2593 return info;
2594}