io_u: don't account io issue blocks for verify backlog
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timespec time; /* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32 return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.min_bs[io_u->ddir];
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57{
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 * -> not for now since there is code assuming it could go either.
66 */
67 max_size = f->io_size;
68 if (max_size > f->real_file_size)
69 max_size = f->real_file_size;
70
71 if (td->o.zone_range)
72 max_size = td->o.zone_range;
73
74 if (td->o.min_bs[ddir] > td->o.ba[ddir])
75 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
76
77 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
78 if (!max_blocks)
79 return 0;
80
81 return max_blocks;
82}
83
84struct rand_off {
85 struct flist_head list;
86 uint64_t off;
87};
88
89static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
90 enum fio_ddir ddir, uint64_t *b,
91 uint64_t lastb)
92{
93 uint64_t r;
94
95 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
96 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
97
98 r = __rand(&td->random_state);
99
100 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
101
102 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
103 } else {
104 uint64_t off = 0;
105
106 assert(fio_file_lfsr(f));
107
108 if (lfsr_next(&f->lfsr, &off))
109 return 1;
110
111 *b = off;
112 }
113
114 /*
115 * if we are not maintaining a random map, we are done.
116 */
117 if (!file_randommap(td, f))
118 goto ret;
119
120 /*
121 * calculate map offset and check if it's free
122 */
123 if (random_map_free(f, *b))
124 goto ret;
125
126 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
127 (unsigned long long) *b);
128
129 *b = axmap_next_free(f->io_axmap, *b);
130 if (*b == (uint64_t) -1ULL)
131 return 1;
132ret:
133 return 0;
134}
135
136static int __get_next_rand_offset_zipf(struct thread_data *td,
137 struct fio_file *f, enum fio_ddir ddir,
138 uint64_t *b)
139{
140 *b = zipf_next(&f->zipf);
141 return 0;
142}
143
144static int __get_next_rand_offset_pareto(struct thread_data *td,
145 struct fio_file *f, enum fio_ddir ddir,
146 uint64_t *b)
147{
148 *b = pareto_next(&f->zipf);
149 return 0;
150}
151
152static int __get_next_rand_offset_gauss(struct thread_data *td,
153 struct fio_file *f, enum fio_ddir ddir,
154 uint64_t *b)
155{
156 *b = gauss_next(&f->gauss);
157 return 0;
158}
159
160static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
161 struct fio_file *f,
162 enum fio_ddir ddir, uint64_t *b)
163{
164 struct zone_split_index *zsi;
165 uint64_t lastb, send, stotal;
166 static int warned;
167 unsigned int v;
168
169 lastb = last_block(td, f, ddir);
170 if (!lastb)
171 return 1;
172
173 if (!td->o.zone_split_nr[ddir]) {
174bail:
175 return __get_next_rand_offset(td, f, ddir, b, lastb);
176 }
177
178 /*
179 * Generate a value, v, between 1 and 100, both inclusive
180 */
181 v = rand32_between(&td->zone_state, 1, 100);
182
183 /*
184 * Find our generated table. 'send' is the end block of this zone,
185 * 'stotal' is our start offset.
186 */
187 zsi = &td->zone_state_index[ddir][v - 1];
188 stotal = zsi->size_prev / td->o.ba[ddir];
189 send = zsi->size / td->o.ba[ddir];
190
191 /*
192 * Should never happen
193 */
194 if (send == -1U) {
195 if (!warned) {
196 log_err("fio: bug in zoned generation\n");
197 warned = 1;
198 }
199 goto bail;
200 } else if (send > lastb) {
201 /*
202 * This happens if the user specifies ranges that exceed
203 * the file/device size. We can't handle that gracefully,
204 * so error and exit.
205 */
206 log_err("fio: zoned_abs sizes exceed file size\n");
207 return 1;
208 }
209
210 /*
211 * Generate index from 0..send-stotal
212 */
213 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
214 return 1;
215
216 *b += stotal;
217 return 0;
218}
219
220static int __get_next_rand_offset_zoned(struct thread_data *td,
221 struct fio_file *f, enum fio_ddir ddir,
222 uint64_t *b)
223{
224 unsigned int v, send, stotal;
225 uint64_t offset, lastb;
226 static int warned;
227 struct zone_split_index *zsi;
228
229 lastb = last_block(td, f, ddir);
230 if (!lastb)
231 return 1;
232
233 if (!td->o.zone_split_nr[ddir]) {
234bail:
235 return __get_next_rand_offset(td, f, ddir, b, lastb);
236 }
237
238 /*
239 * Generate a value, v, between 1 and 100, both inclusive
240 */
241 v = rand32_between(&td->zone_state, 1, 100);
242
243 zsi = &td->zone_state_index[ddir][v - 1];
244 stotal = zsi->size_perc_prev;
245 send = zsi->size_perc;
246
247 /*
248 * Should never happen
249 */
250 if (send == -1U) {
251 if (!warned) {
252 log_err("fio: bug in zoned generation\n");
253 warned = 1;
254 }
255 goto bail;
256 }
257
258 /*
259 * 'send' is some percentage below or equal to 100 that
260 * marks the end of the current IO range. 'stotal' marks
261 * the start, in percent.
262 */
263 if (stotal)
264 offset = stotal * lastb / 100ULL;
265 else
266 offset = 0;
267
268 lastb = lastb * (send - stotal) / 100ULL;
269
270 /*
271 * Generate index from 0..send-of-lastb
272 */
273 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
274 return 1;
275
276 /*
277 * Add our start offset, if any
278 */
279 if (offset)
280 *b += offset;
281
282 return 0;
283}
284
285static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
286{
287 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
288 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
289
290 return r1->off - r2->off;
291}
292
293static int get_off_from_method(struct thread_data *td, struct fio_file *f,
294 enum fio_ddir ddir, uint64_t *b)
295{
296 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
297 uint64_t lastb;
298
299 lastb = last_block(td, f, ddir);
300 if (!lastb)
301 return 1;
302
303 return __get_next_rand_offset(td, f, ddir, b, lastb);
304 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
305 return __get_next_rand_offset_zipf(td, f, ddir, b);
306 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
307 return __get_next_rand_offset_pareto(td, f, ddir, b);
308 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
309 return __get_next_rand_offset_gauss(td, f, ddir, b);
310 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
311 return __get_next_rand_offset_zoned(td, f, ddir, b);
312 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
313 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
314
315 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
316 return 1;
317}
318
319/*
320 * Sort the reads for a verify phase in batches of verifysort_nr, if
321 * specified.
322 */
323static inline bool should_sort_io(struct thread_data *td)
324{
325 if (!td->o.verifysort_nr || !td->o.do_verify)
326 return false;
327 if (!td_random(td))
328 return false;
329 if (td->runstate != TD_VERIFYING)
330 return false;
331 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
332 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
333 return false;
334
335 return true;
336}
337
338static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
339{
340 unsigned int v;
341
342 if (td->o.perc_rand[ddir] == 100)
343 return true;
344
345 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
346
347 return v <= td->o.perc_rand[ddir];
348}
349
350static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
351 enum fio_ddir ddir, uint64_t *b)
352{
353 struct rand_off *r;
354 int i, ret = 1;
355
356 if (!should_sort_io(td))
357 return get_off_from_method(td, f, ddir, b);
358
359 if (!flist_empty(&td->next_rand_list)) {
360fetch:
361 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
362 flist_del(&r->list);
363 *b = r->off;
364 free(r);
365 return 0;
366 }
367
368 for (i = 0; i < td->o.verifysort_nr; i++) {
369 r = malloc(sizeof(*r));
370
371 ret = get_off_from_method(td, f, ddir, &r->off);
372 if (ret) {
373 free(r);
374 break;
375 }
376
377 flist_add(&r->list, &td->next_rand_list);
378 }
379
380 if (ret && !i)
381 return ret;
382
383 assert(!flist_empty(&td->next_rand_list));
384 flist_sort(NULL, &td->next_rand_list, flist_cmp);
385 goto fetch;
386}
387
388static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
389{
390 struct thread_options *o = &td->o;
391
392 if (o->invalidate_cache && !o->odirect) {
393 int fio_unused ret;
394
395 ret = file_invalidate_cache(td, f);
396 }
397}
398
399static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
400 enum fio_ddir ddir, uint64_t *b)
401{
402 if (!get_next_rand_offset(td, f, ddir, b))
403 return 0;
404
405 if (td->o.time_based ||
406 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
407 fio_file_reset(td, f);
408 if (!get_next_rand_offset(td, f, ddir, b))
409 return 0;
410 loop_cache_invalidate(td, f);
411 }
412
413 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
414 f->file_name, (unsigned long long) f->last_pos[ddir],
415 (unsigned long long) f->real_file_size);
416 return 1;
417}
418
419static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
420 enum fio_ddir ddir, uint64_t *offset)
421{
422 struct thread_options *o = &td->o;
423
424 assert(ddir_rw(ddir));
425
426 /*
427 * If we reach the end for a time based run, reset us back to 0
428 * and invalidate the cache, if we need to.
429 */
430 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
431 o->time_based) {
432 f->last_pos[ddir] = f->file_offset;
433 loop_cache_invalidate(td, f);
434 }
435
436 if (f->last_pos[ddir] < f->real_file_size) {
437 uint64_t pos;
438
439 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
440 if (f->real_file_size > f->io_size)
441 f->last_pos[ddir] = f->io_size;
442 else
443 f->last_pos[ddir] = f->real_file_size;
444 }
445
446 pos = f->last_pos[ddir] - f->file_offset;
447 if (pos && o->ddir_seq_add) {
448 pos += o->ddir_seq_add;
449
450 /*
451 * If we reach beyond the end of the file
452 * with holed IO, wrap around to the
453 * beginning again. If we're doing backwards IO,
454 * wrap to the end.
455 */
456 if (pos >= f->real_file_size) {
457 if (o->ddir_seq_add > 0)
458 pos = f->file_offset;
459 else {
460 if (f->real_file_size > f->io_size)
461 pos = f->io_size;
462 else
463 pos = f->real_file_size;
464
465 pos += o->ddir_seq_add;
466 }
467 }
468 }
469
470 *offset = pos;
471 return 0;
472 }
473
474 return 1;
475}
476
477static int get_next_block(struct thread_data *td, struct io_u *io_u,
478 enum fio_ddir ddir, int rw_seq,
479 unsigned int *is_random)
480{
481 struct fio_file *f = io_u->file;
482 uint64_t b, offset;
483 int ret;
484
485 assert(ddir_rw(ddir));
486
487 b = offset = -1ULL;
488
489 if (rw_seq) {
490 if (td_random(td)) {
491 if (should_do_random(td, ddir)) {
492 ret = get_next_rand_block(td, f, ddir, &b);
493 *is_random = 1;
494 } else {
495 *is_random = 0;
496 io_u_set(td, io_u, IO_U_F_BUSY_OK);
497 ret = get_next_seq_offset(td, f, ddir, &offset);
498 if (ret)
499 ret = get_next_rand_block(td, f, ddir, &b);
500 }
501 } else {
502 *is_random = 0;
503 ret = get_next_seq_offset(td, f, ddir, &offset);
504 }
505 } else {
506 io_u_set(td, io_u, IO_U_F_BUSY_OK);
507 *is_random = 0;
508
509 if (td->o.rw_seq == RW_SEQ_SEQ) {
510 ret = get_next_seq_offset(td, f, ddir, &offset);
511 if (ret) {
512 ret = get_next_rand_block(td, f, ddir, &b);
513 *is_random = 0;
514 }
515 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
516 if (f->last_start[ddir] != -1ULL)
517 offset = f->last_start[ddir] - f->file_offset;
518 else
519 offset = 0;
520 ret = 0;
521 } else {
522 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
523 ret = 1;
524 }
525 }
526
527 if (!ret) {
528 if (offset != -1ULL)
529 io_u->offset = offset;
530 else if (b != -1ULL)
531 io_u->offset = b * td->o.ba[ddir];
532 else {
533 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
534 ret = 1;
535 }
536 }
537
538 return ret;
539}
540
541/*
542 * For random io, generate a random new block and see if it's used. Repeat
543 * until we find a free one. For sequential io, just return the end of
544 * the last io issued.
545 */
546static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
547 unsigned int *is_random)
548{
549 struct fio_file *f = io_u->file;
550 enum fio_ddir ddir = io_u->ddir;
551 int rw_seq_hit = 0;
552
553 assert(ddir_rw(ddir));
554
555 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
556 rw_seq_hit = 1;
557 td->ddir_seq_nr = td->o.ddir_seq_nr;
558 }
559
560 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
561 return 1;
562
563 if (io_u->offset >= f->io_size) {
564 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
565 (unsigned long long) io_u->offset,
566 (unsigned long long) f->io_size);
567 return 1;
568 }
569
570 io_u->offset += f->file_offset;
571 if (io_u->offset >= f->real_file_size) {
572 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
573 (unsigned long long) io_u->offset,
574 (unsigned long long) f->real_file_size);
575 return 1;
576 }
577
578 return 0;
579}
580
581static int get_next_offset(struct thread_data *td, struct io_u *io_u,
582 unsigned int *is_random)
583{
584 if (td->flags & TD_F_PROFILE_OPS) {
585 struct prof_io_ops *ops = &td->prof_io_ops;
586
587 if (ops->fill_io_u_off)
588 return ops->fill_io_u_off(td, io_u, is_random);
589 }
590
591 return __get_next_offset(td, io_u, is_random);
592}
593
594static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
595 unsigned int buflen)
596{
597 struct fio_file *f = io_u->file;
598
599 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
600}
601
602static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
603 unsigned int is_random)
604{
605 int ddir = io_u->ddir;
606 unsigned int buflen = 0;
607 unsigned int minbs, maxbs;
608 uint64_t frand_max, r;
609 bool power_2;
610
611 assert(ddir_rw(ddir));
612
613 if (td->o.bs_is_seq_rand)
614 ddir = is_random ? DDIR_WRITE: DDIR_READ;
615
616 minbs = td->o.min_bs[ddir];
617 maxbs = td->o.max_bs[ddir];
618
619 if (minbs == maxbs)
620 return minbs;
621
622 /*
623 * If we can't satisfy the min block size from here, then fail
624 */
625 if (!io_u_fits(td, io_u, minbs))
626 return 0;
627
628 frand_max = rand_max(&td->bsrange_state[ddir]);
629 do {
630 r = __rand(&td->bsrange_state[ddir]);
631
632 if (!td->o.bssplit_nr[ddir]) {
633 buflen = 1 + (unsigned int) ((double) maxbs *
634 (r / (frand_max + 1.0)));
635 if (buflen < minbs)
636 buflen = minbs;
637 } else {
638 long long perc = 0;
639 unsigned int i;
640
641 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
642 struct bssplit *bsp = &td->o.bssplit[ddir][i];
643
644 buflen = bsp->bs;
645 perc += bsp->perc;
646 if (!perc)
647 break;
648 if ((r / perc <= frand_max / 100ULL) &&
649 io_u_fits(td, io_u, buflen))
650 break;
651 }
652 }
653
654 power_2 = is_power_of_2(minbs);
655 if (!td->o.bs_unaligned && power_2)
656 buflen &= ~(minbs - 1);
657 else if (!td->o.bs_unaligned && !power_2)
658 buflen -= buflen % minbs;
659 } while (!io_u_fits(td, io_u, buflen));
660
661 return buflen;
662}
663
664static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
665 unsigned int is_random)
666{
667 if (td->flags & TD_F_PROFILE_OPS) {
668 struct prof_io_ops *ops = &td->prof_io_ops;
669
670 if (ops->fill_io_u_size)
671 return ops->fill_io_u_size(td, io_u, is_random);
672 }
673
674 return __get_next_buflen(td, io_u, is_random);
675}
676
677static void set_rwmix_bytes(struct thread_data *td)
678{
679 unsigned int diff;
680
681 /*
682 * we do time or byte based switch. this is needed because
683 * buffered writes may issue a lot quicker than they complete,
684 * whereas reads do not.
685 */
686 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
687 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
688}
689
690static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
691{
692 unsigned int v;
693
694 v = rand32_between(&td->rwmix_state, 1, 100);
695
696 if (v <= td->o.rwmix[DDIR_READ])
697 return DDIR_READ;
698
699 return DDIR_WRITE;
700}
701
702int io_u_quiesce(struct thread_data *td)
703{
704 int completed = 0;
705
706 /*
707 * We are going to sleep, ensure that we flush anything pending as
708 * not to skew our latency numbers.
709 *
710 * Changed to only monitor 'in flight' requests here instead of the
711 * td->cur_depth, b/c td->cur_depth does not accurately represent
712 * io's that have been actually submitted to an async engine,
713 * and cur_depth is meaningless for sync engines.
714 */
715 if (td->io_u_queued || td->cur_depth) {
716 int fio_unused ret;
717
718 ret = td_io_commit(td);
719 }
720
721 while (td->io_u_in_flight) {
722 int ret;
723
724 ret = io_u_queued_complete(td, 1);
725 if (ret > 0)
726 completed += ret;
727 }
728
729 if (td->flags & TD_F_REGROW_LOGS)
730 regrow_logs(td);
731
732 return completed;
733}
734
735static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
736{
737 enum fio_ddir odir = ddir ^ 1;
738 uint64_t usec;
739 uint64_t now;
740
741 assert(ddir_rw(ddir));
742 now = utime_since_now(&td->start);
743
744 /*
745 * if rate_next_io_time is in the past, need to catch up to rate
746 */
747 if (td->rate_next_io_time[ddir] <= now)
748 return ddir;
749
750 /*
751 * We are ahead of rate in this direction. See if we
752 * should switch.
753 */
754 if (td_rw(td) && td->o.rwmix[odir]) {
755 /*
756 * Other direction is behind rate, switch
757 */
758 if (td->rate_next_io_time[odir] <= now)
759 return odir;
760
761 /*
762 * Both directions are ahead of rate. sleep the min
763 * switch if necissary
764 */
765 if (td->rate_next_io_time[ddir] <=
766 td->rate_next_io_time[odir]) {
767 usec = td->rate_next_io_time[ddir] - now;
768 } else {
769 usec = td->rate_next_io_time[odir] - now;
770 ddir = odir;
771 }
772 } else
773 usec = td->rate_next_io_time[ddir] - now;
774
775 if (td->o.io_submit_mode == IO_MODE_INLINE)
776 io_u_quiesce(td);
777
778 usec = usec_sleep(td, usec);
779
780 return ddir;
781}
782
783/*
784 * Return the data direction for the next io_u. If the job is a
785 * mixed read/write workload, check the rwmix cycle and switch if
786 * necessary.
787 */
788static enum fio_ddir get_rw_ddir(struct thread_data *td)
789{
790 enum fio_ddir ddir;
791
792 /*
793 * See if it's time to fsync/fdatasync/sync_file_range first,
794 * and if not then move on to check regular I/Os.
795 */
796 if (should_fsync(td)) {
797 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
798 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
799 return DDIR_SYNC;
800
801 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
802 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
803 return DDIR_DATASYNC;
804
805 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
806 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
807 return DDIR_SYNC_FILE_RANGE;
808 }
809
810 if (td_rw(td)) {
811 /*
812 * Check if it's time to seed a new data direction.
813 */
814 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
815 /*
816 * Put a top limit on how many bytes we do for
817 * one data direction, to avoid overflowing the
818 * ranges too much
819 */
820 ddir = get_rand_ddir(td);
821
822 if (ddir != td->rwmix_ddir)
823 set_rwmix_bytes(td);
824
825 td->rwmix_ddir = ddir;
826 }
827 ddir = td->rwmix_ddir;
828 } else if (td_read(td))
829 ddir = DDIR_READ;
830 else if (td_write(td))
831 ddir = DDIR_WRITE;
832 else if (td_trim(td))
833 ddir = DDIR_TRIM;
834 else
835 ddir = DDIR_INVAL;
836
837 td->rwmix_ddir = rate_ddir(td, ddir);
838 return td->rwmix_ddir;
839}
840
841static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
842{
843 enum fio_ddir ddir = get_rw_ddir(td);
844
845 if (td_trimwrite(td)) {
846 struct fio_file *f = io_u->file;
847 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
848 ddir = DDIR_TRIM;
849 else
850 ddir = DDIR_WRITE;
851 }
852
853 io_u->ddir = io_u->acct_ddir = ddir;
854
855 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
856 td->o.barrier_blocks &&
857 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
858 td->io_issues[DDIR_WRITE])
859 io_u_set(td, io_u, IO_U_F_BARRIER);
860}
861
862void put_file_log(struct thread_data *td, struct fio_file *f)
863{
864 unsigned int ret = put_file(td, f);
865
866 if (ret)
867 td_verror(td, ret, "file close");
868}
869
870void put_io_u(struct thread_data *td, struct io_u *io_u)
871{
872 if (td->parent)
873 td = td->parent;
874
875 td_io_u_lock(td);
876
877 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
878 put_file_log(td, io_u->file);
879
880 io_u->file = NULL;
881 io_u_set(td, io_u, IO_U_F_FREE);
882
883 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
884 td->cur_depth--;
885 assert(!(td->flags & TD_F_CHILD));
886 }
887 io_u_qpush(&td->io_u_freelist, io_u);
888 td_io_u_unlock(td);
889 td_io_u_free_notify(td);
890}
891
892void clear_io_u(struct thread_data *td, struct io_u *io_u)
893{
894 io_u_clear(td, io_u, IO_U_F_FLIGHT);
895 put_io_u(td, io_u);
896}
897
898void requeue_io_u(struct thread_data *td, struct io_u **io_u)
899{
900 struct io_u *__io_u = *io_u;
901 enum fio_ddir ddir = acct_ddir(__io_u);
902
903 dprint(FD_IO, "requeue %p\n", __io_u);
904
905 if (td->parent)
906 td = td->parent;
907
908 td_io_u_lock(td);
909
910 io_u_set(td, __io_u, IO_U_F_FREE);
911 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
912 td->io_issues[ddir]--;
913
914 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
915 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
916 td->cur_depth--;
917 assert(!(td->flags & TD_F_CHILD));
918 }
919
920 io_u_rpush(&td->io_u_requeues, __io_u);
921 td_io_u_unlock(td);
922 td_io_u_free_notify(td);
923 *io_u = NULL;
924}
925
926static int fill_io_u(struct thread_data *td, struct io_u *io_u)
927{
928 unsigned int is_random;
929
930 if (td_ioengine_flagged(td, FIO_NOIO))
931 goto out;
932
933 set_rw_ddir(td, io_u);
934
935 /*
936 * fsync() or fdatasync() or trim etc, we are done
937 */
938 if (!ddir_rw(io_u->ddir))
939 goto out;
940
941 /*
942 * See if it's time to switch to a new zone
943 */
944 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
945 struct fio_file *f = io_u->file;
946
947 td->zone_bytes = 0;
948 f->file_offset += td->o.zone_range + td->o.zone_skip;
949
950 /*
951 * Wrap from the beginning, if we exceed the file size
952 */
953 if (f->file_offset >= f->real_file_size)
954 f->file_offset = f->real_file_size - f->file_offset;
955 f->last_pos[io_u->ddir] = f->file_offset;
956 td->io_skip_bytes += td->o.zone_skip;
957 }
958
959 /*
960 * No log, let the seq/rand engine retrieve the next buflen and
961 * position.
962 */
963 if (get_next_offset(td, io_u, &is_random)) {
964 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
965 return 1;
966 }
967
968 io_u->buflen = get_next_buflen(td, io_u, is_random);
969 if (!io_u->buflen) {
970 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
971 return 1;
972 }
973
974 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
975 dprint(FD_IO, "io_u %p, offset + buflen exceeds file size\n",
976 io_u);
977 dprint(FD_IO, " offset=%llu/buflen=%lu > %llu\n",
978 (unsigned long long) io_u->offset, io_u->buflen,
979 (unsigned long long) io_u->file->real_file_size);
980 return 1;
981 }
982
983 /*
984 * mark entry before potentially trimming io_u
985 */
986 if (td_random(td) && file_randommap(td, io_u->file))
987 mark_random_map(td, io_u);
988
989out:
990 dprint_io_u(io_u, "fill_io_u");
991 td->zone_bytes += io_u->buflen;
992 return 0;
993}
994
995static void __io_u_mark_map(unsigned int *map, unsigned int nr)
996{
997 int idx = 0;
998
999 switch (nr) {
1000 default:
1001 idx = 6;
1002 break;
1003 case 33 ... 64:
1004 idx = 5;
1005 break;
1006 case 17 ... 32:
1007 idx = 4;
1008 break;
1009 case 9 ... 16:
1010 idx = 3;
1011 break;
1012 case 5 ... 8:
1013 idx = 2;
1014 break;
1015 case 1 ... 4:
1016 idx = 1;
1017 case 0:
1018 break;
1019 }
1020
1021 map[idx]++;
1022}
1023
1024void io_u_mark_submit(struct thread_data *td, unsigned int nr)
1025{
1026 __io_u_mark_map(td->ts.io_u_submit, nr);
1027 td->ts.total_submit++;
1028}
1029
1030void io_u_mark_complete(struct thread_data *td, unsigned int nr)
1031{
1032 __io_u_mark_map(td->ts.io_u_complete, nr);
1033 td->ts.total_complete++;
1034}
1035
1036void io_u_mark_depth(struct thread_data *td, unsigned int nr)
1037{
1038 int idx = 0;
1039
1040 switch (td->cur_depth) {
1041 default:
1042 idx = 6;
1043 break;
1044 case 32 ... 63:
1045 idx = 5;
1046 break;
1047 case 16 ... 31:
1048 idx = 4;
1049 break;
1050 case 8 ... 15:
1051 idx = 3;
1052 break;
1053 case 4 ... 7:
1054 idx = 2;
1055 break;
1056 case 2 ... 3:
1057 idx = 1;
1058 case 1:
1059 break;
1060 }
1061
1062 td->ts.io_u_map[idx] += nr;
1063}
1064
1065static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
1066{
1067 int idx = 0;
1068
1069 assert(nsec < 1000);
1070
1071 switch (nsec) {
1072 case 750 ... 999:
1073 idx = 9;
1074 break;
1075 case 500 ... 749:
1076 idx = 8;
1077 break;
1078 case 250 ... 499:
1079 idx = 7;
1080 break;
1081 case 100 ... 249:
1082 idx = 6;
1083 break;
1084 case 50 ... 99:
1085 idx = 5;
1086 break;
1087 case 20 ... 49:
1088 idx = 4;
1089 break;
1090 case 10 ... 19:
1091 idx = 3;
1092 break;
1093 case 4 ... 9:
1094 idx = 2;
1095 break;
1096 case 2 ... 3:
1097 idx = 1;
1098 case 0 ... 1:
1099 break;
1100 }
1101
1102 assert(idx < FIO_IO_U_LAT_N_NR);
1103 td->ts.io_u_lat_n[idx]++;
1104}
1105
1106static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1107{
1108 int idx = 0;
1109
1110 assert(usec < 1000 && usec >= 1);
1111
1112 switch (usec) {
1113 case 750 ... 999:
1114 idx = 9;
1115 break;
1116 case 500 ... 749:
1117 idx = 8;
1118 break;
1119 case 250 ... 499:
1120 idx = 7;
1121 break;
1122 case 100 ... 249:
1123 idx = 6;
1124 break;
1125 case 50 ... 99:
1126 idx = 5;
1127 break;
1128 case 20 ... 49:
1129 idx = 4;
1130 break;
1131 case 10 ... 19:
1132 idx = 3;
1133 break;
1134 case 4 ... 9:
1135 idx = 2;
1136 break;
1137 case 2 ... 3:
1138 idx = 1;
1139 case 0 ... 1:
1140 break;
1141 }
1142
1143 assert(idx < FIO_IO_U_LAT_U_NR);
1144 td->ts.io_u_lat_u[idx]++;
1145}
1146
1147static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1148{
1149 int idx = 0;
1150
1151 assert(msec >= 1);
1152
1153 switch (msec) {
1154 default:
1155 idx = 11;
1156 break;
1157 case 1000 ... 1999:
1158 idx = 10;
1159 break;
1160 case 750 ... 999:
1161 idx = 9;
1162 break;
1163 case 500 ... 749:
1164 idx = 8;
1165 break;
1166 case 250 ... 499:
1167 idx = 7;
1168 break;
1169 case 100 ... 249:
1170 idx = 6;
1171 break;
1172 case 50 ... 99:
1173 idx = 5;
1174 break;
1175 case 20 ... 49:
1176 idx = 4;
1177 break;
1178 case 10 ... 19:
1179 idx = 3;
1180 break;
1181 case 4 ... 9:
1182 idx = 2;
1183 break;
1184 case 2 ... 3:
1185 idx = 1;
1186 case 0 ... 1:
1187 break;
1188 }
1189
1190 assert(idx < FIO_IO_U_LAT_M_NR);
1191 td->ts.io_u_lat_m[idx]++;
1192}
1193
1194static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1195{
1196 if (nsec < 1000)
1197 io_u_mark_lat_nsec(td, nsec);
1198 else if (nsec < 1000000)
1199 io_u_mark_lat_usec(td, nsec / 1000);
1200 else
1201 io_u_mark_lat_msec(td, nsec / 1000000);
1202}
1203
1204static unsigned int __get_next_fileno_rand(struct thread_data *td)
1205{
1206 unsigned long fileno;
1207
1208 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1209 uint64_t frand_max = rand_max(&td->next_file_state);
1210 unsigned long r;
1211
1212 r = __rand(&td->next_file_state);
1213 return (unsigned int) ((double) td->o.nr_files
1214 * (r / (frand_max + 1.0)));
1215 }
1216
1217 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1218 fileno = zipf_next(&td->next_file_zipf);
1219 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1220 fileno = pareto_next(&td->next_file_zipf);
1221 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1222 fileno = gauss_next(&td->next_file_gauss);
1223 else {
1224 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1225 assert(0);
1226 return 0;
1227 }
1228
1229 return fileno >> FIO_FSERVICE_SHIFT;
1230}
1231
1232/*
1233 * Get next file to service by choosing one at random
1234 */
1235static struct fio_file *get_next_file_rand(struct thread_data *td,
1236 enum fio_file_flags goodf,
1237 enum fio_file_flags badf)
1238{
1239 struct fio_file *f;
1240 int fno;
1241
1242 do {
1243 int opened = 0;
1244
1245 fno = __get_next_fileno_rand(td);
1246
1247 f = td->files[fno];
1248 if (fio_file_done(f))
1249 continue;
1250
1251 if (!fio_file_open(f)) {
1252 int err;
1253
1254 if (td->nr_open_files >= td->o.open_files)
1255 return ERR_PTR(-EBUSY);
1256
1257 err = td_io_open_file(td, f);
1258 if (err)
1259 continue;
1260 opened = 1;
1261 }
1262
1263 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1264 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1265 return f;
1266 }
1267 if (opened)
1268 td_io_close_file(td, f);
1269 } while (1);
1270}
1271
1272/*
1273 * Get next file to service by doing round robin between all available ones
1274 */
1275static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1276 int badf)
1277{
1278 unsigned int old_next_file = td->next_file;
1279 struct fio_file *f;
1280
1281 do {
1282 int opened = 0;
1283
1284 f = td->files[td->next_file];
1285
1286 td->next_file++;
1287 if (td->next_file >= td->o.nr_files)
1288 td->next_file = 0;
1289
1290 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1291 if (fio_file_done(f)) {
1292 f = NULL;
1293 continue;
1294 }
1295
1296 if (!fio_file_open(f)) {
1297 int err;
1298
1299 if (td->nr_open_files >= td->o.open_files)
1300 return ERR_PTR(-EBUSY);
1301
1302 err = td_io_open_file(td, f);
1303 if (err) {
1304 dprint(FD_FILE, "error %d on open of %s\n",
1305 err, f->file_name);
1306 f = NULL;
1307 continue;
1308 }
1309 opened = 1;
1310 }
1311
1312 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1313 f->flags);
1314 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1315 break;
1316
1317 if (opened)
1318 td_io_close_file(td, f);
1319
1320 f = NULL;
1321 } while (td->next_file != old_next_file);
1322
1323 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1324 return f;
1325}
1326
1327static struct fio_file *__get_next_file(struct thread_data *td)
1328{
1329 struct fio_file *f;
1330
1331 assert(td->o.nr_files <= td->files_index);
1332
1333 if (td->nr_done_files >= td->o.nr_files) {
1334 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1335 " nr_files=%d\n", td->nr_open_files,
1336 td->nr_done_files,
1337 td->o.nr_files);
1338 return NULL;
1339 }
1340
1341 f = td->file_service_file;
1342 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1343 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1344 goto out;
1345 if (td->file_service_left--)
1346 goto out;
1347 }
1348
1349 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1350 td->o.file_service_type == FIO_FSERVICE_SEQ)
1351 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1352 else
1353 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1354
1355 if (IS_ERR(f))
1356 return f;
1357
1358 td->file_service_file = f;
1359 td->file_service_left = td->file_service_nr - 1;
1360out:
1361 if (f)
1362 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1363 else
1364 dprint(FD_FILE, "get_next_file: NULL\n");
1365 return f;
1366}
1367
1368static struct fio_file *get_next_file(struct thread_data *td)
1369{
1370 if (td->flags & TD_F_PROFILE_OPS) {
1371 struct prof_io_ops *ops = &td->prof_io_ops;
1372
1373 if (ops->get_next_file)
1374 return ops->get_next_file(td);
1375 }
1376
1377 return __get_next_file(td);
1378}
1379
1380static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1381{
1382 struct fio_file *f;
1383
1384 do {
1385 f = get_next_file(td);
1386 if (IS_ERR_OR_NULL(f))
1387 return PTR_ERR(f);
1388
1389 io_u->file = f;
1390 get_file(f);
1391
1392 if (!fill_io_u(td, io_u))
1393 break;
1394
1395 put_file_log(td, f);
1396 td_io_close_file(td, f);
1397 io_u->file = NULL;
1398 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1399 fio_file_reset(td, f);
1400 else {
1401 fio_file_set_done(f);
1402 td->nr_done_files++;
1403 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1404 td->nr_done_files, td->o.nr_files);
1405 }
1406 } while (1);
1407
1408 return 0;
1409}
1410
1411static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1412 unsigned long long tnsec, unsigned long long max_nsec)
1413{
1414 if (!td->error)
1415 log_err("fio: latency of %llu nsec exceeds specified max (%llu nsec)\n", tnsec, max_nsec);
1416 td_verror(td, ETIMEDOUT, "max latency exceeded");
1417 icd->error = ETIMEDOUT;
1418}
1419
1420static void lat_new_cycle(struct thread_data *td)
1421{
1422 fio_gettime(&td->latency_ts, NULL);
1423 td->latency_ios = ddir_rw_sum(td->io_blocks);
1424 td->latency_failed = 0;
1425}
1426
1427/*
1428 * We had an IO outside the latency target. Reduce the queue depth. If we
1429 * are at QD=1, then it's time to give up.
1430 */
1431static bool __lat_target_failed(struct thread_data *td)
1432{
1433 if (td->latency_qd == 1)
1434 return true;
1435
1436 td->latency_qd_high = td->latency_qd;
1437
1438 if (td->latency_qd == td->latency_qd_low)
1439 td->latency_qd_low--;
1440
1441 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1442
1443 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1444
1445 /*
1446 * When we ramp QD down, quiesce existing IO to prevent
1447 * a storm of ramp downs due to pending higher depth.
1448 */
1449 io_u_quiesce(td);
1450 lat_new_cycle(td);
1451 return false;
1452}
1453
1454static bool lat_target_failed(struct thread_data *td)
1455{
1456 if (td->o.latency_percentile.u.f == 100.0)
1457 return __lat_target_failed(td);
1458
1459 td->latency_failed++;
1460 return false;
1461}
1462
1463void lat_target_init(struct thread_data *td)
1464{
1465 td->latency_end_run = 0;
1466
1467 if (td->o.latency_target) {
1468 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1469 fio_gettime(&td->latency_ts, NULL);
1470 td->latency_qd = 1;
1471 td->latency_qd_high = td->o.iodepth;
1472 td->latency_qd_low = 1;
1473 td->latency_ios = ddir_rw_sum(td->io_blocks);
1474 } else
1475 td->latency_qd = td->o.iodepth;
1476}
1477
1478void lat_target_reset(struct thread_data *td)
1479{
1480 if (!td->latency_end_run)
1481 lat_target_init(td);
1482}
1483
1484static void lat_target_success(struct thread_data *td)
1485{
1486 const unsigned int qd = td->latency_qd;
1487 struct thread_options *o = &td->o;
1488
1489 td->latency_qd_low = td->latency_qd;
1490
1491 /*
1492 * If we haven't failed yet, we double up to a failing value instead
1493 * of bisecting from highest possible queue depth. If we have set
1494 * a limit other than td->o.iodepth, bisect between that.
1495 */
1496 if (td->latency_qd_high != o->iodepth)
1497 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1498 else
1499 td->latency_qd *= 2;
1500
1501 if (td->latency_qd > o->iodepth)
1502 td->latency_qd = o->iodepth;
1503
1504 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1505
1506 /*
1507 * Same as last one, we are done. Let it run a latency cycle, so
1508 * we get only the results from the targeted depth.
1509 */
1510 if (td->latency_qd == qd) {
1511 if (td->latency_end_run) {
1512 dprint(FD_RATE, "We are done\n");
1513 td->done = 1;
1514 } else {
1515 dprint(FD_RATE, "Quiesce and final run\n");
1516 io_u_quiesce(td);
1517 td->latency_end_run = 1;
1518 reset_all_stats(td);
1519 reset_io_stats(td);
1520 }
1521 }
1522
1523 lat_new_cycle(td);
1524}
1525
1526/*
1527 * Check if we can bump the queue depth
1528 */
1529void lat_target_check(struct thread_data *td)
1530{
1531 uint64_t usec_window;
1532 uint64_t ios;
1533 double success_ios;
1534
1535 usec_window = utime_since_now(&td->latency_ts);
1536 if (usec_window < td->o.latency_window)
1537 return;
1538
1539 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1540 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1541 success_ios *= 100.0;
1542
1543 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1544
1545 if (success_ios >= td->o.latency_percentile.u.f)
1546 lat_target_success(td);
1547 else
1548 __lat_target_failed(td);
1549}
1550
1551/*
1552 * If latency target is enabled, we might be ramping up or down and not
1553 * using the full queue depth available.
1554 */
1555bool queue_full(const struct thread_data *td)
1556{
1557 const int qempty = io_u_qempty(&td->io_u_freelist);
1558
1559 if (qempty)
1560 return true;
1561 if (!td->o.latency_target)
1562 return false;
1563
1564 return td->cur_depth >= td->latency_qd;
1565}
1566
1567struct io_u *__get_io_u(struct thread_data *td)
1568{
1569 struct io_u *io_u = NULL;
1570
1571 if (td->stop_io)
1572 return NULL;
1573
1574 td_io_u_lock(td);
1575
1576again:
1577 if (!io_u_rempty(&td->io_u_requeues))
1578 io_u = io_u_rpop(&td->io_u_requeues);
1579 else if (!queue_full(td)) {
1580 io_u = io_u_qpop(&td->io_u_freelist);
1581
1582 io_u->file = NULL;
1583 io_u->buflen = 0;
1584 io_u->resid = 0;
1585 io_u->end_io = NULL;
1586 }
1587
1588 if (io_u) {
1589 assert(io_u->flags & IO_U_F_FREE);
1590 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1591 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1592 IO_U_F_VER_LIST);
1593
1594 io_u->error = 0;
1595 io_u->acct_ddir = -1;
1596 td->cur_depth++;
1597 assert(!(td->flags & TD_F_CHILD));
1598 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1599 io_u->ipo = NULL;
1600 } else if (td_async_processing(td)) {
1601 /*
1602 * We ran out, wait for async verify threads to finish and
1603 * return one
1604 */
1605 assert(!(td->flags & TD_F_CHILD));
1606 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1607 goto again;
1608 }
1609
1610 td_io_u_unlock(td);
1611 return io_u;
1612}
1613
1614static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1615{
1616 if (!(td->flags & TD_F_TRIM_BACKLOG))
1617 return false;
1618 if (!td->trim_entries)
1619 return false;
1620
1621 if (td->trim_batch) {
1622 td->trim_batch--;
1623 if (get_next_trim(td, io_u))
1624 return true;
1625 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1626 td->last_ddir != DDIR_READ) {
1627 td->trim_batch = td->o.trim_batch;
1628 if (!td->trim_batch)
1629 td->trim_batch = td->o.trim_backlog;
1630 if (get_next_trim(td, io_u))
1631 return true;
1632 }
1633
1634 return false;
1635}
1636
1637static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1638{
1639 if (!(td->flags & TD_F_VER_BACKLOG))
1640 return false;
1641
1642 if (td->io_hist_len) {
1643 int get_verify = 0;
1644
1645 if (td->verify_batch)
1646 get_verify = 1;
1647 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1648 td->last_ddir != DDIR_READ) {
1649 td->verify_batch = td->o.verify_batch;
1650 if (!td->verify_batch)
1651 td->verify_batch = td->o.verify_backlog;
1652 get_verify = 1;
1653 }
1654
1655 if (get_verify && !get_next_verify(td, io_u)) {
1656 td->verify_batch--;
1657 return true;
1658 }
1659 }
1660
1661 return false;
1662}
1663
1664/*
1665 * Fill offset and start time into the buffer content, to prevent too
1666 * easy compressible data for simple de-dupe attempts. Do this for every
1667 * 512b block in the range, since that should be the smallest block size
1668 * we can expect from a device.
1669 */
1670static void small_content_scramble(struct io_u *io_u)
1671{
1672 unsigned int i, nr_blocks = io_u->buflen >> 9;
1673 unsigned int offset;
1674 uint64_t boffset, *iptr;
1675 char *p;
1676
1677 if (!nr_blocks)
1678 return;
1679
1680 p = io_u->xfer_buf;
1681 boffset = io_u->offset;
1682
1683 if (io_u->buf_filled_len)
1684 io_u->buf_filled_len = 0;
1685
1686 /*
1687 * Generate random index between 0..7. We do chunks of 512b, if
1688 * we assume a cacheline is 64 bytes, then we have 8 of those.
1689 * Scramble content within the blocks in the same cacheline to
1690 * speed things up.
1691 */
1692 offset = (io_u->start_time.tv_nsec ^ boffset) & 7;
1693
1694 for (i = 0; i < nr_blocks; i++) {
1695 /*
1696 * Fill offset into start of cacheline, time into end
1697 * of cacheline
1698 */
1699 iptr = (void *) p + (offset << 6);
1700 *iptr = boffset;
1701
1702 iptr = (void *) p + 64 - 2 * sizeof(uint64_t);
1703 iptr[0] = io_u->start_time.tv_sec;
1704 iptr[1] = io_u->start_time.tv_nsec;
1705
1706 p += 512;
1707 boffset += 512;
1708 }
1709}
1710
1711/*
1712 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1713 * etc. The returned io_u is fully ready to be prepped and submitted.
1714 */
1715struct io_u *get_io_u(struct thread_data *td)
1716{
1717 struct fio_file *f;
1718 struct io_u *io_u;
1719 int do_scramble = 0;
1720 long ret = 0;
1721
1722 io_u = __get_io_u(td);
1723 if (!io_u) {
1724 dprint(FD_IO, "__get_io_u failed\n");
1725 return NULL;
1726 }
1727
1728 if (check_get_verify(td, io_u))
1729 goto out;
1730 if (check_get_trim(td, io_u))
1731 goto out;
1732
1733 /*
1734 * from a requeue, io_u already setup
1735 */
1736 if (io_u->file)
1737 goto out;
1738
1739 /*
1740 * If using an iolog, grab next piece if any available.
1741 */
1742 if (td->flags & TD_F_READ_IOLOG) {
1743 if (read_iolog_get(td, io_u))
1744 goto err_put;
1745 } else if (set_io_u_file(td, io_u)) {
1746 ret = -EBUSY;
1747 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1748 goto err_put;
1749 }
1750
1751 f = io_u->file;
1752 if (!f) {
1753 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1754 goto err_put;
1755 }
1756
1757 assert(fio_file_open(f));
1758
1759 if (ddir_rw(io_u->ddir)) {
1760 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1761 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1762 goto err_put;
1763 }
1764
1765 f->last_start[io_u->ddir] = io_u->offset;
1766 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1767
1768 if (io_u->ddir == DDIR_WRITE) {
1769 if (td->flags & TD_F_REFILL_BUFFERS) {
1770 io_u_fill_buffer(td, io_u,
1771 td->o.min_bs[DDIR_WRITE],
1772 io_u->buflen);
1773 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1774 !(td->flags & TD_F_COMPRESS))
1775 do_scramble = 1;
1776 if (td->flags & TD_F_VER_NONE) {
1777 populate_verify_io_u(td, io_u);
1778 do_scramble = 0;
1779 }
1780 } else if (io_u->ddir == DDIR_READ) {
1781 /*
1782 * Reset the buf_filled parameters so next time if the
1783 * buffer is used for writes it is refilled.
1784 */
1785 io_u->buf_filled_len = 0;
1786 }
1787 }
1788
1789 /*
1790 * Set io data pointers.
1791 */
1792 io_u->xfer_buf = io_u->buf;
1793 io_u->xfer_buflen = io_u->buflen;
1794
1795out:
1796 assert(io_u->file);
1797 if (!td_io_prep(td, io_u)) {
1798 if (!td->o.disable_lat)
1799 fio_gettime(&io_u->start_time, NULL);
1800
1801 if (do_scramble)
1802 small_content_scramble(io_u);
1803
1804 return io_u;
1805 }
1806err_put:
1807 dprint(FD_IO, "get_io_u failed\n");
1808 put_io_u(td, io_u);
1809 return ERR_PTR(ret);
1810}
1811
1812static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1813{
1814 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1815
1816 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1817 return;
1818
1819 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1820 io_u->file ? " on file " : "",
1821 io_u->file ? io_u->file->file_name : "",
1822 strerror(io_u->error),
1823 io_ddir_name(io_u->ddir),
1824 io_u->offset, io_u->xfer_buflen);
1825
1826 if (td->io_ops->errdetails) {
1827 char *err = td->io_ops->errdetails(io_u);
1828
1829 log_err("fio: %s\n", err);
1830 free(err);
1831 }
1832
1833 if (!td->error)
1834 td_verror(td, io_u->error, "io_u error");
1835}
1836
1837void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1838{
1839 __io_u_log_error(td, io_u);
1840 if (td->parent)
1841 __io_u_log_error(td->parent, io_u);
1842}
1843
1844static inline bool gtod_reduce(struct thread_data *td)
1845{
1846 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1847 || td->o.gtod_reduce;
1848}
1849
1850static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1851 struct io_completion_data *icd,
1852 const enum fio_ddir idx, unsigned int bytes)
1853{
1854 const int no_reduce = !gtod_reduce(td);
1855 unsigned long long llnsec = 0;
1856
1857 if (td->parent)
1858 td = td->parent;
1859
1860 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1861 return;
1862
1863 if (no_reduce)
1864 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1865
1866 if (!td->o.disable_lat) {
1867 unsigned long long tnsec;
1868
1869 tnsec = ntime_since(&io_u->start_time, &icd->time);
1870 add_lat_sample(td, idx, tnsec, bytes, io_u->offset);
1871
1872 if (td->flags & TD_F_PROFILE_OPS) {
1873 struct prof_io_ops *ops = &td->prof_io_ops;
1874
1875 if (ops->io_u_lat)
1876 icd->error = ops->io_u_lat(td, tnsec);
1877 }
1878
1879 if (td->o.max_latency && tnsec > td->o.max_latency)
1880 lat_fatal(td, icd, tnsec, td->o.max_latency);
1881 if (td->o.latency_target && tnsec > td->o.latency_target) {
1882 if (lat_target_failed(td))
1883 lat_fatal(td, icd, tnsec, td->o.latency_target);
1884 }
1885 }
1886
1887 if (ddir_rw(idx)) {
1888 if (!td->o.disable_clat) {
1889 add_clat_sample(td, idx, llnsec, bytes, io_u->offset);
1890 io_u_mark_latency(td, llnsec);
1891 }
1892
1893 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1894 add_bw_sample(td, io_u, bytes, llnsec);
1895
1896 if (no_reduce && per_unit_log(td->iops_log))
1897 add_iops_sample(td, io_u, bytes);
1898 }
1899
1900 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1901 uint32_t *info = io_u_block_info(td, io_u);
1902 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1903 if (io_u->ddir == DDIR_TRIM) {
1904 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1905 BLOCK_INFO_TRIMS(*info) + 1);
1906 } else if (io_u->ddir == DDIR_WRITE) {
1907 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1908 *info);
1909 }
1910 }
1911 }
1912}
1913
1914static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1915 uint64_t offset, unsigned int bytes)
1916{
1917 int idx;
1918
1919 if (!f)
1920 return;
1921
1922 if (f->first_write == -1ULL || offset < f->first_write)
1923 f->first_write = offset;
1924 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1925 f->last_write = offset + bytes;
1926
1927 if (!f->last_write_comp)
1928 return;
1929
1930 idx = f->last_write_idx++;
1931 f->last_write_comp[idx] = offset;
1932 if (f->last_write_idx == td->o.iodepth)
1933 f->last_write_idx = 0;
1934}
1935
1936static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1937 struct io_completion_data *icd)
1938{
1939 struct io_u *io_u = *io_u_ptr;
1940 enum fio_ddir ddir = io_u->ddir;
1941 struct fio_file *f = io_u->file;
1942
1943 dprint_io_u(io_u, "io complete");
1944
1945 assert(io_u->flags & IO_U_F_FLIGHT);
1946 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1947
1948 /*
1949 * Mark IO ok to verify
1950 */
1951 if (io_u->ipo) {
1952 /*
1953 * Remove errored entry from the verification list
1954 */
1955 if (io_u->error)
1956 unlog_io_piece(td, io_u);
1957 else {
1958 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1959 write_barrier();
1960 }
1961 }
1962
1963 if (ddir_sync(ddir)) {
1964 td->last_was_sync = 1;
1965 if (f) {
1966 f->first_write = -1ULL;
1967 f->last_write = -1ULL;
1968 }
1969 return;
1970 }
1971
1972 td->last_was_sync = 0;
1973 td->last_ddir = ddir;
1974
1975 if (!io_u->error && ddir_rw(ddir)) {
1976 unsigned int bytes = io_u->buflen - io_u->resid;
1977 int ret;
1978
1979 td->io_blocks[ddir]++;
1980 td->io_bytes[ddir] += bytes;
1981
1982 if (!(io_u->flags & IO_U_F_VER_LIST)) {
1983 td->this_io_blocks[ddir]++;
1984 td->this_io_bytes[ddir] += bytes;
1985 }
1986
1987 if (ddir == DDIR_WRITE)
1988 file_log_write_comp(td, f, io_u->offset, bytes);
1989
1990 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1991 td->runstate == TD_VERIFYING))
1992 account_io_completion(td, io_u, icd, ddir, bytes);
1993
1994 icd->bytes_done[ddir] += bytes;
1995
1996 if (io_u->end_io) {
1997 ret = io_u->end_io(td, io_u_ptr);
1998 io_u = *io_u_ptr;
1999 if (ret && !icd->error)
2000 icd->error = ret;
2001 }
2002 } else if (io_u->error) {
2003 icd->error = io_u->error;
2004 io_u_log_error(td, io_u);
2005 }
2006 if (icd->error) {
2007 enum error_type_bit eb = td_error_type(ddir, icd->error);
2008
2009 if (!td_non_fatal_error(td, eb, icd->error))
2010 return;
2011
2012 /*
2013 * If there is a non_fatal error, then add to the error count
2014 * and clear all the errors.
2015 */
2016 update_error_count(td, icd->error);
2017 td_clear_error(td);
2018 icd->error = 0;
2019 if (io_u)
2020 io_u->error = 0;
2021 }
2022}
2023
2024static void init_icd(struct thread_data *td, struct io_completion_data *icd,
2025 int nr)
2026{
2027 int ddir;
2028
2029 if (!gtod_reduce(td))
2030 fio_gettime(&icd->time, NULL);
2031
2032 icd->nr = nr;
2033
2034 icd->error = 0;
2035 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2036 icd->bytes_done[ddir] = 0;
2037}
2038
2039static void ios_completed(struct thread_data *td,
2040 struct io_completion_data *icd)
2041{
2042 struct io_u *io_u;
2043 int i;
2044
2045 for (i = 0; i < icd->nr; i++) {
2046 io_u = td->io_ops->event(td, i);
2047
2048 io_completed(td, &io_u, icd);
2049
2050 if (io_u)
2051 put_io_u(td, io_u);
2052 }
2053}
2054
2055/*
2056 * Complete a single io_u for the sync engines.
2057 */
2058int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
2059{
2060 struct io_completion_data icd;
2061 int ddir;
2062
2063 init_icd(td, &icd, 1);
2064 io_completed(td, &io_u, &icd);
2065
2066 if (io_u)
2067 put_io_u(td, io_u);
2068
2069 if (icd.error) {
2070 td_verror(td, icd.error, "io_u_sync_complete");
2071 return -1;
2072 }
2073
2074 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2075 td->bytes_done[ddir] += icd.bytes_done[ddir];
2076
2077 return 0;
2078}
2079
2080/*
2081 * Called to complete min_events number of io for the async engines.
2082 */
2083int io_u_queued_complete(struct thread_data *td, int min_evts)
2084{
2085 struct io_completion_data icd;
2086 struct timespec *tvp = NULL;
2087 int ret, ddir;
2088 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2089
2090 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2091
2092 if (!min_evts)
2093 tvp = &ts;
2094 else if (min_evts > td->cur_depth)
2095 min_evts = td->cur_depth;
2096
2097 /* No worries, td_io_getevents fixes min and max if they are
2098 * set incorrectly */
2099 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2100 if (ret < 0) {
2101 td_verror(td, -ret, "td_io_getevents");
2102 return ret;
2103 } else if (!ret)
2104 return ret;
2105
2106 init_icd(td, &icd, ret);
2107 ios_completed(td, &icd);
2108 if (icd.error) {
2109 td_verror(td, icd.error, "io_u_queued_complete");
2110 return -1;
2111 }
2112
2113 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2114 td->bytes_done[ddir] += icd.bytes_done[ddir];
2115
2116 return ret;
2117}
2118
2119/*
2120 * Call when io_u is really queued, to update the submission latency.
2121 */
2122void io_u_queued(struct thread_data *td, struct io_u *io_u)
2123{
2124 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2125 unsigned long slat_time;
2126
2127 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2128
2129 if (td->parent)
2130 td = td->parent;
2131
2132 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2133 io_u->offset);
2134 }
2135}
2136
2137/*
2138 * See if we should reuse the last seed, if dedupe is enabled
2139 */
2140static struct frand_state *get_buf_state(struct thread_data *td)
2141{
2142 unsigned int v;
2143
2144 if (!td->o.dedupe_percentage)
2145 return &td->buf_state;
2146 else if (td->o.dedupe_percentage == 100) {
2147 frand_copy(&td->buf_state_prev, &td->buf_state);
2148 return &td->buf_state;
2149 }
2150
2151 v = rand32_between(&td->dedupe_state, 1, 100);
2152
2153 if (v <= td->o.dedupe_percentage)
2154 return &td->buf_state_prev;
2155
2156 return &td->buf_state;
2157}
2158
2159static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2160{
2161 if (td->o.dedupe_percentage == 100)
2162 frand_copy(rs, &td->buf_state_prev);
2163 else if (rs == &td->buf_state)
2164 frand_copy(&td->buf_state_prev, rs);
2165}
2166
2167void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2168 unsigned int max_bs)
2169{
2170 struct thread_options *o = &td->o;
2171
2172 if (o->mem_type == MEM_CUDA_MALLOC)
2173 return;
2174
2175 if (o->compress_percentage || o->dedupe_percentage) {
2176 unsigned int perc = td->o.compress_percentage;
2177 struct frand_state *rs;
2178 unsigned int left = max_bs;
2179 unsigned int this_write;
2180
2181 do {
2182 rs = get_buf_state(td);
2183
2184 min_write = min(min_write, left);
2185
2186 if (perc) {
2187 this_write = min_not_zero(min_write,
2188 td->o.compress_chunk);
2189
2190 fill_random_buf_percentage(rs, buf, perc,
2191 this_write, this_write,
2192 o->buffer_pattern,
2193 o->buffer_pattern_bytes);
2194 } else {
2195 fill_random_buf(rs, buf, min_write);
2196 this_write = min_write;
2197 }
2198
2199 buf += this_write;
2200 left -= this_write;
2201 save_buf_state(td, rs);
2202 } while (left);
2203 } else if (o->buffer_pattern_bytes)
2204 fill_buffer_pattern(td, buf, max_bs);
2205 else if (o->zero_buffers)
2206 memset(buf, 0, max_bs);
2207 else
2208 fill_random_buf(get_buf_state(td), buf, max_bs);
2209}
2210
2211/*
2212 * "randomly" fill the buffer contents
2213 */
2214void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2215 unsigned int min_write, unsigned int max_bs)
2216{
2217 io_u->buf_filled_len = 0;
2218 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2219}
2220
2221static int do_sync_file_range(const struct thread_data *td,
2222 struct fio_file *f)
2223{
2224 off64_t offset, nbytes;
2225
2226 offset = f->first_write;
2227 nbytes = f->last_write - f->first_write;
2228
2229 if (!nbytes)
2230 return 0;
2231
2232 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2233}
2234
2235int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2236{
2237 int ret;
2238
2239 if (io_u->ddir == DDIR_SYNC) {
2240 ret = fsync(io_u->file->fd);
2241 } else if (io_u->ddir == DDIR_DATASYNC) {
2242#ifdef CONFIG_FDATASYNC
2243 ret = fdatasync(io_u->file->fd);
2244#else
2245 ret = io_u->xfer_buflen;
2246 io_u->error = EINVAL;
2247#endif
2248 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2249 ret = do_sync_file_range(td, io_u->file);
2250 else {
2251 ret = io_u->xfer_buflen;
2252 io_u->error = EINVAL;
2253 }
2254
2255 if (ret < 0)
2256 io_u->error = errno;
2257
2258 return ret;
2259}
2260
2261int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2262{
2263#ifndef FIO_HAVE_TRIM
2264 io_u->error = EINVAL;
2265 return 0;
2266#else
2267 struct fio_file *f = io_u->file;
2268 int ret;
2269
2270 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2271 if (!ret)
2272 return io_u->xfer_buflen;
2273
2274 io_u->error = ret;
2275 return 0;
2276#endif
2277}