init: add semantics for all types of backends running
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/stat.h>
5#include <math.h>
6
7#include "fio.h"
8#include "diskutil.h"
9#include "lib/ieee754.h"
10#include "json.h"
11#include "lib/getrusage.h"
12#include "idletime.h"
13#include "lib/pow2.h"
14#include "lib/output_buffer.h"
15#include "helper_thread.h"
16#include "smalloc.h"
17
18#define LOG_MSEC_SLACK 1
19
20struct fio_sem *stat_sem;
21
22void clear_rusage_stat(struct thread_data *td)
23{
24 struct thread_stat *ts = &td->ts;
25
26 fio_getrusage(&td->ru_start);
27 ts->usr_time = ts->sys_time = 0;
28 ts->ctx = 0;
29 ts->minf = ts->majf = 0;
30}
31
32void update_rusage_stat(struct thread_data *td)
33{
34 struct thread_stat *ts = &td->ts;
35
36 fio_getrusage(&td->ru_end);
37 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
38 &td->ru_end.ru_utime);
39 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
40 &td->ru_end.ru_stime);
41 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
42 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
43 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
44 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
45
46 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
47}
48
49/*
50 * Given a latency, return the index of the corresponding bucket in
51 * the structure tracking percentiles.
52 *
53 * (1) find the group (and error bits) that the value (latency)
54 * belongs to by looking at its MSB. (2) find the bucket number in the
55 * group by looking at the index bits.
56 *
57 */
58static unsigned int plat_val_to_idx(unsigned long long val)
59{
60 unsigned int msb, error_bits, base, offset, idx;
61
62 /* Find MSB starting from bit 0 */
63 if (val == 0)
64 msb = 0;
65 else
66 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
67
68 /*
69 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
70 * all bits of the sample as index
71 */
72 if (msb <= FIO_IO_U_PLAT_BITS)
73 return val;
74
75 /* Compute the number of error bits to discard*/
76 error_bits = msb - FIO_IO_U_PLAT_BITS;
77
78 /* Compute the number of buckets before the group */
79 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
80
81 /*
82 * Discard the error bits and apply the mask to find the
83 * index for the buckets in the group
84 */
85 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
86
87 /* Make sure the index does not exceed (array size - 1) */
88 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
89 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
90
91 return idx;
92}
93
94/*
95 * Convert the given index of the bucket array to the value
96 * represented by the bucket
97 */
98static unsigned long long plat_idx_to_val(unsigned int idx)
99{
100 unsigned int error_bits;
101 unsigned long long k, base;
102
103 assert(idx < FIO_IO_U_PLAT_NR);
104
105 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
106 * all bits of the sample as index */
107 if (idx < (FIO_IO_U_PLAT_VAL << 1))
108 return idx;
109
110 /* Find the group and compute the minimum value of that group */
111 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
112 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
113
114 /* Find its bucket number of the group */
115 k = idx % FIO_IO_U_PLAT_VAL;
116
117 /* Return the mean of the range of the bucket */
118 return base + ((k + 0.5) * (1 << error_bits));
119}
120
121static int double_cmp(const void *a, const void *b)
122{
123 const fio_fp64_t fa = *(const fio_fp64_t *) a;
124 const fio_fp64_t fb = *(const fio_fp64_t *) b;
125 int cmp = 0;
126
127 if (fa.u.f > fb.u.f)
128 cmp = 1;
129 else if (fa.u.f < fb.u.f)
130 cmp = -1;
131
132 return cmp;
133}
134
135unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
136 fio_fp64_t *plist, unsigned long long **output,
137 unsigned long long *maxv, unsigned long long *minv)
138{
139 unsigned long long sum = 0;
140 unsigned int len, i, j = 0;
141 unsigned int oval_len = 0;
142 unsigned long long *ovals = NULL;
143 bool is_last;
144
145 *minv = -1ULL;
146 *maxv = 0;
147
148 len = 0;
149 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
150 len++;
151
152 if (!len)
153 return 0;
154
155 /*
156 * Sort the percentile list. Note that it may already be sorted if
157 * we are using the default values, but since it's a short list this
158 * isn't a worry. Also note that this does not work for NaN values.
159 */
160 if (len > 1)
161 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
162
163 /*
164 * Calculate bucket values, note down max and min values
165 */
166 is_last = false;
167 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
168 sum += io_u_plat[i];
169 while (sum >= (plist[j].u.f / 100.0 * nr)) {
170 assert(plist[j].u.f <= 100.0);
171
172 if (j == oval_len) {
173 oval_len += 100;
174 ovals = realloc(ovals, oval_len * sizeof(*ovals));
175 }
176
177 ovals[j] = plat_idx_to_val(i);
178 if (ovals[j] < *minv)
179 *minv = ovals[j];
180 if (ovals[j] > *maxv)
181 *maxv = ovals[j];
182
183 is_last = (j == len - 1) != 0;
184 if (is_last)
185 break;
186
187 j++;
188 }
189 }
190
191 *output = ovals;
192 return len;
193}
194
195/*
196 * Find and display the p-th percentile of clat
197 */
198static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
199 fio_fp64_t *plist, unsigned int precision,
200 const char *pre, struct buf_output *out)
201{
202 unsigned int divisor, len, i, j = 0;
203 unsigned long long minv, maxv;
204 unsigned long long *ovals;
205 int per_line, scale_down, time_width;
206 bool is_last;
207 char fmt[32];
208
209 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
210 if (!len || !ovals)
211 goto out;
212
213 /*
214 * We default to nsecs, but if the value range is such that we
215 * should scale down to usecs or msecs, do that.
216 */
217 if (minv > 2000000 && maxv > 99999999ULL) {
218 scale_down = 2;
219 divisor = 1000000;
220 log_buf(out, " %s percentiles (msec):\n |", pre);
221 } else if (minv > 2000 && maxv > 99999) {
222 scale_down = 1;
223 divisor = 1000;
224 log_buf(out, " %s percentiles (usec):\n |", pre);
225 } else {
226 scale_down = 0;
227 divisor = 1;
228 log_buf(out, " %s percentiles (nsec):\n |", pre);
229 }
230
231
232 time_width = max(5, (int) (log10(maxv / divisor) + 1));
233 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
234 precision, time_width);
235 /* fmt will be something like " %5.2fth=[%4llu]%c" */
236 per_line = (80 - 7) / (precision + 10 + time_width);
237
238 for (j = 0; j < len; j++) {
239 /* for formatting */
240 if (j != 0 && (j % per_line) == 0)
241 log_buf(out, " |");
242
243 /* end of the list */
244 is_last = (j == len - 1) != 0;
245
246 for (i = 0; i < scale_down; i++)
247 ovals[j] = (ovals[j] + 999) / 1000;
248
249 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
250
251 if (is_last)
252 break;
253
254 if ((j % per_line) == per_line - 1) /* for formatting */
255 log_buf(out, "\n");
256 }
257
258out:
259 if (ovals)
260 free(ovals);
261}
262
263bool calc_lat(struct io_stat *is, unsigned long long *min,
264 unsigned long long *max, double *mean, double *dev)
265{
266 double n = (double) is->samples;
267
268 if (n == 0)
269 return false;
270
271 *min = is->min_val;
272 *max = is->max_val;
273 *mean = is->mean.u.f;
274
275 if (n > 1.0)
276 *dev = sqrt(is->S.u.f / (n - 1.0));
277 else
278 *dev = 0;
279
280 return true;
281}
282
283void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
284{
285 char *io, *agg, *min, *max;
286 char *ioalt, *aggalt, *minalt, *maxalt;
287 const char *str[] = { " READ", " WRITE" , " TRIM"};
288 int i;
289
290 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
291
292 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
293 const int i2p = is_power_of_2(rs->kb_base);
294
295 if (!rs->max_run[i])
296 continue;
297
298 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
299 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
300 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
301 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
302 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
303 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
304 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
305 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
306 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
307 rs->unified_rw_rep ? " MIXED" : str[i],
308 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
309 (unsigned long long) rs->min_run[i],
310 (unsigned long long) rs->max_run[i]);
311
312 free(io);
313 free(agg);
314 free(min);
315 free(max);
316 free(ioalt);
317 free(aggalt);
318 free(minalt);
319 free(maxalt);
320 }
321}
322
323void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
324{
325 int i;
326
327 /*
328 * Do depth distribution calculations
329 */
330 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
331 if (total) {
332 io_u_dist[i] = (double) map[i] / (double) total;
333 io_u_dist[i] *= 100.0;
334 if (io_u_dist[i] < 0.1 && map[i])
335 io_u_dist[i] = 0.1;
336 } else
337 io_u_dist[i] = 0.0;
338 }
339}
340
341static void stat_calc_lat(struct thread_stat *ts, double *dst,
342 uint64_t *src, int nr)
343{
344 unsigned long total = ddir_rw_sum(ts->total_io_u);
345 int i;
346
347 /*
348 * Do latency distribution calculations
349 */
350 for (i = 0; i < nr; i++) {
351 if (total) {
352 dst[i] = (double) src[i] / (double) total;
353 dst[i] *= 100.0;
354 if (dst[i] < 0.01 && src[i])
355 dst[i] = 0.01;
356 } else
357 dst[i] = 0.0;
358 }
359}
360
361/*
362 * To keep the terse format unaltered, add all of the ns latency
363 * buckets to the first us latency bucket
364 */
365static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
366{
367 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
368 int i;
369
370 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
371
372 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
373 ntotal += ts->io_u_lat_n[i];
374
375 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
376}
377
378void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
379{
380 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
381}
382
383void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
384{
385 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
386}
387
388void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
389{
390 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
391}
392
393static void display_lat(const char *name, unsigned long long min,
394 unsigned long long max, double mean, double dev,
395 struct buf_output *out)
396{
397 const char *base = "(nsec)";
398 char *minp, *maxp;
399
400 if (nsec_to_msec(&min, &max, &mean, &dev))
401 base = "(msec)";
402 else if (nsec_to_usec(&min, &max, &mean, &dev))
403 base = "(usec)";
404
405 minp = num2str(min, 6, 1, 0, N2S_NONE);
406 maxp = num2str(max, 6, 1, 0, N2S_NONE);
407
408 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
409 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
410
411 free(minp);
412 free(maxp);
413}
414
415static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
416 int ddir, struct buf_output *out)
417{
418 const char *str[] = { " read", "write", " trim", "sync" };
419 unsigned long runt;
420 unsigned long long min, max, bw, iops;
421 double mean, dev;
422 char *io_p, *bw_p, *bw_p_alt, *iops_p;
423 int i2p;
424
425 if (ddir_sync(ddir)) {
426 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
427 log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range");
428 display_lat(str[ddir], min, max, mean, dev, out);
429 show_clat_percentiles(ts->io_u_sync_plat,
430 ts->sync_stat.samples,
431 ts->percentile_list,
432 ts->percentile_precision,
433 str[ddir], out);
434 }
435 return;
436 }
437
438 assert(ddir_rw(ddir));
439
440 if (!ts->runtime[ddir])
441 return;
442
443 i2p = is_power_of_2(rs->kb_base);
444 runt = ts->runtime[ddir];
445
446 bw = (1000 * ts->io_bytes[ddir]) / runt;
447 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
448 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
449 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
450
451 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
452 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
453
454 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
455 rs->unified_rw_rep ? "mixed" : str[ddir],
456 iops_p, bw_p, bw_p_alt, io_p,
457 (unsigned long long) ts->runtime[ddir]);
458
459 free(io_p);
460 free(bw_p);
461 free(bw_p_alt);
462 free(iops_p);
463
464 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
465 display_lat("slat", min, max, mean, dev, out);
466 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
467 display_lat("clat", min, max, mean, dev, out);
468 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
469 display_lat(" lat", min, max, mean, dev, out);
470
471 if (ts->clat_percentiles || ts->lat_percentiles) {
472 const char *name = ts->clat_percentiles ? "clat" : " lat";
473 uint64_t samples;
474
475 if (ts->clat_percentiles)
476 samples = ts->clat_stat[ddir].samples;
477 else
478 samples = ts->lat_stat[ddir].samples;
479
480 show_clat_percentiles(ts->io_u_plat[ddir],
481 samples,
482 ts->percentile_list,
483 ts->percentile_precision, name, out);
484 }
485 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
486 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
487 const char *bw_str;
488
489 if ((rs->unit_base == 1) && i2p)
490 bw_str = "Kibit";
491 else if (rs->unit_base == 1)
492 bw_str = "kbit";
493 else if (i2p)
494 bw_str = "KiB";
495 else
496 bw_str = "kB";
497
498 if (rs->agg[ddir]) {
499 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
500 if (p_of_agg > 100.0)
501 p_of_agg = 100.0;
502 }
503
504 if (rs->unit_base == 1) {
505 min *= 8.0;
506 max *= 8.0;
507 mean *= 8.0;
508 dev *= 8.0;
509 }
510
511 if (mean > fkb_base * fkb_base) {
512 min /= fkb_base;
513 max /= fkb_base;
514 mean /= fkb_base;
515 dev /= fkb_base;
516 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
517 }
518
519 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
520 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
521 bw_str, min, max, p_of_agg, mean, dev,
522 (&ts->bw_stat[ddir])->samples);
523 }
524 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
525 log_buf(out, " iops : min=%5llu, max=%5llu, "
526 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
527 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
528 }
529}
530
531static bool show_lat(double *io_u_lat, int nr, const char **ranges,
532 const char *msg, struct buf_output *out)
533{
534 bool new_line = true, shown = false;
535 int i, line = 0;
536
537 for (i = 0; i < nr; i++) {
538 if (io_u_lat[i] <= 0.0)
539 continue;
540 shown = true;
541 if (new_line) {
542 if (line)
543 log_buf(out, "\n");
544 log_buf(out, " lat (%s) : ", msg);
545 new_line = false;
546 line = 0;
547 }
548 if (line)
549 log_buf(out, ", ");
550 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
551 line++;
552 if (line == 5)
553 new_line = true;
554 }
555
556 if (shown)
557 log_buf(out, "\n");
558
559 return true;
560}
561
562static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
563{
564 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
565 "250=", "500=", "750=", "1000=", };
566
567 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
568}
569
570static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
571{
572 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
573 "250=", "500=", "750=", "1000=", };
574
575 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
576}
577
578static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
579{
580 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
581 "250=", "500=", "750=", "1000=", "2000=",
582 ">=2000=", };
583
584 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
585}
586
587static void show_latencies(struct thread_stat *ts, struct buf_output *out)
588{
589 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
590 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
591 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
592
593 stat_calc_lat_n(ts, io_u_lat_n);
594 stat_calc_lat_u(ts, io_u_lat_u);
595 stat_calc_lat_m(ts, io_u_lat_m);
596
597 show_lat_n(io_u_lat_n, out);
598 show_lat_u(io_u_lat_u, out);
599 show_lat_m(io_u_lat_m, out);
600}
601
602static int block_state_category(int block_state)
603{
604 switch (block_state) {
605 case BLOCK_STATE_UNINIT:
606 return 0;
607 case BLOCK_STATE_TRIMMED:
608 case BLOCK_STATE_WRITTEN:
609 return 1;
610 case BLOCK_STATE_WRITE_FAILURE:
611 case BLOCK_STATE_TRIM_FAILURE:
612 return 2;
613 default:
614 /* Silence compile warning on some BSDs and have a return */
615 assert(0);
616 return -1;
617 }
618}
619
620static int compare_block_infos(const void *bs1, const void *bs2)
621{
622 uint64_t block1 = *(uint64_t *)bs1;
623 uint64_t block2 = *(uint64_t *)bs2;
624 int state1 = BLOCK_INFO_STATE(block1);
625 int state2 = BLOCK_INFO_STATE(block2);
626 int bscat1 = block_state_category(state1);
627 int bscat2 = block_state_category(state2);
628 int cycles1 = BLOCK_INFO_TRIMS(block1);
629 int cycles2 = BLOCK_INFO_TRIMS(block2);
630
631 if (bscat1 < bscat2)
632 return -1;
633 if (bscat1 > bscat2)
634 return 1;
635
636 if (cycles1 < cycles2)
637 return -1;
638 if (cycles1 > cycles2)
639 return 1;
640
641 if (state1 < state2)
642 return -1;
643 if (state1 > state2)
644 return 1;
645
646 assert(block1 == block2);
647 return 0;
648}
649
650static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
651 fio_fp64_t *plist, unsigned int **percentiles,
652 unsigned int *types)
653{
654 int len = 0;
655 int i, nr_uninit;
656
657 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
658
659 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
660 len++;
661
662 if (!len)
663 return 0;
664
665 /*
666 * Sort the percentile list. Note that it may already be sorted if
667 * we are using the default values, but since it's a short list this
668 * isn't a worry. Also note that this does not work for NaN values.
669 */
670 if (len > 1)
671 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
672
673 /* Start only after the uninit entries end */
674 for (nr_uninit = 0;
675 nr_uninit < nr_block_infos
676 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
677 nr_uninit ++)
678 ;
679
680 if (nr_uninit == nr_block_infos)
681 return 0;
682
683 *percentiles = calloc(len, sizeof(**percentiles));
684
685 for (i = 0; i < len; i++) {
686 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
687 + nr_uninit;
688 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
689 }
690
691 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
692 for (i = 0; i < nr_block_infos; i++)
693 types[BLOCK_INFO_STATE(block_infos[i])]++;
694
695 return len;
696}
697
698static const char *block_state_names[] = {
699 [BLOCK_STATE_UNINIT] = "unwritten",
700 [BLOCK_STATE_TRIMMED] = "trimmed",
701 [BLOCK_STATE_WRITTEN] = "written",
702 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
703 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
704};
705
706static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
707 fio_fp64_t *plist, struct buf_output *out)
708{
709 int len, pos, i;
710 unsigned int *percentiles = NULL;
711 unsigned int block_state_counts[BLOCK_STATE_COUNT];
712
713 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
714 &percentiles, block_state_counts);
715
716 log_buf(out, " block lifetime percentiles :\n |");
717 pos = 0;
718 for (i = 0; i < len; i++) {
719 uint32_t block_info = percentiles[i];
720#define LINE_LENGTH 75
721 char str[LINE_LENGTH];
722 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
723 plist[i].u.f, block_info,
724 i == len - 1 ? '\n' : ',');
725 assert(strln < LINE_LENGTH);
726 if (pos + strln > LINE_LENGTH) {
727 pos = 0;
728 log_buf(out, "\n |");
729 }
730 log_buf(out, "%s", str);
731 pos += strln;
732#undef LINE_LENGTH
733 }
734 if (percentiles)
735 free(percentiles);
736
737 log_buf(out, " states :");
738 for (i = 0; i < BLOCK_STATE_COUNT; i++)
739 log_buf(out, " %s=%u%c",
740 block_state_names[i], block_state_counts[i],
741 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
742}
743
744static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
745{
746 char *p1, *p1alt, *p2;
747 unsigned long long bw_mean, iops_mean;
748 const int i2p = is_power_of_2(ts->kb_base);
749
750 if (!ts->ss_dur)
751 return;
752
753 bw_mean = steadystate_bw_mean(ts);
754 iops_mean = steadystate_iops_mean(ts);
755
756 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
757 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
758 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
759
760 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
761 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
762 p1, p1alt, p2,
763 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
764 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
765 ts->ss_criterion.u.f,
766 ts->ss_state & FIO_SS_PCT ? "%" : "");
767
768 free(p1);
769 free(p1alt);
770 free(p2);
771}
772
773static void show_thread_status_normal(struct thread_stat *ts,
774 struct group_run_stats *rs,
775 struct buf_output *out)
776{
777 double usr_cpu, sys_cpu;
778 unsigned long runtime;
779 double io_u_dist[FIO_IO_U_MAP_NR];
780 time_t time_p;
781 char time_buf[32];
782
783 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
784 return;
785
786 memset(time_buf, 0, sizeof(time_buf));
787
788 time(&time_p);
789 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
790
791 if (!ts->error) {
792 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
793 ts->name, ts->groupid, ts->members,
794 ts->error, (int) ts->pid, time_buf);
795 } else {
796 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
797 ts->name, ts->groupid, ts->members,
798 ts->error, ts->verror, (int) ts->pid,
799 time_buf);
800 }
801
802 if (strlen(ts->description))
803 log_buf(out, " Description : [%s]\n", ts->description);
804
805 if (ts->io_bytes[DDIR_READ])
806 show_ddir_status(rs, ts, DDIR_READ, out);
807 if (ts->io_bytes[DDIR_WRITE])
808 show_ddir_status(rs, ts, DDIR_WRITE, out);
809 if (ts->io_bytes[DDIR_TRIM])
810 show_ddir_status(rs, ts, DDIR_TRIM, out);
811
812 show_latencies(ts, out);
813
814 if (ts->sync_stat.samples)
815 show_ddir_status(rs, ts, DDIR_SYNC, out);
816
817 runtime = ts->total_run_time;
818 if (runtime) {
819 double runt = (double) runtime;
820
821 usr_cpu = (double) ts->usr_time * 100 / runt;
822 sys_cpu = (double) ts->sys_time * 100 / runt;
823 } else {
824 usr_cpu = 0;
825 sys_cpu = 0;
826 }
827
828 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
829 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
830 (unsigned long long) ts->ctx,
831 (unsigned long long) ts->majf,
832 (unsigned long long) ts->minf);
833
834 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
835 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
836 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
837 io_u_dist[1], io_u_dist[2],
838 io_u_dist[3], io_u_dist[4],
839 io_u_dist[5], io_u_dist[6]);
840
841 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
842 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
843 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
844 io_u_dist[1], io_u_dist[2],
845 io_u_dist[3], io_u_dist[4],
846 io_u_dist[5], io_u_dist[6]);
847 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
848 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
849 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
850 io_u_dist[1], io_u_dist[2],
851 io_u_dist[3], io_u_dist[4],
852 io_u_dist[5], io_u_dist[6]);
853 log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu"
854 " short=%llu,%llu,%llu,0"
855 " dropped=%llu,%llu,%llu,0\n",
856 (unsigned long long) ts->total_io_u[0],
857 (unsigned long long) ts->total_io_u[1],
858 (unsigned long long) ts->total_io_u[2],
859 (unsigned long long) ts->total_io_u[3],
860 (unsigned long long) ts->short_io_u[0],
861 (unsigned long long) ts->short_io_u[1],
862 (unsigned long long) ts->short_io_u[2],
863 (unsigned long long) ts->drop_io_u[0],
864 (unsigned long long) ts->drop_io_u[1],
865 (unsigned long long) ts->drop_io_u[2]);
866 if (ts->continue_on_error) {
867 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
868 (unsigned long long)ts->total_err_count,
869 ts->first_error,
870 strerror(ts->first_error));
871 }
872 if (ts->latency_depth) {
873 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
874 (unsigned long long)ts->latency_target,
875 (unsigned long long)ts->latency_window,
876 ts->latency_percentile.u.f,
877 ts->latency_depth);
878 }
879
880 if (ts->nr_block_infos)
881 show_block_infos(ts->nr_block_infos, ts->block_infos,
882 ts->percentile_list, out);
883
884 if (ts->ss_dur)
885 show_ss_normal(ts, out);
886}
887
888static void show_ddir_status_terse(struct thread_stat *ts,
889 struct group_run_stats *rs, int ddir,
890 int ver, struct buf_output *out)
891{
892 unsigned long long min, max, minv, maxv, bw, iops;
893 unsigned long long *ovals = NULL;
894 double mean, dev;
895 unsigned int len;
896 int i, bw_stat;
897
898 assert(ddir_rw(ddir));
899
900 iops = bw = 0;
901 if (ts->runtime[ddir]) {
902 uint64_t runt = ts->runtime[ddir];
903
904 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
905 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
906 }
907
908 log_buf(out, ";%llu;%llu;%llu;%llu",
909 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
910 (unsigned long long) ts->runtime[ddir]);
911
912 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
913 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
914 else
915 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
916
917 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
918 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
919 else
920 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
921
922 if (ts->clat_percentiles || ts->lat_percentiles) {
923 len = calc_clat_percentiles(ts->io_u_plat[ddir],
924 ts->clat_stat[ddir].samples,
925 ts->percentile_list, &ovals, &maxv,
926 &minv);
927 } else
928 len = 0;
929
930 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
931 if (i >= len) {
932 log_buf(out, ";0%%=0");
933 continue;
934 }
935 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
936 }
937
938 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
939 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
940 else
941 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
942
943 if (ovals)
944 free(ovals);
945
946 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
947 if (bw_stat) {
948 double p_of_agg = 100.0;
949
950 if (rs->agg[ddir]) {
951 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
952 if (p_of_agg > 100.0)
953 p_of_agg = 100.0;
954 }
955
956 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
957 } else
958 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
959
960 if (ver == 5) {
961 if (bw_stat)
962 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
963 else
964 log_buf(out, ";%lu", 0UL);
965
966 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
967 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
968 mean, dev, (&ts->iops_stat[ddir])->samples);
969 else
970 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
971 }
972}
973
974static void add_ddir_status_json(struct thread_stat *ts,
975 struct group_run_stats *rs, int ddir, struct json_object *parent)
976{
977 unsigned long long min, max, minv, maxv;
978 unsigned long long bw_bytes, bw;
979 unsigned long long *ovals = NULL;
980 double mean, dev, iops;
981 unsigned int len;
982 int i;
983 const char *ddirname[] = { "read", "write", "trim", "sync" };
984 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
985 char buf[120];
986 double p_of_agg = 100.0;
987
988 assert(ddir_rw(ddir) || ddir_sync(ddir));
989
990 if (ts->unified_rw_rep && ddir != DDIR_READ)
991 return;
992
993 dir_object = json_create_object();
994 json_object_add_value_object(parent,
995 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
996
997 if (ddir_rw(ddir)) {
998 bw_bytes = 0;
999 bw = 0;
1000 iops = 0.0;
1001 if (ts->runtime[ddir]) {
1002 uint64_t runt = ts->runtime[ddir];
1003
1004 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1005 bw = bw_bytes / 1024; /* KiB/s */
1006 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1007 }
1008
1009 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1010 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1011 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1012 json_object_add_value_int(dir_object, "bw", bw);
1013 json_object_add_value_float(dir_object, "iops", iops);
1014 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1015 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1016 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1017 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1018
1019 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1020 min = max = 0;
1021 mean = dev = 0.0;
1022 }
1023 tmp_object = json_create_object();
1024 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1025 json_object_add_value_int(tmp_object, "min", min);
1026 json_object_add_value_int(tmp_object, "max", max);
1027 json_object_add_value_float(tmp_object, "mean", mean);
1028 json_object_add_value_float(tmp_object, "stddev", dev);
1029
1030 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1031 min = max = 0;
1032 mean = dev = 0.0;
1033 }
1034 tmp_object = json_create_object();
1035 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1036 json_object_add_value_int(tmp_object, "min", min);
1037 json_object_add_value_int(tmp_object, "max", max);
1038 json_object_add_value_float(tmp_object, "mean", mean);
1039 json_object_add_value_float(tmp_object, "stddev", dev);
1040 } else {
1041 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1042 min = max = 0;
1043 mean = dev = 0.0;
1044 }
1045
1046 tmp_object = json_create_object();
1047 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1048 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1049 json_object_add_value_int(tmp_object, "min", min);
1050 json_object_add_value_int(tmp_object, "max", max);
1051 json_object_add_value_float(tmp_object, "mean", mean);
1052 json_object_add_value_float(tmp_object, "stddev", dev);
1053 }
1054
1055 if (ts->clat_percentiles || ts->lat_percentiles) {
1056 if (ddir_rw(ddir)) {
1057 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1058 ts->clat_stat[ddir].samples,
1059 ts->percentile_list, &ovals, &maxv,
1060 &minv);
1061 } else {
1062 len = calc_clat_percentiles(ts->io_u_sync_plat,
1063 ts->sync_stat.samples,
1064 ts->percentile_list, &ovals, &maxv,
1065 &minv);
1066 }
1067
1068 if (len > FIO_IO_U_LIST_MAX_LEN)
1069 len = FIO_IO_U_LIST_MAX_LEN;
1070 } else
1071 len = 0;
1072
1073 percentile_object = json_create_object();
1074 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1075 for (i = 0; i < len; i++) {
1076 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1077 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1078 }
1079
1080 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1081 clat_bins_object = json_create_object();
1082 if (ts->clat_percentiles)
1083 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1084
1085 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1086 if (ddir_rw(ddir)) {
1087 if (ts->io_u_plat[ddir][i]) {
1088 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1089 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1090 }
1091 } else {
1092 if (ts->io_u_sync_plat[i]) {
1093 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1094 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]);
1095 }
1096 }
1097 }
1098 }
1099
1100 if (!ddir_rw(ddir))
1101 return;
1102
1103 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1104 min = max = 0;
1105 mean = dev = 0.0;
1106 }
1107 tmp_object = json_create_object();
1108 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1109 json_object_add_value_int(tmp_object, "min", min);
1110 json_object_add_value_int(tmp_object, "max", max);
1111 json_object_add_value_float(tmp_object, "mean", mean);
1112 json_object_add_value_float(tmp_object, "stddev", dev);
1113 if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1114 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1115
1116 if (ovals)
1117 free(ovals);
1118
1119 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1120 if (rs->agg[ddir]) {
1121 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1122 if (p_of_agg > 100.0)
1123 p_of_agg = 100.0;
1124 }
1125 } else {
1126 min = max = 0;
1127 p_of_agg = mean = dev = 0.0;
1128 }
1129 json_object_add_value_int(dir_object, "bw_min", min);
1130 json_object_add_value_int(dir_object, "bw_max", max);
1131 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1132 json_object_add_value_float(dir_object, "bw_mean", mean);
1133 json_object_add_value_float(dir_object, "bw_dev", dev);
1134 json_object_add_value_int(dir_object, "bw_samples",
1135 (&ts->bw_stat[ddir])->samples);
1136
1137 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1138 min = max = 0;
1139 mean = dev = 0.0;
1140 }
1141 json_object_add_value_int(dir_object, "iops_min", min);
1142 json_object_add_value_int(dir_object, "iops_max", max);
1143 json_object_add_value_float(dir_object, "iops_mean", mean);
1144 json_object_add_value_float(dir_object, "iops_stddev", dev);
1145 json_object_add_value_int(dir_object, "iops_samples",
1146 (&ts->iops_stat[ddir])->samples);
1147}
1148
1149static void show_thread_status_terse_all(struct thread_stat *ts,
1150 struct group_run_stats *rs, int ver,
1151 struct buf_output *out)
1152{
1153 double io_u_dist[FIO_IO_U_MAP_NR];
1154 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1155 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1156 double usr_cpu, sys_cpu;
1157 int i;
1158
1159 /* General Info */
1160 if (ver == 2)
1161 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1162 else
1163 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1164 ts->name, ts->groupid, ts->error);
1165
1166 /* Log Read Status */
1167 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1168 /* Log Write Status */
1169 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1170 /* Log Trim Status */
1171 if (ver == 2 || ver == 4 || ver == 5)
1172 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1173
1174 /* CPU Usage */
1175 if (ts->total_run_time) {
1176 double runt = (double) ts->total_run_time;
1177
1178 usr_cpu = (double) ts->usr_time * 100 / runt;
1179 sys_cpu = (double) ts->sys_time * 100 / runt;
1180 } else {
1181 usr_cpu = 0;
1182 sys_cpu = 0;
1183 }
1184
1185 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1186 (unsigned long long) ts->ctx,
1187 (unsigned long long) ts->majf,
1188 (unsigned long long) ts->minf);
1189
1190 /* Calc % distribution of IO depths, usecond, msecond latency */
1191 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1192 stat_calc_lat_nu(ts, io_u_lat_u);
1193 stat_calc_lat_m(ts, io_u_lat_m);
1194
1195 /* Only show fixed 7 I/O depth levels*/
1196 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1197 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1198 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1199
1200 /* Microsecond latency */
1201 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1202 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1203 /* Millisecond latency */
1204 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1205 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1206
1207 /* disk util stats, if any */
1208 if (ver >= 3 && is_running_backend())
1209 show_disk_util(1, NULL, out);
1210
1211 /* Additional output if continue_on_error set - default off*/
1212 if (ts->continue_on_error)
1213 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1214 if (ver == 2)
1215 log_buf(out, "\n");
1216
1217 /* Additional output if description is set */
1218 if (strlen(ts->description))
1219 log_buf(out, ";%s", ts->description);
1220
1221 log_buf(out, "\n");
1222}
1223
1224static void json_add_job_opts(struct json_object *root, const char *name,
1225 struct flist_head *opt_list)
1226{
1227 struct json_object *dir_object;
1228 struct flist_head *entry;
1229 struct print_option *p;
1230
1231 if (flist_empty(opt_list))
1232 return;
1233
1234 dir_object = json_create_object();
1235 json_object_add_value_object(root, name, dir_object);
1236
1237 flist_for_each(entry, opt_list) {
1238 const char *pos = "";
1239
1240 p = flist_entry(entry, struct print_option, list);
1241 if (p->value)
1242 pos = p->value;
1243 json_object_add_value_string(dir_object, p->name, pos);
1244 }
1245}
1246
1247static struct json_object *show_thread_status_json(struct thread_stat *ts,
1248 struct group_run_stats *rs,
1249 struct flist_head *opt_list)
1250{
1251 struct json_object *root, *tmp;
1252 struct jobs_eta *je;
1253 double io_u_dist[FIO_IO_U_MAP_NR];
1254 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1255 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1256 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1257 double usr_cpu, sys_cpu;
1258 int i;
1259 size_t size;
1260
1261 root = json_create_object();
1262 json_object_add_value_string(root, "jobname", ts->name);
1263 json_object_add_value_int(root, "groupid", ts->groupid);
1264 json_object_add_value_int(root, "error", ts->error);
1265
1266 /* ETA Info */
1267 je = get_jobs_eta(true, &size);
1268 if (je) {
1269 json_object_add_value_int(root, "eta", je->eta_sec);
1270 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1271 }
1272
1273 if (opt_list)
1274 json_add_job_opts(root, "job options", opt_list);
1275
1276 add_ddir_status_json(ts, rs, DDIR_READ, root);
1277 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1278 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1279 add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1280
1281 /* CPU Usage */
1282 if (ts->total_run_time) {
1283 double runt = (double) ts->total_run_time;
1284
1285 usr_cpu = (double) ts->usr_time * 100 / runt;
1286 sys_cpu = (double) ts->sys_time * 100 / runt;
1287 } else {
1288 usr_cpu = 0;
1289 sys_cpu = 0;
1290 }
1291 json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1292 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1293 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1294 json_object_add_value_int(root, "ctx", ts->ctx);
1295 json_object_add_value_int(root, "majf", ts->majf);
1296 json_object_add_value_int(root, "minf", ts->minf);
1297
1298 /* Calc % distribution of IO depths */
1299 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1300 tmp = json_create_object();
1301 json_object_add_value_object(root, "iodepth_level", tmp);
1302 /* Only show fixed 7 I/O depth levels*/
1303 for (i = 0; i < 7; i++) {
1304 char name[20];
1305 if (i < 6)
1306 snprintf(name, 20, "%d", 1 << i);
1307 else
1308 snprintf(name, 20, ">=%d", 1 << i);
1309 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1310 }
1311
1312 /* Calc % distribution of submit IO depths */
1313 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1314 tmp = json_create_object();
1315 json_object_add_value_object(root, "iodepth_submit", tmp);
1316 /* Only show fixed 7 I/O depth levels*/
1317 for (i = 0; i < 7; i++) {
1318 char name[20];
1319 if (i == 0)
1320 snprintf(name, 20, "0");
1321 else if (i < 6)
1322 snprintf(name, 20, "%d", 1 << (i+1));
1323 else
1324 snprintf(name, 20, ">=%d", 1 << i);
1325 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1326 }
1327
1328 /* Calc % distribution of completion IO depths */
1329 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1330 tmp = json_create_object();
1331 json_object_add_value_object(root, "iodepth_complete", tmp);
1332 /* Only show fixed 7 I/O depth levels*/
1333 for (i = 0; i < 7; i++) {
1334 char name[20];
1335 if (i == 0)
1336 snprintf(name, 20, "0");
1337 else if (i < 6)
1338 snprintf(name, 20, "%d", 1 << (i+1));
1339 else
1340 snprintf(name, 20, ">=%d", 1 << i);
1341 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1342 }
1343
1344 /* Calc % distribution of nsecond, usecond, msecond latency */
1345 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1346 stat_calc_lat_n(ts, io_u_lat_n);
1347 stat_calc_lat_u(ts, io_u_lat_u);
1348 stat_calc_lat_m(ts, io_u_lat_m);
1349
1350 /* Nanosecond latency */
1351 tmp = json_create_object();
1352 json_object_add_value_object(root, "latency_ns", tmp);
1353 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1354 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1355 "250", "500", "750", "1000", };
1356 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1357 }
1358 /* Microsecond latency */
1359 tmp = json_create_object();
1360 json_object_add_value_object(root, "latency_us", tmp);
1361 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1362 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1363 "250", "500", "750", "1000", };
1364 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1365 }
1366 /* Millisecond latency */
1367 tmp = json_create_object();
1368 json_object_add_value_object(root, "latency_ms", tmp);
1369 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1370 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1371 "250", "500", "750", "1000", "2000",
1372 ">=2000", };
1373 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1374 }
1375
1376 /* Additional output if continue_on_error set - default off*/
1377 if (ts->continue_on_error) {
1378 json_object_add_value_int(root, "total_err", ts->total_err_count);
1379 json_object_add_value_int(root, "first_error", ts->first_error);
1380 }
1381
1382 if (ts->latency_depth) {
1383 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1384 json_object_add_value_int(root, "latency_target", ts->latency_target);
1385 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1386 json_object_add_value_int(root, "latency_window", ts->latency_window);
1387 }
1388
1389 /* Additional output if description is set */
1390 if (strlen(ts->description))
1391 json_object_add_value_string(root, "desc", ts->description);
1392
1393 if (ts->nr_block_infos) {
1394 /* Block error histogram and types */
1395 int len;
1396 unsigned int *percentiles = NULL;
1397 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1398
1399 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1400 ts->percentile_list,
1401 &percentiles, block_state_counts);
1402
1403 if (len) {
1404 struct json_object *block, *percentile_object, *states;
1405 int state;
1406 block = json_create_object();
1407 json_object_add_value_object(root, "block", block);
1408
1409 percentile_object = json_create_object();
1410 json_object_add_value_object(block, "percentiles",
1411 percentile_object);
1412 for (i = 0; i < len; i++) {
1413 char buf[20];
1414 snprintf(buf, sizeof(buf), "%f",
1415 ts->percentile_list[i].u.f);
1416 json_object_add_value_int(percentile_object,
1417 (const char *)buf,
1418 percentiles[i]);
1419 }
1420
1421 states = json_create_object();
1422 json_object_add_value_object(block, "states", states);
1423 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1424 json_object_add_value_int(states,
1425 block_state_names[state],
1426 block_state_counts[state]);
1427 }
1428 free(percentiles);
1429 }
1430 }
1431
1432 if (ts->ss_dur) {
1433 struct json_object *data;
1434 struct json_array *iops, *bw;
1435 int j, k, l;
1436 char ss_buf[64];
1437
1438 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1439 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1440 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1441 (float) ts->ss_limit.u.f,
1442 ts->ss_state & FIO_SS_PCT ? "%" : "");
1443
1444 tmp = json_create_object();
1445 json_object_add_value_object(root, "steadystate", tmp);
1446 json_object_add_value_string(tmp, "ss", ss_buf);
1447 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1448 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1449
1450 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1451 ts->ss_state & FIO_SS_PCT ? "%" : "");
1452 json_object_add_value_string(tmp, "criterion", ss_buf);
1453 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1454 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1455
1456 data = json_create_object();
1457 json_object_add_value_object(tmp, "data", data);
1458 bw = json_create_array();
1459 iops = json_create_array();
1460
1461 /*
1462 ** if ss was attained or the buffer is not full,
1463 ** ss->head points to the first element in the list.
1464 ** otherwise it actually points to the second element
1465 ** in the list
1466 */
1467 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1468 j = ts->ss_head;
1469 else
1470 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1471 for (l = 0; l < ts->ss_dur; l++) {
1472 k = (j + l) % ts->ss_dur;
1473 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1474 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1475 }
1476 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1477 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1478 json_object_add_value_array(data, "iops", iops);
1479 json_object_add_value_array(data, "bw", bw);
1480 }
1481
1482 return root;
1483}
1484
1485static void show_thread_status_terse(struct thread_stat *ts,
1486 struct group_run_stats *rs,
1487 struct buf_output *out)
1488{
1489 if (terse_version >= 2 && terse_version <= 5)
1490 show_thread_status_terse_all(ts, rs, terse_version, out);
1491 else
1492 log_err("fio: bad terse version!? %d\n", terse_version);
1493}
1494
1495struct json_object *show_thread_status(struct thread_stat *ts,
1496 struct group_run_stats *rs,
1497 struct flist_head *opt_list,
1498 struct buf_output *out)
1499{
1500 struct json_object *ret = NULL;
1501
1502 if (output_format & FIO_OUTPUT_TERSE)
1503 show_thread_status_terse(ts, rs, out);
1504 if (output_format & FIO_OUTPUT_JSON)
1505 ret = show_thread_status_json(ts, rs, opt_list);
1506 if (output_format & FIO_OUTPUT_NORMAL)
1507 show_thread_status_normal(ts, rs, out);
1508
1509 return ret;
1510}
1511
1512static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1513{
1514 double mean, S;
1515
1516 if (src->samples == 0)
1517 return;
1518
1519 dst->min_val = min(dst->min_val, src->min_val);
1520 dst->max_val = max(dst->max_val, src->max_val);
1521
1522 /*
1523 * Compute new mean and S after the merge
1524 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1525 * #Parallel_algorithm>
1526 */
1527 if (first) {
1528 mean = src->mean.u.f;
1529 S = src->S.u.f;
1530 } else {
1531 double delta = src->mean.u.f - dst->mean.u.f;
1532
1533 mean = ((src->mean.u.f * src->samples) +
1534 (dst->mean.u.f * dst->samples)) /
1535 (dst->samples + src->samples);
1536
1537 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1538 (dst->samples * src->samples) /
1539 (dst->samples + src->samples);
1540 }
1541
1542 dst->samples += src->samples;
1543 dst->mean.u.f = mean;
1544 dst->S.u.f = S;
1545}
1546
1547void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1548{
1549 int i;
1550
1551 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1552 if (dst->max_run[i] < src->max_run[i])
1553 dst->max_run[i] = src->max_run[i];
1554 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1555 dst->min_run[i] = src->min_run[i];
1556 if (dst->max_bw[i] < src->max_bw[i])
1557 dst->max_bw[i] = src->max_bw[i];
1558 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1559 dst->min_bw[i] = src->min_bw[i];
1560
1561 dst->iobytes[i] += src->iobytes[i];
1562 dst->agg[i] += src->agg[i];
1563 }
1564
1565 if (!dst->kb_base)
1566 dst->kb_base = src->kb_base;
1567 if (!dst->unit_base)
1568 dst->unit_base = src->unit_base;
1569 if (!dst->sig_figs)
1570 dst->sig_figs = src->sig_figs;
1571}
1572
1573void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1574 bool first)
1575{
1576 int l, k;
1577
1578 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1579 if (!dst->unified_rw_rep) {
1580 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1581 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1582 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1583 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1584 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1585
1586 dst->io_bytes[l] += src->io_bytes[l];
1587
1588 if (dst->runtime[l] < src->runtime[l])
1589 dst->runtime[l] = src->runtime[l];
1590 } else {
1591 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1592 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1593 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1594 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1595 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1596
1597 dst->io_bytes[0] += src->io_bytes[l];
1598
1599 if (dst->runtime[0] < src->runtime[l])
1600 dst->runtime[0] = src->runtime[l];
1601
1602 /*
1603 * We're summing to the same destination, so override
1604 * 'first' after the first iteration of the loop
1605 */
1606 first = false;
1607 }
1608 }
1609
1610 sum_stat(&dst->sync_stat, &src->sync_stat, first);
1611 dst->usr_time += src->usr_time;
1612 dst->sys_time += src->sys_time;
1613 dst->ctx += src->ctx;
1614 dst->majf += src->majf;
1615 dst->minf += src->minf;
1616
1617 for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1618 dst->io_u_map[k] += src->io_u_map[k];
1619 dst->io_u_submit[k] += src->io_u_submit[k];
1620 dst->io_u_complete[k] += src->io_u_complete[k];
1621 }
1622 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++) {
1623 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1624 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1625 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1626 }
1627 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1628 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1629
1630 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1631 if (!dst->unified_rw_rep) {
1632 dst->total_io_u[k] += src->total_io_u[k];
1633 dst->short_io_u[k] += src->short_io_u[k];
1634 dst->drop_io_u[k] += src->drop_io_u[k];
1635 } else {
1636 dst->total_io_u[0] += src->total_io_u[k];
1637 dst->short_io_u[0] += src->short_io_u[k];
1638 dst->drop_io_u[0] += src->drop_io_u[k];
1639 }
1640 }
1641
1642 dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1643
1644 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1645 int m;
1646
1647 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1648 if (!dst->unified_rw_rep)
1649 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1650 else
1651 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1652 }
1653 }
1654
1655 dst->total_run_time += src->total_run_time;
1656 dst->total_submit += src->total_submit;
1657 dst->total_complete += src->total_complete;
1658}
1659
1660void init_group_run_stat(struct group_run_stats *gs)
1661{
1662 int i;
1663 memset(gs, 0, sizeof(*gs));
1664
1665 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1666 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1667}
1668
1669void init_thread_stat(struct thread_stat *ts)
1670{
1671 int j;
1672
1673 memset(ts, 0, sizeof(*ts));
1674
1675 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1676 ts->lat_stat[j].min_val = -1UL;
1677 ts->clat_stat[j].min_val = -1UL;
1678 ts->slat_stat[j].min_val = -1UL;
1679 ts->bw_stat[j].min_val = -1UL;
1680 ts->iops_stat[j].min_val = -1UL;
1681 }
1682 ts->sync_stat.min_val = -1UL;
1683 ts->groupid = -1;
1684}
1685
1686void __show_run_stats(void)
1687{
1688 struct group_run_stats *runstats, *rs;
1689 struct thread_data *td;
1690 struct thread_stat *threadstats, *ts;
1691 int i, j, k, nr_ts, last_ts, idx;
1692 bool kb_base_warned = false;
1693 bool unit_base_warned = false;
1694 struct json_object *root = NULL;
1695 struct json_array *array = NULL;
1696 struct buf_output output[FIO_OUTPUT_NR];
1697 struct flist_head **opt_lists;
1698
1699 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1700
1701 for (i = 0; i < groupid + 1; i++)
1702 init_group_run_stat(&runstats[i]);
1703
1704 /*
1705 * find out how many threads stats we need. if group reporting isn't
1706 * enabled, it's one-per-td.
1707 */
1708 nr_ts = 0;
1709 last_ts = -1;
1710 for_each_td(td, i) {
1711 if (!td->o.group_reporting) {
1712 nr_ts++;
1713 continue;
1714 }
1715 if (last_ts == td->groupid)
1716 continue;
1717 if (!td->o.stats)
1718 continue;
1719
1720 last_ts = td->groupid;
1721 nr_ts++;
1722 }
1723
1724 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1725 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1726
1727 for (i = 0; i < nr_ts; i++) {
1728 init_thread_stat(&threadstats[i]);
1729 opt_lists[i] = NULL;
1730 }
1731
1732 j = 0;
1733 last_ts = -1;
1734 idx = 0;
1735 for_each_td(td, i) {
1736 if (!td->o.stats)
1737 continue;
1738 if (idx && (!td->o.group_reporting ||
1739 (td->o.group_reporting && last_ts != td->groupid))) {
1740 idx = 0;
1741 j++;
1742 }
1743
1744 last_ts = td->groupid;
1745
1746 ts = &threadstats[j];
1747
1748 ts->clat_percentiles = td->o.clat_percentiles;
1749 ts->lat_percentiles = td->o.lat_percentiles;
1750 ts->percentile_precision = td->o.percentile_precision;
1751 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1752 opt_lists[j] = &td->opt_list;
1753
1754 idx++;
1755 ts->members++;
1756
1757 if (ts->groupid == -1) {
1758 /*
1759 * These are per-group shared already
1760 */
1761 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1762 if (td->o.description)
1763 strncpy(ts->description, td->o.description,
1764 FIO_JOBDESC_SIZE - 1);
1765 else
1766 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1767
1768 /*
1769 * If multiple entries in this group, this is
1770 * the first member.
1771 */
1772 ts->thread_number = td->thread_number;
1773 ts->groupid = td->groupid;
1774
1775 /*
1776 * first pid in group, not very useful...
1777 */
1778 ts->pid = td->pid;
1779
1780 ts->kb_base = td->o.kb_base;
1781 ts->unit_base = td->o.unit_base;
1782 ts->sig_figs = td->o.sig_figs;
1783 ts->unified_rw_rep = td->o.unified_rw_rep;
1784 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1785 log_info("fio: kb_base differs for jobs in group, using"
1786 " %u as the base\n", ts->kb_base);
1787 kb_base_warned = true;
1788 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1789 log_info("fio: unit_base differs for jobs in group, using"
1790 " %u as the base\n", ts->unit_base);
1791 unit_base_warned = true;
1792 }
1793
1794 ts->continue_on_error = td->o.continue_on_error;
1795 ts->total_err_count += td->total_err_count;
1796 ts->first_error = td->first_error;
1797 if (!ts->error) {
1798 if (!td->error && td->o.continue_on_error &&
1799 td->first_error) {
1800 ts->error = td->first_error;
1801 ts->verror[sizeof(ts->verror) - 1] = '\0';
1802 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1803 } else if (td->error) {
1804 ts->error = td->error;
1805 ts->verror[sizeof(ts->verror) - 1] = '\0';
1806 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1807 }
1808 }
1809
1810 ts->latency_depth = td->latency_qd;
1811 ts->latency_target = td->o.latency_target;
1812 ts->latency_percentile = td->o.latency_percentile;
1813 ts->latency_window = td->o.latency_window;
1814
1815 ts->nr_block_infos = td->ts.nr_block_infos;
1816 for (k = 0; k < ts->nr_block_infos; k++)
1817 ts->block_infos[k] = td->ts.block_infos[k];
1818
1819 sum_thread_stats(ts, &td->ts, idx == 1);
1820
1821 if (td->o.ss_dur) {
1822 ts->ss_state = td->ss.state;
1823 ts->ss_dur = td->ss.dur;
1824 ts->ss_head = td->ss.head;
1825 ts->ss_bw_data = td->ss.bw_data;
1826 ts->ss_iops_data = td->ss.iops_data;
1827 ts->ss_limit.u.f = td->ss.limit;
1828 ts->ss_slope.u.f = td->ss.slope;
1829 ts->ss_deviation.u.f = td->ss.deviation;
1830 ts->ss_criterion.u.f = td->ss.criterion;
1831 }
1832 else
1833 ts->ss_dur = ts->ss_state = 0;
1834 }
1835
1836 for (i = 0; i < nr_ts; i++) {
1837 unsigned long long bw;
1838
1839 ts = &threadstats[i];
1840 if (ts->groupid == -1)
1841 continue;
1842 rs = &runstats[ts->groupid];
1843 rs->kb_base = ts->kb_base;
1844 rs->unit_base = ts->unit_base;
1845 rs->sig_figs = ts->sig_figs;
1846 rs->unified_rw_rep += ts->unified_rw_rep;
1847
1848 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1849 if (!ts->runtime[j])
1850 continue;
1851 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1852 rs->min_run[j] = ts->runtime[j];
1853 if (ts->runtime[j] > rs->max_run[j])
1854 rs->max_run[j] = ts->runtime[j];
1855
1856 bw = 0;
1857 if (ts->runtime[j])
1858 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1859 if (bw < rs->min_bw[j])
1860 rs->min_bw[j] = bw;
1861 if (bw > rs->max_bw[j])
1862 rs->max_bw[j] = bw;
1863
1864 rs->iobytes[j] += ts->io_bytes[j];
1865 }
1866 }
1867
1868 for (i = 0; i < groupid + 1; i++) {
1869 int ddir;
1870
1871 rs = &runstats[i];
1872
1873 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1874 if (rs->max_run[ddir])
1875 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1876 rs->max_run[ddir];
1877 }
1878 }
1879
1880 for (i = 0; i < FIO_OUTPUT_NR; i++)
1881 buf_output_init(&output[i]);
1882
1883 /*
1884 * don't overwrite last signal output
1885 */
1886 if (output_format & FIO_OUTPUT_NORMAL)
1887 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1888 if (output_format & FIO_OUTPUT_JSON) {
1889 struct thread_data *global;
1890 char time_buf[32];
1891 struct timeval now;
1892 unsigned long long ms_since_epoch;
1893 time_t tv_sec;
1894
1895 gettimeofday(&now, NULL);
1896 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1897 (unsigned long long)(now.tv_usec) / 1000;
1898
1899 tv_sec = now.tv_sec;
1900 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
1901 if (time_buf[strlen(time_buf) - 1] == '\n')
1902 time_buf[strlen(time_buf) - 1] = '\0';
1903
1904 root = json_create_object();
1905 json_object_add_value_string(root, "fio version", fio_version_string);
1906 json_object_add_value_int(root, "timestamp", now.tv_sec);
1907 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1908 json_object_add_value_string(root, "time", time_buf);
1909 global = get_global_options();
1910 json_add_job_opts(root, "global options", &global->opt_list);
1911 array = json_create_array();
1912 json_object_add_value_array(root, "jobs", array);
1913 }
1914
1915 if (is_backend)
1916 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1917
1918 for (i = 0; i < nr_ts; i++) {
1919 ts = &threadstats[i];
1920 rs = &runstats[ts->groupid];
1921
1922 if (is_backend) {
1923 fio_server_send_job_options(opt_lists[i], i);
1924 fio_server_send_ts(ts, rs);
1925 if (output_format & FIO_OUTPUT_TERSE)
1926 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1927 } else {
1928 if (output_format & FIO_OUTPUT_TERSE)
1929 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1930 if (output_format & FIO_OUTPUT_JSON) {
1931 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1932 json_array_add_value_object(array, tmp);
1933 }
1934 if (output_format & FIO_OUTPUT_NORMAL)
1935 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1936 }
1937 }
1938 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1939 /* disk util stats, if any */
1940 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1941
1942 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1943
1944 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1945 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1946 json_free_object(root);
1947 }
1948
1949 for (i = 0; i < groupid + 1; i++) {
1950 rs = &runstats[i];
1951
1952 rs->groupid = i;
1953 if (is_backend)
1954 fio_server_send_gs(rs);
1955 else if (output_format & FIO_OUTPUT_NORMAL)
1956 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1957 }
1958
1959 if (is_backend)
1960 fio_server_send_du();
1961 else if (output_format & FIO_OUTPUT_NORMAL) {
1962 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1963 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1964 }
1965
1966 for (i = 0; i < FIO_OUTPUT_NR; i++) {
1967 struct buf_output *out = &output[i];
1968
1969 log_info_buf(out->buf, out->buflen);
1970 buf_output_free(out);
1971 }
1972
1973 fio_idle_prof_cleanup();
1974
1975 log_info_flush();
1976 free(runstats);
1977 free(threadstats);
1978 free(opt_lists);
1979}
1980
1981void __show_running_run_stats(void)
1982{
1983 struct thread_data *td;
1984 unsigned long long *rt;
1985 struct timespec ts;
1986 int i;
1987
1988 fio_sem_down(stat_sem);
1989
1990 rt = malloc(thread_number * sizeof(unsigned long long));
1991 fio_gettime(&ts, NULL);
1992
1993 for_each_td(td, i) {
1994 td->update_rusage = 1;
1995 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1996 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1997 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1998 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1999
2000 rt[i] = mtime_since(&td->start, &ts);
2001 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2002 td->ts.runtime[DDIR_READ] += rt[i];
2003 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2004 td->ts.runtime[DDIR_WRITE] += rt[i];
2005 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2006 td->ts.runtime[DDIR_TRIM] += rt[i];
2007 }
2008
2009 for_each_td(td, i) {
2010 if (td->runstate >= TD_EXITED)
2011 continue;
2012 if (td->rusage_sem) {
2013 td->update_rusage = 1;
2014 fio_sem_down(td->rusage_sem);
2015 }
2016 td->update_rusage = 0;
2017 }
2018
2019 __show_run_stats();
2020
2021 for_each_td(td, i) {
2022 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2023 td->ts.runtime[DDIR_READ] -= rt[i];
2024 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2025 td->ts.runtime[DDIR_WRITE] -= rt[i];
2026 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2027 td->ts.runtime[DDIR_TRIM] -= rt[i];
2028 }
2029
2030 free(rt);
2031 fio_sem_up(stat_sem);
2032}
2033
2034static bool status_interval_init;
2035static struct timespec status_time;
2036static bool status_file_disabled;
2037
2038#define FIO_STATUS_FILE "fio-dump-status"
2039
2040static int check_status_file(void)
2041{
2042 struct stat sb;
2043 const char *temp_dir;
2044 char fio_status_file_path[PATH_MAX];
2045
2046 if (status_file_disabled)
2047 return 0;
2048
2049 temp_dir = getenv("TMPDIR");
2050 if (temp_dir == NULL) {
2051 temp_dir = getenv("TEMP");
2052 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2053 temp_dir = NULL;
2054 }
2055 if (temp_dir == NULL)
2056 temp_dir = "/tmp";
2057
2058 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2059
2060 if (stat(fio_status_file_path, &sb))
2061 return 0;
2062
2063 if (unlink(fio_status_file_path) < 0) {
2064 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2065 strerror(errno));
2066 log_err("fio: disabling status file updates\n");
2067 status_file_disabled = true;
2068 }
2069
2070 return 1;
2071}
2072
2073void check_for_running_stats(void)
2074{
2075 if (status_interval) {
2076 if (!status_interval_init) {
2077 fio_gettime(&status_time, NULL);
2078 status_interval_init = true;
2079 } else if (mtime_since_now(&status_time) >= status_interval) {
2080 show_running_run_stats();
2081 fio_gettime(&status_time, NULL);
2082 return;
2083 }
2084 }
2085 if (check_status_file()) {
2086 show_running_run_stats();
2087 return;
2088 }
2089}
2090
2091static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2092{
2093 double val = data;
2094 double delta;
2095
2096 if (data > is->max_val)
2097 is->max_val = data;
2098 if (data < is->min_val)
2099 is->min_val = data;
2100
2101 delta = val - is->mean.u.f;
2102 if (delta) {
2103 is->mean.u.f += delta / (is->samples + 1.0);
2104 is->S.u.f += delta * (val - is->mean.u.f);
2105 }
2106
2107 is->samples++;
2108}
2109
2110/*
2111 * Return a struct io_logs, which is added to the tail of the log
2112 * list for 'iolog'.
2113 */
2114static struct io_logs *get_new_log(struct io_log *iolog)
2115{
2116 size_t new_size, new_samples;
2117 struct io_logs *cur_log;
2118
2119 /*
2120 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2121 * forever
2122 */
2123 if (!iolog->cur_log_max)
2124 new_samples = DEF_LOG_ENTRIES;
2125 else {
2126 new_samples = iolog->cur_log_max * 2;
2127 if (new_samples > MAX_LOG_ENTRIES)
2128 new_samples = MAX_LOG_ENTRIES;
2129 }
2130
2131 new_size = new_samples * log_entry_sz(iolog);
2132
2133 cur_log = smalloc(sizeof(*cur_log));
2134 if (cur_log) {
2135 INIT_FLIST_HEAD(&cur_log->list);
2136 cur_log->log = malloc(new_size);
2137 if (cur_log->log) {
2138 cur_log->nr_samples = 0;
2139 cur_log->max_samples = new_samples;
2140 flist_add_tail(&cur_log->list, &iolog->io_logs);
2141 iolog->cur_log_max = new_samples;
2142 return cur_log;
2143 }
2144 sfree(cur_log);
2145 }
2146
2147 return NULL;
2148}
2149
2150/*
2151 * Add and return a new log chunk, or return current log if big enough
2152 */
2153static struct io_logs *regrow_log(struct io_log *iolog)
2154{
2155 struct io_logs *cur_log;
2156 int i;
2157
2158 if (!iolog || iolog->disabled)
2159 goto disable;
2160
2161 cur_log = iolog_cur_log(iolog);
2162 if (!cur_log) {
2163 cur_log = get_new_log(iolog);
2164 if (!cur_log)
2165 return NULL;
2166 }
2167
2168 if (cur_log->nr_samples < cur_log->max_samples)
2169 return cur_log;
2170
2171 /*
2172 * No room for a new sample. If we're compressing on the fly, flush
2173 * out the current chunk
2174 */
2175 if (iolog->log_gz) {
2176 if (iolog_cur_flush(iolog, cur_log)) {
2177 log_err("fio: failed flushing iolog! Will stop logging.\n");
2178 return NULL;
2179 }
2180 }
2181
2182 /*
2183 * Get a new log array, and add to our list
2184 */
2185 cur_log = get_new_log(iolog);
2186 if (!cur_log) {
2187 log_err("fio: failed extending iolog! Will stop logging.\n");
2188 return NULL;
2189 }
2190
2191 if (!iolog->pending || !iolog->pending->nr_samples)
2192 return cur_log;
2193
2194 /*
2195 * Flush pending items to new log
2196 */
2197 for (i = 0; i < iolog->pending->nr_samples; i++) {
2198 struct io_sample *src, *dst;
2199
2200 src = get_sample(iolog, iolog->pending, i);
2201 dst = get_sample(iolog, cur_log, i);
2202 memcpy(dst, src, log_entry_sz(iolog));
2203 }
2204 cur_log->nr_samples = iolog->pending->nr_samples;
2205
2206 iolog->pending->nr_samples = 0;
2207 return cur_log;
2208disable:
2209 if (iolog)
2210 iolog->disabled = true;
2211 return NULL;
2212}
2213
2214void regrow_logs(struct thread_data *td)
2215{
2216 regrow_log(td->slat_log);
2217 regrow_log(td->clat_log);
2218 regrow_log(td->clat_hist_log);
2219 regrow_log(td->lat_log);
2220 regrow_log(td->bw_log);
2221 regrow_log(td->iops_log);
2222 td->flags &= ~TD_F_REGROW_LOGS;
2223}
2224
2225static struct io_logs *get_cur_log(struct io_log *iolog)
2226{
2227 struct io_logs *cur_log;
2228
2229 cur_log = iolog_cur_log(iolog);
2230 if (!cur_log) {
2231 cur_log = get_new_log(iolog);
2232 if (!cur_log)
2233 return NULL;
2234 }
2235
2236 if (cur_log->nr_samples < cur_log->max_samples)
2237 return cur_log;
2238
2239 /*
2240 * Out of space. If we're in IO offload mode, or we're not doing
2241 * per unit logging (hence logging happens outside of the IO thread
2242 * as well), add a new log chunk inline. If we're doing inline
2243 * submissions, flag 'td' as needing a log regrow and we'll take
2244 * care of it on the submission side.
2245 */
2246 if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2247 !per_unit_log(iolog))
2248 return regrow_log(iolog);
2249
2250 if (iolog->td)
2251 iolog->td->flags |= TD_F_REGROW_LOGS;
2252 if (iolog->pending)
2253 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2254 return iolog->pending;
2255}
2256
2257static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2258 enum fio_ddir ddir, unsigned long long bs,
2259 unsigned long t, uint64_t offset)
2260{
2261 struct io_logs *cur_log;
2262
2263 if (iolog->disabled)
2264 return;
2265 if (flist_empty(&iolog->io_logs))
2266 iolog->avg_last[ddir] = t;
2267
2268 cur_log = get_cur_log(iolog);
2269 if (cur_log) {
2270 struct io_sample *s;
2271
2272 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2273
2274 s->data = data;
2275 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2276 io_sample_set_ddir(iolog, s, ddir);
2277 s->bs = bs;
2278
2279 if (iolog->log_offset) {
2280 struct io_sample_offset *so = (void *) s;
2281
2282 so->offset = offset;
2283 }
2284
2285 cur_log->nr_samples++;
2286 return;
2287 }
2288
2289 iolog->disabled = true;
2290}
2291
2292static inline void reset_io_stat(struct io_stat *ios)
2293{
2294 ios->max_val = ios->min_val = ios->samples = 0;
2295 ios->mean.u.f = ios->S.u.f = 0;
2296}
2297
2298void reset_io_stats(struct thread_data *td)
2299{
2300 struct thread_stat *ts = &td->ts;
2301 int i, j;
2302
2303 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2304 reset_io_stat(&ts->clat_stat[i]);
2305 reset_io_stat(&ts->slat_stat[i]);
2306 reset_io_stat(&ts->lat_stat[i]);
2307 reset_io_stat(&ts->bw_stat[i]);
2308 reset_io_stat(&ts->iops_stat[i]);
2309
2310 ts->io_bytes[i] = 0;
2311 ts->runtime[i] = 0;
2312 ts->total_io_u[i] = 0;
2313 ts->short_io_u[i] = 0;
2314 ts->drop_io_u[i] = 0;
2315
2316 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2317 ts->io_u_plat[i][j] = 0;
2318 if (!i)
2319 ts->io_u_sync_plat[j] = 0;
2320 }
2321 }
2322
2323 ts->total_io_u[DDIR_SYNC] = 0;
2324
2325 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2326 ts->io_u_map[i] = 0;
2327 ts->io_u_submit[i] = 0;
2328 ts->io_u_complete[i] = 0;
2329 }
2330
2331 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2332 ts->io_u_lat_n[i] = 0;
2333 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2334 ts->io_u_lat_u[i] = 0;
2335 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2336 ts->io_u_lat_m[i] = 0;
2337
2338 ts->total_submit = 0;
2339 ts->total_complete = 0;
2340}
2341
2342static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2343 unsigned long elapsed, bool log_max)
2344{
2345 /*
2346 * Note an entry in the log. Use the mean from the logged samples,
2347 * making sure to properly round up. Only write a log entry if we
2348 * had actual samples done.
2349 */
2350 if (iolog->avg_window[ddir].samples) {
2351 union io_sample_data data;
2352
2353 if (log_max)
2354 data.val = iolog->avg_window[ddir].max_val;
2355 else
2356 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2357
2358 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2359 }
2360
2361 reset_io_stat(&iolog->avg_window[ddir]);
2362}
2363
2364static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2365 bool log_max)
2366{
2367 int ddir;
2368
2369 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2370 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2371}
2372
2373static unsigned long add_log_sample(struct thread_data *td,
2374 struct io_log *iolog,
2375 union io_sample_data data,
2376 enum fio_ddir ddir, unsigned long long bs,
2377 uint64_t offset)
2378{
2379 unsigned long elapsed, this_window;
2380
2381 if (!ddir_rw(ddir))
2382 return 0;
2383
2384 elapsed = mtime_since_now(&td->epoch);
2385
2386 /*
2387 * If no time averaging, just add the log sample.
2388 */
2389 if (!iolog->avg_msec) {
2390 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2391 return 0;
2392 }
2393
2394 /*
2395 * Add the sample. If the time period has passed, then
2396 * add that entry to the log and clear.
2397 */
2398 add_stat_sample(&iolog->avg_window[ddir], data.val);
2399
2400 /*
2401 * If period hasn't passed, adding the above sample is all we
2402 * need to do.
2403 */
2404 this_window = elapsed - iolog->avg_last[ddir];
2405 if (elapsed < iolog->avg_last[ddir])
2406 return iolog->avg_last[ddir] - elapsed;
2407 else if (this_window < iolog->avg_msec) {
2408 unsigned long diff = iolog->avg_msec - this_window;
2409
2410 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2411 return diff;
2412 }
2413
2414 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2415
2416 iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2417 return iolog->avg_msec;
2418}
2419
2420void finalize_logs(struct thread_data *td, bool unit_logs)
2421{
2422 unsigned long elapsed;
2423
2424 elapsed = mtime_since_now(&td->epoch);
2425
2426 if (td->clat_log && unit_logs)
2427 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2428 if (td->slat_log && unit_logs)
2429 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2430 if (td->lat_log && unit_logs)
2431 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2432 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2433 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2434 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2435 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2436}
2437
2438void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs)
2439{
2440 struct io_log *iolog;
2441
2442 if (!ddir_rw(ddir))
2443 return;
2444
2445 iolog = agg_io_log[ddir];
2446 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2447}
2448
2449void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2450{
2451 unsigned int idx = plat_val_to_idx(nsec);
2452 assert(idx < FIO_IO_U_PLAT_NR);
2453
2454 ts->io_u_sync_plat[idx]++;
2455 add_stat_sample(&ts->sync_stat, nsec);
2456}
2457
2458static void add_clat_percentile_sample(struct thread_stat *ts,
2459 unsigned long long nsec, enum fio_ddir ddir)
2460{
2461 unsigned int idx = plat_val_to_idx(nsec);
2462 assert(idx < FIO_IO_U_PLAT_NR);
2463
2464 ts->io_u_plat[ddir][idx]++;
2465}
2466
2467void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2468 unsigned long long nsec, unsigned long long bs,
2469 uint64_t offset)
2470{
2471 unsigned long elapsed, this_window;
2472 struct thread_stat *ts = &td->ts;
2473 struct io_log *iolog = td->clat_hist_log;
2474
2475 td_io_u_lock(td);
2476
2477 add_stat_sample(&ts->clat_stat[ddir], nsec);
2478
2479 if (td->clat_log)
2480 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2481 offset);
2482
2483 if (ts->clat_percentiles)
2484 add_clat_percentile_sample(ts, nsec, ddir);
2485
2486 if (iolog && iolog->hist_msec) {
2487 struct io_hist *hw = &iolog->hist_window[ddir];
2488
2489 hw->samples++;
2490 elapsed = mtime_since_now(&td->epoch);
2491 if (!hw->hist_last)
2492 hw->hist_last = elapsed;
2493 this_window = elapsed - hw->hist_last;
2494
2495 if (this_window >= iolog->hist_msec) {
2496 uint64_t *io_u_plat;
2497 struct io_u_plat_entry *dst;
2498
2499 /*
2500 * Make a byte-for-byte copy of the latency histogram
2501 * stored in td->ts.io_u_plat[ddir], recording it in a
2502 * log sample. Note that the matching call to free() is
2503 * located in iolog.c after printing this sample to the
2504 * log file.
2505 */
2506 io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2507 dst = malloc(sizeof(struct io_u_plat_entry));
2508 memcpy(&(dst->io_u_plat), io_u_plat,
2509 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2510 flist_add(&dst->list, &hw->list);
2511 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2512 elapsed, offset);
2513
2514 /*
2515 * Update the last time we recorded as being now, minus
2516 * any drift in time we encountered before actually
2517 * making the record.
2518 */
2519 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2520 hw->samples = 0;
2521 }
2522 }
2523
2524 td_io_u_unlock(td);
2525}
2526
2527void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2528 unsigned long usec, unsigned long long bs, uint64_t offset)
2529{
2530 struct thread_stat *ts = &td->ts;
2531
2532 if (!ddir_rw(ddir))
2533 return;
2534
2535 td_io_u_lock(td);
2536
2537 add_stat_sample(&ts->slat_stat[ddir], usec);
2538
2539 if (td->slat_log)
2540 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2541
2542 td_io_u_unlock(td);
2543}
2544
2545void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2546 unsigned long long nsec, unsigned long long bs,
2547 uint64_t offset)
2548{
2549 struct thread_stat *ts = &td->ts;
2550
2551 if (!ddir_rw(ddir))
2552 return;
2553
2554 td_io_u_lock(td);
2555
2556 add_stat_sample(&ts->lat_stat[ddir], nsec);
2557
2558 if (td->lat_log)
2559 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2560 offset);
2561
2562 if (ts->lat_percentiles)
2563 add_clat_percentile_sample(ts, nsec, ddir);
2564
2565 td_io_u_unlock(td);
2566}
2567
2568void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2569 unsigned int bytes, unsigned long long spent)
2570{
2571 struct thread_stat *ts = &td->ts;
2572 unsigned long rate;
2573
2574 if (spent)
2575 rate = (unsigned long) (bytes * 1000000ULL / spent);
2576 else
2577 rate = 0;
2578
2579 td_io_u_lock(td);
2580
2581 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2582
2583 if (td->bw_log)
2584 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2585 bytes, io_u->offset);
2586
2587 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2588 td_io_u_unlock(td);
2589}
2590
2591static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2592 struct timespec *t, unsigned int avg_time,
2593 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2594 struct io_stat *stat, struct io_log *log,
2595 bool is_kb)
2596{
2597 unsigned long spent, rate;
2598 enum fio_ddir ddir;
2599 unsigned long next, next_log;
2600
2601 next_log = avg_time;
2602
2603 spent = mtime_since(parent_tv, t);
2604 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2605 return avg_time - spent;
2606
2607 td_io_u_lock(td);
2608
2609 /*
2610 * Compute both read and write rates for the interval.
2611 */
2612 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2613 uint64_t delta;
2614
2615 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2616 if (!delta)
2617 continue; /* No entries for interval */
2618
2619 if (spent) {
2620 if (is_kb)
2621 rate = delta * 1000 / spent / 1024; /* KiB/s */
2622 else
2623 rate = (delta * 1000) / spent;
2624 } else
2625 rate = 0;
2626
2627 add_stat_sample(&stat[ddir], rate);
2628
2629 if (log) {
2630 unsigned long long bs = 0;
2631
2632 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2633 bs = td->o.min_bs[ddir];
2634
2635 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2636 next_log = min(next_log, next);
2637 }
2638
2639 stat_io_bytes[ddir] = this_io_bytes[ddir];
2640 }
2641
2642 timespec_add_msec(parent_tv, avg_time);
2643
2644 td_io_u_unlock(td);
2645
2646 if (spent <= avg_time)
2647 next = avg_time;
2648 else
2649 next = avg_time - (1 + spent - avg_time);
2650
2651 return min(next, next_log);
2652}
2653
2654static int add_bw_samples(struct thread_data *td, struct timespec *t)
2655{
2656 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2657 td->this_io_bytes, td->stat_io_bytes,
2658 td->ts.bw_stat, td->bw_log, true);
2659}
2660
2661void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2662 unsigned int bytes)
2663{
2664 struct thread_stat *ts = &td->ts;
2665
2666 td_io_u_lock(td);
2667
2668 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2669
2670 if (td->iops_log)
2671 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2672 bytes, io_u->offset);
2673
2674 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2675 td_io_u_unlock(td);
2676}
2677
2678static int add_iops_samples(struct thread_data *td, struct timespec *t)
2679{
2680 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2681 td->this_io_blocks, td->stat_io_blocks,
2682 td->ts.iops_stat, td->iops_log, false);
2683}
2684
2685/*
2686 * Returns msecs to next event
2687 */
2688int calc_log_samples(void)
2689{
2690 struct thread_data *td;
2691 unsigned int next = ~0U, tmp;
2692 struct timespec now;
2693 int i;
2694
2695 fio_gettime(&now, NULL);
2696
2697 for_each_td(td, i) {
2698 if (!td->o.stats)
2699 continue;
2700 if (in_ramp_time(td) ||
2701 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2702 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2703 continue;
2704 }
2705 if (!td->bw_log ||
2706 (td->bw_log && !per_unit_log(td->bw_log))) {
2707 tmp = add_bw_samples(td, &now);
2708 if (tmp < next)
2709 next = tmp;
2710 }
2711 if (!td->iops_log ||
2712 (td->iops_log && !per_unit_log(td->iops_log))) {
2713 tmp = add_iops_samples(td, &now);
2714 if (tmp < next)
2715 next = tmp;
2716 }
2717 }
2718
2719 return next == ~0U ? 0 : next;
2720}
2721
2722void stat_init(void)
2723{
2724 stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
2725}
2726
2727void stat_exit(void)
2728{
2729 /*
2730 * When we have the mutex, we know out-of-band access to it
2731 * have ended.
2732 */
2733 fio_sem_down(stat_sem);
2734 fio_sem_remove(stat_sem);
2735}
2736
2737/*
2738 * Called from signal handler. Wake up status thread.
2739 */
2740void show_running_run_stats(void)
2741{
2742 helper_do_stat();
2743}
2744
2745uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2746{
2747 /* Ignore io_u's which span multiple blocks--they will just get
2748 * inaccurate counts. */
2749 int idx = (io_u->offset - io_u->file->file_offset)
2750 / td->o.bs[DDIR_TRIM];
2751 uint32_t *info = &td->ts.block_infos[idx];
2752 assert(idx < td->ts.nr_block_infos);
2753 return info;
2754}