gettime: add some sanity checks to platform clock
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->io_axmap contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const uint64_t block)
28{
29 return !axmap_isset(f->io_axmap, block);
30}
31
32/*
33 * Mark a given offset as used in the map.
34 */
35static void mark_random_map(struct thread_data *td, struct io_u *io_u)
36{
37 unsigned int min_bs = td->o.rw_min_bs;
38 struct fio_file *f = io_u->file;
39 unsigned int nr_blocks;
40 uint64_t block;
41
42 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
43 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
44
45 if (!(io_u->flags & IO_U_F_BUSY_OK))
46 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
47
48 if ((nr_blocks * min_bs) < io_u->buflen)
49 io_u->buflen = nr_blocks * min_bs;
50}
51
52static uint64_t last_block(struct thread_data *td, struct fio_file *f,
53 enum fio_ddir ddir)
54{
55 uint64_t max_blocks;
56 uint64_t max_size;
57
58 assert(ddir_rw(ddir));
59
60 /*
61 * Hmm, should we make sure that ->io_size <= ->real_file_size?
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
71 if (!max_blocks)
72 return 0;
73
74 return max_blocks;
75}
76
77struct rand_off {
78 struct flist_head list;
79 uint64_t off;
80};
81
82static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
83 enum fio_ddir ddir, uint64_t *b)
84{
85 uint64_t r, lastb;
86
87 lastb = last_block(td, f, ddir);
88 if (!lastb)
89 return 1;
90
91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
92 uint64_t rmax;
93
94 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
95
96 if (td->o.use_os_rand) {
97 rmax = OS_RAND_MAX;
98 r = os_random_long(&td->random_state);
99 } else {
100 rmax = FRAND_MAX;
101 r = __rand(&td->__random_state);
102 }
103
104 dprint(FD_RANDOM, "off rand %llu\n", r);
105
106 *b = (lastb - 1) * (r / ((uint64_t) rmax + 1.0));
107 } else {
108 uint64_t off = 0;
109
110 if (lfsr_next(&f->lfsr, &off, lastb))
111 return 1;
112
113 *b = off;
114 }
115
116 /*
117 * if we are not maintaining a random map, we are done.
118 */
119 if (!file_randommap(td, f))
120 goto ret;
121
122 /*
123 * calculate map offset and check if it's free
124 */
125 if (random_map_free(f, *b))
126 goto ret;
127
128 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", *b);
129
130 *b = axmap_next_free(f->io_axmap, *b);
131 if (*b == (uint64_t) -1ULL)
132 return 1;
133ret:
134 return 0;
135}
136
137static int __get_next_rand_offset_zipf(struct thread_data *td,
138 struct fio_file *f, enum fio_ddir ddir,
139 uint64_t *b)
140{
141 *b = zipf_next(&f->zipf);
142 return 0;
143}
144
145static int __get_next_rand_offset_pareto(struct thread_data *td,
146 struct fio_file *f, enum fio_ddir ddir,
147 uint64_t *b)
148{
149 *b = pareto_next(&f->zipf);
150 return 0;
151}
152
153static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
154{
155 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
156 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
157
158 return r1->off - r2->off;
159}
160
161static int get_off_from_method(struct thread_data *td, struct fio_file *f,
162 enum fio_ddir ddir, uint64_t *b)
163{
164 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
165 return __get_next_rand_offset(td, f, ddir, b);
166 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
167 return __get_next_rand_offset_zipf(td, f, ddir, b);
168 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
169 return __get_next_rand_offset_pareto(td, f, ddir, b);
170
171 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
172 return 1;
173}
174
175/*
176 * Sort the reads for a verify phase in batches of verifysort_nr, if
177 * specified.
178 */
179static inline int should_sort_io(struct thread_data *td)
180{
181 if (!td->o.verifysort_nr || !td->o.do_verify)
182 return 0;
183 if (!td_random(td))
184 return 0;
185 if (td->runstate != TD_VERIFYING)
186 return 0;
187 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
188 return 0;
189
190 return 1;
191}
192
193static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
194 enum fio_ddir ddir, uint64_t *b)
195{
196 struct rand_off *r;
197 int i, ret = 1;
198
199 if (!should_sort_io(td))
200 return get_off_from_method(td, f, ddir, b);
201
202 if (!flist_empty(&td->next_rand_list)) {
203 struct rand_off *r;
204fetch:
205 r = flist_entry(td->next_rand_list.next, struct rand_off, list);
206 flist_del(&r->list);
207 *b = r->off;
208 free(r);
209 return 0;
210 }
211
212 for (i = 0; i < td->o.verifysort_nr; i++) {
213 r = malloc(sizeof(*r));
214
215 ret = get_off_from_method(td, f, ddir, &r->off);
216 if (ret) {
217 free(r);
218 break;
219 }
220
221 flist_add(&r->list, &td->next_rand_list);
222 }
223
224 if (ret && !i)
225 return ret;
226
227 assert(!flist_empty(&td->next_rand_list));
228 flist_sort(NULL, &td->next_rand_list, flist_cmp);
229 goto fetch;
230}
231
232static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
233 enum fio_ddir ddir, uint64_t *b)
234{
235 if (!get_next_rand_offset(td, f, ddir, b))
236 return 0;
237
238 if (td->o.time_based) {
239 fio_file_reset(td, f);
240 if (!get_next_rand_offset(td, f, ddir, b))
241 return 0;
242 }
243
244 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
245 f->file_name, f->last_pos, f->real_file_size);
246 return 1;
247}
248
249static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
250 enum fio_ddir ddir, uint64_t *offset)
251{
252 assert(ddir_rw(ddir));
253
254 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based)
255 f->last_pos = f->last_pos - f->io_size;
256
257 if (f->last_pos < f->real_file_size) {
258 uint64_t pos;
259
260 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
261 f->last_pos = f->real_file_size;
262
263 pos = f->last_pos - f->file_offset;
264 if (pos)
265 pos += td->o.ddir_seq_add;
266
267 *offset = pos;
268 return 0;
269 }
270
271 return 1;
272}
273
274static int get_next_block(struct thread_data *td, struct io_u *io_u,
275 enum fio_ddir ddir, int rw_seq)
276{
277 struct fio_file *f = io_u->file;
278 uint64_t b, offset;
279 int ret;
280
281 assert(ddir_rw(ddir));
282
283 b = offset = -1ULL;
284
285 if (rw_seq) {
286 if (td_random(td))
287 ret = get_next_rand_block(td, f, ddir, &b);
288 else
289 ret = get_next_seq_offset(td, f, ddir, &offset);
290 } else {
291 io_u->flags |= IO_U_F_BUSY_OK;
292
293 if (td->o.rw_seq == RW_SEQ_SEQ) {
294 ret = get_next_seq_offset(td, f, ddir, &offset);
295 if (ret)
296 ret = get_next_rand_block(td, f, ddir, &b);
297 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
298 if (f->last_start != -1ULL)
299 offset = f->last_start - f->file_offset;
300 else
301 offset = 0;
302 ret = 0;
303 } else {
304 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
305 ret = 1;
306 }
307 }
308
309 if (!ret) {
310 if (offset != -1ULL)
311 io_u->offset = offset;
312 else if (b != -1ULL)
313 io_u->offset = b * td->o.ba[ddir];
314 else {
315 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n",
316 offset, b);
317 ret = 1;
318 }
319 }
320
321 return ret;
322}
323
324/*
325 * For random io, generate a random new block and see if it's used. Repeat
326 * until we find a free one. For sequential io, just return the end of
327 * the last io issued.
328 */
329static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
330{
331 struct fio_file *f = io_u->file;
332 enum fio_ddir ddir = io_u->ddir;
333 int rw_seq_hit = 0;
334
335 assert(ddir_rw(ddir));
336
337 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
338 rw_seq_hit = 1;
339 td->ddir_seq_nr = td->o.ddir_seq_nr;
340 }
341
342 if (get_next_block(td, io_u, ddir, rw_seq_hit))
343 return 1;
344
345 if (io_u->offset >= f->io_size) {
346 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
347 io_u->offset, f->io_size);
348 return 1;
349 }
350
351 io_u->offset += f->file_offset;
352 if (io_u->offset >= f->real_file_size) {
353 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
354 io_u->offset, f->real_file_size);
355 return 1;
356 }
357
358 return 0;
359}
360
361static int get_next_offset(struct thread_data *td, struct io_u *io_u)
362{
363 if (td->flags & TD_F_PROFILE_OPS) {
364 struct prof_io_ops *ops = &td->prof_io_ops;
365
366 if (ops->fill_io_u_off)
367 return ops->fill_io_u_off(td, io_u);
368 }
369
370 return __get_next_offset(td, io_u);
371}
372
373static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
374 unsigned int buflen)
375{
376 struct fio_file *f = io_u->file;
377
378 return io_u->offset + buflen <= f->io_size + get_start_offset(td);
379}
380
381static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
382{
383 const int ddir = io_u->ddir;
384 unsigned int buflen = 0;
385 unsigned int minbs, maxbs;
386 unsigned long r, rand_max;
387
388 assert(ddir_rw(ddir));
389
390 minbs = td->o.min_bs[ddir];
391 maxbs = td->o.max_bs[ddir];
392
393 if (minbs == maxbs)
394 return minbs;
395
396 /*
397 * If we can't satisfy the min block size from here, then fail
398 */
399 if (!io_u_fits(td, io_u, minbs))
400 return 0;
401
402 if (td->o.use_os_rand)
403 rand_max = OS_RAND_MAX;
404 else
405 rand_max = FRAND_MAX;
406
407 do {
408 if (td->o.use_os_rand)
409 r = os_random_long(&td->bsrange_state);
410 else
411 r = __rand(&td->__bsrange_state);
412
413 if (!td->o.bssplit_nr[ddir]) {
414 buflen = 1 + (unsigned int) ((double) maxbs *
415 (r / (rand_max + 1.0)));
416 if (buflen < minbs)
417 buflen = minbs;
418 } else {
419 long perc = 0;
420 unsigned int i;
421
422 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
423 struct bssplit *bsp = &td->o.bssplit[ddir][i];
424
425 buflen = bsp->bs;
426 perc += bsp->perc;
427 if ((r <= ((rand_max / 100L) * perc)) &&
428 io_u_fits(td, io_u, buflen))
429 break;
430 }
431 }
432
433 if (!td->o.bs_unaligned && is_power_of_2(minbs))
434 buflen = (buflen + minbs - 1) & ~(minbs - 1);
435
436 } while (!io_u_fits(td, io_u, buflen));
437
438 return buflen;
439}
440
441static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
442{
443 if (td->flags & TD_F_PROFILE_OPS) {
444 struct prof_io_ops *ops = &td->prof_io_ops;
445
446 if (ops->fill_io_u_size)
447 return ops->fill_io_u_size(td, io_u);
448 }
449
450 return __get_next_buflen(td, io_u);
451}
452
453static void set_rwmix_bytes(struct thread_data *td)
454{
455 unsigned int diff;
456
457 /*
458 * we do time or byte based switch. this is needed because
459 * buffered writes may issue a lot quicker than they complete,
460 * whereas reads do not.
461 */
462 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
463 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
464}
465
466static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
467{
468 unsigned int v;
469 unsigned long r;
470
471 if (td->o.use_os_rand) {
472 r = os_random_long(&td->rwmix_state);
473 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
474 } else {
475 r = __rand(&td->__rwmix_state);
476 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
477 }
478
479 if (v <= td->o.rwmix[DDIR_READ])
480 return DDIR_READ;
481
482 return DDIR_WRITE;
483}
484
485static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
486{
487 enum fio_ddir odir = ddir ^ 1;
488 struct timeval t;
489 long usec;
490
491 assert(ddir_rw(ddir));
492
493 if (td->rate_pending_usleep[ddir] <= 0)
494 return ddir;
495
496 /*
497 * We have too much pending sleep in this direction. See if we
498 * should switch.
499 */
500 if (td_rw(td) && td->o.rwmix[odir]) {
501 /*
502 * Other direction does not have too much pending, switch
503 */
504 if (td->rate_pending_usleep[odir] < 100000)
505 return odir;
506
507 /*
508 * Both directions have pending sleep. Sleep the minimum time
509 * and deduct from both.
510 */
511 if (td->rate_pending_usleep[ddir] <=
512 td->rate_pending_usleep[odir]) {
513 usec = td->rate_pending_usleep[ddir];
514 } else {
515 usec = td->rate_pending_usleep[odir];
516 ddir = odir;
517 }
518 } else
519 usec = td->rate_pending_usleep[ddir];
520
521 /*
522 * We are going to sleep, ensure that we flush anything pending as
523 * not to skew our latency numbers.
524 *
525 * Changed to only monitor 'in flight' requests here instead of the
526 * td->cur_depth, b/c td->cur_depth does not accurately represent
527 * io's that have been actually submitted to an async engine,
528 * and cur_depth is meaningless for sync engines.
529 */
530 if (td->io_u_in_flight) {
531 int fio_unused ret;
532
533 ret = io_u_queued_complete(td, td->io_u_in_flight, NULL);
534 }
535
536 fio_gettime(&t, NULL);
537 usec_sleep(td, usec);
538 usec = utime_since_now(&t);
539
540 td->rate_pending_usleep[ddir] -= usec;
541
542 odir = ddir ^ 1;
543 if (td_rw(td) && __should_check_rate(td, odir))
544 td->rate_pending_usleep[odir] -= usec;
545
546 if (ddir_trim(ddir))
547 return ddir;
548
549 return ddir;
550}
551
552/*
553 * Return the data direction for the next io_u. If the job is a
554 * mixed read/write workload, check the rwmix cycle and switch if
555 * necessary.
556 */
557static enum fio_ddir get_rw_ddir(struct thread_data *td)
558{
559 enum fio_ddir ddir;
560
561 /*
562 * see if it's time to fsync
563 */
564 if (td->o.fsync_blocks &&
565 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
566 td->io_issues[DDIR_WRITE] && should_fsync(td))
567 return DDIR_SYNC;
568
569 /*
570 * see if it's time to fdatasync
571 */
572 if (td->o.fdatasync_blocks &&
573 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
574 td->io_issues[DDIR_WRITE] && should_fsync(td))
575 return DDIR_DATASYNC;
576
577 /*
578 * see if it's time to sync_file_range
579 */
580 if (td->sync_file_range_nr &&
581 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
582 td->io_issues[DDIR_WRITE] && should_fsync(td))
583 return DDIR_SYNC_FILE_RANGE;
584
585 if (td_rw(td)) {
586 /*
587 * Check if it's time to seed a new data direction.
588 */
589 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
590 /*
591 * Put a top limit on how many bytes we do for
592 * one data direction, to avoid overflowing the
593 * ranges too much
594 */
595 ddir = get_rand_ddir(td);
596
597 if (ddir != td->rwmix_ddir)
598 set_rwmix_bytes(td);
599
600 td->rwmix_ddir = ddir;
601 }
602 ddir = td->rwmix_ddir;
603 } else if (td_read(td))
604 ddir = DDIR_READ;
605 else if (td_write(td))
606 ddir = DDIR_WRITE;
607 else
608 ddir = DDIR_TRIM;
609
610 td->rwmix_ddir = rate_ddir(td, ddir);
611 return td->rwmix_ddir;
612}
613
614static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
615{
616 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
617
618 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
619 td->o.barrier_blocks &&
620 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
621 td->io_issues[DDIR_WRITE])
622 io_u->flags |= IO_U_F_BARRIER;
623}
624
625void put_file_log(struct thread_data *td, struct fio_file *f)
626{
627 int ret = put_file(td, f);
628
629 if (ret)
630 td_verror(td, ret, "file close");
631}
632
633void put_io_u(struct thread_data *td, struct io_u *io_u)
634{
635 td_io_u_lock(td);
636
637 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
638 put_file_log(td, io_u->file);
639 io_u->file = NULL;
640 io_u->flags &= ~IO_U_F_FREE_DEF;
641 io_u->flags |= IO_U_F_FREE;
642
643 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
644 td->cur_depth--;
645 flist_del_init(&io_u->list);
646 flist_add(&io_u->list, &td->io_u_freelist);
647 td_io_u_unlock(td);
648 td_io_u_free_notify(td);
649}
650
651void clear_io_u(struct thread_data *td, struct io_u *io_u)
652{
653 io_u->flags &= ~IO_U_F_FLIGHT;
654 put_io_u(td, io_u);
655}
656
657void requeue_io_u(struct thread_data *td, struct io_u **io_u)
658{
659 struct io_u *__io_u = *io_u;
660 enum fio_ddir ddir = acct_ddir(__io_u);
661
662 dprint(FD_IO, "requeue %p\n", __io_u);
663
664 td_io_u_lock(td);
665
666 __io_u->flags |= IO_U_F_FREE;
667 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
668 td->io_issues[ddir]--;
669
670 __io_u->flags &= ~IO_U_F_FLIGHT;
671 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
672 td->cur_depth--;
673 flist_del(&__io_u->list);
674 flist_add_tail(&__io_u->list, &td->io_u_requeues);
675 td_io_u_unlock(td);
676 *io_u = NULL;
677}
678
679static int fill_io_u(struct thread_data *td, struct io_u *io_u)
680{
681 if (td->io_ops->flags & FIO_NOIO)
682 goto out;
683
684 set_rw_ddir(td, io_u);
685
686 /*
687 * fsync() or fdatasync() or trim etc, we are done
688 */
689 if (!ddir_rw(io_u->ddir))
690 goto out;
691
692 /*
693 * See if it's time to switch to a new zone
694 */
695 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
696 td->zone_bytes = 0;
697 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
698 io_u->file->last_pos = io_u->file->file_offset;
699 td->io_skip_bytes += td->o.zone_skip;
700 }
701
702 /*
703 * No log, let the seq/rand engine retrieve the next buflen and
704 * position.
705 */
706 if (get_next_offset(td, io_u)) {
707 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
708 return 1;
709 }
710
711 io_u->buflen = get_next_buflen(td, io_u);
712 if (!io_u->buflen) {
713 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
714 return 1;
715 }
716
717 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
718 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
719 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
720 io_u->buflen, io_u->file->real_file_size);
721 return 1;
722 }
723
724 /*
725 * mark entry before potentially trimming io_u
726 */
727 if (td_random(td) && file_randommap(td, io_u->file))
728 mark_random_map(td, io_u);
729
730out:
731 dprint_io_u(io_u, "fill_io_u");
732 td->zone_bytes += io_u->buflen;
733 return 0;
734}
735
736static void __io_u_mark_map(unsigned int *map, unsigned int nr)
737{
738 int idx = 0;
739
740 switch (nr) {
741 default:
742 idx = 6;
743 break;
744 case 33 ... 64:
745 idx = 5;
746 break;
747 case 17 ... 32:
748 idx = 4;
749 break;
750 case 9 ... 16:
751 idx = 3;
752 break;
753 case 5 ... 8:
754 idx = 2;
755 break;
756 case 1 ... 4:
757 idx = 1;
758 case 0:
759 break;
760 }
761
762 map[idx]++;
763}
764
765void io_u_mark_submit(struct thread_data *td, unsigned int nr)
766{
767 __io_u_mark_map(td->ts.io_u_submit, nr);
768 td->ts.total_submit++;
769}
770
771void io_u_mark_complete(struct thread_data *td, unsigned int nr)
772{
773 __io_u_mark_map(td->ts.io_u_complete, nr);
774 td->ts.total_complete++;
775}
776
777void io_u_mark_depth(struct thread_data *td, unsigned int nr)
778{
779 int idx = 0;
780
781 switch (td->cur_depth) {
782 default:
783 idx = 6;
784 break;
785 case 32 ... 63:
786 idx = 5;
787 break;
788 case 16 ... 31:
789 idx = 4;
790 break;
791 case 8 ... 15:
792 idx = 3;
793 break;
794 case 4 ... 7:
795 idx = 2;
796 break;
797 case 2 ... 3:
798 idx = 1;
799 case 1:
800 break;
801 }
802
803 td->ts.io_u_map[idx] += nr;
804}
805
806static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
807{
808 int idx = 0;
809
810 assert(usec < 1000);
811
812 switch (usec) {
813 case 750 ... 999:
814 idx = 9;
815 break;
816 case 500 ... 749:
817 idx = 8;
818 break;
819 case 250 ... 499:
820 idx = 7;
821 break;
822 case 100 ... 249:
823 idx = 6;
824 break;
825 case 50 ... 99:
826 idx = 5;
827 break;
828 case 20 ... 49:
829 idx = 4;
830 break;
831 case 10 ... 19:
832 idx = 3;
833 break;
834 case 4 ... 9:
835 idx = 2;
836 break;
837 case 2 ... 3:
838 idx = 1;
839 case 0 ... 1:
840 break;
841 }
842
843 assert(idx < FIO_IO_U_LAT_U_NR);
844 td->ts.io_u_lat_u[idx]++;
845}
846
847static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
848{
849 int idx = 0;
850
851 switch (msec) {
852 default:
853 idx = 11;
854 break;
855 case 1000 ... 1999:
856 idx = 10;
857 break;
858 case 750 ... 999:
859 idx = 9;
860 break;
861 case 500 ... 749:
862 idx = 8;
863 break;
864 case 250 ... 499:
865 idx = 7;
866 break;
867 case 100 ... 249:
868 idx = 6;
869 break;
870 case 50 ... 99:
871 idx = 5;
872 break;
873 case 20 ... 49:
874 idx = 4;
875 break;
876 case 10 ... 19:
877 idx = 3;
878 break;
879 case 4 ... 9:
880 idx = 2;
881 break;
882 case 2 ... 3:
883 idx = 1;
884 case 0 ... 1:
885 break;
886 }
887
888 assert(idx < FIO_IO_U_LAT_M_NR);
889 td->ts.io_u_lat_m[idx]++;
890}
891
892static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
893{
894 if (usec < 1000)
895 io_u_mark_lat_usec(td, usec);
896 else
897 io_u_mark_lat_msec(td, usec / 1000);
898}
899
900/*
901 * Get next file to service by choosing one at random
902 */
903static struct fio_file *get_next_file_rand(struct thread_data *td,
904 enum fio_file_flags goodf,
905 enum fio_file_flags badf)
906{
907 struct fio_file *f;
908 int fno;
909
910 do {
911 int opened = 0;
912 unsigned long r;
913
914 if (td->o.use_os_rand) {
915 r = os_random_long(&td->next_file_state);
916 fno = (unsigned int) ((double) td->o.nr_files
917 * (r / (OS_RAND_MAX + 1.0)));
918 } else {
919 r = __rand(&td->__next_file_state);
920 fno = (unsigned int) ((double) td->o.nr_files
921 * (r / (FRAND_MAX + 1.0)));
922 }
923
924 f = td->files[fno];
925 if (fio_file_done(f))
926 continue;
927
928 if (!fio_file_open(f)) {
929 int err;
930
931 err = td_io_open_file(td, f);
932 if (err)
933 continue;
934 opened = 1;
935 }
936
937 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
938 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
939 return f;
940 }
941 if (opened)
942 td_io_close_file(td, f);
943 } while (1);
944}
945
946/*
947 * Get next file to service by doing round robin between all available ones
948 */
949static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
950 int badf)
951{
952 unsigned int old_next_file = td->next_file;
953 struct fio_file *f;
954
955 do {
956 int opened = 0;
957
958 f = td->files[td->next_file];
959
960 td->next_file++;
961 if (td->next_file >= td->o.nr_files)
962 td->next_file = 0;
963
964 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
965 if (fio_file_done(f)) {
966 f = NULL;
967 continue;
968 }
969
970 if (!fio_file_open(f)) {
971 int err;
972
973 err = td_io_open_file(td, f);
974 if (err) {
975 dprint(FD_FILE, "error %d on open of %s\n",
976 err, f->file_name);
977 f = NULL;
978 continue;
979 }
980 opened = 1;
981 }
982
983 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
984 f->flags);
985 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
986 break;
987
988 if (opened)
989 td_io_close_file(td, f);
990
991 f = NULL;
992 } while (td->next_file != old_next_file);
993
994 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
995 return f;
996}
997
998static struct fio_file *__get_next_file(struct thread_data *td)
999{
1000 struct fio_file *f;
1001
1002 assert(td->o.nr_files <= td->files_index);
1003
1004 if (td->nr_done_files >= td->o.nr_files) {
1005 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1006 " nr_files=%d\n", td->nr_open_files,
1007 td->nr_done_files,
1008 td->o.nr_files);
1009 return NULL;
1010 }
1011
1012 f = td->file_service_file;
1013 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1014 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1015 goto out;
1016 if (td->file_service_left--)
1017 goto out;
1018 }
1019
1020 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1021 td->o.file_service_type == FIO_FSERVICE_SEQ)
1022 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1023 else
1024 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1025
1026 td->file_service_file = f;
1027 td->file_service_left = td->file_service_nr - 1;
1028out:
1029 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1030 return f;
1031}
1032
1033static struct fio_file *get_next_file(struct thread_data *td)
1034{
1035 if (!(td->flags & TD_F_PROFILE_OPS)) {
1036 struct prof_io_ops *ops = &td->prof_io_ops;
1037
1038 if (ops->get_next_file)
1039 return ops->get_next_file(td);
1040 }
1041
1042 return __get_next_file(td);
1043}
1044
1045static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1046{
1047 struct fio_file *f;
1048
1049 do {
1050 f = get_next_file(td);
1051 if (!f)
1052 return 1;
1053
1054 io_u->file = f;
1055 get_file(f);
1056
1057 if (!fill_io_u(td, io_u))
1058 break;
1059
1060 put_file_log(td, f);
1061 td_io_close_file(td, f);
1062 io_u->file = NULL;
1063 fio_file_set_done(f);
1064 td->nr_done_files++;
1065 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1066 td->nr_done_files, td->o.nr_files);
1067 } while (1);
1068
1069 return 0;
1070}
1071
1072
1073struct io_u *__get_io_u(struct thread_data *td)
1074{
1075 struct io_u *io_u = NULL;
1076
1077 td_io_u_lock(td);
1078
1079again:
1080 if (!flist_empty(&td->io_u_requeues))
1081 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
1082 else if (!queue_full(td)) {
1083 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
1084
1085 io_u->buflen = 0;
1086 io_u->resid = 0;
1087 io_u->file = NULL;
1088 io_u->end_io = NULL;
1089 }
1090
1091 if (io_u) {
1092 assert(io_u->flags & IO_U_F_FREE);
1093 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1094 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1095 io_u->flags &= ~IO_U_F_VER_LIST;
1096
1097 io_u->error = 0;
1098 io_u->acct_ddir = -1;
1099 flist_del(&io_u->list);
1100 flist_add_tail(&io_u->list, &td->io_u_busylist);
1101 td->cur_depth++;
1102 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1103 } else if (td->o.verify_async) {
1104 /*
1105 * We ran out, wait for async verify threads to finish and
1106 * return one
1107 */
1108 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1109 goto again;
1110 }
1111
1112 td_io_u_unlock(td);
1113 return io_u;
1114}
1115
1116static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1117{
1118 if (!(td->flags & TD_F_TRIM_BACKLOG))
1119 return 0;
1120
1121 if (td->trim_entries) {
1122 int get_trim = 0;
1123
1124 if (td->trim_batch) {
1125 td->trim_batch--;
1126 get_trim = 1;
1127 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1128 td->last_ddir != DDIR_READ) {
1129 td->trim_batch = td->o.trim_batch;
1130 if (!td->trim_batch)
1131 td->trim_batch = td->o.trim_backlog;
1132 get_trim = 1;
1133 }
1134
1135 if (get_trim && !get_next_trim(td, io_u))
1136 return 1;
1137 }
1138
1139 return 0;
1140}
1141
1142static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1143{
1144 if (!(td->flags & TD_F_VER_BACKLOG))
1145 return 0;
1146
1147 if (td->io_hist_len) {
1148 int get_verify = 0;
1149
1150 if (td->verify_batch)
1151 get_verify = 1;
1152 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1153 td->last_ddir != DDIR_READ) {
1154 td->verify_batch = td->o.verify_batch;
1155 if (!td->verify_batch)
1156 td->verify_batch = td->o.verify_backlog;
1157 get_verify = 1;
1158 }
1159
1160 if (get_verify && !get_next_verify(td, io_u)) {
1161 td->verify_batch--;
1162 return 1;
1163 }
1164 }
1165
1166 return 0;
1167}
1168
1169/*
1170 * Fill offset and start time into the buffer content, to prevent too
1171 * easy compressible data for simple de-dupe attempts. Do this for every
1172 * 512b block in the range, since that should be the smallest block size
1173 * we can expect from a device.
1174 */
1175static void small_content_scramble(struct io_u *io_u)
1176{
1177 unsigned int i, nr_blocks = io_u->buflen / 512;
1178 uint64_t boffset;
1179 unsigned int offset;
1180 void *p, *end;
1181
1182 if (!nr_blocks)
1183 return;
1184
1185 p = io_u->xfer_buf;
1186 boffset = io_u->offset;
1187 io_u->buf_filled_len = 0;
1188
1189 for (i = 0; i < nr_blocks; i++) {
1190 /*
1191 * Fill the byte offset into a "random" start offset of
1192 * the buffer, given by the product of the usec time
1193 * and the actual offset.
1194 */
1195 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1196 offset &= ~(sizeof(uint64_t) - 1);
1197 if (offset >= 512 - sizeof(uint64_t))
1198 offset -= sizeof(uint64_t);
1199 memcpy(p + offset, &boffset, sizeof(boffset));
1200
1201 end = p + 512 - sizeof(io_u->start_time);
1202 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1203 p += 512;
1204 boffset += 512;
1205 }
1206}
1207
1208/*
1209 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1210 * etc. The returned io_u is fully ready to be prepped and submitted.
1211 */
1212struct io_u *get_io_u(struct thread_data *td)
1213{
1214 struct fio_file *f;
1215 struct io_u *io_u;
1216 int do_scramble = 0;
1217
1218 io_u = __get_io_u(td);
1219 if (!io_u) {
1220 dprint(FD_IO, "__get_io_u failed\n");
1221 return NULL;
1222 }
1223
1224 if (check_get_verify(td, io_u))
1225 goto out;
1226 if (check_get_trim(td, io_u))
1227 goto out;
1228
1229 /*
1230 * from a requeue, io_u already setup
1231 */
1232 if (io_u->file)
1233 goto out;
1234
1235 /*
1236 * If using an iolog, grab next piece if any available.
1237 */
1238 if (td->flags & TD_F_READ_IOLOG) {
1239 if (read_iolog_get(td, io_u))
1240 goto err_put;
1241 } else if (set_io_u_file(td, io_u)) {
1242 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1243 goto err_put;
1244 }
1245
1246 f = io_u->file;
1247 assert(fio_file_open(f));
1248
1249 if (ddir_rw(io_u->ddir)) {
1250 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1251 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1252 goto err_put;
1253 }
1254
1255 f->last_start = io_u->offset;
1256 f->last_pos = io_u->offset + io_u->buflen;
1257
1258 if (io_u->ddir == DDIR_WRITE) {
1259 if (td->flags & TD_F_REFILL_BUFFERS) {
1260 io_u_fill_buffer(td, io_u,
1261 io_u->xfer_buflen, io_u->xfer_buflen);
1262 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS)
1263 do_scramble = 1;
1264 if (td->flags & TD_F_VER_NONE) {
1265 populate_verify_io_u(td, io_u);
1266 do_scramble = 0;
1267 }
1268 } else if (io_u->ddir == DDIR_READ) {
1269 /*
1270 * Reset the buf_filled parameters so next time if the
1271 * buffer is used for writes it is refilled.
1272 */
1273 io_u->buf_filled_len = 0;
1274 }
1275 }
1276
1277 /*
1278 * Set io data pointers.
1279 */
1280 io_u->xfer_buf = io_u->buf;
1281 io_u->xfer_buflen = io_u->buflen;
1282
1283out:
1284 assert(io_u->file);
1285 if (!td_io_prep(td, io_u)) {
1286 if (!td->o.disable_slat)
1287 fio_gettime(&io_u->start_time, NULL);
1288 if (do_scramble)
1289 small_content_scramble(io_u);
1290 return io_u;
1291 }
1292err_put:
1293 dprint(FD_IO, "get_io_u failed\n");
1294 put_io_u(td, io_u);
1295 return NULL;
1296}
1297
1298void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1299{
1300 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1301 const char *msg[] = { "read", "write", "sync", "datasync",
1302 "sync_file_range", "wait", "trim" };
1303
1304 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1305 return;
1306
1307 log_err("fio: io_u error");
1308
1309 if (io_u->file)
1310 log_err(" on file %s", io_u->file->file_name);
1311
1312 log_err(": %s\n", strerror(io_u->error));
1313
1314 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1315 io_u->offset, io_u->xfer_buflen);
1316
1317 if (!td->error)
1318 td_verror(td, io_u->error, "io_u error");
1319}
1320
1321static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1322 struct io_completion_data *icd,
1323 const enum fio_ddir idx, unsigned int bytes)
1324{
1325 unsigned long lusec = 0;
1326
1327 if (!td->o.disable_clat || !td->o.disable_bw)
1328 lusec = utime_since(&io_u->issue_time, &icd->time);
1329
1330 if (!td->o.disable_lat) {
1331 unsigned long tusec;
1332
1333 tusec = utime_since(&io_u->start_time, &icd->time);
1334 add_lat_sample(td, idx, tusec, bytes);
1335
1336 if (td->o.max_latency && tusec > td->o.max_latency) {
1337 if (!td->error)
1338 log_err("fio: latency of %lu usec exceeds specified max (%u usec)\n", tusec, td->o.max_latency);
1339 td_verror(td, ETIMEDOUT, "max latency exceeded");
1340 icd->error = ETIMEDOUT;
1341 }
1342 }
1343
1344 if (!td->o.disable_clat) {
1345 add_clat_sample(td, idx, lusec, bytes);
1346 io_u_mark_latency(td, lusec);
1347 }
1348
1349 if (!td->o.disable_bw)
1350 add_bw_sample(td, idx, bytes, &icd->time);
1351
1352 add_iops_sample(td, idx, &icd->time);
1353}
1354
1355static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1356{
1357 uint64_t secs, remainder, bps, bytes;
1358
1359 bytes = td->this_io_bytes[ddir];
1360 bps = td->rate_bps[ddir];
1361 secs = bytes / bps;
1362 remainder = bytes % bps;
1363 return remainder * 1000000 / bps + secs * 1000000;
1364}
1365
1366static void io_completed(struct thread_data *td, struct io_u *io_u,
1367 struct io_completion_data *icd)
1368{
1369 struct fio_file *f;
1370
1371 dprint_io_u(io_u, "io complete");
1372
1373 td_io_u_lock(td);
1374 assert(io_u->flags & IO_U_F_FLIGHT);
1375 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1376 td_io_u_unlock(td);
1377
1378 if (ddir_sync(io_u->ddir)) {
1379 td->last_was_sync = 1;
1380 f = io_u->file;
1381 if (f) {
1382 f->first_write = -1ULL;
1383 f->last_write = -1ULL;
1384 }
1385 return;
1386 }
1387
1388 td->last_was_sync = 0;
1389 td->last_ddir = io_u->ddir;
1390
1391 if (!io_u->error && ddir_rw(io_u->ddir)) {
1392 unsigned int bytes = io_u->buflen - io_u->resid;
1393 const enum fio_ddir idx = io_u->ddir;
1394 const enum fio_ddir odx = io_u->ddir ^ 1;
1395 int ret;
1396
1397 td->io_blocks[idx]++;
1398 td->this_io_blocks[idx]++;
1399 td->io_bytes[idx] += bytes;
1400
1401 if (!(io_u->flags & IO_U_F_VER_LIST))
1402 td->this_io_bytes[idx] += bytes;
1403
1404 if (idx == DDIR_WRITE) {
1405 f = io_u->file;
1406 if (f) {
1407 if (f->first_write == -1ULL ||
1408 io_u->offset < f->first_write)
1409 f->first_write = io_u->offset;
1410 if (f->last_write == -1ULL ||
1411 ((io_u->offset + bytes) > f->last_write))
1412 f->last_write = io_u->offset + bytes;
1413 }
1414 }
1415
1416 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1417 td->runstate == TD_VERIFYING)) {
1418 account_io_completion(td, io_u, icd, idx, bytes);
1419
1420 if (__should_check_rate(td, idx)) {
1421 td->rate_pending_usleep[idx] =
1422 (usec_for_io(td, idx) -
1423 utime_since_now(&td->start));
1424 }
1425 if (idx != DDIR_TRIM && __should_check_rate(td, odx))
1426 td->rate_pending_usleep[odx] =
1427 (usec_for_io(td, odx) -
1428 utime_since_now(&td->start));
1429 }
1430
1431 if (td_write(td) && idx == DDIR_WRITE &&
1432 td->o.do_verify &&
1433 td->o.verify != VERIFY_NONE &&
1434 !td->o.experimental_verify)
1435 log_io_piece(td, io_u);
1436
1437 icd->bytes_done[idx] += bytes;
1438
1439 if (io_u->end_io) {
1440 ret = io_u->end_io(td, io_u);
1441 if (ret && !icd->error)
1442 icd->error = ret;
1443 }
1444 } else if (io_u->error) {
1445 icd->error = io_u->error;
1446 io_u_log_error(td, io_u);
1447 }
1448 if (icd->error) {
1449 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
1450 if (!td_non_fatal_error(td, eb, icd->error))
1451 return;
1452 /*
1453 * If there is a non_fatal error, then add to the error count
1454 * and clear all the errors.
1455 */
1456 update_error_count(td, icd->error);
1457 td_clear_error(td);
1458 icd->error = 0;
1459 io_u->error = 0;
1460 }
1461}
1462
1463static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1464 int nr)
1465{
1466 int ddir;
1467 if (!td->o.disable_clat || !td->o.disable_bw)
1468 fio_gettime(&icd->time, NULL);
1469
1470 icd->nr = nr;
1471
1472 icd->error = 0;
1473 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1474 icd->bytes_done[ddir] = 0;
1475}
1476
1477static void ios_completed(struct thread_data *td,
1478 struct io_completion_data *icd)
1479{
1480 struct io_u *io_u;
1481 int i;
1482
1483 for (i = 0; i < icd->nr; i++) {
1484 io_u = td->io_ops->event(td, i);
1485
1486 io_completed(td, io_u, icd);
1487
1488 if (!(io_u->flags & IO_U_F_FREE_DEF))
1489 put_io_u(td, io_u);
1490 }
1491}
1492
1493/*
1494 * Complete a single io_u for the sync engines.
1495 */
1496int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1497 uint64_t *bytes)
1498{
1499 struct io_completion_data icd;
1500
1501 init_icd(td, &icd, 1);
1502 io_completed(td, io_u, &icd);
1503
1504 if (!(io_u->flags & IO_U_F_FREE_DEF))
1505 put_io_u(td, io_u);
1506
1507 if (icd.error) {
1508 td_verror(td, icd.error, "io_u_sync_complete");
1509 return -1;
1510 }
1511
1512 if (bytes) {
1513 int ddir;
1514
1515 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1516 bytes[ddir] += icd.bytes_done[ddir];
1517 }
1518
1519 return 0;
1520}
1521
1522/*
1523 * Called to complete min_events number of io for the async engines.
1524 */
1525int io_u_queued_complete(struct thread_data *td, int min_evts,
1526 uint64_t *bytes)
1527{
1528 struct io_completion_data icd;
1529 struct timespec *tvp = NULL;
1530 int ret;
1531 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1532
1533 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1534
1535 if (!min_evts)
1536 tvp = &ts;
1537
1538 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1539 if (ret < 0) {
1540 td_verror(td, -ret, "td_io_getevents");
1541 return ret;
1542 } else if (!ret)
1543 return ret;
1544
1545 init_icd(td, &icd, ret);
1546 ios_completed(td, &icd);
1547 if (icd.error) {
1548 td_verror(td, icd.error, "io_u_queued_complete");
1549 return -1;
1550 }
1551
1552 if (bytes) {
1553 int ddir;
1554
1555 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1556 bytes[ddir] += icd.bytes_done[ddir];
1557 }
1558
1559 return 0;
1560}
1561
1562/*
1563 * Call when io_u is really queued, to update the submission latency.
1564 */
1565void io_u_queued(struct thread_data *td, struct io_u *io_u)
1566{
1567 if (!td->o.disable_slat) {
1568 unsigned long slat_time;
1569
1570 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1571 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1572 }
1573}
1574
1575/*
1576 * "randomly" fill the buffer contents
1577 */
1578void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1579 unsigned int min_write, unsigned int max_bs)
1580{
1581 io_u->buf_filled_len = 0;
1582
1583 if (!td->o.zero_buffers) {
1584 unsigned int perc = td->o.compress_percentage;
1585
1586 if (perc) {
1587 unsigned int seg = min_write;
1588
1589 seg = min(min_write, td->o.compress_chunk);
1590 fill_random_buf_percentage(&td->buf_state, io_u->buf,
1591 perc, seg, max_bs);
1592 } else
1593 fill_random_buf(&td->buf_state, io_u->buf, max_bs);
1594 } else
1595 memset(io_u->buf, 0, max_bs);
1596}