stat: Print one-line iops stat
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/types.h>
5#include <sys/stat.h>
6#include <dirent.h>
7#include <libgen.h>
8#include <math.h>
9
10#include "fio.h"
11#include "diskutil.h"
12#include "lib/ieee754.h"
13#include "json.h"
14#include "lib/getrusage.h"
15#include "idletime.h"
16#include "lib/pow2.h"
17#include "lib/output_buffer.h"
18#include "helper_thread.h"
19#include "smalloc.h"
20
21#define LOG_MSEC_SLACK 10
22
23struct fio_mutex *stat_mutex;
24
25void clear_rusage_stat(struct thread_data *td)
26{
27 struct thread_stat *ts = &td->ts;
28
29 fio_getrusage(&td->ru_start);
30 ts->usr_time = ts->sys_time = 0;
31 ts->ctx = 0;
32 ts->minf = ts->majf = 0;
33}
34
35void update_rusage_stat(struct thread_data *td)
36{
37 struct thread_stat *ts = &td->ts;
38
39 fio_getrusage(&td->ru_end);
40 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
41 &td->ru_end.ru_utime);
42 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
43 &td->ru_end.ru_stime);
44 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50}
51
52/*
53 * Given a latency, return the index of the corresponding bucket in
54 * the structure tracking percentiles.
55 *
56 * (1) find the group (and error bits) that the value (latency)
57 * belongs to by looking at its MSB. (2) find the bucket number in the
58 * group by looking at the index bits.
59 *
60 */
61static unsigned int plat_val_to_idx(unsigned long long val)
62{
63 unsigned int msb, error_bits, base, offset, idx;
64
65 /* Find MSB starting from bit 0 */
66 if (val == 0)
67 msb = 0;
68 else
69 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
70
71 /*
72 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73 * all bits of the sample as index
74 */
75 if (msb <= FIO_IO_U_PLAT_BITS)
76 return val;
77
78 /* Compute the number of error bits to discard*/
79 error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81 /* Compute the number of buckets before the group */
82 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84 /*
85 * Discard the error bits and apply the mask to find the
86 * index for the buckets in the group
87 */
88 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90 /* Make sure the index does not exceed (array size - 1) */
91 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94 return idx;
95}
96
97/*
98 * Convert the given index of the bucket array to the value
99 * represented by the bucket
100 */
101static unsigned long long plat_idx_to_val(unsigned int idx)
102{
103 unsigned int error_bits, k, base;
104
105 assert(idx < FIO_IO_U_PLAT_NR);
106
107 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108 * all bits of the sample as index */
109 if (idx < (FIO_IO_U_PLAT_VAL << 1))
110 return idx;
111
112 /* Find the group and compute the minimum value of that group */
113 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114 base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116 /* Find its bucket number of the group */
117 k = idx % FIO_IO_U_PLAT_VAL;
118
119 /* Return the mean of the range of the bucket */
120 return base + ((k + 0.5) * (1 << error_bits));
121}
122
123static int double_cmp(const void *a, const void *b)
124{
125 const fio_fp64_t fa = *(const fio_fp64_t *) a;
126 const fio_fp64_t fb = *(const fio_fp64_t *) b;
127 int cmp = 0;
128
129 if (fa.u.f > fb.u.f)
130 cmp = 1;
131 else if (fa.u.f < fb.u.f)
132 cmp = -1;
133
134 return cmp;
135}
136
137unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138 fio_fp64_t *plist, unsigned long long **output,
139 unsigned long long *maxv, unsigned long long *minv)
140{
141 unsigned long sum = 0;
142 unsigned int len, i, j = 0;
143 unsigned int oval_len = 0;
144 unsigned long long *ovals = NULL;
145 int is_last;
146
147 *minv = -1ULL;
148 *maxv = 0;
149
150 len = 0;
151 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152 len++;
153
154 if (!len)
155 return 0;
156
157 /*
158 * Sort the percentile list. Note that it may already be sorted if
159 * we are using the default values, but since it's a short list this
160 * isn't a worry. Also note that this does not work for NaN values.
161 */
162 if (len > 1)
163 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165 /*
166 * Calculate bucket values, note down max and min values
167 */
168 is_last = 0;
169 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170 sum += io_u_plat[i];
171 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172 assert(plist[j].u.f <= 100.0);
173
174 if (j == oval_len) {
175 oval_len += 100;
176 ovals = realloc(ovals, oval_len * sizeof(*ovals));
177 }
178
179 ovals[j] = plat_idx_to_val(i);
180 if (ovals[j] < *minv)
181 *minv = ovals[j];
182 if (ovals[j] > *maxv)
183 *maxv = ovals[j];
184
185 is_last = (j == len - 1);
186 if (is_last)
187 break;
188
189 j++;
190 }
191 }
192
193 *output = ovals;
194 return len;
195}
196
197/*
198 * Find and display the p-th percentile of clat
199 */
200static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201 fio_fp64_t *plist, unsigned int precision,
202 struct buf_output *out)
203{
204 unsigned int divisor, len, i, j = 0;
205 unsigned long long minv, maxv;
206 unsigned long long *ovals;
207 int is_last, per_line, scale_down, time_width;
208 char fmt[32];
209
210 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
211 if (!len)
212 goto out;
213
214 /*
215 * We default to nsecs, but if the value range is such that we
216 * should scale down to usecs or msecs, do that.
217 */
218 if (minv > 2000000 && maxv > 99999999ULL) {
219 scale_down = 2;
220 divisor = 1000000;
221 log_buf(out, " clat percentiles (msec):\n |");
222 } else if (minv > 2000 && maxv > 99999) {
223 scale_down = 1;
224 divisor = 1000;
225 log_buf(out, " clat percentiles (usec):\n |");
226 } else {
227 scale_down = 0;
228 divisor = 1;
229 log_buf(out, " clat percentiles (nsec):\n |");
230 }
231
232
233 time_width = max(5, (int) (log10(maxv / divisor) + 1));
234 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
235 precision, time_width);
236 /* fmt will be something like " %5.2fth=[%4llu]%c" */
237 per_line = (80 - 7) / (precision + 10 + time_width);
238
239 for (j = 0; j < len; j++) {
240 /* for formatting */
241 if (j != 0 && (j % per_line) == 0)
242 log_buf(out, " |");
243
244 /* end of the list */
245 is_last = (j == len - 1);
246
247 for (i = 0; i < scale_down; i++)
248 ovals[j] = (ovals[j] + 999) / 1000;
249
250 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
251
252 if (is_last)
253 break;
254
255 if ((j % per_line) == per_line - 1) /* for formatting */
256 log_buf(out, "\n");
257 }
258
259out:
260 if (ovals)
261 free(ovals);
262}
263
264bool calc_lat(struct io_stat *is, unsigned long long *min,
265 unsigned long long *max, double *mean, double *dev)
266{
267 double n = (double) is->samples;
268
269 if (n == 0)
270 return false;
271
272 *min = is->min_val;
273 *max = is->max_val;
274 *mean = is->mean.u.f;
275
276 if (n > 1.0)
277 *dev = sqrt(is->S.u.f / (n - 1.0));
278 else
279 *dev = 0;
280
281 return true;
282}
283
284void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
285{
286 char *io, *agg, *min, *max;
287 char *ioalt, *aggalt, *minalt, *maxalt;
288 const char *str[] = { " READ", " WRITE" , " TRIM"};
289 int i;
290
291 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
292
293 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
294 const int i2p = is_power_of_2(rs->kb_base);
295
296 if (!rs->max_run[i])
297 continue;
298
299 io = num2str(rs->iobytes[i], 4, 1, i2p, N2S_BYTE);
300 ioalt = num2str(rs->iobytes[i], 4, 1, !i2p, N2S_BYTE);
301 agg = num2str(rs->agg[i], 4, 1, i2p, rs->unit_base);
302 aggalt = num2str(rs->agg[i], 4, 1, !i2p, rs->unit_base);
303 min = num2str(rs->min_bw[i], 4, 1, i2p, rs->unit_base);
304 minalt = num2str(rs->min_bw[i], 4, 1, !i2p, rs->unit_base);
305 max = num2str(rs->max_bw[i], 4, 1, i2p, rs->unit_base);
306 maxalt = num2str(rs->max_bw[i], 4, 1, !i2p, rs->unit_base);
307 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
308 rs->unified_rw_rep ? " MIXED" : str[i],
309 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
310 (unsigned long long) rs->min_run[i],
311 (unsigned long long) rs->max_run[i]);
312
313 free(io);
314 free(agg);
315 free(min);
316 free(max);
317 free(ioalt);
318 free(aggalt);
319 free(minalt);
320 free(maxalt);
321 }
322}
323
324void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
325{
326 int i;
327
328 /*
329 * Do depth distribution calculations
330 */
331 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
332 if (total) {
333 io_u_dist[i] = (double) map[i] / (double) total;
334 io_u_dist[i] *= 100.0;
335 if (io_u_dist[i] < 0.1 && map[i])
336 io_u_dist[i] = 0.1;
337 } else
338 io_u_dist[i] = 0.0;
339 }
340}
341
342static void stat_calc_lat(struct thread_stat *ts, double *dst,
343 unsigned int *src, int nr)
344{
345 unsigned long total = ddir_rw_sum(ts->total_io_u);
346 int i;
347
348 /*
349 * Do latency distribution calculations
350 */
351 for (i = 0; i < nr; i++) {
352 if (total) {
353 dst[i] = (double) src[i] / (double) total;
354 dst[i] *= 100.0;
355 if (dst[i] < 0.01 && src[i])
356 dst[i] = 0.01;
357 } else
358 dst[i] = 0.0;
359 }
360}
361
362/*
363 * To keep the terse format unaltered, add all of the ns latency
364 * buckets to the first us latency bucket
365 */
366void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
367{
368 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
369 int i;
370
371 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
372
373 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
374 ntotal += ts->io_u_lat_n[i];
375
376 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
377}
378
379void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
380{
381 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
382}
383
384void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
385{
386 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
387}
388
389void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
390{
391 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
392}
393
394static void display_lat(const char *name, unsigned long long min,
395 unsigned long long max, double mean, double dev,
396 struct buf_output *out)
397{
398 const char *base = "(nsec)";
399 char *minp, *maxp;
400
401 if (nsec_to_msec(&min, &max, &mean, &dev))
402 base = "(msec)";
403 else if (nsec_to_usec(&min, &max, &mean, &dev))
404 base = "(usec)";
405
406 minp = num2str(min, 6, 1, 0, N2S_NONE);
407 maxp = num2str(max, 6, 1, 0, N2S_NONE);
408
409 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
410 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
411
412 free(minp);
413 free(maxp);
414}
415
416static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
417 int ddir, struct buf_output *out)
418{
419 const char *str[] = { " read", "write", " trim" };
420 unsigned long runt;
421 unsigned long long min, max, bw, iops;
422 double mean, dev;
423 char *io_p, *bw_p, *bw_p_alt, *iops_p;
424 int i2p;
425
426 assert(ddir_rw(ddir));
427
428 if (!ts->runtime[ddir])
429 return;
430
431 i2p = is_power_of_2(rs->kb_base);
432 runt = ts->runtime[ddir];
433
434 bw = (1000 * ts->io_bytes[ddir]) / runt;
435 io_p = num2str(ts->io_bytes[ddir], 4, 1, i2p, N2S_BYTE);
436 bw_p = num2str(bw, 4, 1, i2p, ts->unit_base);
437 bw_p_alt = num2str(bw, 4, 1, !i2p, ts->unit_base);
438
439 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
440 iops_p = num2str(iops, 4, 1, 0, N2S_NONE);
441
442 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
443 rs->unified_rw_rep ? "mixed" : str[ddir],
444 iops_p, bw_p, bw_p_alt, io_p,
445 (unsigned long long) ts->runtime[ddir]);
446
447 free(io_p);
448 free(bw_p);
449 free(bw_p_alt);
450 free(iops_p);
451
452 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
453 display_lat("slat", min, max, mean, dev, out);
454 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
455 display_lat("clat", min, max, mean, dev, out);
456 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
457 display_lat(" lat", min, max, mean, dev, out);
458
459 if (ts->clat_percentiles) {
460 show_clat_percentiles(ts->io_u_plat[ddir],
461 ts->clat_stat[ddir].samples,
462 ts->percentile_list,
463 ts->percentile_precision, out);
464 }
465 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
466 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
467 const char *bw_str;
468
469 if ((rs->unit_base == 1) && i2p)
470 bw_str = "Kibit";
471 else if (rs->unit_base == 1)
472 bw_str = "kbit";
473 else if (i2p)
474 bw_str = "KiB";
475 else
476 bw_str = "kB";
477
478 if (rs->unit_base == 1) {
479 min *= 8.0;
480 max *= 8.0;
481 mean *= 8.0;
482 dev *= 8.0;
483 }
484
485 if (rs->agg[ddir]) {
486 p_of_agg = mean * 100 / (double) rs->agg[ddir];
487 if (p_of_agg > 100.0)
488 p_of_agg = 100.0;
489 }
490
491 if (mean > fkb_base * fkb_base) {
492 min /= fkb_base;
493 max /= fkb_base;
494 mean /= fkb_base;
495 dev /= fkb_base;
496 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
497 }
498
499 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, avg=%5.02f, stdev=%5.02f\n",
500 bw_str, min, max, p_of_agg, mean, dev);
501 }
502 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
503 log_buf(out, " iops : min=%5llu, max=%5llu, avg=%5.02f, "
504 "stdev=%5.02f\n", min, max, mean, dev);
505 }
506}
507
508static int show_lat(double *io_u_lat, int nr, const char **ranges,
509 const char *msg, struct buf_output *out)
510{
511 int new_line = 1, i, line = 0, shown = 0;
512
513 for (i = 0; i < nr; i++) {
514 if (io_u_lat[i] <= 0.0)
515 continue;
516 shown = 1;
517 if (new_line) {
518 if (line)
519 log_buf(out, "\n");
520 log_buf(out, " lat (%s) : ", msg);
521 new_line = 0;
522 line = 0;
523 }
524 if (line)
525 log_buf(out, ", ");
526 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
527 line++;
528 if (line == 5)
529 new_line = 1;
530 }
531
532 if (shown)
533 log_buf(out, "\n");
534
535 return shown;
536}
537
538static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
539{
540 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
541 "250=", "500=", "750=", "1000=", };
542
543 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
544}
545
546static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
547{
548 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
549 "250=", "500=", "750=", "1000=", };
550
551 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
552}
553
554static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
555{
556 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
557 "250=", "500=", "750=", "1000=", "2000=",
558 ">=2000=", };
559
560 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
561}
562
563static void show_latencies(struct thread_stat *ts, struct buf_output *out)
564{
565 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
566 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
567 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
568
569 stat_calc_lat_n(ts, io_u_lat_n);
570 stat_calc_lat_u(ts, io_u_lat_u);
571 stat_calc_lat_m(ts, io_u_lat_m);
572
573 show_lat_n(io_u_lat_n, out);
574 show_lat_u(io_u_lat_u, out);
575 show_lat_m(io_u_lat_m, out);
576}
577
578static int block_state_category(int block_state)
579{
580 switch (block_state) {
581 case BLOCK_STATE_UNINIT:
582 return 0;
583 case BLOCK_STATE_TRIMMED:
584 case BLOCK_STATE_WRITTEN:
585 return 1;
586 case BLOCK_STATE_WRITE_FAILURE:
587 case BLOCK_STATE_TRIM_FAILURE:
588 return 2;
589 default:
590 /* Silence compile warning on some BSDs and have a return */
591 assert(0);
592 return -1;
593 }
594}
595
596static int compare_block_infos(const void *bs1, const void *bs2)
597{
598 uint32_t block1 = *(uint32_t *)bs1;
599 uint32_t block2 = *(uint32_t *)bs2;
600 int state1 = BLOCK_INFO_STATE(block1);
601 int state2 = BLOCK_INFO_STATE(block2);
602 int bscat1 = block_state_category(state1);
603 int bscat2 = block_state_category(state2);
604 int cycles1 = BLOCK_INFO_TRIMS(block1);
605 int cycles2 = BLOCK_INFO_TRIMS(block2);
606
607 if (bscat1 < bscat2)
608 return -1;
609 if (bscat1 > bscat2)
610 return 1;
611
612 if (cycles1 < cycles2)
613 return -1;
614 if (cycles1 > cycles2)
615 return 1;
616
617 if (state1 < state2)
618 return -1;
619 if (state1 > state2)
620 return 1;
621
622 assert(block1 == block2);
623 return 0;
624}
625
626static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
627 fio_fp64_t *plist, unsigned int **percentiles,
628 unsigned int *types)
629{
630 int len = 0;
631 int i, nr_uninit;
632
633 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
634
635 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
636 len++;
637
638 if (!len)
639 return 0;
640
641 /*
642 * Sort the percentile list. Note that it may already be sorted if
643 * we are using the default values, but since it's a short list this
644 * isn't a worry. Also note that this does not work for NaN values.
645 */
646 if (len > 1)
647 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
648
649 nr_uninit = 0;
650 /* Start only after the uninit entries end */
651 for (nr_uninit = 0;
652 nr_uninit < nr_block_infos
653 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
654 nr_uninit ++)
655 ;
656
657 if (nr_uninit == nr_block_infos)
658 return 0;
659
660 *percentiles = calloc(len, sizeof(**percentiles));
661
662 for (i = 0; i < len; i++) {
663 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
664 + nr_uninit;
665 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
666 }
667
668 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
669 for (i = 0; i < nr_block_infos; i++)
670 types[BLOCK_INFO_STATE(block_infos[i])]++;
671
672 return len;
673}
674
675static const char *block_state_names[] = {
676 [BLOCK_STATE_UNINIT] = "unwritten",
677 [BLOCK_STATE_TRIMMED] = "trimmed",
678 [BLOCK_STATE_WRITTEN] = "written",
679 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
680 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
681};
682
683static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
684 fio_fp64_t *plist, struct buf_output *out)
685{
686 int len, pos, i;
687 unsigned int *percentiles = NULL;
688 unsigned int block_state_counts[BLOCK_STATE_COUNT];
689
690 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
691 &percentiles, block_state_counts);
692
693 log_buf(out, " block lifetime percentiles :\n |");
694 pos = 0;
695 for (i = 0; i < len; i++) {
696 uint32_t block_info = percentiles[i];
697#define LINE_LENGTH 75
698 char str[LINE_LENGTH];
699 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
700 plist[i].u.f, block_info,
701 i == len - 1 ? '\n' : ',');
702 assert(strln < LINE_LENGTH);
703 if (pos + strln > LINE_LENGTH) {
704 pos = 0;
705 log_buf(out, "\n |");
706 }
707 log_buf(out, "%s", str);
708 pos += strln;
709#undef LINE_LENGTH
710 }
711 if (percentiles)
712 free(percentiles);
713
714 log_buf(out, " states :");
715 for (i = 0; i < BLOCK_STATE_COUNT; i++)
716 log_buf(out, " %s=%u%c",
717 block_state_names[i], block_state_counts[i],
718 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
719}
720
721static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
722{
723 char *p1, *p1alt, *p2;
724 unsigned long long bw_mean, iops_mean;
725 const int i2p = is_power_of_2(ts->kb_base);
726
727 if (!ts->ss_dur)
728 return;
729
730 bw_mean = steadystate_bw_mean(ts);
731 iops_mean = steadystate_iops_mean(ts);
732
733 p1 = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, i2p, ts->unit_base);
734 p1alt = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, !i2p, ts->unit_base);
735 p2 = num2str(iops_mean, 4, 1, 0, N2S_NONE);
736
737 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
738 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
739 p1, p1alt, p2,
740 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
741 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
742 ts->ss_criterion.u.f,
743 ts->ss_state & __FIO_SS_PCT ? "%" : "");
744
745 free(p1);
746 free(p1alt);
747 free(p2);
748}
749
750static void show_thread_status_normal(struct thread_stat *ts,
751 struct group_run_stats *rs,
752 struct buf_output *out)
753{
754 double usr_cpu, sys_cpu;
755 unsigned long runtime;
756 double io_u_dist[FIO_IO_U_MAP_NR];
757 time_t time_p;
758 char time_buf[32];
759
760 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
761 return;
762
763 memset(time_buf, 0, sizeof(time_buf));
764
765 time(&time_p);
766 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
767
768 if (!ts->error) {
769 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
770 ts->name, ts->groupid, ts->members,
771 ts->error, (int) ts->pid, time_buf);
772 } else {
773 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
774 ts->name, ts->groupid, ts->members,
775 ts->error, ts->verror, (int) ts->pid,
776 time_buf);
777 }
778
779 if (strlen(ts->description))
780 log_buf(out, " Description : [%s]\n", ts->description);
781
782 if (ts->io_bytes[DDIR_READ])
783 show_ddir_status(rs, ts, DDIR_READ, out);
784 if (ts->io_bytes[DDIR_WRITE])
785 show_ddir_status(rs, ts, DDIR_WRITE, out);
786 if (ts->io_bytes[DDIR_TRIM])
787 show_ddir_status(rs, ts, DDIR_TRIM, out);
788
789 show_latencies(ts, out);
790
791 runtime = ts->total_run_time;
792 if (runtime) {
793 double runt = (double) runtime;
794
795 usr_cpu = (double) ts->usr_time * 100 / runt;
796 sys_cpu = (double) ts->sys_time * 100 / runt;
797 } else {
798 usr_cpu = 0;
799 sys_cpu = 0;
800 }
801
802 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
803 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
804 (unsigned long long) ts->ctx,
805 (unsigned long long) ts->majf,
806 (unsigned long long) ts->minf);
807
808 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
809 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
810 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
811 io_u_dist[1], io_u_dist[2],
812 io_u_dist[3], io_u_dist[4],
813 io_u_dist[5], io_u_dist[6]);
814
815 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
816 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
817 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
818 io_u_dist[1], io_u_dist[2],
819 io_u_dist[3], io_u_dist[4],
820 io_u_dist[5], io_u_dist[6]);
821 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
822 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
823 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
824 io_u_dist[1], io_u_dist[2],
825 io_u_dist[3], io_u_dist[4],
826 io_u_dist[5], io_u_dist[6]);
827 log_buf(out, " issued rwt: total=%llu,%llu,%llu,"
828 " short=%llu,%llu,%llu,"
829 " dropped=%llu,%llu,%llu\n",
830 (unsigned long long) ts->total_io_u[0],
831 (unsigned long long) ts->total_io_u[1],
832 (unsigned long long) ts->total_io_u[2],
833 (unsigned long long) ts->short_io_u[0],
834 (unsigned long long) ts->short_io_u[1],
835 (unsigned long long) ts->short_io_u[2],
836 (unsigned long long) ts->drop_io_u[0],
837 (unsigned long long) ts->drop_io_u[1],
838 (unsigned long long) ts->drop_io_u[2]);
839 if (ts->continue_on_error) {
840 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
841 (unsigned long long)ts->total_err_count,
842 ts->first_error,
843 strerror(ts->first_error));
844 }
845 if (ts->latency_depth) {
846 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
847 (unsigned long long)ts->latency_target,
848 (unsigned long long)ts->latency_window,
849 ts->latency_percentile.u.f,
850 ts->latency_depth);
851 }
852
853 if (ts->nr_block_infos)
854 show_block_infos(ts->nr_block_infos, ts->block_infos,
855 ts->percentile_list, out);
856
857 if (ts->ss_dur)
858 show_ss_normal(ts, out);
859}
860
861static void show_ddir_status_terse(struct thread_stat *ts,
862 struct group_run_stats *rs, int ddir,
863 struct buf_output *out)
864{
865 unsigned long long min, max, minv, maxv, bw, iops;
866 unsigned long long *ovals = NULL;
867 double mean, dev;
868 unsigned int len;
869 int i;
870
871 assert(ddir_rw(ddir));
872
873 iops = bw = 0;
874 if (ts->runtime[ddir]) {
875 uint64_t runt = ts->runtime[ddir];
876
877 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
878 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
879 }
880
881 log_buf(out, ";%llu;%llu;%llu;%llu",
882 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
883 (unsigned long long) ts->runtime[ddir]);
884
885 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
886 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
887 else
888 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
889
890 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
891 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
892 else
893 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
894
895 if (ts->clat_percentiles) {
896 len = calc_clat_percentiles(ts->io_u_plat[ddir],
897 ts->clat_stat[ddir].samples,
898 ts->percentile_list, &ovals, &maxv,
899 &minv);
900 } else
901 len = 0;
902
903 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
904 if (i >= len) {
905 log_buf(out, ";0%%=0");
906 continue;
907 }
908 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
909 }
910
911 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
912 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
913 else
914 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
915
916 if (ovals)
917 free(ovals);
918
919 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
920 double p_of_agg = 100.0;
921
922 if (rs->agg[ddir]) {
923 p_of_agg = mean * 100 / (double) rs->agg[ddir];
924 if (p_of_agg > 100.0)
925 p_of_agg = 100.0;
926 }
927
928 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
929 } else
930 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
931}
932
933static void add_ddir_status_json(struct thread_stat *ts,
934 struct group_run_stats *rs, int ddir, struct json_object *parent)
935{
936 unsigned long long min, max, minv, maxv;
937 unsigned long long bw;
938 unsigned long long *ovals = NULL;
939 double mean, dev, iops;
940 unsigned int len;
941 int i;
942 const char *ddirname[] = {"read", "write", "trim"};
943 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
944 char buf[120];
945 double p_of_agg = 100.0;
946
947 assert(ddir_rw(ddir));
948
949 if (ts->unified_rw_rep && ddir != DDIR_READ)
950 return;
951
952 dir_object = json_create_object();
953 json_object_add_value_object(parent,
954 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
955
956 bw = 0;
957 iops = 0.0;
958 if (ts->runtime[ddir]) {
959 uint64_t runt = ts->runtime[ddir];
960
961 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
962 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
963 }
964
965 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
966 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
967 json_object_add_value_int(dir_object, "bw", bw);
968 json_object_add_value_float(dir_object, "iops", iops);
969 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
970 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
971 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
972 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
973
974 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
975 min = max = 0;
976 mean = dev = 0.0;
977 }
978 tmp_object = json_create_object();
979 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
980 json_object_add_value_int(tmp_object, "min", min);
981 json_object_add_value_int(tmp_object, "max", max);
982 json_object_add_value_float(tmp_object, "mean", mean);
983 json_object_add_value_float(tmp_object, "stddev", dev);
984
985 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
986 min = max = 0;
987 mean = dev = 0.0;
988 }
989 tmp_object = json_create_object();
990 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
991 json_object_add_value_int(tmp_object, "min", min);
992 json_object_add_value_int(tmp_object, "max", max);
993 json_object_add_value_float(tmp_object, "mean", mean);
994 json_object_add_value_float(tmp_object, "stddev", dev);
995
996 if (ts->clat_percentiles) {
997 len = calc_clat_percentiles(ts->io_u_plat[ddir],
998 ts->clat_stat[ddir].samples,
999 ts->percentile_list, &ovals, &maxv,
1000 &minv);
1001 } else
1002 len = 0;
1003
1004 percentile_object = json_create_object();
1005 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1006 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1007 if (i >= len) {
1008 json_object_add_value_int(percentile_object, "0.00", 0);
1009 continue;
1010 }
1011 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1012 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1013 }
1014
1015 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1016 clat_bins_object = json_create_object();
1017 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1018 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1019 if (ts->io_u_plat[ddir][i]) {
1020 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1021 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1022 }
1023 }
1024 }
1025
1026 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1027 min = max = 0;
1028 mean = dev = 0.0;
1029 }
1030 tmp_object = json_create_object();
1031 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1032 json_object_add_value_int(tmp_object, "min", min);
1033 json_object_add_value_int(tmp_object, "max", max);
1034 json_object_add_value_float(tmp_object, "mean", mean);
1035 json_object_add_value_float(tmp_object, "stddev", dev);
1036 if (ovals)
1037 free(ovals);
1038
1039 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1040 if (rs->agg[ddir]) {
1041 p_of_agg = mean * 100 / (double) rs->agg[ddir];
1042 if (p_of_agg > 100.0)
1043 p_of_agg = 100.0;
1044 }
1045 } else {
1046 min = max = 0;
1047 p_of_agg = mean = dev = 0.0;
1048 }
1049 json_object_add_value_int(dir_object, "bw_min", min);
1050 json_object_add_value_int(dir_object, "bw_max", max);
1051 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1052 json_object_add_value_float(dir_object, "bw_mean", mean);
1053 json_object_add_value_float(dir_object, "bw_dev", dev);
1054
1055 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1056 min = max = 0;
1057 mean = dev = 0.0;
1058 }
1059 json_object_add_value_int(dir_object, "iops_min", min);
1060 json_object_add_value_int(dir_object, "iops_max", max);
1061 json_object_add_value_float(dir_object, "iops_mean", mean);
1062 json_object_add_value_float(dir_object, "iops_stddev", dev);
1063}
1064
1065static void show_thread_status_terse_v2(struct thread_stat *ts,
1066 struct group_run_stats *rs,
1067 struct buf_output *out)
1068{
1069 double io_u_dist[FIO_IO_U_MAP_NR];
1070 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1071 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1072 double usr_cpu, sys_cpu;
1073 int i;
1074
1075 /* General Info */
1076 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1077 /* Log Read Status */
1078 show_ddir_status_terse(ts, rs, DDIR_READ, out);
1079 /* Log Write Status */
1080 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1081 /* Log Trim Status */
1082 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1083
1084 /* CPU Usage */
1085 if (ts->total_run_time) {
1086 double runt = (double) ts->total_run_time;
1087
1088 usr_cpu = (double) ts->usr_time * 100 / runt;
1089 sys_cpu = (double) ts->sys_time * 100 / runt;
1090 } else {
1091 usr_cpu = 0;
1092 sys_cpu = 0;
1093 }
1094
1095 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1096 (unsigned long long) ts->ctx,
1097 (unsigned long long) ts->majf,
1098 (unsigned long long) ts->minf);
1099
1100 /* Calc % distribution of IO depths, usecond, msecond latency */
1101 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1102 stat_calc_lat_nu(ts, io_u_lat_u);
1103 stat_calc_lat_m(ts, io_u_lat_m);
1104
1105 /* Only show fixed 7 I/O depth levels*/
1106 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1107 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1108 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1109
1110 /* Microsecond latency */
1111 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1112 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1113 /* Millisecond latency */
1114 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1115 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1116 /* Additional output if continue_on_error set - default off*/
1117 if (ts->continue_on_error)
1118 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1119 log_buf(out, "\n");
1120
1121 /* Additional output if description is set */
1122 if (strlen(ts->description))
1123 log_buf(out, ";%s", ts->description);
1124
1125 log_buf(out, "\n");
1126}
1127
1128static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1129 struct group_run_stats *rs, int ver,
1130 struct buf_output *out)
1131{
1132 double io_u_dist[FIO_IO_U_MAP_NR];
1133 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1134 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1135 double usr_cpu, sys_cpu;
1136 int i;
1137
1138 /* General Info */
1139 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1140 ts->name, ts->groupid, ts->error);
1141 /* Log Read Status */
1142 show_ddir_status_terse(ts, rs, DDIR_READ, out);
1143 /* Log Write Status */
1144 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1145 /* Log Trim Status */
1146 if (ver == 4)
1147 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1148
1149 /* CPU Usage */
1150 if (ts->total_run_time) {
1151 double runt = (double) ts->total_run_time;
1152
1153 usr_cpu = (double) ts->usr_time * 100 / runt;
1154 sys_cpu = (double) ts->sys_time * 100 / runt;
1155 } else {
1156 usr_cpu = 0;
1157 sys_cpu = 0;
1158 }
1159
1160 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1161 (unsigned long long) ts->ctx,
1162 (unsigned long long) ts->majf,
1163 (unsigned long long) ts->minf);
1164
1165 /* Calc % distribution of IO depths, usecond, msecond latency */
1166 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1167 stat_calc_lat_nu(ts, io_u_lat_u);
1168 stat_calc_lat_m(ts, io_u_lat_m);
1169
1170 /* Only show fixed 7 I/O depth levels*/
1171 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1172 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1173 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1174
1175 /* Microsecond latency */
1176 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1177 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1178 /* Millisecond latency */
1179 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1180 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1181
1182 /* disk util stats, if any */
1183 show_disk_util(1, NULL, out);
1184
1185 /* Additional output if continue_on_error set - default off*/
1186 if (ts->continue_on_error)
1187 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1188
1189 /* Additional output if description is set */
1190 if (strlen(ts->description))
1191 log_buf(out, ";%s", ts->description);
1192
1193 log_buf(out, "\n");
1194}
1195
1196static void json_add_job_opts(struct json_object *root, const char *name,
1197 struct flist_head *opt_list, bool num_jobs)
1198{
1199 struct json_object *dir_object;
1200 struct flist_head *entry;
1201 struct print_option *p;
1202
1203 if (flist_empty(opt_list))
1204 return;
1205
1206 dir_object = json_create_object();
1207 json_object_add_value_object(root, name, dir_object);
1208
1209 flist_for_each(entry, opt_list) {
1210 const char *pos = "";
1211
1212 p = flist_entry(entry, struct print_option, list);
1213 if (!num_jobs && !strcmp(p->name, "numjobs"))
1214 continue;
1215 if (p->value)
1216 pos = p->value;
1217 json_object_add_value_string(dir_object, p->name, pos);
1218 }
1219}
1220
1221static struct json_object *show_thread_status_json(struct thread_stat *ts,
1222 struct group_run_stats *rs,
1223 struct flist_head *opt_list)
1224{
1225 struct json_object *root, *tmp;
1226 struct jobs_eta *je;
1227 double io_u_dist[FIO_IO_U_MAP_NR];
1228 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1229 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1230 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1231 double usr_cpu, sys_cpu;
1232 int i;
1233 size_t size;
1234
1235 root = json_create_object();
1236 json_object_add_value_string(root, "jobname", ts->name);
1237 json_object_add_value_int(root, "groupid", ts->groupid);
1238 json_object_add_value_int(root, "error", ts->error);
1239
1240 /* ETA Info */
1241 je = get_jobs_eta(true, &size);
1242 if (je) {
1243 json_object_add_value_int(root, "eta", je->eta_sec);
1244 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1245 }
1246
1247 if (opt_list)
1248 json_add_job_opts(root, "job options", opt_list, true);
1249
1250 add_ddir_status_json(ts, rs, DDIR_READ, root);
1251 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1252 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1253
1254 /* CPU Usage */
1255 if (ts->total_run_time) {
1256 double runt = (double) ts->total_run_time;
1257
1258 usr_cpu = (double) ts->usr_time * 100 / runt;
1259 sys_cpu = (double) ts->sys_time * 100 / runt;
1260 } else {
1261 usr_cpu = 0;
1262 sys_cpu = 0;
1263 }
1264 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1265 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1266 json_object_add_value_int(root, "ctx", ts->ctx);
1267 json_object_add_value_int(root, "majf", ts->majf);
1268 json_object_add_value_int(root, "minf", ts->minf);
1269
1270
1271 /* Calc % distribution of IO depths, usecond, msecond latency */
1272 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1273 stat_calc_lat_n(ts, io_u_lat_n);
1274 stat_calc_lat_u(ts, io_u_lat_u);
1275 stat_calc_lat_m(ts, io_u_lat_m);
1276
1277 tmp = json_create_object();
1278 json_object_add_value_object(root, "iodepth_level", tmp);
1279 /* Only show fixed 7 I/O depth levels*/
1280 for (i = 0; i < 7; i++) {
1281 char name[20];
1282 if (i < 6)
1283 snprintf(name, 20, "%d", 1 << i);
1284 else
1285 snprintf(name, 20, ">=%d", 1 << i);
1286 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1287 }
1288
1289 /* Nanosecond latency */
1290 tmp = json_create_object();
1291 json_object_add_value_object(root, "latency_ns", tmp);
1292 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1293 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1294 "250", "500", "750", "1000", };
1295 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1296 }
1297 /* Microsecond latency */
1298 tmp = json_create_object();
1299 json_object_add_value_object(root, "latency_us", tmp);
1300 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1301 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1302 "250", "500", "750", "1000", };
1303 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1304 }
1305 /* Millisecond latency */
1306 tmp = json_create_object();
1307 json_object_add_value_object(root, "latency_ms", tmp);
1308 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1309 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1310 "250", "500", "750", "1000", "2000",
1311 ">=2000", };
1312 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1313 }
1314
1315 /* Additional output if continue_on_error set - default off*/
1316 if (ts->continue_on_error) {
1317 json_object_add_value_int(root, "total_err", ts->total_err_count);
1318 json_object_add_value_int(root, "first_error", ts->first_error);
1319 }
1320
1321 if (ts->latency_depth) {
1322 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1323 json_object_add_value_int(root, "latency_target", ts->latency_target);
1324 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1325 json_object_add_value_int(root, "latency_window", ts->latency_window);
1326 }
1327
1328 /* Additional output if description is set */
1329 if (strlen(ts->description))
1330 json_object_add_value_string(root, "desc", ts->description);
1331
1332 if (ts->nr_block_infos) {
1333 /* Block error histogram and types */
1334 int len;
1335 unsigned int *percentiles = NULL;
1336 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1337
1338 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1339 ts->percentile_list,
1340 &percentiles, block_state_counts);
1341
1342 if (len) {
1343 struct json_object *block, *percentile_object, *states;
1344 int state;
1345 block = json_create_object();
1346 json_object_add_value_object(root, "block", block);
1347
1348 percentile_object = json_create_object();
1349 json_object_add_value_object(block, "percentiles",
1350 percentile_object);
1351 for (i = 0; i < len; i++) {
1352 char buf[20];
1353 snprintf(buf, sizeof(buf), "%f",
1354 ts->percentile_list[i].u.f);
1355 json_object_add_value_int(percentile_object,
1356 (const char *)buf,
1357 percentiles[i]);
1358 }
1359
1360 states = json_create_object();
1361 json_object_add_value_object(block, "states", states);
1362 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1363 json_object_add_value_int(states,
1364 block_state_names[state],
1365 block_state_counts[state]);
1366 }
1367 free(percentiles);
1368 }
1369 }
1370
1371 if (ts->ss_dur) {
1372 struct json_object *data;
1373 struct json_array *iops, *bw;
1374 int i, j, k;
1375 char ss_buf[64];
1376
1377 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1378 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1379 ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1380 (float) ts->ss_limit.u.f,
1381 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1382
1383 tmp = json_create_object();
1384 json_object_add_value_object(root, "steadystate", tmp);
1385 json_object_add_value_string(tmp, "ss", ss_buf);
1386 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1387 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1388
1389 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1390 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1391 json_object_add_value_string(tmp, "criterion", ss_buf);
1392 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1393 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1394
1395 data = json_create_object();
1396 json_object_add_value_object(tmp, "data", data);
1397 bw = json_create_array();
1398 iops = json_create_array();
1399
1400 /*
1401 ** if ss was attained or the buffer is not full,
1402 ** ss->head points to the first element in the list.
1403 ** otherwise it actually points to the second element
1404 ** in the list
1405 */
1406 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1407 j = ts->ss_head;
1408 else
1409 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1410 for (i = 0; i < ts->ss_dur; i++) {
1411 k = (j + i) % ts->ss_dur;
1412 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1413 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1414 }
1415 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1416 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1417 json_object_add_value_array(data, "iops", iops);
1418 json_object_add_value_array(data, "bw", bw);
1419 }
1420
1421 return root;
1422}
1423
1424static void show_thread_status_terse(struct thread_stat *ts,
1425 struct group_run_stats *rs,
1426 struct buf_output *out)
1427{
1428 if (terse_version == 2)
1429 show_thread_status_terse_v2(ts, rs, out);
1430 else if (terse_version == 3 || terse_version == 4)
1431 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1432 else
1433 log_err("fio: bad terse version!? %d\n", terse_version);
1434}
1435
1436struct json_object *show_thread_status(struct thread_stat *ts,
1437 struct group_run_stats *rs,
1438 struct flist_head *opt_list,
1439 struct buf_output *out)
1440{
1441 struct json_object *ret = NULL;
1442
1443 if (output_format & FIO_OUTPUT_TERSE)
1444 show_thread_status_terse(ts, rs, out);
1445 if (output_format & FIO_OUTPUT_JSON)
1446 ret = show_thread_status_json(ts, rs, opt_list);
1447 if (output_format & FIO_OUTPUT_NORMAL)
1448 show_thread_status_normal(ts, rs, out);
1449
1450 return ret;
1451}
1452
1453static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1454{
1455 double mean, S;
1456
1457 if (src->samples == 0)
1458 return;
1459
1460 dst->min_val = min(dst->min_val, src->min_val);
1461 dst->max_val = max(dst->max_val, src->max_val);
1462
1463 /*
1464 * Compute new mean and S after the merge
1465 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1466 * #Parallel_algorithm>
1467 */
1468 if (first) {
1469 mean = src->mean.u.f;
1470 S = src->S.u.f;
1471 } else {
1472 double delta = src->mean.u.f - dst->mean.u.f;
1473
1474 mean = ((src->mean.u.f * src->samples) +
1475 (dst->mean.u.f * dst->samples)) /
1476 (dst->samples + src->samples);
1477
1478 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1479 (dst->samples * src->samples) /
1480 (dst->samples + src->samples);
1481 }
1482
1483 dst->samples += src->samples;
1484 dst->mean.u.f = mean;
1485 dst->S.u.f = S;
1486}
1487
1488void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1489{
1490 int i;
1491
1492 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1493 if (dst->max_run[i] < src->max_run[i])
1494 dst->max_run[i] = src->max_run[i];
1495 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1496 dst->min_run[i] = src->min_run[i];
1497 if (dst->max_bw[i] < src->max_bw[i])
1498 dst->max_bw[i] = src->max_bw[i];
1499 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1500 dst->min_bw[i] = src->min_bw[i];
1501
1502 dst->iobytes[i] += src->iobytes[i];
1503 dst->agg[i] += src->agg[i];
1504 }
1505
1506 if (!dst->kb_base)
1507 dst->kb_base = src->kb_base;
1508 if (!dst->unit_base)
1509 dst->unit_base = src->unit_base;
1510}
1511
1512void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1513 bool first)
1514{
1515 int l, k;
1516
1517 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1518 if (!dst->unified_rw_rep) {
1519 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1520 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1521 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1522 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1523 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1524
1525 dst->io_bytes[l] += src->io_bytes[l];
1526
1527 if (dst->runtime[l] < src->runtime[l])
1528 dst->runtime[l] = src->runtime[l];
1529 } else {
1530 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1531 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1532 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1533 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1534 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1535
1536 dst->io_bytes[0] += src->io_bytes[l];
1537
1538 if (dst->runtime[0] < src->runtime[l])
1539 dst->runtime[0] = src->runtime[l];
1540
1541 /*
1542 * We're summing to the same destination, so override
1543 * 'first' after the first iteration of the loop
1544 */
1545 first = false;
1546 }
1547 }
1548
1549 dst->usr_time += src->usr_time;
1550 dst->sys_time += src->sys_time;
1551 dst->ctx += src->ctx;
1552 dst->majf += src->majf;
1553 dst->minf += src->minf;
1554
1555 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1556 dst->io_u_map[k] += src->io_u_map[k];
1557 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1558 dst->io_u_submit[k] += src->io_u_submit[k];
1559 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1560 dst->io_u_complete[k] += src->io_u_complete[k];
1561 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1562 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1563 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1564 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1565 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1566 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1567
1568 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1569 if (!dst->unified_rw_rep) {
1570 dst->total_io_u[k] += src->total_io_u[k];
1571 dst->short_io_u[k] += src->short_io_u[k];
1572 dst->drop_io_u[k] += src->drop_io_u[k];
1573 } else {
1574 dst->total_io_u[0] += src->total_io_u[k];
1575 dst->short_io_u[0] += src->short_io_u[k];
1576 dst->drop_io_u[0] += src->drop_io_u[k];
1577 }
1578 }
1579
1580 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1581 int m;
1582
1583 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1584 if (!dst->unified_rw_rep)
1585 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1586 else
1587 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1588 }
1589 }
1590
1591 dst->total_run_time += src->total_run_time;
1592 dst->total_submit += src->total_submit;
1593 dst->total_complete += src->total_complete;
1594}
1595
1596void init_group_run_stat(struct group_run_stats *gs)
1597{
1598 int i;
1599 memset(gs, 0, sizeof(*gs));
1600
1601 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1602 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1603}
1604
1605void init_thread_stat(struct thread_stat *ts)
1606{
1607 int j;
1608
1609 memset(ts, 0, sizeof(*ts));
1610
1611 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1612 ts->lat_stat[j].min_val = -1UL;
1613 ts->clat_stat[j].min_val = -1UL;
1614 ts->slat_stat[j].min_val = -1UL;
1615 ts->bw_stat[j].min_val = -1UL;
1616 ts->iops_stat[j].min_val = -1UL;
1617 }
1618 ts->groupid = -1;
1619}
1620
1621void __show_run_stats(void)
1622{
1623 struct group_run_stats *runstats, *rs;
1624 struct thread_data *td;
1625 struct thread_stat *threadstats, *ts;
1626 int i, j, k, nr_ts, last_ts, idx;
1627 int kb_base_warned = 0;
1628 int unit_base_warned = 0;
1629 struct json_object *root = NULL;
1630 struct json_array *array = NULL;
1631 struct buf_output output[FIO_OUTPUT_NR];
1632 struct flist_head **opt_lists;
1633
1634 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1635
1636 for (i = 0; i < groupid + 1; i++)
1637 init_group_run_stat(&runstats[i]);
1638
1639 /*
1640 * find out how many threads stats we need. if group reporting isn't
1641 * enabled, it's one-per-td.
1642 */
1643 nr_ts = 0;
1644 last_ts = -1;
1645 for_each_td(td, i) {
1646 if (!td->o.group_reporting) {
1647 nr_ts++;
1648 continue;
1649 }
1650 if (last_ts == td->groupid)
1651 continue;
1652 if (!td->o.stats)
1653 continue;
1654
1655 last_ts = td->groupid;
1656 nr_ts++;
1657 }
1658
1659 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1660 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1661
1662 for (i = 0; i < nr_ts; i++) {
1663 init_thread_stat(&threadstats[i]);
1664 opt_lists[i] = NULL;
1665 }
1666
1667 j = 0;
1668 last_ts = -1;
1669 idx = 0;
1670 for_each_td(td, i) {
1671 if (!td->o.stats)
1672 continue;
1673 if (idx && (!td->o.group_reporting ||
1674 (td->o.group_reporting && last_ts != td->groupid))) {
1675 idx = 0;
1676 j++;
1677 }
1678
1679 last_ts = td->groupid;
1680
1681 ts = &threadstats[j];
1682
1683 ts->clat_percentiles = td->o.clat_percentiles;
1684 ts->percentile_precision = td->o.percentile_precision;
1685 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1686 opt_lists[j] = &td->opt_list;
1687
1688 idx++;
1689 ts->members++;
1690
1691 if (ts->groupid == -1) {
1692 /*
1693 * These are per-group shared already
1694 */
1695 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1696 if (td->o.description)
1697 strncpy(ts->description, td->o.description,
1698 FIO_JOBDESC_SIZE - 1);
1699 else
1700 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1701
1702 /*
1703 * If multiple entries in this group, this is
1704 * the first member.
1705 */
1706 ts->thread_number = td->thread_number;
1707 ts->groupid = td->groupid;
1708
1709 /*
1710 * first pid in group, not very useful...
1711 */
1712 ts->pid = td->pid;
1713
1714 ts->kb_base = td->o.kb_base;
1715 ts->unit_base = td->o.unit_base;
1716 ts->unified_rw_rep = td->o.unified_rw_rep;
1717 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1718 log_info("fio: kb_base differs for jobs in group, using"
1719 " %u as the base\n", ts->kb_base);
1720 kb_base_warned = 1;
1721 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1722 log_info("fio: unit_base differs for jobs in group, using"
1723 " %u as the base\n", ts->unit_base);
1724 unit_base_warned = 1;
1725 }
1726
1727 ts->continue_on_error = td->o.continue_on_error;
1728 ts->total_err_count += td->total_err_count;
1729 ts->first_error = td->first_error;
1730 if (!ts->error) {
1731 if (!td->error && td->o.continue_on_error &&
1732 td->first_error) {
1733 ts->error = td->first_error;
1734 ts->verror[sizeof(ts->verror) - 1] = '\0';
1735 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1736 } else if (td->error) {
1737 ts->error = td->error;
1738 ts->verror[sizeof(ts->verror) - 1] = '\0';
1739 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1740 }
1741 }
1742
1743 ts->latency_depth = td->latency_qd;
1744 ts->latency_target = td->o.latency_target;
1745 ts->latency_percentile = td->o.latency_percentile;
1746 ts->latency_window = td->o.latency_window;
1747
1748 ts->nr_block_infos = td->ts.nr_block_infos;
1749 for (k = 0; k < ts->nr_block_infos; k++)
1750 ts->block_infos[k] = td->ts.block_infos[k];
1751
1752 sum_thread_stats(ts, &td->ts, idx == 1);
1753
1754 if (td->o.ss_dur) {
1755 ts->ss_state = td->ss.state;
1756 ts->ss_dur = td->ss.dur;
1757 ts->ss_head = td->ss.head;
1758 ts->ss_bw_data = td->ss.bw_data;
1759 ts->ss_iops_data = td->ss.iops_data;
1760 ts->ss_limit.u.f = td->ss.limit;
1761 ts->ss_slope.u.f = td->ss.slope;
1762 ts->ss_deviation.u.f = td->ss.deviation;
1763 ts->ss_criterion.u.f = td->ss.criterion;
1764 }
1765 else
1766 ts->ss_dur = ts->ss_state = 0;
1767 }
1768
1769 for (i = 0; i < nr_ts; i++) {
1770 unsigned long long bw;
1771
1772 ts = &threadstats[i];
1773 if (ts->groupid == -1)
1774 continue;
1775 rs = &runstats[ts->groupid];
1776 rs->kb_base = ts->kb_base;
1777 rs->unit_base = ts->unit_base;
1778 rs->unified_rw_rep += ts->unified_rw_rep;
1779
1780 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1781 if (!ts->runtime[j])
1782 continue;
1783 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1784 rs->min_run[j] = ts->runtime[j];
1785 if (ts->runtime[j] > rs->max_run[j])
1786 rs->max_run[j] = ts->runtime[j];
1787
1788 bw = 0;
1789 if (ts->runtime[j])
1790 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1791 if (bw < rs->min_bw[j])
1792 rs->min_bw[j] = bw;
1793 if (bw > rs->max_bw[j])
1794 rs->max_bw[j] = bw;
1795
1796 rs->iobytes[j] += ts->io_bytes[j];
1797 }
1798 }
1799
1800 for (i = 0; i < groupid + 1; i++) {
1801 int ddir;
1802
1803 rs = &runstats[i];
1804
1805 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1806 if (rs->max_run[ddir])
1807 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1808 rs->max_run[ddir];
1809 }
1810 }
1811
1812 for (i = 0; i < FIO_OUTPUT_NR; i++)
1813 buf_output_init(&output[i]);
1814
1815 /*
1816 * don't overwrite last signal output
1817 */
1818 if (output_format & FIO_OUTPUT_NORMAL)
1819 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1820 if (output_format & FIO_OUTPUT_JSON) {
1821 struct thread_data *global;
1822 char time_buf[32];
1823 struct timeval now;
1824 unsigned long long ms_since_epoch;
1825
1826 gettimeofday(&now, NULL);
1827 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1828 (unsigned long long)(now.tv_usec) / 1000;
1829
1830 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1831 sizeof(time_buf));
1832 if (time_buf[strlen(time_buf) - 1] == '\n')
1833 time_buf[strlen(time_buf) - 1] = '\0';
1834
1835 root = json_create_object();
1836 json_object_add_value_string(root, "fio version", fio_version_string);
1837 json_object_add_value_int(root, "timestamp", now.tv_sec);
1838 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1839 json_object_add_value_string(root, "time", time_buf);
1840 global = get_global_options();
1841 json_add_job_opts(root, "global options", &global->opt_list, false);
1842 array = json_create_array();
1843 json_object_add_value_array(root, "jobs", array);
1844 }
1845
1846 if (is_backend)
1847 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1848
1849 for (i = 0; i < nr_ts; i++) {
1850 ts = &threadstats[i];
1851 rs = &runstats[ts->groupid];
1852
1853 if (is_backend) {
1854 fio_server_send_job_options(opt_lists[i], i);
1855 fio_server_send_ts(ts, rs);
1856 } else {
1857 if (output_format & FIO_OUTPUT_TERSE)
1858 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1859 if (output_format & FIO_OUTPUT_JSON) {
1860 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1861 json_array_add_value_object(array, tmp);
1862 }
1863 if (output_format & FIO_OUTPUT_NORMAL)
1864 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1865 }
1866 }
1867 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1868 /* disk util stats, if any */
1869 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1870
1871 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1872
1873 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1874 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1875 json_free_object(root);
1876 }
1877
1878 for (i = 0; i < groupid + 1; i++) {
1879 rs = &runstats[i];
1880
1881 rs->groupid = i;
1882 if (is_backend)
1883 fio_server_send_gs(rs);
1884 else if (output_format & FIO_OUTPUT_NORMAL)
1885 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1886 }
1887
1888 if (is_backend)
1889 fio_server_send_du();
1890 else if (output_format & FIO_OUTPUT_NORMAL) {
1891 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1892 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1893 }
1894
1895 for (i = 0; i < FIO_OUTPUT_NR; i++) {
1896 struct buf_output *out = &output[i];
1897
1898 log_info_buf(out->buf, out->buflen);
1899 buf_output_free(out);
1900 }
1901
1902 log_info_flush();
1903 free(runstats);
1904 free(threadstats);
1905 free(opt_lists);
1906}
1907
1908void show_run_stats(void)
1909{
1910 fio_mutex_down(stat_mutex);
1911 __show_run_stats();
1912 fio_mutex_up(stat_mutex);
1913}
1914
1915void __show_running_run_stats(void)
1916{
1917 struct thread_data *td;
1918 unsigned long long *rt;
1919 struct timespec ts;
1920 int i;
1921
1922 fio_mutex_down(stat_mutex);
1923
1924 rt = malloc(thread_number * sizeof(unsigned long long));
1925 fio_gettime(&ts, NULL);
1926
1927 for_each_td(td, i) {
1928 td->update_rusage = 1;
1929 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1930 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1931 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1932 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1933
1934 rt[i] = mtime_since(&td->start, &ts);
1935 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1936 td->ts.runtime[DDIR_READ] += rt[i];
1937 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1938 td->ts.runtime[DDIR_WRITE] += rt[i];
1939 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1940 td->ts.runtime[DDIR_TRIM] += rt[i];
1941 }
1942
1943 for_each_td(td, i) {
1944 if (td->runstate >= TD_EXITED)
1945 continue;
1946 if (td->rusage_sem) {
1947 td->update_rusage = 1;
1948 fio_mutex_down(td->rusage_sem);
1949 }
1950 td->update_rusage = 0;
1951 }
1952
1953 __show_run_stats();
1954
1955 for_each_td(td, i) {
1956 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1957 td->ts.runtime[DDIR_READ] -= rt[i];
1958 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1959 td->ts.runtime[DDIR_WRITE] -= rt[i];
1960 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1961 td->ts.runtime[DDIR_TRIM] -= rt[i];
1962 }
1963
1964 free(rt);
1965 fio_mutex_up(stat_mutex);
1966}
1967
1968static int status_interval_init;
1969static struct timespec status_time;
1970static int status_file_disabled;
1971
1972#define FIO_STATUS_FILE "fio-dump-status"
1973
1974static int check_status_file(void)
1975{
1976 struct stat sb;
1977 const char *temp_dir;
1978 char fio_status_file_path[PATH_MAX];
1979
1980 if (status_file_disabled)
1981 return 0;
1982
1983 temp_dir = getenv("TMPDIR");
1984 if (temp_dir == NULL) {
1985 temp_dir = getenv("TEMP");
1986 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1987 temp_dir = NULL;
1988 }
1989 if (temp_dir == NULL)
1990 temp_dir = "/tmp";
1991
1992 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1993
1994 if (stat(fio_status_file_path, &sb))
1995 return 0;
1996
1997 if (unlink(fio_status_file_path) < 0) {
1998 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1999 strerror(errno));
2000 log_err("fio: disabling status file updates\n");
2001 status_file_disabled = 1;
2002 }
2003
2004 return 1;
2005}
2006
2007void check_for_running_stats(void)
2008{
2009 if (status_interval) {
2010 if (!status_interval_init) {
2011 fio_gettime(&status_time, NULL);
2012 status_interval_init = 1;
2013 } else if (mtime_since_now(&status_time) >= status_interval) {
2014 show_running_run_stats();
2015 fio_gettime(&status_time, NULL);
2016 return;
2017 }
2018 }
2019 if (check_status_file()) {
2020 show_running_run_stats();
2021 return;
2022 }
2023}
2024
2025static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2026{
2027 double val = data;
2028 double delta;
2029
2030 if (data > is->max_val)
2031 is->max_val = data;
2032 if (data < is->min_val)
2033 is->min_val = data;
2034
2035 delta = val - is->mean.u.f;
2036 if (delta) {
2037 is->mean.u.f += delta / (is->samples + 1.0);
2038 is->S.u.f += delta * (val - is->mean.u.f);
2039 }
2040
2041 is->samples++;
2042}
2043
2044/*
2045 * Return a struct io_logs, which is added to the tail of the log
2046 * list for 'iolog'.
2047 */
2048static struct io_logs *get_new_log(struct io_log *iolog)
2049{
2050 size_t new_size, new_samples;
2051 struct io_logs *cur_log;
2052
2053 /*
2054 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2055 * forever
2056 */
2057 if (!iolog->cur_log_max)
2058 new_samples = DEF_LOG_ENTRIES;
2059 else {
2060 new_samples = iolog->cur_log_max * 2;
2061 if (new_samples > MAX_LOG_ENTRIES)
2062 new_samples = MAX_LOG_ENTRIES;
2063 }
2064
2065 new_size = new_samples * log_entry_sz(iolog);
2066
2067 cur_log = smalloc(sizeof(*cur_log));
2068 if (cur_log) {
2069 INIT_FLIST_HEAD(&cur_log->list);
2070 cur_log->log = malloc(new_size);
2071 if (cur_log->log) {
2072 cur_log->nr_samples = 0;
2073 cur_log->max_samples = new_samples;
2074 flist_add_tail(&cur_log->list, &iolog->io_logs);
2075 iolog->cur_log_max = new_samples;
2076 return cur_log;
2077 }
2078 sfree(cur_log);
2079 }
2080
2081 return NULL;
2082}
2083
2084/*
2085 * Add and return a new log chunk, or return current log if big enough
2086 */
2087static struct io_logs *regrow_log(struct io_log *iolog)
2088{
2089 struct io_logs *cur_log;
2090 int i;
2091
2092 if (!iolog || iolog->disabled)
2093 goto disable;
2094
2095 cur_log = iolog_cur_log(iolog);
2096 if (!cur_log) {
2097 cur_log = get_new_log(iolog);
2098 if (!cur_log)
2099 return NULL;
2100 }
2101
2102 if (cur_log->nr_samples < cur_log->max_samples)
2103 return cur_log;
2104
2105 /*
2106 * No room for a new sample. If we're compressing on the fly, flush
2107 * out the current chunk
2108 */
2109 if (iolog->log_gz) {
2110 if (iolog_cur_flush(iolog, cur_log)) {
2111 log_err("fio: failed flushing iolog! Will stop logging.\n");
2112 return NULL;
2113 }
2114 }
2115
2116 /*
2117 * Get a new log array, and add to our list
2118 */
2119 cur_log = get_new_log(iolog);
2120 if (!cur_log) {
2121 log_err("fio: failed extending iolog! Will stop logging.\n");
2122 return NULL;
2123 }
2124
2125 if (!iolog->pending || !iolog->pending->nr_samples)
2126 return cur_log;
2127
2128 /*
2129 * Flush pending items to new log
2130 */
2131 for (i = 0; i < iolog->pending->nr_samples; i++) {
2132 struct io_sample *src, *dst;
2133
2134 src = get_sample(iolog, iolog->pending, i);
2135 dst = get_sample(iolog, cur_log, i);
2136 memcpy(dst, src, log_entry_sz(iolog));
2137 }
2138 cur_log->nr_samples = iolog->pending->nr_samples;
2139
2140 iolog->pending->nr_samples = 0;
2141 return cur_log;
2142disable:
2143 if (iolog)
2144 iolog->disabled = true;
2145 return NULL;
2146}
2147
2148void regrow_logs(struct thread_data *td)
2149{
2150 regrow_log(td->slat_log);
2151 regrow_log(td->clat_log);
2152 regrow_log(td->clat_hist_log);
2153 regrow_log(td->lat_log);
2154 regrow_log(td->bw_log);
2155 regrow_log(td->iops_log);
2156 td->flags &= ~TD_F_REGROW_LOGS;
2157}
2158
2159static struct io_logs *get_cur_log(struct io_log *iolog)
2160{
2161 struct io_logs *cur_log;
2162
2163 cur_log = iolog_cur_log(iolog);
2164 if (!cur_log) {
2165 cur_log = get_new_log(iolog);
2166 if (!cur_log)
2167 return NULL;
2168 }
2169
2170 if (cur_log->nr_samples < cur_log->max_samples)
2171 return cur_log;
2172
2173 /*
2174 * Out of space. If we're in IO offload mode, or we're not doing
2175 * per unit logging (hence logging happens outside of the IO thread
2176 * as well), add a new log chunk inline. If we're doing inline
2177 * submissions, flag 'td' as needing a log regrow and we'll take
2178 * care of it on the submission side.
2179 */
2180 if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2181 !per_unit_log(iolog))
2182 return regrow_log(iolog);
2183
2184 iolog->td->flags |= TD_F_REGROW_LOGS;
2185 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2186 return iolog->pending;
2187}
2188
2189static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2190 enum fio_ddir ddir, unsigned int bs,
2191 unsigned long t, uint64_t offset)
2192{
2193 struct io_logs *cur_log;
2194
2195 if (iolog->disabled)
2196 return;
2197 if (flist_empty(&iolog->io_logs))
2198 iolog->avg_last = t;
2199
2200 cur_log = get_cur_log(iolog);
2201 if (cur_log) {
2202 struct io_sample *s;
2203
2204 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2205
2206 s->data = data;
2207 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2208 io_sample_set_ddir(iolog, s, ddir);
2209 s->bs = bs;
2210
2211 if (iolog->log_offset) {
2212 struct io_sample_offset *so = (void *) s;
2213
2214 so->offset = offset;
2215 }
2216
2217 cur_log->nr_samples++;
2218 return;
2219 }
2220
2221 iolog->disabled = true;
2222}
2223
2224static inline void reset_io_stat(struct io_stat *ios)
2225{
2226 ios->max_val = ios->min_val = ios->samples = 0;
2227 ios->mean.u.f = ios->S.u.f = 0;
2228}
2229
2230void reset_io_stats(struct thread_data *td)
2231{
2232 struct thread_stat *ts = &td->ts;
2233 int i, j;
2234
2235 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2236 reset_io_stat(&ts->clat_stat[i]);
2237 reset_io_stat(&ts->slat_stat[i]);
2238 reset_io_stat(&ts->lat_stat[i]);
2239 reset_io_stat(&ts->bw_stat[i]);
2240 reset_io_stat(&ts->iops_stat[i]);
2241
2242 ts->io_bytes[i] = 0;
2243 ts->runtime[i] = 0;
2244 ts->total_io_u[i] = 0;
2245 ts->short_io_u[i] = 0;
2246 ts->drop_io_u[i] = 0;
2247
2248 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2249 ts->io_u_plat[i][j] = 0;
2250 }
2251
2252 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2253 ts->io_u_map[i] = 0;
2254 ts->io_u_submit[i] = 0;
2255 ts->io_u_complete[i] = 0;
2256 }
2257
2258 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2259 ts->io_u_lat_n[i] = 0;
2260 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2261 ts->io_u_lat_u[i] = 0;
2262 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2263 ts->io_u_lat_m[i] = 0;
2264
2265 ts->total_submit = 0;
2266 ts->total_complete = 0;
2267}
2268
2269static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2270 unsigned long elapsed, bool log_max)
2271{
2272 /*
2273 * Note an entry in the log. Use the mean from the logged samples,
2274 * making sure to properly round up. Only write a log entry if we
2275 * had actual samples done.
2276 */
2277 if (iolog->avg_window[ddir].samples) {
2278 union io_sample_data data;
2279
2280 if (log_max)
2281 data.val = iolog->avg_window[ddir].max_val;
2282 else
2283 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2284
2285 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2286 }
2287
2288 reset_io_stat(&iolog->avg_window[ddir]);
2289}
2290
2291static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2292 bool log_max)
2293{
2294 int ddir;
2295
2296 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2297 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2298}
2299
2300static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2301 union io_sample_data data, enum fio_ddir ddir,
2302 unsigned int bs, uint64_t offset)
2303{
2304 unsigned long elapsed, this_window;
2305
2306 if (!ddir_rw(ddir))
2307 return 0;
2308
2309 elapsed = mtime_since_now(&td->epoch);
2310
2311 /*
2312 * If no time averaging, just add the log sample.
2313 */
2314 if (!iolog->avg_msec) {
2315 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2316 return 0;
2317 }
2318
2319 /*
2320 * Add the sample. If the time period has passed, then
2321 * add that entry to the log and clear.
2322 */
2323 add_stat_sample(&iolog->avg_window[ddir], data.val);
2324
2325 /*
2326 * If period hasn't passed, adding the above sample is all we
2327 * need to do.
2328 */
2329 this_window = elapsed - iolog->avg_last;
2330 if (elapsed < iolog->avg_last)
2331 return iolog->avg_last - elapsed;
2332 else if (this_window < iolog->avg_msec) {
2333 int diff = iolog->avg_msec - this_window;
2334
2335 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2336 return diff;
2337 }
2338
2339 _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2340
2341 iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2342 return iolog->avg_msec;
2343}
2344
2345void finalize_logs(struct thread_data *td, bool unit_logs)
2346{
2347 unsigned long elapsed;
2348
2349 elapsed = mtime_since_now(&td->epoch);
2350
2351 if (td->clat_log && unit_logs)
2352 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2353 if (td->slat_log && unit_logs)
2354 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2355 if (td->lat_log && unit_logs)
2356 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2357 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2358 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2359 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2360 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2361}
2362
2363void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2364{
2365 struct io_log *iolog;
2366
2367 if (!ddir_rw(ddir))
2368 return;
2369
2370 iolog = agg_io_log[ddir];
2371 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2372}
2373
2374static void add_clat_percentile_sample(struct thread_stat *ts,
2375 unsigned long long nsec, enum fio_ddir ddir)
2376{
2377 unsigned int idx = plat_val_to_idx(nsec);
2378 assert(idx < FIO_IO_U_PLAT_NR);
2379
2380 ts->io_u_plat[ddir][idx]++;
2381}
2382
2383void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2384 unsigned long long nsec, unsigned int bs, uint64_t offset)
2385{
2386 unsigned long elapsed, this_window;
2387 struct thread_stat *ts = &td->ts;
2388 struct io_log *iolog = td->clat_hist_log;
2389
2390 td_io_u_lock(td);
2391
2392 add_stat_sample(&ts->clat_stat[ddir], nsec);
2393
2394 if (td->clat_log)
2395 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2396 offset);
2397
2398 if (ts->clat_percentiles)
2399 add_clat_percentile_sample(ts, nsec, ddir);
2400
2401 if (iolog && iolog->hist_msec) {
2402 struct io_hist *hw = &iolog->hist_window[ddir];
2403
2404 hw->samples++;
2405 elapsed = mtime_since_now(&td->epoch);
2406 if (!hw->hist_last)
2407 hw->hist_last = elapsed;
2408 this_window = elapsed - hw->hist_last;
2409
2410 if (this_window >= iolog->hist_msec) {
2411 unsigned int *io_u_plat;
2412 struct io_u_plat_entry *dst;
2413
2414 /*
2415 * Make a byte-for-byte copy of the latency histogram
2416 * stored in td->ts.io_u_plat[ddir], recording it in a
2417 * log sample. Note that the matching call to free() is
2418 * located in iolog.c after printing this sample to the
2419 * log file.
2420 */
2421 io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2422 dst = malloc(sizeof(struct io_u_plat_entry));
2423 memcpy(&(dst->io_u_plat), io_u_plat,
2424 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2425 flist_add(&dst->list, &hw->list);
2426 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2427 elapsed, offset);
2428
2429 /*
2430 * Update the last time we recorded as being now, minus
2431 * any drift in time we encountered before actually
2432 * making the record.
2433 */
2434 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2435 hw->samples = 0;
2436 }
2437 }
2438
2439 td_io_u_unlock(td);
2440}
2441
2442void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2443 unsigned long usec, unsigned int bs, uint64_t offset)
2444{
2445 struct thread_stat *ts = &td->ts;
2446
2447 if (!ddir_rw(ddir))
2448 return;
2449
2450 td_io_u_lock(td);
2451
2452 add_stat_sample(&ts->slat_stat[ddir], usec);
2453
2454 if (td->slat_log)
2455 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2456
2457 td_io_u_unlock(td);
2458}
2459
2460void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2461 unsigned long long nsec, unsigned int bs, uint64_t offset)
2462{
2463 struct thread_stat *ts = &td->ts;
2464
2465 if (!ddir_rw(ddir))
2466 return;
2467
2468 td_io_u_lock(td);
2469
2470 add_stat_sample(&ts->lat_stat[ddir], nsec);
2471
2472 if (td->lat_log)
2473 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2474 offset);
2475
2476 td_io_u_unlock(td);
2477}
2478
2479void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2480 unsigned int bytes, unsigned long long spent)
2481{
2482 struct thread_stat *ts = &td->ts;
2483 unsigned long rate;
2484
2485 if (spent)
2486 rate = (unsigned long) (bytes * 1000000ULL / spent);
2487 else
2488 rate = 0;
2489
2490 td_io_u_lock(td);
2491
2492 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2493
2494 if (td->bw_log)
2495 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2496 bytes, io_u->offset);
2497
2498 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2499 td_io_u_unlock(td);
2500}
2501
2502static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2503 struct timespec *t, unsigned int avg_time,
2504 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2505 struct io_stat *stat, struct io_log *log,
2506 bool is_kb)
2507{
2508 unsigned long spent, rate;
2509 enum fio_ddir ddir;
2510 unsigned int next, next_log;
2511
2512 next_log = avg_time;
2513
2514 spent = mtime_since(parent_tv, t);
2515 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2516 return avg_time - spent;
2517
2518 td_io_u_lock(td);
2519
2520 /*
2521 * Compute both read and write rates for the interval.
2522 */
2523 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2524 uint64_t delta;
2525
2526 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2527 if (!delta)
2528 continue; /* No entries for interval */
2529
2530 if (spent) {
2531 if (is_kb)
2532 rate = delta * 1000 / spent / 1024; /* KiB/s */
2533 else
2534 rate = (delta * 1000) / spent;
2535 } else
2536 rate = 0;
2537
2538 add_stat_sample(&stat[ddir], rate);
2539
2540 if (log) {
2541 unsigned int bs = 0;
2542
2543 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2544 bs = td->o.min_bs[ddir];
2545
2546 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2547 next_log = min(next_log, next);
2548 }
2549
2550 stat_io_bytes[ddir] = this_io_bytes[ddir];
2551 }
2552
2553 timespec_add_msec(parent_tv, avg_time);
2554
2555 td_io_u_unlock(td);
2556
2557 if (spent <= avg_time)
2558 next = avg_time;
2559 else
2560 next = avg_time - (1 + spent - avg_time);
2561
2562 return min(next, next_log);
2563}
2564
2565static int add_bw_samples(struct thread_data *td, struct timespec *t)
2566{
2567 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2568 td->this_io_bytes, td->stat_io_bytes,
2569 td->ts.bw_stat, td->bw_log, true);
2570}
2571
2572void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2573 unsigned int bytes)
2574{
2575 struct thread_stat *ts = &td->ts;
2576
2577 td_io_u_lock(td);
2578
2579 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2580
2581 if (td->iops_log)
2582 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2583 bytes, io_u->offset);
2584
2585 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2586 td_io_u_unlock(td);
2587}
2588
2589static int add_iops_samples(struct thread_data *td, struct timespec *t)
2590{
2591 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2592 td->this_io_blocks, td->stat_io_blocks,
2593 td->ts.iops_stat, td->iops_log, false);
2594}
2595
2596/*
2597 * Returns msecs to next event
2598 */
2599int calc_log_samples(void)
2600{
2601 struct thread_data *td;
2602 unsigned int next = ~0U, tmp;
2603 struct timespec now;
2604 int i;
2605
2606 fio_gettime(&now, NULL);
2607
2608 for_each_td(td, i) {
2609 if (!td->o.stats)
2610 continue;
2611 if (in_ramp_time(td) ||
2612 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2613 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2614 continue;
2615 }
2616 if (!td->bw_log ||
2617 (td->bw_log && !per_unit_log(td->bw_log))) {
2618 tmp = add_bw_samples(td, &now);
2619 if (tmp < next)
2620 next = tmp;
2621 }
2622 if (!td->iops_log ||
2623 (td->iops_log && !per_unit_log(td->iops_log))) {
2624 tmp = add_iops_samples(td, &now);
2625 if (tmp < next)
2626 next = tmp;
2627 }
2628 }
2629
2630 return next == ~0U ? 0 : next;
2631}
2632
2633void stat_init(void)
2634{
2635 stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2636}
2637
2638void stat_exit(void)
2639{
2640 /*
2641 * When we have the mutex, we know out-of-band access to it
2642 * have ended.
2643 */
2644 fio_mutex_down(stat_mutex);
2645 fio_mutex_remove(stat_mutex);
2646}
2647
2648/*
2649 * Called from signal handler. Wake up status thread.
2650 */
2651void show_running_run_stats(void)
2652{
2653 helper_do_stat();
2654}
2655
2656uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2657{
2658 /* Ignore io_u's which span multiple blocks--they will just get
2659 * inaccurate counts. */
2660 int idx = (io_u->offset - io_u->file->file_offset)
2661 / td->o.bs[DDIR_TRIM];
2662 uint32_t *info = &td->ts.block_infos[idx];
2663 assert(idx < td->ts.nr_block_infos);
2664 return info;
2665}