stat: don't add duplicate clat entries for json
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/types.h>
5#include <sys/stat.h>
6#include <dirent.h>
7#include <libgen.h>
8#include <math.h>
9
10#include "fio.h"
11#include "diskutil.h"
12#include "lib/ieee754.h"
13#include "json.h"
14#include "lib/getrusage.h"
15#include "idletime.h"
16#include "lib/pow2.h"
17#include "lib/output_buffer.h"
18#include "helper_thread.h"
19#include "smalloc.h"
20
21#define LOG_MSEC_SLACK 10
22
23struct fio_mutex *stat_mutex;
24
25void clear_rusage_stat(struct thread_data *td)
26{
27 struct thread_stat *ts = &td->ts;
28
29 fio_getrusage(&td->ru_start);
30 ts->usr_time = ts->sys_time = 0;
31 ts->ctx = 0;
32 ts->minf = ts->majf = 0;
33}
34
35void update_rusage_stat(struct thread_data *td)
36{
37 struct thread_stat *ts = &td->ts;
38
39 fio_getrusage(&td->ru_end);
40 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
41 &td->ru_end.ru_utime);
42 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
43 &td->ru_end.ru_stime);
44 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50}
51
52/*
53 * Given a latency, return the index of the corresponding bucket in
54 * the structure tracking percentiles.
55 *
56 * (1) find the group (and error bits) that the value (latency)
57 * belongs to by looking at its MSB. (2) find the bucket number in the
58 * group by looking at the index bits.
59 *
60 */
61static unsigned int plat_val_to_idx(unsigned long long val)
62{
63 unsigned int msb, error_bits, base, offset, idx;
64
65 /* Find MSB starting from bit 0 */
66 if (val == 0)
67 msb = 0;
68 else
69 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
70
71 /*
72 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73 * all bits of the sample as index
74 */
75 if (msb <= FIO_IO_U_PLAT_BITS)
76 return val;
77
78 /* Compute the number of error bits to discard*/
79 error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81 /* Compute the number of buckets before the group */
82 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84 /*
85 * Discard the error bits and apply the mask to find the
86 * index for the buckets in the group
87 */
88 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90 /* Make sure the index does not exceed (array size - 1) */
91 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94 return idx;
95}
96
97/*
98 * Convert the given index of the bucket array to the value
99 * represented by the bucket
100 */
101static unsigned long long plat_idx_to_val(unsigned int idx)
102{
103 unsigned int error_bits;
104 unsigned long long k, base;
105
106 assert(idx < FIO_IO_U_PLAT_NR);
107
108 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
109 * all bits of the sample as index */
110 if (idx < (FIO_IO_U_PLAT_VAL << 1))
111 return idx;
112
113 /* Find the group and compute the minimum value of that group */
114 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
115 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
116
117 /* Find its bucket number of the group */
118 k = idx % FIO_IO_U_PLAT_VAL;
119
120 /* Return the mean of the range of the bucket */
121 return base + ((k + 0.5) * (1 << error_bits));
122}
123
124static int double_cmp(const void *a, const void *b)
125{
126 const fio_fp64_t fa = *(const fio_fp64_t *) a;
127 const fio_fp64_t fb = *(const fio_fp64_t *) b;
128 int cmp = 0;
129
130 if (fa.u.f > fb.u.f)
131 cmp = 1;
132 else if (fa.u.f < fb.u.f)
133 cmp = -1;
134
135 return cmp;
136}
137
138unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long long nr,
139 fio_fp64_t *plist, unsigned long long **output,
140 unsigned long long *maxv, unsigned long long *minv)
141{
142 unsigned long long sum = 0;
143 unsigned int len, i, j = 0;
144 unsigned int oval_len = 0;
145 unsigned long long *ovals = NULL;
146 bool is_last;
147
148 *minv = -1ULL;
149 *maxv = 0;
150
151 len = 0;
152 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
153 len++;
154
155 if (!len)
156 return 0;
157
158 /*
159 * Sort the percentile list. Note that it may already be sorted if
160 * we are using the default values, but since it's a short list this
161 * isn't a worry. Also note that this does not work for NaN values.
162 */
163 if (len > 1)
164 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
165
166 /*
167 * Calculate bucket values, note down max and min values
168 */
169 is_last = false;
170 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
171 sum += io_u_plat[i];
172 while (sum >= (plist[j].u.f / 100.0 * nr)) {
173 assert(plist[j].u.f <= 100.0);
174
175 if (j == oval_len) {
176 oval_len += 100;
177 ovals = realloc(ovals, oval_len * sizeof(*ovals));
178 }
179
180 ovals[j] = plat_idx_to_val(i);
181 if (ovals[j] < *minv)
182 *minv = ovals[j];
183 if (ovals[j] > *maxv)
184 *maxv = ovals[j];
185
186 is_last = (j == len - 1) != 0;
187 if (is_last)
188 break;
189
190 j++;
191 }
192 }
193
194 *output = ovals;
195 return len;
196}
197
198/*
199 * Find and display the p-th percentile of clat
200 */
201static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long long nr,
202 fio_fp64_t *plist, unsigned int precision,
203 bool is_clat, struct buf_output *out)
204{
205 unsigned int divisor, len, i, j = 0;
206 unsigned long long minv, maxv;
207 unsigned long long *ovals;
208 int per_line, scale_down, time_width;
209 const char *pre = is_clat ? "clat" : " lat";
210 bool is_last;
211 char fmt[32];
212
213 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
214 if (!len)
215 goto out;
216
217 /*
218 * We default to nsecs, but if the value range is such that we
219 * should scale down to usecs or msecs, do that.
220 */
221 if (minv > 2000000 && maxv > 99999999ULL) {
222 scale_down = 2;
223 divisor = 1000000;
224 log_buf(out, " %s percentiles (msec):\n |", pre);
225 } else if (minv > 2000 && maxv > 99999) {
226 scale_down = 1;
227 divisor = 1000;
228 log_buf(out, " %s percentiles (usec):\n |", pre);
229 } else {
230 scale_down = 0;
231 divisor = 1;
232 log_buf(out, " %s percentiles (nsec):\n |", pre);
233 }
234
235
236 time_width = max(5, (int) (log10(maxv / divisor) + 1));
237 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
238 precision, time_width);
239 /* fmt will be something like " %5.2fth=[%4llu]%c" */
240 per_line = (80 - 7) / (precision + 10 + time_width);
241
242 for (j = 0; j < len; j++) {
243 /* for formatting */
244 if (j != 0 && (j % per_line) == 0)
245 log_buf(out, " |");
246
247 /* end of the list */
248 is_last = (j == len - 1) != 0;
249
250 for (i = 0; i < scale_down; i++)
251 ovals[j] = (ovals[j] + 999) / 1000;
252
253 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
254
255 if (is_last)
256 break;
257
258 if ((j % per_line) == per_line - 1) /* for formatting */
259 log_buf(out, "\n");
260 }
261
262out:
263 if (ovals)
264 free(ovals);
265}
266
267bool calc_lat(struct io_stat *is, unsigned long long *min,
268 unsigned long long *max, double *mean, double *dev)
269{
270 double n = (double) is->samples;
271
272 if (n == 0)
273 return false;
274
275 *min = is->min_val;
276 *max = is->max_val;
277 *mean = is->mean.u.f;
278
279 if (n > 1.0)
280 *dev = sqrt(is->S.u.f / (n - 1.0));
281 else
282 *dev = 0;
283
284 return true;
285}
286
287void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
288{
289 char *io, *agg, *min, *max;
290 char *ioalt, *aggalt, *minalt, *maxalt;
291 const char *str[] = { " READ", " WRITE" , " TRIM"};
292 int i;
293
294 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
295
296 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
297 const int i2p = is_power_of_2(rs->kb_base);
298
299 if (!rs->max_run[i])
300 continue;
301
302 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
303 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
304 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
305 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
306 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
307 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
308 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
309 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
310 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
311 rs->unified_rw_rep ? " MIXED" : str[i],
312 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
313 (unsigned long long) rs->min_run[i],
314 (unsigned long long) rs->max_run[i]);
315
316 free(io);
317 free(agg);
318 free(min);
319 free(max);
320 free(ioalt);
321 free(aggalt);
322 free(minalt);
323 free(maxalt);
324 }
325}
326
327void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
328{
329 int i;
330
331 /*
332 * Do depth distribution calculations
333 */
334 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
335 if (total) {
336 io_u_dist[i] = (double) map[i] / (double) total;
337 io_u_dist[i] *= 100.0;
338 if (io_u_dist[i] < 0.1 && map[i])
339 io_u_dist[i] = 0.1;
340 } else
341 io_u_dist[i] = 0.0;
342 }
343}
344
345static void stat_calc_lat(struct thread_stat *ts, double *dst,
346 unsigned int *src, int nr)
347{
348 unsigned long total = ddir_rw_sum(ts->total_io_u);
349 int i;
350
351 /*
352 * Do latency distribution calculations
353 */
354 for (i = 0; i < nr; i++) {
355 if (total) {
356 dst[i] = (double) src[i] / (double) total;
357 dst[i] *= 100.0;
358 if (dst[i] < 0.01 && src[i])
359 dst[i] = 0.01;
360 } else
361 dst[i] = 0.0;
362 }
363}
364
365/*
366 * To keep the terse format unaltered, add all of the ns latency
367 * buckets to the first us latency bucket
368 */
369void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
370{
371 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
372 int i;
373
374 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
375
376 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
377 ntotal += ts->io_u_lat_n[i];
378
379 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
380}
381
382void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
383{
384 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
385}
386
387void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
388{
389 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
390}
391
392void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
393{
394 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
395}
396
397static void display_lat(const char *name, unsigned long long min,
398 unsigned long long max, double mean, double dev,
399 struct buf_output *out)
400{
401 const char *base = "(nsec)";
402 char *minp, *maxp;
403
404 if (nsec_to_msec(&min, &max, &mean, &dev))
405 base = "(msec)";
406 else if (nsec_to_usec(&min, &max, &mean, &dev))
407 base = "(usec)";
408
409 minp = num2str(min, 6, 1, 0, N2S_NONE);
410 maxp = num2str(max, 6, 1, 0, N2S_NONE);
411
412 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
413 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
414
415 free(minp);
416 free(maxp);
417}
418
419static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
420 int ddir, struct buf_output *out)
421{
422 const char *str[] = { " read", "write", " trim" };
423 unsigned long runt;
424 unsigned long long min, max, bw, iops;
425 double mean, dev;
426 char *io_p, *bw_p, *bw_p_alt, *iops_p;
427 int i2p;
428
429 assert(ddir_rw(ddir));
430
431 if (!ts->runtime[ddir])
432 return;
433
434 i2p = is_power_of_2(rs->kb_base);
435 runt = ts->runtime[ddir];
436
437 bw = (1000 * ts->io_bytes[ddir]) / runt;
438 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
439 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
440 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
441
442 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
443 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
444
445 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
446 rs->unified_rw_rep ? "mixed" : str[ddir],
447 iops_p, bw_p, bw_p_alt, io_p,
448 (unsigned long long) ts->runtime[ddir]);
449
450 free(io_p);
451 free(bw_p);
452 free(bw_p_alt);
453 free(iops_p);
454
455 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
456 display_lat("slat", min, max, mean, dev, out);
457 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
458 display_lat("clat", min, max, mean, dev, out);
459 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
460 display_lat(" lat", min, max, mean, dev, out);
461
462 if (ts->clat_percentiles || ts->lat_percentiles) {
463 uint64_t samples;
464
465 if (ts->clat_percentiles)
466 samples = ts->clat_stat[ddir].samples;
467 else
468 samples = ts->lat_stat[ddir].samples;
469
470 show_clat_percentiles(ts->io_u_plat[ddir],
471 samples,
472 ts->percentile_list,
473 ts->percentile_precision,
474 ts->clat_percentiles, out);
475 }
476 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
477 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
478 const char *bw_str;
479
480 if ((rs->unit_base == 1) && i2p)
481 bw_str = "Kibit";
482 else if (rs->unit_base == 1)
483 bw_str = "kbit";
484 else if (i2p)
485 bw_str = "KiB";
486 else
487 bw_str = "kB";
488
489 if (rs->agg[ddir]) {
490 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
491 if (p_of_agg > 100.0)
492 p_of_agg = 100.0;
493 }
494
495 if (rs->unit_base == 1) {
496 min *= 8.0;
497 max *= 8.0;
498 mean *= 8.0;
499 dev *= 8.0;
500 }
501
502 if (mean > fkb_base * fkb_base) {
503 min /= fkb_base;
504 max /= fkb_base;
505 mean /= fkb_base;
506 dev /= fkb_base;
507 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
508 }
509
510 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
511 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
512 bw_str, min, max, p_of_agg, mean, dev,
513 (&ts->bw_stat[ddir])->samples);
514 }
515 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
516 log_buf(out, " iops : min=%5llu, max=%5llu, "
517 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
518 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
519 }
520}
521
522static bool show_lat(double *io_u_lat, int nr, const char **ranges,
523 const char *msg, struct buf_output *out)
524{
525 bool new_line = true, shown = false;
526 int i, line = 0;
527
528 for (i = 0; i < nr; i++) {
529 if (io_u_lat[i] <= 0.0)
530 continue;
531 shown = true;
532 if (new_line) {
533 if (line)
534 log_buf(out, "\n");
535 log_buf(out, " lat (%s) : ", msg);
536 new_line = false;
537 line = 0;
538 }
539 if (line)
540 log_buf(out, ", ");
541 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
542 line++;
543 if (line == 5)
544 new_line = true;
545 }
546
547 if (shown)
548 log_buf(out, "\n");
549
550 return true;
551}
552
553static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
554{
555 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
556 "250=", "500=", "750=", "1000=", };
557
558 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
559}
560
561static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
562{
563 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
564 "250=", "500=", "750=", "1000=", };
565
566 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
567}
568
569static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
570{
571 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
572 "250=", "500=", "750=", "1000=", "2000=",
573 ">=2000=", };
574
575 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
576}
577
578static void show_latencies(struct thread_stat *ts, struct buf_output *out)
579{
580 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
581 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
582 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
583
584 stat_calc_lat_n(ts, io_u_lat_n);
585 stat_calc_lat_u(ts, io_u_lat_u);
586 stat_calc_lat_m(ts, io_u_lat_m);
587
588 show_lat_n(io_u_lat_n, out);
589 show_lat_u(io_u_lat_u, out);
590 show_lat_m(io_u_lat_m, out);
591}
592
593static int block_state_category(int block_state)
594{
595 switch (block_state) {
596 case BLOCK_STATE_UNINIT:
597 return 0;
598 case BLOCK_STATE_TRIMMED:
599 case BLOCK_STATE_WRITTEN:
600 return 1;
601 case BLOCK_STATE_WRITE_FAILURE:
602 case BLOCK_STATE_TRIM_FAILURE:
603 return 2;
604 default:
605 /* Silence compile warning on some BSDs and have a return */
606 assert(0);
607 return -1;
608 }
609}
610
611static int compare_block_infos(const void *bs1, const void *bs2)
612{
613 uint32_t block1 = *(uint32_t *)bs1;
614 uint32_t block2 = *(uint32_t *)bs2;
615 int state1 = BLOCK_INFO_STATE(block1);
616 int state2 = BLOCK_INFO_STATE(block2);
617 int bscat1 = block_state_category(state1);
618 int bscat2 = block_state_category(state2);
619 int cycles1 = BLOCK_INFO_TRIMS(block1);
620 int cycles2 = BLOCK_INFO_TRIMS(block2);
621
622 if (bscat1 < bscat2)
623 return -1;
624 if (bscat1 > bscat2)
625 return 1;
626
627 if (cycles1 < cycles2)
628 return -1;
629 if (cycles1 > cycles2)
630 return 1;
631
632 if (state1 < state2)
633 return -1;
634 if (state1 > state2)
635 return 1;
636
637 assert(block1 == block2);
638 return 0;
639}
640
641static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
642 fio_fp64_t *plist, unsigned int **percentiles,
643 unsigned int *types)
644{
645 int len = 0;
646 int i, nr_uninit;
647
648 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
649
650 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
651 len++;
652
653 if (!len)
654 return 0;
655
656 /*
657 * Sort the percentile list. Note that it may already be sorted if
658 * we are using the default values, but since it's a short list this
659 * isn't a worry. Also note that this does not work for NaN values.
660 */
661 if (len > 1)
662 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
663
664 nr_uninit = 0;
665 /* Start only after the uninit entries end */
666 for (nr_uninit = 0;
667 nr_uninit < nr_block_infos
668 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
669 nr_uninit ++)
670 ;
671
672 if (nr_uninit == nr_block_infos)
673 return 0;
674
675 *percentiles = calloc(len, sizeof(**percentiles));
676
677 for (i = 0; i < len; i++) {
678 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
679 + nr_uninit;
680 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
681 }
682
683 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
684 for (i = 0; i < nr_block_infos; i++)
685 types[BLOCK_INFO_STATE(block_infos[i])]++;
686
687 return len;
688}
689
690static const char *block_state_names[] = {
691 [BLOCK_STATE_UNINIT] = "unwritten",
692 [BLOCK_STATE_TRIMMED] = "trimmed",
693 [BLOCK_STATE_WRITTEN] = "written",
694 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
695 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
696};
697
698static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
699 fio_fp64_t *plist, struct buf_output *out)
700{
701 int len, pos, i;
702 unsigned int *percentiles = NULL;
703 unsigned int block_state_counts[BLOCK_STATE_COUNT];
704
705 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
706 &percentiles, block_state_counts);
707
708 log_buf(out, " block lifetime percentiles :\n |");
709 pos = 0;
710 for (i = 0; i < len; i++) {
711 uint32_t block_info = percentiles[i];
712#define LINE_LENGTH 75
713 char str[LINE_LENGTH];
714 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
715 plist[i].u.f, block_info,
716 i == len - 1 ? '\n' : ',');
717 assert(strln < LINE_LENGTH);
718 if (pos + strln > LINE_LENGTH) {
719 pos = 0;
720 log_buf(out, "\n |");
721 }
722 log_buf(out, "%s", str);
723 pos += strln;
724#undef LINE_LENGTH
725 }
726 if (percentiles)
727 free(percentiles);
728
729 log_buf(out, " states :");
730 for (i = 0; i < BLOCK_STATE_COUNT; i++)
731 log_buf(out, " %s=%u%c",
732 block_state_names[i], block_state_counts[i],
733 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
734}
735
736static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
737{
738 char *p1, *p1alt, *p2;
739 unsigned long long bw_mean, iops_mean;
740 const int i2p = is_power_of_2(ts->kb_base);
741
742 if (!ts->ss_dur)
743 return;
744
745 bw_mean = steadystate_bw_mean(ts);
746 iops_mean = steadystate_iops_mean(ts);
747
748 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
749 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
750 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
751
752 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
753 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
754 p1, p1alt, p2,
755 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
756 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
757 ts->ss_criterion.u.f,
758 ts->ss_state & FIO_SS_PCT ? "%" : "");
759
760 free(p1);
761 free(p1alt);
762 free(p2);
763}
764
765static void show_thread_status_normal(struct thread_stat *ts,
766 struct group_run_stats *rs,
767 struct buf_output *out)
768{
769 double usr_cpu, sys_cpu;
770 unsigned long runtime;
771 double io_u_dist[FIO_IO_U_MAP_NR];
772 time_t time_p;
773 char time_buf[32];
774
775 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
776 return;
777
778 memset(time_buf, 0, sizeof(time_buf));
779
780 time(&time_p);
781 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
782
783 if (!ts->error) {
784 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
785 ts->name, ts->groupid, ts->members,
786 ts->error, (int) ts->pid, time_buf);
787 } else {
788 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
789 ts->name, ts->groupid, ts->members,
790 ts->error, ts->verror, (int) ts->pid,
791 time_buf);
792 }
793
794 if (strlen(ts->description))
795 log_buf(out, " Description : [%s]\n", ts->description);
796
797 if (ts->io_bytes[DDIR_READ])
798 show_ddir_status(rs, ts, DDIR_READ, out);
799 if (ts->io_bytes[DDIR_WRITE])
800 show_ddir_status(rs, ts, DDIR_WRITE, out);
801 if (ts->io_bytes[DDIR_TRIM])
802 show_ddir_status(rs, ts, DDIR_TRIM, out);
803
804 show_latencies(ts, out);
805
806 runtime = ts->total_run_time;
807 if (runtime) {
808 double runt = (double) runtime;
809
810 usr_cpu = (double) ts->usr_time * 100 / runt;
811 sys_cpu = (double) ts->sys_time * 100 / runt;
812 } else {
813 usr_cpu = 0;
814 sys_cpu = 0;
815 }
816
817 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
818 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
819 (unsigned long long) ts->ctx,
820 (unsigned long long) ts->majf,
821 (unsigned long long) ts->minf);
822
823 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
824 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
825 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
826 io_u_dist[1], io_u_dist[2],
827 io_u_dist[3], io_u_dist[4],
828 io_u_dist[5], io_u_dist[6]);
829
830 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
831 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
832 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
833 io_u_dist[1], io_u_dist[2],
834 io_u_dist[3], io_u_dist[4],
835 io_u_dist[5], io_u_dist[6]);
836 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
837 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
838 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
839 io_u_dist[1], io_u_dist[2],
840 io_u_dist[3], io_u_dist[4],
841 io_u_dist[5], io_u_dist[6]);
842 log_buf(out, " issued rwt: total=%llu,%llu,%llu,"
843 " short=%llu,%llu,%llu,"
844 " dropped=%llu,%llu,%llu\n",
845 (unsigned long long) ts->total_io_u[0],
846 (unsigned long long) ts->total_io_u[1],
847 (unsigned long long) ts->total_io_u[2],
848 (unsigned long long) ts->short_io_u[0],
849 (unsigned long long) ts->short_io_u[1],
850 (unsigned long long) ts->short_io_u[2],
851 (unsigned long long) ts->drop_io_u[0],
852 (unsigned long long) ts->drop_io_u[1],
853 (unsigned long long) ts->drop_io_u[2]);
854 if (ts->continue_on_error) {
855 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
856 (unsigned long long)ts->total_err_count,
857 ts->first_error,
858 strerror(ts->first_error));
859 }
860 if (ts->latency_depth) {
861 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
862 (unsigned long long)ts->latency_target,
863 (unsigned long long)ts->latency_window,
864 ts->latency_percentile.u.f,
865 ts->latency_depth);
866 }
867
868 if (ts->nr_block_infos)
869 show_block_infos(ts->nr_block_infos, ts->block_infos,
870 ts->percentile_list, out);
871
872 if (ts->ss_dur)
873 show_ss_normal(ts, out);
874}
875
876static void show_ddir_status_terse(struct thread_stat *ts,
877 struct group_run_stats *rs, int ddir,
878 int ver, struct buf_output *out)
879{
880 unsigned long long min, max, minv, maxv, bw, iops;
881 unsigned long long *ovals = NULL;
882 double mean, dev;
883 unsigned int len;
884 int i, bw_stat;
885
886 assert(ddir_rw(ddir));
887
888 iops = bw = 0;
889 if (ts->runtime[ddir]) {
890 uint64_t runt = ts->runtime[ddir];
891
892 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
893 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
894 }
895
896 log_buf(out, ";%llu;%llu;%llu;%llu",
897 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
898 (unsigned long long) ts->runtime[ddir]);
899
900 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
901 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
902 else
903 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
904
905 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
906 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
907 else
908 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
909
910 if (ts->clat_percentiles || ts->lat_percentiles) {
911 len = calc_clat_percentiles(ts->io_u_plat[ddir],
912 ts->clat_stat[ddir].samples,
913 ts->percentile_list, &ovals, &maxv,
914 &minv);
915 } else
916 len = 0;
917
918 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
919 if (i >= len) {
920 log_buf(out, ";0%%=0");
921 continue;
922 }
923 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
924 }
925
926 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
927 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
928 else
929 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
930
931 if (ovals)
932 free(ovals);
933
934 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
935 if (bw_stat) {
936 double p_of_agg = 100.0;
937
938 if (rs->agg[ddir]) {
939 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
940 if (p_of_agg > 100.0)
941 p_of_agg = 100.0;
942 }
943
944 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
945 } else
946 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
947
948 if (ver == 5) {
949 if (bw_stat)
950 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
951 else
952 log_buf(out, ";%lu", 0UL);
953
954 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
955 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
956 mean, dev, (&ts->iops_stat[ddir])->samples);
957 else
958 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
959 }
960}
961
962static void add_ddir_status_json(struct thread_stat *ts,
963 struct group_run_stats *rs, int ddir, struct json_object *parent)
964{
965 unsigned long long min, max, minv, maxv;
966 unsigned long long bw_bytes, bw;
967 unsigned long long *ovals = NULL;
968 double mean, dev, iops;
969 unsigned int len;
970 int i;
971 const char *ddirname[] = {"read", "write", "trim"};
972 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
973 char buf[120];
974 double p_of_agg = 100.0;
975
976 assert(ddir_rw(ddir));
977
978 if (ts->unified_rw_rep && ddir != DDIR_READ)
979 return;
980
981 dir_object = json_create_object();
982 json_object_add_value_object(parent,
983 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
984
985 bw_bytes = 0;
986 bw = 0;
987 iops = 0.0;
988 if (ts->runtime[ddir]) {
989 uint64_t runt = ts->runtime[ddir];
990
991 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
992 bw = bw_bytes / 1024; /* KiB/s */
993 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
994 }
995
996 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
997 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
998 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
999 json_object_add_value_int(dir_object, "bw", bw);
1000 json_object_add_value_float(dir_object, "iops", iops);
1001 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1002 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1003 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1004 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1005
1006 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1007 min = max = 0;
1008 mean = dev = 0.0;
1009 }
1010 tmp_object = json_create_object();
1011 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1012 json_object_add_value_int(tmp_object, "min", min);
1013 json_object_add_value_int(tmp_object, "max", max);
1014 json_object_add_value_float(tmp_object, "mean", mean);
1015 json_object_add_value_float(tmp_object, "stddev", dev);
1016
1017 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1018 min = max = 0;
1019 mean = dev = 0.0;
1020 }
1021 tmp_object = json_create_object();
1022 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1023 json_object_add_value_int(tmp_object, "min", min);
1024 json_object_add_value_int(tmp_object, "max", max);
1025 json_object_add_value_float(tmp_object, "mean", mean);
1026 json_object_add_value_float(tmp_object, "stddev", dev);
1027
1028 if (ts->clat_percentiles || ts->lat_percentiles) {
1029 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1030 ts->clat_stat[ddir].samples,
1031 ts->percentile_list, &ovals, &maxv,
1032 &minv);
1033 if (len > FIO_IO_U_LIST_MAX_LEN)
1034 len = FIO_IO_U_LIST_MAX_LEN;
1035 } else
1036 len = 0;
1037
1038 percentile_object = json_create_object();
1039 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1040 for (i = 0; i < len; i++) {
1041 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1042 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1043 }
1044
1045 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1046 clat_bins_object = json_create_object();
1047 if (ts->clat_percentiles)
1048 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1049
1050 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1051 if (ts->io_u_plat[ddir][i]) {
1052 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1053 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1054 }
1055 }
1056 }
1057
1058 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1059 min = max = 0;
1060 mean = dev = 0.0;
1061 }
1062 tmp_object = json_create_object();
1063 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1064 json_object_add_value_int(tmp_object, "min", min);
1065 json_object_add_value_int(tmp_object, "max", max);
1066 json_object_add_value_float(tmp_object, "mean", mean);
1067 json_object_add_value_float(tmp_object, "stddev", dev);
1068 if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1069 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1070
1071 if (ovals)
1072 free(ovals);
1073
1074 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1075 if (rs->agg[ddir]) {
1076 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1077 if (p_of_agg > 100.0)
1078 p_of_agg = 100.0;
1079 }
1080 } else {
1081 min = max = 0;
1082 p_of_agg = mean = dev = 0.0;
1083 }
1084 json_object_add_value_int(dir_object, "bw_min", min);
1085 json_object_add_value_int(dir_object, "bw_max", max);
1086 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1087 json_object_add_value_float(dir_object, "bw_mean", mean);
1088 json_object_add_value_float(dir_object, "bw_dev", dev);
1089 json_object_add_value_int(dir_object, "bw_samples",
1090 (&ts->bw_stat[ddir])->samples);
1091
1092 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1093 min = max = 0;
1094 mean = dev = 0.0;
1095 }
1096 json_object_add_value_int(dir_object, "iops_min", min);
1097 json_object_add_value_int(dir_object, "iops_max", max);
1098 json_object_add_value_float(dir_object, "iops_mean", mean);
1099 json_object_add_value_float(dir_object, "iops_stddev", dev);
1100 json_object_add_value_int(dir_object, "iops_samples",
1101 (&ts->iops_stat[ddir])->samples);
1102}
1103
1104static void show_thread_status_terse_all(struct thread_stat *ts,
1105 struct group_run_stats *rs, int ver,
1106 struct buf_output *out)
1107{
1108 double io_u_dist[FIO_IO_U_MAP_NR];
1109 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1110 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1111 double usr_cpu, sys_cpu;
1112 int i;
1113
1114 /* General Info */
1115 if (ver == 2)
1116 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1117 else
1118 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1119 ts->name, ts->groupid, ts->error);
1120
1121 /* Log Read Status */
1122 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1123 /* Log Write Status */
1124 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1125 /* Log Trim Status */
1126 if (ver == 2 || ver == 4 || ver == 5)
1127 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1128
1129 /* CPU Usage */
1130 if (ts->total_run_time) {
1131 double runt = (double) ts->total_run_time;
1132
1133 usr_cpu = (double) ts->usr_time * 100 / runt;
1134 sys_cpu = (double) ts->sys_time * 100 / runt;
1135 } else {
1136 usr_cpu = 0;
1137 sys_cpu = 0;
1138 }
1139
1140 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1141 (unsigned long long) ts->ctx,
1142 (unsigned long long) ts->majf,
1143 (unsigned long long) ts->minf);
1144
1145 /* Calc % distribution of IO depths, usecond, msecond latency */
1146 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1147 stat_calc_lat_nu(ts, io_u_lat_u);
1148 stat_calc_lat_m(ts, io_u_lat_m);
1149
1150 /* Only show fixed 7 I/O depth levels*/
1151 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1152 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1153 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1154
1155 /* Microsecond latency */
1156 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1157 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1158 /* Millisecond latency */
1159 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1160 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1161
1162 /* disk util stats, if any */
1163 if (ver >= 3)
1164 show_disk_util(1, NULL, out);
1165
1166 /* Additional output if continue_on_error set - default off*/
1167 if (ts->continue_on_error)
1168 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1169 if (ver == 2)
1170 log_buf(out, "\n");
1171
1172 /* Additional output if description is set */
1173 if (strlen(ts->description))
1174 log_buf(out, ";%s", ts->description);
1175
1176 log_buf(out, "\n");
1177}
1178
1179static void json_add_job_opts(struct json_object *root, const char *name,
1180 struct flist_head *opt_list, bool num_jobs)
1181{
1182 struct json_object *dir_object;
1183 struct flist_head *entry;
1184 struct print_option *p;
1185
1186 if (flist_empty(opt_list))
1187 return;
1188
1189 dir_object = json_create_object();
1190 json_object_add_value_object(root, name, dir_object);
1191
1192 flist_for_each(entry, opt_list) {
1193 const char *pos = "";
1194
1195 p = flist_entry(entry, struct print_option, list);
1196 if (!num_jobs && !strcmp(p->name, "numjobs"))
1197 continue;
1198 if (p->value)
1199 pos = p->value;
1200 json_object_add_value_string(dir_object, p->name, pos);
1201 }
1202}
1203
1204static struct json_object *show_thread_status_json(struct thread_stat *ts,
1205 struct group_run_stats *rs,
1206 struct flist_head *opt_list)
1207{
1208 struct json_object *root, *tmp;
1209 struct jobs_eta *je;
1210 double io_u_dist[FIO_IO_U_MAP_NR];
1211 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1212 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1213 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1214 double usr_cpu, sys_cpu;
1215 int i;
1216 size_t size;
1217
1218 root = json_create_object();
1219 json_object_add_value_string(root, "jobname", ts->name);
1220 json_object_add_value_int(root, "groupid", ts->groupid);
1221 json_object_add_value_int(root, "error", ts->error);
1222
1223 /* ETA Info */
1224 je = get_jobs_eta(true, &size);
1225 if (je) {
1226 json_object_add_value_int(root, "eta", je->eta_sec);
1227 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1228 }
1229
1230 if (opt_list)
1231 json_add_job_opts(root, "job options", opt_list, true);
1232
1233 add_ddir_status_json(ts, rs, DDIR_READ, root);
1234 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1235 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1236
1237 /* CPU Usage */
1238 if (ts->total_run_time) {
1239 double runt = (double) ts->total_run_time;
1240
1241 usr_cpu = (double) ts->usr_time * 100 / runt;
1242 sys_cpu = (double) ts->sys_time * 100 / runt;
1243 } else {
1244 usr_cpu = 0;
1245 sys_cpu = 0;
1246 }
1247 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1248 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1249 json_object_add_value_int(root, "ctx", ts->ctx);
1250 json_object_add_value_int(root, "majf", ts->majf);
1251 json_object_add_value_int(root, "minf", ts->minf);
1252
1253
1254 /* Calc % distribution of IO depths, usecond, msecond latency */
1255 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1256 stat_calc_lat_n(ts, io_u_lat_n);
1257 stat_calc_lat_u(ts, io_u_lat_u);
1258 stat_calc_lat_m(ts, io_u_lat_m);
1259
1260 tmp = json_create_object();
1261 json_object_add_value_object(root, "iodepth_level", tmp);
1262 /* Only show fixed 7 I/O depth levels*/
1263 for (i = 0; i < 7; i++) {
1264 char name[20];
1265 if (i < 6)
1266 snprintf(name, 20, "%d", 1 << i);
1267 else
1268 snprintf(name, 20, ">=%d", 1 << i);
1269 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1270 }
1271
1272 /* Nanosecond latency */
1273 tmp = json_create_object();
1274 json_object_add_value_object(root, "latency_ns", tmp);
1275 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1276 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1277 "250", "500", "750", "1000", };
1278 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1279 }
1280 /* Microsecond latency */
1281 tmp = json_create_object();
1282 json_object_add_value_object(root, "latency_us", tmp);
1283 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1284 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1285 "250", "500", "750", "1000", };
1286 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1287 }
1288 /* Millisecond latency */
1289 tmp = json_create_object();
1290 json_object_add_value_object(root, "latency_ms", tmp);
1291 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1292 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1293 "250", "500", "750", "1000", "2000",
1294 ">=2000", };
1295 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1296 }
1297
1298 /* Additional output if continue_on_error set - default off*/
1299 if (ts->continue_on_error) {
1300 json_object_add_value_int(root, "total_err", ts->total_err_count);
1301 json_object_add_value_int(root, "first_error", ts->first_error);
1302 }
1303
1304 if (ts->latency_depth) {
1305 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1306 json_object_add_value_int(root, "latency_target", ts->latency_target);
1307 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1308 json_object_add_value_int(root, "latency_window", ts->latency_window);
1309 }
1310
1311 /* Additional output if description is set */
1312 if (strlen(ts->description))
1313 json_object_add_value_string(root, "desc", ts->description);
1314
1315 if (ts->nr_block_infos) {
1316 /* Block error histogram and types */
1317 int len;
1318 unsigned int *percentiles = NULL;
1319 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1320
1321 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1322 ts->percentile_list,
1323 &percentiles, block_state_counts);
1324
1325 if (len) {
1326 struct json_object *block, *percentile_object, *states;
1327 int state;
1328 block = json_create_object();
1329 json_object_add_value_object(root, "block", block);
1330
1331 percentile_object = json_create_object();
1332 json_object_add_value_object(block, "percentiles",
1333 percentile_object);
1334 for (i = 0; i < len; i++) {
1335 char buf[20];
1336 snprintf(buf, sizeof(buf), "%f",
1337 ts->percentile_list[i].u.f);
1338 json_object_add_value_int(percentile_object,
1339 (const char *)buf,
1340 percentiles[i]);
1341 }
1342
1343 states = json_create_object();
1344 json_object_add_value_object(block, "states", states);
1345 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1346 json_object_add_value_int(states,
1347 block_state_names[state],
1348 block_state_counts[state]);
1349 }
1350 free(percentiles);
1351 }
1352 }
1353
1354 if (ts->ss_dur) {
1355 struct json_object *data;
1356 struct json_array *iops, *bw;
1357 int i, j, k;
1358 char ss_buf[64];
1359
1360 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1361 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1362 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1363 (float) ts->ss_limit.u.f,
1364 ts->ss_state & FIO_SS_PCT ? "%" : "");
1365
1366 tmp = json_create_object();
1367 json_object_add_value_object(root, "steadystate", tmp);
1368 json_object_add_value_string(tmp, "ss", ss_buf);
1369 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1370 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1371
1372 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1373 ts->ss_state & FIO_SS_PCT ? "%" : "");
1374 json_object_add_value_string(tmp, "criterion", ss_buf);
1375 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1376 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1377
1378 data = json_create_object();
1379 json_object_add_value_object(tmp, "data", data);
1380 bw = json_create_array();
1381 iops = json_create_array();
1382
1383 /*
1384 ** if ss was attained or the buffer is not full,
1385 ** ss->head points to the first element in the list.
1386 ** otherwise it actually points to the second element
1387 ** in the list
1388 */
1389 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1390 j = ts->ss_head;
1391 else
1392 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1393 for (i = 0; i < ts->ss_dur; i++) {
1394 k = (j + i) % ts->ss_dur;
1395 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1396 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1397 }
1398 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1399 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1400 json_object_add_value_array(data, "iops", iops);
1401 json_object_add_value_array(data, "bw", bw);
1402 }
1403
1404 return root;
1405}
1406
1407static void show_thread_status_terse(struct thread_stat *ts,
1408 struct group_run_stats *rs,
1409 struct buf_output *out)
1410{
1411 if (terse_version >= 2 && terse_version <= 5)
1412 show_thread_status_terse_all(ts, rs, terse_version, out);
1413 else
1414 log_err("fio: bad terse version!? %d\n", terse_version);
1415}
1416
1417struct json_object *show_thread_status(struct thread_stat *ts,
1418 struct group_run_stats *rs,
1419 struct flist_head *opt_list,
1420 struct buf_output *out)
1421{
1422 struct json_object *ret = NULL;
1423
1424 if (output_format & FIO_OUTPUT_TERSE)
1425 show_thread_status_terse(ts, rs, out);
1426 if (output_format & FIO_OUTPUT_JSON)
1427 ret = show_thread_status_json(ts, rs, opt_list);
1428 if (output_format & FIO_OUTPUT_NORMAL)
1429 show_thread_status_normal(ts, rs, out);
1430
1431 return ret;
1432}
1433
1434static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1435{
1436 double mean, S;
1437
1438 if (src->samples == 0)
1439 return;
1440
1441 dst->min_val = min(dst->min_val, src->min_val);
1442 dst->max_val = max(dst->max_val, src->max_val);
1443
1444 /*
1445 * Compute new mean and S after the merge
1446 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1447 * #Parallel_algorithm>
1448 */
1449 if (first) {
1450 mean = src->mean.u.f;
1451 S = src->S.u.f;
1452 } else {
1453 double delta = src->mean.u.f - dst->mean.u.f;
1454
1455 mean = ((src->mean.u.f * src->samples) +
1456 (dst->mean.u.f * dst->samples)) /
1457 (dst->samples + src->samples);
1458
1459 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1460 (dst->samples * src->samples) /
1461 (dst->samples + src->samples);
1462 }
1463
1464 dst->samples += src->samples;
1465 dst->mean.u.f = mean;
1466 dst->S.u.f = S;
1467}
1468
1469void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1470{
1471 int i;
1472
1473 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1474 if (dst->max_run[i] < src->max_run[i])
1475 dst->max_run[i] = src->max_run[i];
1476 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1477 dst->min_run[i] = src->min_run[i];
1478 if (dst->max_bw[i] < src->max_bw[i])
1479 dst->max_bw[i] = src->max_bw[i];
1480 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1481 dst->min_bw[i] = src->min_bw[i];
1482
1483 dst->iobytes[i] += src->iobytes[i];
1484 dst->agg[i] += src->agg[i];
1485 }
1486
1487 if (!dst->kb_base)
1488 dst->kb_base = src->kb_base;
1489 if (!dst->unit_base)
1490 dst->unit_base = src->unit_base;
1491 if (!dst->sig_figs)
1492 dst->sig_figs = src->sig_figs;
1493}
1494
1495void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1496 bool first)
1497{
1498 int l, k;
1499
1500 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1501 if (!dst->unified_rw_rep) {
1502 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1503 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1504 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1505 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1506 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1507
1508 dst->io_bytes[l] += src->io_bytes[l];
1509
1510 if (dst->runtime[l] < src->runtime[l])
1511 dst->runtime[l] = src->runtime[l];
1512 } else {
1513 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1514 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1515 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1516 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1517 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1518
1519 dst->io_bytes[0] += src->io_bytes[l];
1520
1521 if (dst->runtime[0] < src->runtime[l])
1522 dst->runtime[0] = src->runtime[l];
1523
1524 /*
1525 * We're summing to the same destination, so override
1526 * 'first' after the first iteration of the loop
1527 */
1528 first = false;
1529 }
1530 }
1531
1532 dst->usr_time += src->usr_time;
1533 dst->sys_time += src->sys_time;
1534 dst->ctx += src->ctx;
1535 dst->majf += src->majf;
1536 dst->minf += src->minf;
1537
1538 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1539 dst->io_u_map[k] += src->io_u_map[k];
1540 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1541 dst->io_u_submit[k] += src->io_u_submit[k];
1542 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1543 dst->io_u_complete[k] += src->io_u_complete[k];
1544 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1545 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1546 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1547 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1548 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1549 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1550
1551 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1552 if (!dst->unified_rw_rep) {
1553 dst->total_io_u[k] += src->total_io_u[k];
1554 dst->short_io_u[k] += src->short_io_u[k];
1555 dst->drop_io_u[k] += src->drop_io_u[k];
1556 } else {
1557 dst->total_io_u[0] += src->total_io_u[k];
1558 dst->short_io_u[0] += src->short_io_u[k];
1559 dst->drop_io_u[0] += src->drop_io_u[k];
1560 }
1561 }
1562
1563 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1564 int m;
1565
1566 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1567 if (!dst->unified_rw_rep)
1568 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1569 else
1570 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1571 }
1572 }
1573
1574 dst->total_run_time += src->total_run_time;
1575 dst->total_submit += src->total_submit;
1576 dst->total_complete += src->total_complete;
1577}
1578
1579void init_group_run_stat(struct group_run_stats *gs)
1580{
1581 int i;
1582 memset(gs, 0, sizeof(*gs));
1583
1584 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1585 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1586}
1587
1588void init_thread_stat(struct thread_stat *ts)
1589{
1590 int j;
1591
1592 memset(ts, 0, sizeof(*ts));
1593
1594 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1595 ts->lat_stat[j].min_val = -1UL;
1596 ts->clat_stat[j].min_val = -1UL;
1597 ts->slat_stat[j].min_val = -1UL;
1598 ts->bw_stat[j].min_val = -1UL;
1599 ts->iops_stat[j].min_val = -1UL;
1600 }
1601 ts->groupid = -1;
1602}
1603
1604void __show_run_stats(void)
1605{
1606 struct group_run_stats *runstats, *rs;
1607 struct thread_data *td;
1608 struct thread_stat *threadstats, *ts;
1609 int i, j, k, nr_ts, last_ts, idx;
1610 bool kb_base_warned = false;
1611 bool unit_base_warned = false;
1612 struct json_object *root = NULL;
1613 struct json_array *array = NULL;
1614 struct buf_output output[FIO_OUTPUT_NR];
1615 struct flist_head **opt_lists;
1616
1617 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1618
1619 for (i = 0; i < groupid + 1; i++)
1620 init_group_run_stat(&runstats[i]);
1621
1622 /*
1623 * find out how many threads stats we need. if group reporting isn't
1624 * enabled, it's one-per-td.
1625 */
1626 nr_ts = 0;
1627 last_ts = -1;
1628 for_each_td(td, i) {
1629 if (!td->o.group_reporting) {
1630 nr_ts++;
1631 continue;
1632 }
1633 if (last_ts == td->groupid)
1634 continue;
1635 if (!td->o.stats)
1636 continue;
1637
1638 last_ts = td->groupid;
1639 nr_ts++;
1640 }
1641
1642 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1643 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1644
1645 for (i = 0; i < nr_ts; i++) {
1646 init_thread_stat(&threadstats[i]);
1647 opt_lists[i] = NULL;
1648 }
1649
1650 j = 0;
1651 last_ts = -1;
1652 idx = 0;
1653 for_each_td(td, i) {
1654 if (!td->o.stats)
1655 continue;
1656 if (idx && (!td->o.group_reporting ||
1657 (td->o.group_reporting && last_ts != td->groupid))) {
1658 idx = 0;
1659 j++;
1660 }
1661
1662 last_ts = td->groupid;
1663
1664 ts = &threadstats[j];
1665
1666 ts->clat_percentiles = td->o.clat_percentiles;
1667 ts->lat_percentiles = td->o.lat_percentiles;
1668 ts->percentile_precision = td->o.percentile_precision;
1669 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1670 opt_lists[j] = &td->opt_list;
1671
1672 idx++;
1673 ts->members++;
1674
1675 if (ts->groupid == -1) {
1676 /*
1677 * These are per-group shared already
1678 */
1679 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1680 if (td->o.description)
1681 strncpy(ts->description, td->o.description,
1682 FIO_JOBDESC_SIZE - 1);
1683 else
1684 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1685
1686 /*
1687 * If multiple entries in this group, this is
1688 * the first member.
1689 */
1690 ts->thread_number = td->thread_number;
1691 ts->groupid = td->groupid;
1692
1693 /*
1694 * first pid in group, not very useful...
1695 */
1696 ts->pid = td->pid;
1697
1698 ts->kb_base = td->o.kb_base;
1699 ts->unit_base = td->o.unit_base;
1700 ts->sig_figs = td->o.sig_figs;
1701 ts->unified_rw_rep = td->o.unified_rw_rep;
1702 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1703 log_info("fio: kb_base differs for jobs in group, using"
1704 " %u as the base\n", ts->kb_base);
1705 kb_base_warned = true;
1706 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1707 log_info("fio: unit_base differs for jobs in group, using"
1708 " %u as the base\n", ts->unit_base);
1709 unit_base_warned = true;
1710 }
1711
1712 ts->continue_on_error = td->o.continue_on_error;
1713 ts->total_err_count += td->total_err_count;
1714 ts->first_error = td->first_error;
1715 if (!ts->error) {
1716 if (!td->error && td->o.continue_on_error &&
1717 td->first_error) {
1718 ts->error = td->first_error;
1719 ts->verror[sizeof(ts->verror) - 1] = '\0';
1720 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1721 } else if (td->error) {
1722 ts->error = td->error;
1723 ts->verror[sizeof(ts->verror) - 1] = '\0';
1724 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1725 }
1726 }
1727
1728 ts->latency_depth = td->latency_qd;
1729 ts->latency_target = td->o.latency_target;
1730 ts->latency_percentile = td->o.latency_percentile;
1731 ts->latency_window = td->o.latency_window;
1732
1733 ts->nr_block_infos = td->ts.nr_block_infos;
1734 for (k = 0; k < ts->nr_block_infos; k++)
1735 ts->block_infos[k] = td->ts.block_infos[k];
1736
1737 sum_thread_stats(ts, &td->ts, idx == 1);
1738
1739 if (td->o.ss_dur) {
1740 ts->ss_state = td->ss.state;
1741 ts->ss_dur = td->ss.dur;
1742 ts->ss_head = td->ss.head;
1743 ts->ss_bw_data = td->ss.bw_data;
1744 ts->ss_iops_data = td->ss.iops_data;
1745 ts->ss_limit.u.f = td->ss.limit;
1746 ts->ss_slope.u.f = td->ss.slope;
1747 ts->ss_deviation.u.f = td->ss.deviation;
1748 ts->ss_criterion.u.f = td->ss.criterion;
1749 }
1750 else
1751 ts->ss_dur = ts->ss_state = 0;
1752 }
1753
1754 for (i = 0; i < nr_ts; i++) {
1755 unsigned long long bw;
1756
1757 ts = &threadstats[i];
1758 if (ts->groupid == -1)
1759 continue;
1760 rs = &runstats[ts->groupid];
1761 rs->kb_base = ts->kb_base;
1762 rs->unit_base = ts->unit_base;
1763 rs->sig_figs = ts->sig_figs;
1764 rs->unified_rw_rep += ts->unified_rw_rep;
1765
1766 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1767 if (!ts->runtime[j])
1768 continue;
1769 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1770 rs->min_run[j] = ts->runtime[j];
1771 if (ts->runtime[j] > rs->max_run[j])
1772 rs->max_run[j] = ts->runtime[j];
1773
1774 bw = 0;
1775 if (ts->runtime[j])
1776 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1777 if (bw < rs->min_bw[j])
1778 rs->min_bw[j] = bw;
1779 if (bw > rs->max_bw[j])
1780 rs->max_bw[j] = bw;
1781
1782 rs->iobytes[j] += ts->io_bytes[j];
1783 }
1784 }
1785
1786 for (i = 0; i < groupid + 1; i++) {
1787 int ddir;
1788
1789 rs = &runstats[i];
1790
1791 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1792 if (rs->max_run[ddir])
1793 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1794 rs->max_run[ddir];
1795 }
1796 }
1797
1798 for (i = 0; i < FIO_OUTPUT_NR; i++)
1799 buf_output_init(&output[i]);
1800
1801 /*
1802 * don't overwrite last signal output
1803 */
1804 if (output_format & FIO_OUTPUT_NORMAL)
1805 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1806 if (output_format & FIO_OUTPUT_JSON) {
1807 struct thread_data *global;
1808 char time_buf[32];
1809 struct timeval now;
1810 unsigned long long ms_since_epoch;
1811
1812 gettimeofday(&now, NULL);
1813 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1814 (unsigned long long)(now.tv_usec) / 1000;
1815
1816 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1817 sizeof(time_buf));
1818 if (time_buf[strlen(time_buf) - 1] == '\n')
1819 time_buf[strlen(time_buf) - 1] = '\0';
1820
1821 root = json_create_object();
1822 json_object_add_value_string(root, "fio version", fio_version_string);
1823 json_object_add_value_int(root, "timestamp", now.tv_sec);
1824 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1825 json_object_add_value_string(root, "time", time_buf);
1826 global = get_global_options();
1827 json_add_job_opts(root, "global options", &global->opt_list, false);
1828 array = json_create_array();
1829 json_object_add_value_array(root, "jobs", array);
1830 }
1831
1832 if (is_backend)
1833 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1834
1835 for (i = 0; i < nr_ts; i++) {
1836 ts = &threadstats[i];
1837 rs = &runstats[ts->groupid];
1838
1839 if (is_backend) {
1840 fio_server_send_job_options(opt_lists[i], i);
1841 fio_server_send_ts(ts, rs);
1842 } else {
1843 if (output_format & FIO_OUTPUT_TERSE)
1844 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1845 if (output_format & FIO_OUTPUT_JSON) {
1846 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1847 json_array_add_value_object(array, tmp);
1848 }
1849 if (output_format & FIO_OUTPUT_NORMAL)
1850 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1851 }
1852 }
1853 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1854 /* disk util stats, if any */
1855 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1856
1857 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1858
1859 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1860 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1861 json_free_object(root);
1862 }
1863
1864 for (i = 0; i < groupid + 1; i++) {
1865 rs = &runstats[i];
1866
1867 rs->groupid = i;
1868 if (is_backend)
1869 fio_server_send_gs(rs);
1870 else if (output_format & FIO_OUTPUT_NORMAL)
1871 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1872 }
1873
1874 if (is_backend)
1875 fio_server_send_du();
1876 else if (output_format & FIO_OUTPUT_NORMAL) {
1877 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1878 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1879 }
1880
1881 for (i = 0; i < FIO_OUTPUT_NR; i++) {
1882 struct buf_output *out = &output[i];
1883
1884 log_info_buf(out->buf, out->buflen);
1885 buf_output_free(out);
1886 }
1887
1888 log_info_flush();
1889 free(runstats);
1890 free(threadstats);
1891 free(opt_lists);
1892}
1893
1894void show_run_stats(void)
1895{
1896 fio_mutex_down(stat_mutex);
1897 __show_run_stats();
1898 fio_mutex_up(stat_mutex);
1899}
1900
1901void __show_running_run_stats(void)
1902{
1903 struct thread_data *td;
1904 unsigned long long *rt;
1905 struct timespec ts;
1906 int i;
1907
1908 fio_mutex_down(stat_mutex);
1909
1910 rt = malloc(thread_number * sizeof(unsigned long long));
1911 fio_gettime(&ts, NULL);
1912
1913 for_each_td(td, i) {
1914 td->update_rusage = 1;
1915 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1916 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1917 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1918 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1919
1920 rt[i] = mtime_since(&td->start, &ts);
1921 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1922 td->ts.runtime[DDIR_READ] += rt[i];
1923 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1924 td->ts.runtime[DDIR_WRITE] += rt[i];
1925 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1926 td->ts.runtime[DDIR_TRIM] += rt[i];
1927 }
1928
1929 for_each_td(td, i) {
1930 if (td->runstate >= TD_EXITED)
1931 continue;
1932 if (td->rusage_sem) {
1933 td->update_rusage = 1;
1934 fio_mutex_down(td->rusage_sem);
1935 }
1936 td->update_rusage = 0;
1937 }
1938
1939 __show_run_stats();
1940
1941 for_each_td(td, i) {
1942 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1943 td->ts.runtime[DDIR_READ] -= rt[i];
1944 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1945 td->ts.runtime[DDIR_WRITE] -= rt[i];
1946 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1947 td->ts.runtime[DDIR_TRIM] -= rt[i];
1948 }
1949
1950 free(rt);
1951 fio_mutex_up(stat_mutex);
1952}
1953
1954static bool status_interval_init;
1955static struct timespec status_time;
1956static bool status_file_disabled;
1957
1958#define FIO_STATUS_FILE "fio-dump-status"
1959
1960static int check_status_file(void)
1961{
1962 struct stat sb;
1963 const char *temp_dir;
1964 char fio_status_file_path[PATH_MAX];
1965
1966 if (status_file_disabled)
1967 return 0;
1968
1969 temp_dir = getenv("TMPDIR");
1970 if (temp_dir == NULL) {
1971 temp_dir = getenv("TEMP");
1972 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1973 temp_dir = NULL;
1974 }
1975 if (temp_dir == NULL)
1976 temp_dir = "/tmp";
1977
1978 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1979
1980 if (stat(fio_status_file_path, &sb))
1981 return 0;
1982
1983 if (unlink(fio_status_file_path) < 0) {
1984 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1985 strerror(errno));
1986 log_err("fio: disabling status file updates\n");
1987 status_file_disabled = true;
1988 }
1989
1990 return 1;
1991}
1992
1993void check_for_running_stats(void)
1994{
1995 if (status_interval) {
1996 if (!status_interval_init) {
1997 fio_gettime(&status_time, NULL);
1998 status_interval_init = true;
1999 } else if (mtime_since_now(&status_time) >= status_interval) {
2000 show_running_run_stats();
2001 fio_gettime(&status_time, NULL);
2002 return;
2003 }
2004 }
2005 if (check_status_file()) {
2006 show_running_run_stats();
2007 return;
2008 }
2009}
2010
2011static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2012{
2013 double val = data;
2014 double delta;
2015
2016 if (data > is->max_val)
2017 is->max_val = data;
2018 if (data < is->min_val)
2019 is->min_val = data;
2020
2021 delta = val - is->mean.u.f;
2022 if (delta) {
2023 is->mean.u.f += delta / (is->samples + 1.0);
2024 is->S.u.f += delta * (val - is->mean.u.f);
2025 }
2026
2027 is->samples++;
2028}
2029
2030/*
2031 * Return a struct io_logs, which is added to the tail of the log
2032 * list for 'iolog'.
2033 */
2034static struct io_logs *get_new_log(struct io_log *iolog)
2035{
2036 size_t new_size, new_samples;
2037 struct io_logs *cur_log;
2038
2039 /*
2040 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2041 * forever
2042 */
2043 if (!iolog->cur_log_max)
2044 new_samples = DEF_LOG_ENTRIES;
2045 else {
2046 new_samples = iolog->cur_log_max * 2;
2047 if (new_samples > MAX_LOG_ENTRIES)
2048 new_samples = MAX_LOG_ENTRIES;
2049 }
2050
2051 new_size = new_samples * log_entry_sz(iolog);
2052
2053 cur_log = smalloc(sizeof(*cur_log));
2054 if (cur_log) {
2055 INIT_FLIST_HEAD(&cur_log->list);
2056 cur_log->log = malloc(new_size);
2057 if (cur_log->log) {
2058 cur_log->nr_samples = 0;
2059 cur_log->max_samples = new_samples;
2060 flist_add_tail(&cur_log->list, &iolog->io_logs);
2061 iolog->cur_log_max = new_samples;
2062 return cur_log;
2063 }
2064 sfree(cur_log);
2065 }
2066
2067 return NULL;
2068}
2069
2070/*
2071 * Add and return a new log chunk, or return current log if big enough
2072 */
2073static struct io_logs *regrow_log(struct io_log *iolog)
2074{
2075 struct io_logs *cur_log;
2076 int i;
2077
2078 if (!iolog || iolog->disabled)
2079 goto disable;
2080
2081 cur_log = iolog_cur_log(iolog);
2082 if (!cur_log) {
2083 cur_log = get_new_log(iolog);
2084 if (!cur_log)
2085 return NULL;
2086 }
2087
2088 if (cur_log->nr_samples < cur_log->max_samples)
2089 return cur_log;
2090
2091 /*
2092 * No room for a new sample. If we're compressing on the fly, flush
2093 * out the current chunk
2094 */
2095 if (iolog->log_gz) {
2096 if (iolog_cur_flush(iolog, cur_log)) {
2097 log_err("fio: failed flushing iolog! Will stop logging.\n");
2098 return NULL;
2099 }
2100 }
2101
2102 /*
2103 * Get a new log array, and add to our list
2104 */
2105 cur_log = get_new_log(iolog);
2106 if (!cur_log) {
2107 log_err("fio: failed extending iolog! Will stop logging.\n");
2108 return NULL;
2109 }
2110
2111 if (!iolog->pending || !iolog->pending->nr_samples)
2112 return cur_log;
2113
2114 /*
2115 * Flush pending items to new log
2116 */
2117 for (i = 0; i < iolog->pending->nr_samples; i++) {
2118 struct io_sample *src, *dst;
2119
2120 src = get_sample(iolog, iolog->pending, i);
2121 dst = get_sample(iolog, cur_log, i);
2122 memcpy(dst, src, log_entry_sz(iolog));
2123 }
2124 cur_log->nr_samples = iolog->pending->nr_samples;
2125
2126 iolog->pending->nr_samples = 0;
2127 return cur_log;
2128disable:
2129 if (iolog)
2130 iolog->disabled = true;
2131 return NULL;
2132}
2133
2134void regrow_logs(struct thread_data *td)
2135{
2136 regrow_log(td->slat_log);
2137 regrow_log(td->clat_log);
2138 regrow_log(td->clat_hist_log);
2139 regrow_log(td->lat_log);
2140 regrow_log(td->bw_log);
2141 regrow_log(td->iops_log);
2142 td->flags &= ~TD_F_REGROW_LOGS;
2143}
2144
2145static struct io_logs *get_cur_log(struct io_log *iolog)
2146{
2147 struct io_logs *cur_log;
2148
2149 cur_log = iolog_cur_log(iolog);
2150 if (!cur_log) {
2151 cur_log = get_new_log(iolog);
2152 if (!cur_log)
2153 return NULL;
2154 }
2155
2156 if (cur_log->nr_samples < cur_log->max_samples)
2157 return cur_log;
2158
2159 /*
2160 * Out of space. If we're in IO offload mode, or we're not doing
2161 * per unit logging (hence logging happens outside of the IO thread
2162 * as well), add a new log chunk inline. If we're doing inline
2163 * submissions, flag 'td' as needing a log regrow and we'll take
2164 * care of it on the submission side.
2165 */
2166 if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2167 !per_unit_log(iolog))
2168 return regrow_log(iolog);
2169
2170 iolog->td->flags |= TD_F_REGROW_LOGS;
2171 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2172 return iolog->pending;
2173}
2174
2175static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2176 enum fio_ddir ddir, unsigned int bs,
2177 unsigned long t, uint64_t offset)
2178{
2179 struct io_logs *cur_log;
2180
2181 if (iolog->disabled)
2182 return;
2183 if (flist_empty(&iolog->io_logs))
2184 iolog->avg_last[ddir] = t;
2185
2186 cur_log = get_cur_log(iolog);
2187 if (cur_log) {
2188 struct io_sample *s;
2189
2190 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2191
2192 s->data = data;
2193 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2194 io_sample_set_ddir(iolog, s, ddir);
2195 s->bs = bs;
2196
2197 if (iolog->log_offset) {
2198 struct io_sample_offset *so = (void *) s;
2199
2200 so->offset = offset;
2201 }
2202
2203 cur_log->nr_samples++;
2204 return;
2205 }
2206
2207 iolog->disabled = true;
2208}
2209
2210static inline void reset_io_stat(struct io_stat *ios)
2211{
2212 ios->max_val = ios->min_val = ios->samples = 0;
2213 ios->mean.u.f = ios->S.u.f = 0;
2214}
2215
2216void reset_io_stats(struct thread_data *td)
2217{
2218 struct thread_stat *ts = &td->ts;
2219 int i, j;
2220
2221 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2222 reset_io_stat(&ts->clat_stat[i]);
2223 reset_io_stat(&ts->slat_stat[i]);
2224 reset_io_stat(&ts->lat_stat[i]);
2225 reset_io_stat(&ts->bw_stat[i]);
2226 reset_io_stat(&ts->iops_stat[i]);
2227
2228 ts->io_bytes[i] = 0;
2229 ts->runtime[i] = 0;
2230 ts->total_io_u[i] = 0;
2231 ts->short_io_u[i] = 0;
2232 ts->drop_io_u[i] = 0;
2233
2234 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2235 ts->io_u_plat[i][j] = 0;
2236 }
2237
2238 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2239 ts->io_u_map[i] = 0;
2240 ts->io_u_submit[i] = 0;
2241 ts->io_u_complete[i] = 0;
2242 }
2243
2244 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2245 ts->io_u_lat_n[i] = 0;
2246 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2247 ts->io_u_lat_u[i] = 0;
2248 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2249 ts->io_u_lat_m[i] = 0;
2250
2251 ts->total_submit = 0;
2252 ts->total_complete = 0;
2253}
2254
2255static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2256 unsigned long elapsed, bool log_max)
2257{
2258 /*
2259 * Note an entry in the log. Use the mean from the logged samples,
2260 * making sure to properly round up. Only write a log entry if we
2261 * had actual samples done.
2262 */
2263 if (iolog->avg_window[ddir].samples) {
2264 union io_sample_data data;
2265
2266 if (log_max)
2267 data.val = iolog->avg_window[ddir].max_val;
2268 else
2269 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2270
2271 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2272 }
2273
2274 reset_io_stat(&iolog->avg_window[ddir]);
2275}
2276
2277static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2278 bool log_max)
2279{
2280 int ddir;
2281
2282 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2283 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2284}
2285
2286static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2287 union io_sample_data data, enum fio_ddir ddir,
2288 unsigned int bs, uint64_t offset)
2289{
2290 unsigned long elapsed, this_window;
2291
2292 if (!ddir_rw(ddir))
2293 return 0;
2294
2295 elapsed = mtime_since_now(&td->epoch);
2296
2297 /*
2298 * If no time averaging, just add the log sample.
2299 */
2300 if (!iolog->avg_msec) {
2301 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2302 return 0;
2303 }
2304
2305 /*
2306 * Add the sample. If the time period has passed, then
2307 * add that entry to the log and clear.
2308 */
2309 add_stat_sample(&iolog->avg_window[ddir], data.val);
2310
2311 /*
2312 * If period hasn't passed, adding the above sample is all we
2313 * need to do.
2314 */
2315 this_window = elapsed - iolog->avg_last[ddir];
2316 if (elapsed < iolog->avg_last[ddir])
2317 return iolog->avg_last[ddir] - elapsed;
2318 else if (this_window < iolog->avg_msec) {
2319 int diff = iolog->avg_msec - this_window;
2320
2321 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2322 return diff;
2323 }
2324
2325 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2326
2327 iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2328 return iolog->avg_msec;
2329}
2330
2331void finalize_logs(struct thread_data *td, bool unit_logs)
2332{
2333 unsigned long elapsed;
2334
2335 elapsed = mtime_since_now(&td->epoch);
2336
2337 if (td->clat_log && unit_logs)
2338 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2339 if (td->slat_log && unit_logs)
2340 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2341 if (td->lat_log && unit_logs)
2342 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2343 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2344 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2345 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2346 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2347}
2348
2349void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2350{
2351 struct io_log *iolog;
2352
2353 if (!ddir_rw(ddir))
2354 return;
2355
2356 iolog = agg_io_log[ddir];
2357 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2358}
2359
2360static void add_clat_percentile_sample(struct thread_stat *ts,
2361 unsigned long long nsec, enum fio_ddir ddir)
2362{
2363 unsigned int idx = plat_val_to_idx(nsec);
2364 assert(idx < FIO_IO_U_PLAT_NR);
2365
2366 ts->io_u_plat[ddir][idx]++;
2367}
2368
2369void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2370 unsigned long long nsec, unsigned int bs, uint64_t offset)
2371{
2372 unsigned long elapsed, this_window;
2373 struct thread_stat *ts = &td->ts;
2374 struct io_log *iolog = td->clat_hist_log;
2375
2376 td_io_u_lock(td);
2377
2378 add_stat_sample(&ts->clat_stat[ddir], nsec);
2379
2380 if (td->clat_log)
2381 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2382 offset);
2383
2384 if (ts->clat_percentiles)
2385 add_clat_percentile_sample(ts, nsec, ddir);
2386
2387 if (iolog && iolog->hist_msec) {
2388 struct io_hist *hw = &iolog->hist_window[ddir];
2389
2390 hw->samples++;
2391 elapsed = mtime_since_now(&td->epoch);
2392 if (!hw->hist_last)
2393 hw->hist_last = elapsed;
2394 this_window = elapsed - hw->hist_last;
2395
2396 if (this_window >= iolog->hist_msec) {
2397 unsigned int *io_u_plat;
2398 struct io_u_plat_entry *dst;
2399
2400 /*
2401 * Make a byte-for-byte copy of the latency histogram
2402 * stored in td->ts.io_u_plat[ddir], recording it in a
2403 * log sample. Note that the matching call to free() is
2404 * located in iolog.c after printing this sample to the
2405 * log file.
2406 */
2407 io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2408 dst = malloc(sizeof(struct io_u_plat_entry));
2409 memcpy(&(dst->io_u_plat), io_u_plat,
2410 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2411 flist_add(&dst->list, &hw->list);
2412 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2413 elapsed, offset);
2414
2415 /*
2416 * Update the last time we recorded as being now, minus
2417 * any drift in time we encountered before actually
2418 * making the record.
2419 */
2420 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2421 hw->samples = 0;
2422 }
2423 }
2424
2425 td_io_u_unlock(td);
2426}
2427
2428void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2429 unsigned long usec, unsigned int bs, uint64_t offset)
2430{
2431 struct thread_stat *ts = &td->ts;
2432
2433 if (!ddir_rw(ddir))
2434 return;
2435
2436 td_io_u_lock(td);
2437
2438 add_stat_sample(&ts->slat_stat[ddir], usec);
2439
2440 if (td->slat_log)
2441 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2442
2443 td_io_u_unlock(td);
2444}
2445
2446void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2447 unsigned long long nsec, unsigned int bs, uint64_t offset)
2448{
2449 struct thread_stat *ts = &td->ts;
2450
2451 if (!ddir_rw(ddir))
2452 return;
2453
2454 td_io_u_lock(td);
2455
2456 add_stat_sample(&ts->lat_stat[ddir], nsec);
2457
2458 if (td->lat_log)
2459 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2460 offset);
2461
2462 if (ts->lat_percentiles)
2463 add_clat_percentile_sample(ts, nsec, ddir);
2464
2465 td_io_u_unlock(td);
2466}
2467
2468void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2469 unsigned int bytes, unsigned long long spent)
2470{
2471 struct thread_stat *ts = &td->ts;
2472 unsigned long rate;
2473
2474 if (spent)
2475 rate = (unsigned long) (bytes * 1000000ULL / spent);
2476 else
2477 rate = 0;
2478
2479 td_io_u_lock(td);
2480
2481 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2482
2483 if (td->bw_log)
2484 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2485 bytes, io_u->offset);
2486
2487 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2488 td_io_u_unlock(td);
2489}
2490
2491static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2492 struct timespec *t, unsigned int avg_time,
2493 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2494 struct io_stat *stat, struct io_log *log,
2495 bool is_kb)
2496{
2497 unsigned long spent, rate;
2498 enum fio_ddir ddir;
2499 unsigned int next, next_log;
2500
2501 next_log = avg_time;
2502
2503 spent = mtime_since(parent_tv, t);
2504 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2505 return avg_time - spent;
2506
2507 td_io_u_lock(td);
2508
2509 /*
2510 * Compute both read and write rates for the interval.
2511 */
2512 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2513 uint64_t delta;
2514
2515 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2516 if (!delta)
2517 continue; /* No entries for interval */
2518
2519 if (spent) {
2520 if (is_kb)
2521 rate = delta * 1000 / spent / 1024; /* KiB/s */
2522 else
2523 rate = (delta * 1000) / spent;
2524 } else
2525 rate = 0;
2526
2527 add_stat_sample(&stat[ddir], rate);
2528
2529 if (log) {
2530 unsigned int bs = 0;
2531
2532 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2533 bs = td->o.min_bs[ddir];
2534
2535 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2536 next_log = min(next_log, next);
2537 }
2538
2539 stat_io_bytes[ddir] = this_io_bytes[ddir];
2540 }
2541
2542 timespec_add_msec(parent_tv, avg_time);
2543
2544 td_io_u_unlock(td);
2545
2546 if (spent <= avg_time)
2547 next = avg_time;
2548 else
2549 next = avg_time - (1 + spent - avg_time);
2550
2551 return min(next, next_log);
2552}
2553
2554static int add_bw_samples(struct thread_data *td, struct timespec *t)
2555{
2556 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2557 td->this_io_bytes, td->stat_io_bytes,
2558 td->ts.bw_stat, td->bw_log, true);
2559}
2560
2561void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2562 unsigned int bytes)
2563{
2564 struct thread_stat *ts = &td->ts;
2565
2566 td_io_u_lock(td);
2567
2568 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2569
2570 if (td->iops_log)
2571 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2572 bytes, io_u->offset);
2573
2574 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2575 td_io_u_unlock(td);
2576}
2577
2578static int add_iops_samples(struct thread_data *td, struct timespec *t)
2579{
2580 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2581 td->this_io_blocks, td->stat_io_blocks,
2582 td->ts.iops_stat, td->iops_log, false);
2583}
2584
2585/*
2586 * Returns msecs to next event
2587 */
2588int calc_log_samples(void)
2589{
2590 struct thread_data *td;
2591 unsigned int next = ~0U, tmp;
2592 struct timespec now;
2593 int i;
2594
2595 fio_gettime(&now, NULL);
2596
2597 for_each_td(td, i) {
2598 if (!td->o.stats)
2599 continue;
2600 if (in_ramp_time(td) ||
2601 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2602 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2603 continue;
2604 }
2605 if (!td->bw_log ||
2606 (td->bw_log && !per_unit_log(td->bw_log))) {
2607 tmp = add_bw_samples(td, &now);
2608 if (tmp < next)
2609 next = tmp;
2610 }
2611 if (!td->iops_log ||
2612 (td->iops_log && !per_unit_log(td->iops_log))) {
2613 tmp = add_iops_samples(td, &now);
2614 if (tmp < next)
2615 next = tmp;
2616 }
2617 }
2618
2619 return next == ~0U ? 0 : next;
2620}
2621
2622void stat_init(void)
2623{
2624 stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2625}
2626
2627void stat_exit(void)
2628{
2629 /*
2630 * When we have the mutex, we know out-of-band access to it
2631 * have ended.
2632 */
2633 fio_mutex_down(stat_mutex);
2634 fio_mutex_remove(stat_mutex);
2635}
2636
2637/*
2638 * Called from signal handler. Wake up status thread.
2639 */
2640void show_running_run_stats(void)
2641{
2642 helper_do_stat();
2643}
2644
2645uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2646{
2647 /* Ignore io_u's which span multiple blocks--they will just get
2648 * inaccurate counts. */
2649 int idx = (io_u->offset - io_u->file->file_offset)
2650 / td->o.bs[DDIR_TRIM];
2651 uint32_t *info = &td->ts.block_infos[idx];
2652 assert(idx < td->ts.nr_block_infos);
2653 return info;
2654}