Fix read/write mix and different levels of randomness
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->io_axmap contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct fio_file *f, const uint64_t block)
29{
30 return !axmap_isset(f->io_axmap, block);
31}
32
33/*
34 * Mark a given offset as used in the map.
35 */
36static void mark_random_map(struct thread_data *td, struct io_u *io_u)
37{
38 unsigned int min_bs = td->o.rw_min_bs;
39 struct fio_file *f = io_u->file;
40 unsigned int nr_blocks;
41 uint64_t block;
42
43 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
44 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
45
46 if (!(io_u->flags & IO_U_F_BUSY_OK))
47 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
48
49 if ((nr_blocks * min_bs) < io_u->buflen)
50 io_u->buflen = nr_blocks * min_bs;
51}
52
53static uint64_t last_block(struct thread_data *td, struct fio_file *f,
54 enum fio_ddir ddir)
55{
56 uint64_t max_blocks;
57 uint64_t max_size;
58
59 assert(ddir_rw(ddir));
60
61 /*
62 * Hmm, should we make sure that ->io_size <= ->real_file_size?
63 */
64 max_size = f->io_size;
65 if (max_size > f->real_file_size)
66 max_size = f->real_file_size;
67
68 if (td->o.zone_range)
69 max_size = td->o.zone_range;
70
71 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
72 if (!max_blocks)
73 return 0;
74
75 return max_blocks;
76}
77
78struct rand_off {
79 struct flist_head list;
80 uint64_t off;
81};
82
83static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
84 enum fio_ddir ddir, uint64_t *b)
85{
86 uint64_t r;
87
88 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
89 uint64_t lastb;
90
91 lastb = last_block(td, f, ddir);
92 if (!lastb)
93 return 1;
94
95 r = __rand(&td->random_state);
96
97 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
98
99 *b = lastb * (r / ((uint64_t) FRAND_MAX + 1.0));
100 } else {
101 uint64_t off = 0;
102
103 if (lfsr_next(&f->lfsr, &off))
104 return 1;
105
106 *b = off;
107 }
108
109 /*
110 * if we are not maintaining a random map, we are done.
111 */
112 if (!file_randommap(td, f))
113 goto ret;
114
115 /*
116 * calculate map offset and check if it's free
117 */
118 if (random_map_free(f, *b))
119 goto ret;
120
121 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
122 (unsigned long long) *b);
123
124 *b = axmap_next_free(f->io_axmap, *b);
125 if (*b == (uint64_t) -1ULL)
126 return 1;
127ret:
128 return 0;
129}
130
131static int __get_next_rand_offset_zipf(struct thread_data *td,
132 struct fio_file *f, enum fio_ddir ddir,
133 uint64_t *b)
134{
135 *b = zipf_next(&f->zipf);
136 return 0;
137}
138
139static int __get_next_rand_offset_pareto(struct thread_data *td,
140 struct fio_file *f, enum fio_ddir ddir,
141 uint64_t *b)
142{
143 *b = pareto_next(&f->zipf);
144 return 0;
145}
146
147static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
148{
149 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
150 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
151
152 return r1->off - r2->off;
153}
154
155static int get_off_from_method(struct thread_data *td, struct fio_file *f,
156 enum fio_ddir ddir, uint64_t *b)
157{
158 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
159 return __get_next_rand_offset(td, f, ddir, b);
160 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
161 return __get_next_rand_offset_zipf(td, f, ddir, b);
162 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
163 return __get_next_rand_offset_pareto(td, f, ddir, b);
164
165 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
166 return 1;
167}
168
169/*
170 * Sort the reads for a verify phase in batches of verifysort_nr, if
171 * specified.
172 */
173static inline int should_sort_io(struct thread_data *td)
174{
175 if (!td->o.verifysort_nr || !td->o.do_verify)
176 return 0;
177 if (!td_random(td))
178 return 0;
179 if (td->runstate != TD_VERIFYING)
180 return 0;
181 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
182 return 0;
183
184 return 1;
185}
186
187static int should_do_random(struct thread_data *td, enum fio_ddir ddir)
188{
189 unsigned int v;
190 unsigned long r;
191
192 if (td->o.perc_rand[ddir] == 100)
193 return 1;
194
195 r = __rand(&td->seq_rand_state[ddir]);
196 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
197
198 return v <= td->o.perc_rand[ddir];
199}
200
201static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
202 enum fio_ddir ddir, uint64_t *b)
203{
204 struct rand_off *r;
205 int i, ret = 1;
206
207 if (!should_sort_io(td))
208 return get_off_from_method(td, f, ddir, b);
209
210 if (!flist_empty(&td->next_rand_list)) {
211fetch:
212 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
213 flist_del(&r->list);
214 *b = r->off;
215 free(r);
216 return 0;
217 }
218
219 for (i = 0; i < td->o.verifysort_nr; i++) {
220 r = malloc(sizeof(*r));
221
222 ret = get_off_from_method(td, f, ddir, &r->off);
223 if (ret) {
224 free(r);
225 break;
226 }
227
228 flist_add(&r->list, &td->next_rand_list);
229 }
230
231 if (ret && !i)
232 return ret;
233
234 assert(!flist_empty(&td->next_rand_list));
235 flist_sort(NULL, &td->next_rand_list, flist_cmp);
236 goto fetch;
237}
238
239static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
240 enum fio_ddir ddir, uint64_t *b)
241{
242 if (!get_next_rand_offset(td, f, ddir, b))
243 return 0;
244
245 if (td->o.time_based) {
246 fio_file_reset(td, f);
247 if (!get_next_rand_offset(td, f, ddir, b))
248 return 0;
249 }
250
251 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
252 f->file_name, (unsigned long long) f->last_pos[ddir],
253 (unsigned long long) f->real_file_size);
254 return 1;
255}
256
257static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
258 enum fio_ddir ddir, uint64_t *offset)
259{
260 struct thread_options *o = &td->o;
261
262 assert(ddir_rw(ddir));
263
264 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
265 o->time_based)
266 f->last_pos[ddir] = f->last_pos[ddir] - f->io_size;
267
268 if (f->last_pos[ddir] < f->real_file_size) {
269 uint64_t pos;
270
271 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0)
272 f->last_pos[ddir] = f->real_file_size;
273
274 pos = f->last_pos[ddir] - f->file_offset;
275 if (pos && o->ddir_seq_add) {
276 pos += o->ddir_seq_add;
277
278 /*
279 * If we reach beyond the end of the file
280 * with holed IO, wrap around to the
281 * beginning again.
282 */
283 if (pos >= f->real_file_size)
284 pos = f->file_offset;
285 }
286
287 *offset = pos;
288 return 0;
289 }
290
291 return 1;
292}
293
294static int get_next_block(struct thread_data *td, struct io_u *io_u,
295 enum fio_ddir ddir, int rw_seq,
296 unsigned int *is_random)
297{
298 struct fio_file *f = io_u->file;
299 uint64_t b, offset;
300 int ret;
301
302 assert(ddir_rw(ddir));
303
304 b = offset = -1ULL;
305
306 if (rw_seq) {
307 if (td_random(td)) {
308 if (should_do_random(td, ddir)) {
309 ret = get_next_rand_block(td, f, ddir, &b);
310 *is_random = 1;
311 } else {
312 *is_random = 0;
313 io_u->flags |= IO_U_F_BUSY_OK;
314 ret = get_next_seq_offset(td, f, ddir, &offset);
315 if (ret)
316 ret = get_next_rand_block(td, f, ddir, &b);
317 }
318 } else {
319 *is_random = 0;
320 ret = get_next_seq_offset(td, f, ddir, &offset);
321 }
322 } else {
323 io_u->flags |= IO_U_F_BUSY_OK;
324 *is_random = 0;
325
326 if (td->o.rw_seq == RW_SEQ_SEQ) {
327 ret = get_next_seq_offset(td, f, ddir, &offset);
328 if (ret) {
329 ret = get_next_rand_block(td, f, ddir, &b);
330 *is_random = 0;
331 }
332 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
333 if (f->last_start[ddir] != -1ULL)
334 offset = f->last_start[ddir] - f->file_offset;
335 else
336 offset = 0;
337 ret = 0;
338 } else {
339 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
340 ret = 1;
341 }
342 }
343
344 if (!ret) {
345 if (offset != -1ULL)
346 io_u->offset = offset;
347 else if (b != -1ULL)
348 io_u->offset = b * td->o.ba[ddir];
349 else {
350 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
351 ret = 1;
352 }
353 }
354
355 return ret;
356}
357
358/*
359 * For random io, generate a random new block and see if it's used. Repeat
360 * until we find a free one. For sequential io, just return the end of
361 * the last io issued.
362 */
363static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
364 unsigned int *is_random)
365{
366 struct fio_file *f = io_u->file;
367 enum fio_ddir ddir = io_u->ddir;
368 int rw_seq_hit = 0;
369
370 assert(ddir_rw(ddir));
371
372 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
373 rw_seq_hit = 1;
374 td->ddir_seq_nr = td->o.ddir_seq_nr;
375 }
376
377 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
378 return 1;
379
380 if (io_u->offset >= f->io_size) {
381 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
382 (unsigned long long) io_u->offset,
383 (unsigned long long) f->io_size);
384 return 1;
385 }
386
387 io_u->offset += f->file_offset;
388 if (io_u->offset >= f->real_file_size) {
389 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
390 (unsigned long long) io_u->offset,
391 (unsigned long long) f->real_file_size);
392 return 1;
393 }
394
395 return 0;
396}
397
398static int get_next_offset(struct thread_data *td, struct io_u *io_u,
399 unsigned int *is_random)
400{
401 if (td->flags & TD_F_PROFILE_OPS) {
402 struct prof_io_ops *ops = &td->prof_io_ops;
403
404 if (ops->fill_io_u_off)
405 return ops->fill_io_u_off(td, io_u, is_random);
406 }
407
408 return __get_next_offset(td, io_u, is_random);
409}
410
411static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
412 unsigned int buflen)
413{
414 struct fio_file *f = io_u->file;
415
416 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
417}
418
419static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
420 unsigned int is_random)
421{
422 int ddir = io_u->ddir;
423 unsigned int buflen = 0;
424 unsigned int minbs, maxbs;
425 unsigned long r;
426
427 assert(ddir_rw(ddir));
428
429 if (td->o.bs_is_seq_rand)
430 ddir = is_random ? DDIR_WRITE: DDIR_READ;
431
432 minbs = td->o.min_bs[ddir];
433 maxbs = td->o.max_bs[ddir];
434
435 if (minbs == maxbs)
436 return minbs;
437
438 /*
439 * If we can't satisfy the min block size from here, then fail
440 */
441 if (!io_u_fits(td, io_u, minbs))
442 return 0;
443
444 do {
445 r = __rand(&td->bsrange_state);
446
447 if (!td->o.bssplit_nr[ddir]) {
448 buflen = 1 + (unsigned int) ((double) maxbs *
449 (r / (FRAND_MAX + 1.0)));
450 if (buflen < minbs)
451 buflen = minbs;
452 } else {
453 long perc = 0;
454 unsigned int i;
455
456 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
457 struct bssplit *bsp = &td->o.bssplit[ddir][i];
458
459 buflen = bsp->bs;
460 perc += bsp->perc;
461 if ((r <= ((FRAND_MAX / 100L) * perc)) &&
462 io_u_fits(td, io_u, buflen))
463 break;
464 }
465 }
466
467 if (td->o.do_verify && td->o.verify != VERIFY_NONE)
468 buflen = (buflen + td->o.verify_interval - 1) &
469 ~(td->o.verify_interval - 1);
470
471 if (!td->o.bs_unaligned && is_power_of_2(minbs))
472 buflen = (buflen + minbs - 1) & ~(minbs - 1);
473
474 } while (!io_u_fits(td, io_u, buflen));
475
476 return buflen;
477}
478
479static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
480 unsigned int is_random)
481{
482 if (td->flags & TD_F_PROFILE_OPS) {
483 struct prof_io_ops *ops = &td->prof_io_ops;
484
485 if (ops->fill_io_u_size)
486 return ops->fill_io_u_size(td, io_u, is_random);
487 }
488
489 return __get_next_buflen(td, io_u, is_random);
490}
491
492static void set_rwmix_bytes(struct thread_data *td)
493{
494 unsigned int diff;
495
496 /*
497 * we do time or byte based switch. this is needed because
498 * buffered writes may issue a lot quicker than they complete,
499 * whereas reads do not.
500 */
501 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
502 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
503}
504
505static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
506{
507 unsigned int v;
508 unsigned long r;
509
510 r = __rand(&td->rwmix_state);
511 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
512
513 if (v <= td->o.rwmix[DDIR_READ])
514 return DDIR_READ;
515
516 return DDIR_WRITE;
517}
518
519void io_u_quiesce(struct thread_data *td)
520{
521 /*
522 * We are going to sleep, ensure that we flush anything pending as
523 * not to skew our latency numbers.
524 *
525 * Changed to only monitor 'in flight' requests here instead of the
526 * td->cur_depth, b/c td->cur_depth does not accurately represent
527 * io's that have been actually submitted to an async engine,
528 * and cur_depth is meaningless for sync engines.
529 */
530 while (td->io_u_in_flight) {
531 int fio_unused ret;
532
533 ret = io_u_queued_complete(td, 1, NULL);
534 }
535}
536
537static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
538{
539 enum fio_ddir odir = ddir ^ 1;
540 struct timeval t;
541 long usec;
542
543 assert(ddir_rw(ddir));
544
545 if (td->rate_pending_usleep[ddir] <= 0)
546 return ddir;
547
548 /*
549 * We have too much pending sleep in this direction. See if we
550 * should switch.
551 */
552 if (td_rw(td) && td->o.rwmix[odir]) {
553 /*
554 * Other direction does not have too much pending, switch
555 */
556 if (td->rate_pending_usleep[odir] < 100000)
557 return odir;
558
559 /*
560 * Both directions have pending sleep. Sleep the minimum time
561 * and deduct from both.
562 */
563 if (td->rate_pending_usleep[ddir] <=
564 td->rate_pending_usleep[odir]) {
565 usec = td->rate_pending_usleep[ddir];
566 } else {
567 usec = td->rate_pending_usleep[odir];
568 ddir = odir;
569 }
570 } else
571 usec = td->rate_pending_usleep[ddir];
572
573 io_u_quiesce(td);
574
575 fio_gettime(&t, NULL);
576 usec_sleep(td, usec);
577 usec = utime_since_now(&t);
578
579 td->rate_pending_usleep[ddir] -= usec;
580
581 odir = ddir ^ 1;
582 if (td_rw(td) && __should_check_rate(td, odir))
583 td->rate_pending_usleep[odir] -= usec;
584
585 if (ddir == DDIR_TRIM)
586 return DDIR_TRIM;
587
588 return ddir;
589}
590
591/*
592 * Return the data direction for the next io_u. If the job is a
593 * mixed read/write workload, check the rwmix cycle and switch if
594 * necessary.
595 */
596static enum fio_ddir get_rw_ddir(struct thread_data *td)
597{
598 enum fio_ddir ddir;
599
600 /*
601 * see if it's time to fsync
602 */
603 if (td->o.fsync_blocks &&
604 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
605 td->io_issues[DDIR_WRITE] && should_fsync(td))
606 return DDIR_SYNC;
607
608 /*
609 * see if it's time to fdatasync
610 */
611 if (td->o.fdatasync_blocks &&
612 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
613 td->io_issues[DDIR_WRITE] && should_fsync(td))
614 return DDIR_DATASYNC;
615
616 /*
617 * see if it's time to sync_file_range
618 */
619 if (td->sync_file_range_nr &&
620 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
621 td->io_issues[DDIR_WRITE] && should_fsync(td))
622 return DDIR_SYNC_FILE_RANGE;
623
624 if (td_rw(td)) {
625 /*
626 * Check if it's time to seed a new data direction.
627 */
628 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
629 /*
630 * Put a top limit on how many bytes we do for
631 * one data direction, to avoid overflowing the
632 * ranges too much
633 */
634 ddir = get_rand_ddir(td);
635
636 if (ddir != td->rwmix_ddir)
637 set_rwmix_bytes(td);
638
639 td->rwmix_ddir = ddir;
640 }
641 ddir = td->rwmix_ddir;
642 } else if (td_read(td))
643 ddir = DDIR_READ;
644 else if (td_write(td))
645 ddir = DDIR_WRITE;
646 else
647 ddir = DDIR_TRIM;
648
649 td->rwmix_ddir = rate_ddir(td, ddir);
650 return td->rwmix_ddir;
651}
652
653static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
654{
655 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
656
657 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
658 td->o.barrier_blocks &&
659 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
660 td->io_issues[DDIR_WRITE])
661 io_u->flags |= IO_U_F_BARRIER;
662}
663
664void put_file_log(struct thread_data *td, struct fio_file *f)
665{
666 unsigned int ret = put_file(td, f);
667
668 if (ret)
669 td_verror(td, ret, "file close");
670}
671
672void put_io_u(struct thread_data *td, struct io_u *io_u)
673{
674 td_io_u_lock(td);
675
676 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
677 put_file_log(td, io_u->file);
678
679 io_u->file = NULL;
680 io_u->flags |= IO_U_F_FREE;
681
682 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
683 td->cur_depth--;
684 io_u_qpush(&td->io_u_freelist, io_u);
685 td_io_u_unlock(td);
686 td_io_u_free_notify(td);
687}
688
689void clear_io_u(struct thread_data *td, struct io_u *io_u)
690{
691 io_u->flags &= ~IO_U_F_FLIGHT;
692 put_io_u(td, io_u);
693}
694
695void requeue_io_u(struct thread_data *td, struct io_u **io_u)
696{
697 struct io_u *__io_u = *io_u;
698 enum fio_ddir ddir = acct_ddir(__io_u);
699
700 dprint(FD_IO, "requeue %p\n", __io_u);
701
702 td_io_u_lock(td);
703
704 __io_u->flags |= IO_U_F_FREE;
705 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
706 td->io_issues[ddir]--;
707
708 __io_u->flags &= ~IO_U_F_FLIGHT;
709 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
710 td->cur_depth--;
711
712 io_u_rpush(&td->io_u_requeues, __io_u);
713 td_io_u_unlock(td);
714 *io_u = NULL;
715}
716
717static int fill_io_u(struct thread_data *td, struct io_u *io_u)
718{
719 unsigned int is_random;
720
721 if (td->io_ops->flags & FIO_NOIO)
722 goto out;
723
724 set_rw_ddir(td, io_u);
725
726 /*
727 * fsync() or fdatasync() or trim etc, we are done
728 */
729 if (!ddir_rw(io_u->ddir))
730 goto out;
731
732 /*
733 * See if it's time to switch to a new zone
734 */
735 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
736 struct fio_file *f = io_u->file;
737
738 td->zone_bytes = 0;
739 f->file_offset += td->o.zone_range + td->o.zone_skip;
740
741 /*
742 * Wrap from the beginning, if we exceed the file size
743 */
744 if (f->file_offset >= f->real_file_size)
745 f->file_offset = f->real_file_size - f->file_offset;
746 f->last_pos[io_u->ddir] = f->file_offset;
747 td->io_skip_bytes += td->o.zone_skip;
748 }
749
750 /*
751 * No log, let the seq/rand engine retrieve the next buflen and
752 * position.
753 */
754 if (get_next_offset(td, io_u, &is_random)) {
755 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
756 return 1;
757 }
758
759 io_u->buflen = get_next_buflen(td, io_u, is_random);
760 if (!io_u->buflen) {
761 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
762 return 1;
763 }
764
765 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
766 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
767 dprint(FD_IO, " off=%llu/%lu > %llu\n",
768 (unsigned long long) io_u->offset, io_u->buflen,
769 (unsigned long long) io_u->file->real_file_size);
770 return 1;
771 }
772
773 /*
774 * mark entry before potentially trimming io_u
775 */
776 if (td_random(td) && file_randommap(td, io_u->file))
777 mark_random_map(td, io_u);
778
779out:
780 dprint_io_u(io_u, "fill_io_u");
781 td->zone_bytes += io_u->buflen;
782 return 0;
783}
784
785static void __io_u_mark_map(unsigned int *map, unsigned int nr)
786{
787 int idx = 0;
788
789 switch (nr) {
790 default:
791 idx = 6;
792 break;
793 case 33 ... 64:
794 idx = 5;
795 break;
796 case 17 ... 32:
797 idx = 4;
798 break;
799 case 9 ... 16:
800 idx = 3;
801 break;
802 case 5 ... 8:
803 idx = 2;
804 break;
805 case 1 ... 4:
806 idx = 1;
807 case 0:
808 break;
809 }
810
811 map[idx]++;
812}
813
814void io_u_mark_submit(struct thread_data *td, unsigned int nr)
815{
816 __io_u_mark_map(td->ts.io_u_submit, nr);
817 td->ts.total_submit++;
818}
819
820void io_u_mark_complete(struct thread_data *td, unsigned int nr)
821{
822 __io_u_mark_map(td->ts.io_u_complete, nr);
823 td->ts.total_complete++;
824}
825
826void io_u_mark_depth(struct thread_data *td, unsigned int nr)
827{
828 int idx = 0;
829
830 switch (td->cur_depth) {
831 default:
832 idx = 6;
833 break;
834 case 32 ... 63:
835 idx = 5;
836 break;
837 case 16 ... 31:
838 idx = 4;
839 break;
840 case 8 ... 15:
841 idx = 3;
842 break;
843 case 4 ... 7:
844 idx = 2;
845 break;
846 case 2 ... 3:
847 idx = 1;
848 case 1:
849 break;
850 }
851
852 td->ts.io_u_map[idx] += nr;
853}
854
855static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
856{
857 int idx = 0;
858
859 assert(usec < 1000);
860
861 switch (usec) {
862 case 750 ... 999:
863 idx = 9;
864 break;
865 case 500 ... 749:
866 idx = 8;
867 break;
868 case 250 ... 499:
869 idx = 7;
870 break;
871 case 100 ... 249:
872 idx = 6;
873 break;
874 case 50 ... 99:
875 idx = 5;
876 break;
877 case 20 ... 49:
878 idx = 4;
879 break;
880 case 10 ... 19:
881 idx = 3;
882 break;
883 case 4 ... 9:
884 idx = 2;
885 break;
886 case 2 ... 3:
887 idx = 1;
888 case 0 ... 1:
889 break;
890 }
891
892 assert(idx < FIO_IO_U_LAT_U_NR);
893 td->ts.io_u_lat_u[idx]++;
894}
895
896static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
897{
898 int idx = 0;
899
900 switch (msec) {
901 default:
902 idx = 11;
903 break;
904 case 1000 ... 1999:
905 idx = 10;
906 break;
907 case 750 ... 999:
908 idx = 9;
909 break;
910 case 500 ... 749:
911 idx = 8;
912 break;
913 case 250 ... 499:
914 idx = 7;
915 break;
916 case 100 ... 249:
917 idx = 6;
918 break;
919 case 50 ... 99:
920 idx = 5;
921 break;
922 case 20 ... 49:
923 idx = 4;
924 break;
925 case 10 ... 19:
926 idx = 3;
927 break;
928 case 4 ... 9:
929 idx = 2;
930 break;
931 case 2 ... 3:
932 idx = 1;
933 case 0 ... 1:
934 break;
935 }
936
937 assert(idx < FIO_IO_U_LAT_M_NR);
938 td->ts.io_u_lat_m[idx]++;
939}
940
941static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
942{
943 if (usec < 1000)
944 io_u_mark_lat_usec(td, usec);
945 else
946 io_u_mark_lat_msec(td, usec / 1000);
947}
948
949/*
950 * Get next file to service by choosing one at random
951 */
952static struct fio_file *get_next_file_rand(struct thread_data *td,
953 enum fio_file_flags goodf,
954 enum fio_file_flags badf)
955{
956 struct fio_file *f;
957 int fno;
958
959 do {
960 int opened = 0;
961 unsigned long r;
962
963 r = __rand(&td->next_file_state);
964 fno = (unsigned int) ((double) td->o.nr_files
965 * (r / (FRAND_MAX + 1.0)));
966
967 f = td->files[fno];
968 if (fio_file_done(f))
969 continue;
970
971 if (!fio_file_open(f)) {
972 int err;
973
974 if (td->nr_open_files >= td->o.open_files)
975 return ERR_PTR(-EBUSY);
976
977 err = td_io_open_file(td, f);
978 if (err)
979 continue;
980 opened = 1;
981 }
982
983 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
984 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
985 return f;
986 }
987 if (opened)
988 td_io_close_file(td, f);
989 } while (1);
990}
991
992/*
993 * Get next file to service by doing round robin between all available ones
994 */
995static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
996 int badf)
997{
998 unsigned int old_next_file = td->next_file;
999 struct fio_file *f;
1000
1001 do {
1002 int opened = 0;
1003
1004 f = td->files[td->next_file];
1005
1006 td->next_file++;
1007 if (td->next_file >= td->o.nr_files)
1008 td->next_file = 0;
1009
1010 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1011 if (fio_file_done(f)) {
1012 f = NULL;
1013 continue;
1014 }
1015
1016 if (!fio_file_open(f)) {
1017 int err;
1018
1019 if (td->nr_open_files >= td->o.open_files)
1020 return ERR_PTR(-EBUSY);
1021
1022 err = td_io_open_file(td, f);
1023 if (err) {
1024 dprint(FD_FILE, "error %d on open of %s\n",
1025 err, f->file_name);
1026 f = NULL;
1027 continue;
1028 }
1029 opened = 1;
1030 }
1031
1032 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1033 f->flags);
1034 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1035 break;
1036
1037 if (opened)
1038 td_io_close_file(td, f);
1039
1040 f = NULL;
1041 } while (td->next_file != old_next_file);
1042
1043 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1044 return f;
1045}
1046
1047static struct fio_file *__get_next_file(struct thread_data *td)
1048{
1049 struct fio_file *f;
1050
1051 assert(td->o.nr_files <= td->files_index);
1052
1053 if (td->nr_done_files >= td->o.nr_files) {
1054 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1055 " nr_files=%d\n", td->nr_open_files,
1056 td->nr_done_files,
1057 td->o.nr_files);
1058 return NULL;
1059 }
1060
1061 f = td->file_service_file;
1062 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1063 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1064 goto out;
1065 if (td->file_service_left--)
1066 goto out;
1067 }
1068
1069 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1070 td->o.file_service_type == FIO_FSERVICE_SEQ)
1071 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1072 else
1073 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1074
1075 if (IS_ERR(f))
1076 return f;
1077
1078 td->file_service_file = f;
1079 td->file_service_left = td->file_service_nr - 1;
1080out:
1081 if (f)
1082 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1083 else
1084 dprint(FD_FILE, "get_next_file: NULL\n");
1085 return f;
1086}
1087
1088static struct fio_file *get_next_file(struct thread_data *td)
1089{
1090 if (td->flags & TD_F_PROFILE_OPS) {
1091 struct prof_io_ops *ops = &td->prof_io_ops;
1092
1093 if (ops->get_next_file)
1094 return ops->get_next_file(td);
1095 }
1096
1097 return __get_next_file(td);
1098}
1099
1100static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1101{
1102 struct fio_file *f;
1103
1104 do {
1105 f = get_next_file(td);
1106 if (IS_ERR_OR_NULL(f))
1107 return PTR_ERR(f);
1108
1109 io_u->file = f;
1110 get_file(f);
1111
1112 if (!fill_io_u(td, io_u))
1113 break;
1114
1115 put_file_log(td, f);
1116 td_io_close_file(td, f);
1117 io_u->file = NULL;
1118 fio_file_set_done(f);
1119 td->nr_done_files++;
1120 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1121 td->nr_done_files, td->o.nr_files);
1122 } while (1);
1123
1124 return 0;
1125}
1126
1127static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1128 unsigned long tusec, unsigned long max_usec)
1129{
1130 if (!td->error)
1131 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1132 td_verror(td, ETIMEDOUT, "max latency exceeded");
1133 icd->error = ETIMEDOUT;
1134}
1135
1136static void lat_new_cycle(struct thread_data *td)
1137{
1138 fio_gettime(&td->latency_ts, NULL);
1139 td->latency_ios = ddir_rw_sum(td->io_blocks);
1140 td->latency_failed = 0;
1141}
1142
1143/*
1144 * We had an IO outside the latency target. Reduce the queue depth. If we
1145 * are at QD=1, then it's time to give up.
1146 */
1147static int __lat_target_failed(struct thread_data *td)
1148{
1149 if (td->latency_qd == 1)
1150 return 1;
1151
1152 td->latency_qd_high = td->latency_qd;
1153
1154 if (td->latency_qd == td->latency_qd_low)
1155 td->latency_qd_low--;
1156
1157 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1158
1159 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1160
1161 /*
1162 * When we ramp QD down, quiesce existing IO to prevent
1163 * a storm of ramp downs due to pending higher depth.
1164 */
1165 io_u_quiesce(td);
1166 lat_new_cycle(td);
1167 return 0;
1168}
1169
1170static int lat_target_failed(struct thread_data *td)
1171{
1172 if (td->o.latency_percentile.u.f == 100.0)
1173 return __lat_target_failed(td);
1174
1175 td->latency_failed++;
1176 return 0;
1177}
1178
1179void lat_target_init(struct thread_data *td)
1180{
1181 td->latency_end_run = 0;
1182
1183 if (td->o.latency_target) {
1184 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1185 fio_gettime(&td->latency_ts, NULL);
1186 td->latency_qd = 1;
1187 td->latency_qd_high = td->o.iodepth;
1188 td->latency_qd_low = 1;
1189 td->latency_ios = ddir_rw_sum(td->io_blocks);
1190 } else
1191 td->latency_qd = td->o.iodepth;
1192}
1193
1194void lat_target_reset(struct thread_data *td)
1195{
1196 if (!td->latency_end_run)
1197 lat_target_init(td);
1198}
1199
1200static void lat_target_success(struct thread_data *td)
1201{
1202 const unsigned int qd = td->latency_qd;
1203 struct thread_options *o = &td->o;
1204
1205 td->latency_qd_low = td->latency_qd;
1206
1207 /*
1208 * If we haven't failed yet, we double up to a failing value instead
1209 * of bisecting from highest possible queue depth. If we have set
1210 * a limit other than td->o.iodepth, bisect between that.
1211 */
1212 if (td->latency_qd_high != o->iodepth)
1213 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1214 else
1215 td->latency_qd *= 2;
1216
1217 if (td->latency_qd > o->iodepth)
1218 td->latency_qd = o->iodepth;
1219
1220 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1221
1222 /*
1223 * Same as last one, we are done. Let it run a latency cycle, so
1224 * we get only the results from the targeted depth.
1225 */
1226 if (td->latency_qd == qd) {
1227 if (td->latency_end_run) {
1228 dprint(FD_RATE, "We are done\n");
1229 td->done = 1;
1230 } else {
1231 dprint(FD_RATE, "Quiesce and final run\n");
1232 io_u_quiesce(td);
1233 td->latency_end_run = 1;
1234 reset_all_stats(td);
1235 reset_io_stats(td);
1236 }
1237 }
1238
1239 lat_new_cycle(td);
1240}
1241
1242/*
1243 * Check if we can bump the queue depth
1244 */
1245void lat_target_check(struct thread_data *td)
1246{
1247 uint64_t usec_window;
1248 uint64_t ios;
1249 double success_ios;
1250
1251 usec_window = utime_since_now(&td->latency_ts);
1252 if (usec_window < td->o.latency_window)
1253 return;
1254
1255 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1256 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1257 success_ios *= 100.0;
1258
1259 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1260
1261 if (success_ios >= td->o.latency_percentile.u.f)
1262 lat_target_success(td);
1263 else
1264 __lat_target_failed(td);
1265}
1266
1267/*
1268 * If latency target is enabled, we might be ramping up or down and not
1269 * using the full queue depth available.
1270 */
1271int queue_full(const struct thread_data *td)
1272{
1273 const int qempty = io_u_qempty(&td->io_u_freelist);
1274
1275 if (qempty)
1276 return 1;
1277 if (!td->o.latency_target)
1278 return 0;
1279
1280 return td->cur_depth >= td->latency_qd;
1281}
1282
1283struct io_u *__get_io_u(struct thread_data *td)
1284{
1285 struct io_u *io_u = NULL;
1286
1287 if (td->stop_io)
1288 return NULL;
1289
1290 td_io_u_lock(td);
1291
1292again:
1293 if (!io_u_rempty(&td->io_u_requeues))
1294 io_u = io_u_rpop(&td->io_u_requeues);
1295 else if (!queue_full(td)) {
1296 io_u = io_u_qpop(&td->io_u_freelist);
1297
1298 io_u->file = NULL;
1299 io_u->buflen = 0;
1300 io_u->resid = 0;
1301 io_u->end_io = NULL;
1302 }
1303
1304 if (io_u) {
1305 assert(io_u->flags & IO_U_F_FREE);
1306 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1307 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1308 IO_U_F_VER_LIST);
1309
1310 io_u->error = 0;
1311 io_u->acct_ddir = -1;
1312 td->cur_depth++;
1313 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1314 io_u->ipo = NULL;
1315 } else if (td->o.verify_async) {
1316 /*
1317 * We ran out, wait for async verify threads to finish and
1318 * return one
1319 */
1320 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1321 goto again;
1322 }
1323
1324 td_io_u_unlock(td);
1325 return io_u;
1326}
1327
1328static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1329{
1330 if (!(td->flags & TD_F_TRIM_BACKLOG))
1331 return 0;
1332
1333 if (td->trim_entries) {
1334 int get_trim = 0;
1335
1336 if (td->trim_batch) {
1337 td->trim_batch--;
1338 get_trim = 1;
1339 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1340 td->last_ddir != DDIR_READ) {
1341 td->trim_batch = td->o.trim_batch;
1342 if (!td->trim_batch)
1343 td->trim_batch = td->o.trim_backlog;
1344 get_trim = 1;
1345 }
1346
1347 if (get_trim && !get_next_trim(td, io_u))
1348 return 1;
1349 }
1350
1351 return 0;
1352}
1353
1354static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1355{
1356 if (!(td->flags & TD_F_VER_BACKLOG))
1357 return 0;
1358
1359 if (td->io_hist_len) {
1360 int get_verify = 0;
1361
1362 if (td->verify_batch)
1363 get_verify = 1;
1364 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1365 td->last_ddir != DDIR_READ) {
1366 td->verify_batch = td->o.verify_batch;
1367 if (!td->verify_batch)
1368 td->verify_batch = td->o.verify_backlog;
1369 get_verify = 1;
1370 }
1371
1372 if (get_verify && !get_next_verify(td, io_u)) {
1373 td->verify_batch--;
1374 return 1;
1375 }
1376 }
1377
1378 return 0;
1379}
1380
1381/*
1382 * Fill offset and start time into the buffer content, to prevent too
1383 * easy compressible data for simple de-dupe attempts. Do this for every
1384 * 512b block in the range, since that should be the smallest block size
1385 * we can expect from a device.
1386 */
1387static void small_content_scramble(struct io_u *io_u)
1388{
1389 unsigned int i, nr_blocks = io_u->buflen / 512;
1390 uint64_t boffset;
1391 unsigned int offset;
1392 void *p, *end;
1393
1394 if (!nr_blocks)
1395 return;
1396
1397 p = io_u->xfer_buf;
1398 boffset = io_u->offset;
1399 io_u->buf_filled_len = 0;
1400
1401 for (i = 0; i < nr_blocks; i++) {
1402 /*
1403 * Fill the byte offset into a "random" start offset of
1404 * the buffer, given by the product of the usec time
1405 * and the actual offset.
1406 */
1407 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1408 offset &= ~(sizeof(uint64_t) - 1);
1409 if (offset >= 512 - sizeof(uint64_t))
1410 offset -= sizeof(uint64_t);
1411 memcpy(p + offset, &boffset, sizeof(boffset));
1412
1413 end = p + 512 - sizeof(io_u->start_time);
1414 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1415 p += 512;
1416 boffset += 512;
1417 }
1418}
1419
1420/*
1421 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1422 * etc. The returned io_u is fully ready to be prepped and submitted.
1423 */
1424struct io_u *get_io_u(struct thread_data *td)
1425{
1426 struct fio_file *f;
1427 struct io_u *io_u;
1428 int do_scramble = 0;
1429 long ret = 0;
1430
1431 io_u = __get_io_u(td);
1432 if (!io_u) {
1433 dprint(FD_IO, "__get_io_u failed\n");
1434 return NULL;
1435 }
1436
1437 if (check_get_verify(td, io_u))
1438 goto out;
1439 if (check_get_trim(td, io_u))
1440 goto out;
1441
1442 /*
1443 * from a requeue, io_u already setup
1444 */
1445 if (io_u->file)
1446 goto out;
1447
1448 /*
1449 * If using an iolog, grab next piece if any available.
1450 */
1451 if (td->flags & TD_F_READ_IOLOG) {
1452 if (read_iolog_get(td, io_u))
1453 goto err_put;
1454 } else if (set_io_u_file(td, io_u)) {
1455 ret = -EBUSY;
1456 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1457 goto err_put;
1458 }
1459
1460 f = io_u->file;
1461 if (!f) {
1462 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1463 goto err_put;
1464 }
1465
1466 assert(fio_file_open(f));
1467
1468 if (ddir_rw(io_u->ddir)) {
1469 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1470 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1471 goto err_put;
1472 }
1473
1474 f->last_start[io_u->ddir] = io_u->offset;
1475 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1476
1477 if (io_u->ddir == DDIR_WRITE) {
1478 if (td->flags & TD_F_REFILL_BUFFERS) {
1479 io_u_fill_buffer(td, io_u,
1480 td->o.min_bs[DDIR_WRITE],
1481 io_u->xfer_buflen);
1482 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1483 !(td->flags & TD_F_COMPRESS))
1484 do_scramble = 1;
1485 if (td->flags & TD_F_VER_NONE) {
1486 populate_verify_io_u(td, io_u);
1487 do_scramble = 0;
1488 }
1489 } else if (io_u->ddir == DDIR_READ) {
1490 /*
1491 * Reset the buf_filled parameters so next time if the
1492 * buffer is used for writes it is refilled.
1493 */
1494 io_u->buf_filled_len = 0;
1495 }
1496 }
1497
1498 /*
1499 * Set io data pointers.
1500 */
1501 io_u->xfer_buf = io_u->buf;
1502 io_u->xfer_buflen = io_u->buflen;
1503
1504out:
1505 assert(io_u->file);
1506 if (!td_io_prep(td, io_u)) {
1507 if (!td->o.disable_slat)
1508 fio_gettime(&io_u->start_time, NULL);
1509 if (do_scramble)
1510 small_content_scramble(io_u);
1511 return io_u;
1512 }
1513err_put:
1514 dprint(FD_IO, "get_io_u failed\n");
1515 put_io_u(td, io_u);
1516 return ERR_PTR(ret);
1517}
1518
1519void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1520{
1521 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1522
1523 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1524 return;
1525
1526 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1527 io_u->file ? " on file " : "",
1528 io_u->file ? io_u->file->file_name : "",
1529 strerror(io_u->error),
1530 io_ddir_name(io_u->ddir),
1531 io_u->offset, io_u->xfer_buflen);
1532
1533 if (!td->error)
1534 td_verror(td, io_u->error, "io_u error");
1535}
1536
1537static inline int gtod_reduce(struct thread_data *td)
1538{
1539 return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat
1540 && td->o.disable_bw;
1541}
1542
1543static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1544 struct io_completion_data *icd,
1545 const enum fio_ddir idx, unsigned int bytes)
1546{
1547 unsigned long lusec = 0;
1548
1549 if (!gtod_reduce(td))
1550 lusec = utime_since(&io_u->issue_time, &icd->time);
1551
1552 if (!td->o.disable_lat) {
1553 unsigned long tusec;
1554
1555 tusec = utime_since(&io_u->start_time, &icd->time);
1556 add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1557
1558 if (td->flags & TD_F_PROFILE_OPS) {
1559 struct prof_io_ops *ops = &td->prof_io_ops;
1560
1561 if (ops->io_u_lat)
1562 icd->error = ops->io_u_lat(td, tusec);
1563 }
1564
1565 if (td->o.max_latency && tusec > td->o.max_latency)
1566 lat_fatal(td, icd, tusec, td->o.max_latency);
1567 if (td->o.latency_target && tusec > td->o.latency_target) {
1568 if (lat_target_failed(td))
1569 lat_fatal(td, icd, tusec, td->o.latency_target);
1570 }
1571 }
1572
1573 if (!td->o.disable_clat) {
1574 add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1575 io_u_mark_latency(td, lusec);
1576 }
1577
1578 if (!td->o.disable_bw)
1579 add_bw_sample(td, idx, bytes, &icd->time);
1580
1581 if (!gtod_reduce(td))
1582 add_iops_sample(td, idx, bytes, &icd->time);
1583}
1584
1585static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1586{
1587 uint64_t secs, remainder, bps, bytes;
1588
1589 bytes = td->this_io_bytes[ddir];
1590 bps = td->rate_bps[ddir];
1591 secs = bytes / bps;
1592 remainder = bytes % bps;
1593 return remainder * 1000000 / bps + secs * 1000000;
1594}
1595
1596static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1597 struct io_completion_data *icd)
1598{
1599 struct io_u *io_u = *io_u_ptr;
1600 enum fio_ddir ddir = io_u->ddir;
1601 struct fio_file *f = io_u->file;
1602
1603 dprint_io_u(io_u, "io complete");
1604
1605 td_io_u_lock(td);
1606 assert(io_u->flags & IO_U_F_FLIGHT);
1607 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1608
1609 /*
1610 * Mark IO ok to verify
1611 */
1612 if (io_u->ipo) {
1613 /*
1614 * Remove errored entry from the verification list
1615 */
1616 if (io_u->error)
1617 unlog_io_piece(td, io_u);
1618 else {
1619 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1620 write_barrier();
1621 }
1622 }
1623
1624 td_io_u_unlock(td);
1625
1626 if (ddir_sync(ddir)) {
1627 td->last_was_sync = 1;
1628 if (f) {
1629 f->first_write = -1ULL;
1630 f->last_write = -1ULL;
1631 }
1632 return;
1633 }
1634
1635 td->last_was_sync = 0;
1636 td->last_ddir = ddir;
1637
1638 if (!io_u->error && ddir_rw(ddir)) {
1639 unsigned int bytes = io_u->buflen - io_u->resid;
1640 const enum fio_ddir oddir = ddir ^ 1;
1641 int ret;
1642
1643 td->io_blocks[ddir]++;
1644 td->this_io_blocks[ddir]++;
1645 td->io_bytes[ddir] += bytes;
1646
1647 if (!(io_u->flags & IO_U_F_VER_LIST))
1648 td->this_io_bytes[ddir] += bytes;
1649
1650 if (ddir == DDIR_WRITE) {
1651 if (f) {
1652 if (f->first_write == -1ULL ||
1653 io_u->offset < f->first_write)
1654 f->first_write = io_u->offset;
1655 if (f->last_write == -1ULL ||
1656 ((io_u->offset + bytes) > f->last_write))
1657 f->last_write = io_u->offset + bytes;
1658 }
1659 if (td->last_write_comp) {
1660 int idx = td->last_write_idx++;
1661
1662 td->last_write_comp[idx] = io_u->offset;
1663 if (td->last_write_idx == td->o.iodepth)
1664 td->last_write_idx = 0;
1665 }
1666 }
1667
1668 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1669 td->runstate == TD_VERIFYING)) {
1670 account_io_completion(td, io_u, icd, ddir, bytes);
1671
1672 if (__should_check_rate(td, ddir)) {
1673 td->rate_pending_usleep[ddir] =
1674 (usec_for_io(td, ddir) -
1675 utime_since_now(&td->start));
1676 }
1677 if (ddir != DDIR_TRIM &&
1678 __should_check_rate(td, oddir)) {
1679 td->rate_pending_usleep[oddir] =
1680 (usec_for_io(td, oddir) -
1681 utime_since_now(&td->start));
1682 }
1683 }
1684
1685 icd->bytes_done[ddir] += bytes;
1686
1687 if (io_u->end_io) {
1688 ret = io_u->end_io(td, io_u_ptr);
1689 io_u = *io_u_ptr;
1690 if (ret && !icd->error)
1691 icd->error = ret;
1692 }
1693 } else if (io_u->error) {
1694 icd->error = io_u->error;
1695 io_u_log_error(td, io_u);
1696 }
1697 if (icd->error) {
1698 enum error_type_bit eb = td_error_type(ddir, icd->error);
1699
1700 if (!td_non_fatal_error(td, eb, icd->error))
1701 return;
1702
1703 /*
1704 * If there is a non_fatal error, then add to the error count
1705 * and clear all the errors.
1706 */
1707 update_error_count(td, icd->error);
1708 td_clear_error(td);
1709 icd->error = 0;
1710 if (io_u)
1711 io_u->error = 0;
1712 }
1713}
1714
1715static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1716 int nr)
1717{
1718 int ddir;
1719
1720 if (!gtod_reduce(td))
1721 fio_gettime(&icd->time, NULL);
1722
1723 icd->nr = nr;
1724
1725 icd->error = 0;
1726 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1727 icd->bytes_done[ddir] = 0;
1728}
1729
1730static void ios_completed(struct thread_data *td,
1731 struct io_completion_data *icd)
1732{
1733 struct io_u *io_u;
1734 int i;
1735
1736 for (i = 0; i < icd->nr; i++) {
1737 io_u = td->io_ops->event(td, i);
1738
1739 io_completed(td, &io_u, icd);
1740
1741 if (io_u)
1742 put_io_u(td, io_u);
1743 }
1744}
1745
1746/*
1747 * Complete a single io_u for the sync engines.
1748 */
1749int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1750 uint64_t *bytes)
1751{
1752 struct io_completion_data icd;
1753
1754 init_icd(td, &icd, 1);
1755 io_completed(td, &io_u, &icd);
1756
1757 if (io_u)
1758 put_io_u(td, io_u);
1759
1760 if (icd.error) {
1761 td_verror(td, icd.error, "io_u_sync_complete");
1762 return -1;
1763 }
1764
1765 if (bytes) {
1766 int ddir;
1767
1768 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1769 bytes[ddir] += icd.bytes_done[ddir];
1770 }
1771
1772 return 0;
1773}
1774
1775/*
1776 * Called to complete min_events number of io for the async engines.
1777 */
1778int io_u_queued_complete(struct thread_data *td, int min_evts,
1779 uint64_t *bytes)
1780{
1781 struct io_completion_data icd;
1782 struct timespec *tvp = NULL;
1783 int ret;
1784 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1785
1786 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1787
1788 if (!min_evts)
1789 tvp = &ts;
1790 else if (min_evts > td->cur_depth)
1791 min_evts = td->cur_depth;
1792
1793 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1794 if (ret < 0) {
1795 td_verror(td, -ret, "td_io_getevents");
1796 return ret;
1797 } else if (!ret)
1798 return ret;
1799
1800 init_icd(td, &icd, ret);
1801 ios_completed(td, &icd);
1802 if (icd.error) {
1803 td_verror(td, icd.error, "io_u_queued_complete");
1804 return -1;
1805 }
1806
1807 if (bytes) {
1808 int ddir;
1809
1810 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1811 bytes[ddir] += icd.bytes_done[ddir];
1812 }
1813
1814 return 0;
1815}
1816
1817/*
1818 * Call when io_u is really queued, to update the submission latency.
1819 */
1820void io_u_queued(struct thread_data *td, struct io_u *io_u)
1821{
1822 if (!td->o.disable_slat) {
1823 unsigned long slat_time;
1824
1825 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1826 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
1827 io_u->offset);
1828 }
1829}
1830
1831/*
1832 * See if we should reuse the last seed, if dedupe is enabled
1833 */
1834static struct frand_state *get_buf_state(struct thread_data *td)
1835{
1836 unsigned int v;
1837 unsigned long r;
1838
1839 if (!td->o.dedupe_percentage)
1840 return &td->buf_state;
1841 else if (td->o.dedupe_percentage == 100)
1842 return &td->buf_state_prev;
1843
1844 r = __rand(&td->dedupe_state);
1845 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
1846
1847 if (v <= td->o.dedupe_percentage)
1848 return &td->buf_state_prev;
1849
1850 return &td->buf_state;
1851}
1852
1853static void save_buf_state(struct thread_data *td, struct frand_state *rs)
1854{
1855 if (rs == &td->buf_state)
1856 frand_copy(&td->buf_state_prev, rs);
1857}
1858
1859void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1860 unsigned int max_bs)
1861{
1862 struct thread_options *o = &td->o;
1863
1864 if (o->compress_percentage) {
1865 unsigned int perc = td->o.compress_percentage;
1866 struct frand_state *rs;
1867 unsigned int left = max_bs;
1868
1869 do {
1870 rs = get_buf_state(td);
1871
1872 min_write = min(min_write, left);
1873
1874 if (perc) {
1875 unsigned int seg = min_write;
1876
1877 seg = min(min_write, td->o.compress_chunk);
1878 if (!seg)
1879 seg = min_write;
1880
1881 fill_random_buf_percentage(rs, buf, perc, seg,
1882 min_write, o->buffer_pattern,
1883 o->buffer_pattern_bytes);
1884 } else
1885 fill_random_buf(rs, buf, min_write);
1886
1887 buf += min_write;
1888 left -= min_write;
1889 save_buf_state(td, rs);
1890 } while (left);
1891 } else if (o->buffer_pattern_bytes)
1892 fill_buffer_pattern(td, buf, max_bs);
1893 else
1894 memset(buf, 0, max_bs);
1895}
1896
1897/*
1898 * "randomly" fill the buffer contents
1899 */
1900void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1901 unsigned int min_write, unsigned int max_bs)
1902{
1903 io_u->buf_filled_len = 0;
1904 fill_io_buffer(td, io_u->buf, min_write, max_bs);
1905}