Fix segfault with verify_async
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13
14struct io_completion_data {
15 int nr; /* input */
16 int account; /* input */
17
18 int error; /* output */
19 unsigned long bytes_done[2]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->file_map[] contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const unsigned long long block)
28{
29 unsigned int idx = RAND_MAP_IDX(f, block);
30 unsigned int bit = RAND_MAP_BIT(f, block);
31
32 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
33
34 return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct io_u *io_u)
41{
42 unsigned int min_bs = td->o.rw_min_bs;
43 struct fio_file *f = io_u->file;
44 unsigned long long block;
45 unsigned int blocks, nr_blocks;
46 int busy_check;
47
48 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
49 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
50 blocks = 0;
51 busy_check = !(io_u->flags & IO_U_F_BUSY_OK);
52
53 while (nr_blocks) {
54 unsigned int idx, bit;
55 unsigned long mask, this_blocks;
56
57 /*
58 * If we have a mixed random workload, we may
59 * encounter blocks we already did IO to.
60 */
61 if (!busy_check) {
62 blocks = nr_blocks;
63 break;
64 }
65 if ((td->o.ddir_seq_nr == 1) && !random_map_free(f, block))
66 break;
67
68 idx = RAND_MAP_IDX(f, block);
69 bit = RAND_MAP_BIT(f, block);
70
71 fio_assert(td, idx < f->num_maps);
72
73 this_blocks = nr_blocks;
74 if (this_blocks + bit > BLOCKS_PER_MAP)
75 this_blocks = BLOCKS_PER_MAP - bit;
76
77 do {
78 if (this_blocks == BLOCKS_PER_MAP)
79 mask = -1UL;
80 else
81 mask = ((1UL << this_blocks) - 1) << bit;
82
83 if (!(f->file_map[idx] & mask))
84 break;
85
86 this_blocks--;
87 } while (this_blocks);
88
89 if (!this_blocks)
90 break;
91
92 f->file_map[idx] |= mask;
93 nr_blocks -= this_blocks;
94 blocks += this_blocks;
95 block += this_blocks;
96 }
97
98 if ((blocks * min_bs) < io_u->buflen)
99 io_u->buflen = blocks * min_bs;
100}
101
102static unsigned long long last_block(struct thread_data *td, struct fio_file *f,
103 enum fio_ddir ddir)
104{
105 unsigned long long max_blocks;
106 unsigned long long max_size;
107
108 assert(ddir_rw(ddir));
109
110 /*
111 * Hmm, should we make sure that ->io_size <= ->real_file_size?
112 */
113 max_size = f->io_size;
114 if (max_size > f->real_file_size)
115 max_size = f->real_file_size;
116
117 max_blocks = max_size / (unsigned long long) td->o.ba[ddir];
118 if (!max_blocks)
119 return 0;
120
121 return max_blocks;
122}
123
124/*
125 * Return the next free block in the map.
126 */
127static int get_next_free_block(struct thread_data *td, struct fio_file *f,
128 enum fio_ddir ddir, unsigned long long *b)
129{
130 unsigned long long block, min_bs = td->o.rw_min_bs, lastb;
131 int i;
132
133 lastb = last_block(td, f, ddir);
134 if (!lastb)
135 return 1;
136
137 i = f->last_free_lookup;
138 block = i * BLOCKS_PER_MAP;
139 while (block * min_bs < f->real_file_size &&
140 block * min_bs < f->io_size) {
141 if (f->file_map[i] != -1UL) {
142 block += ffz(f->file_map[i]);
143 if (block > lastb)
144 break;
145 f->last_free_lookup = i;
146 *b = block;
147 return 0;
148 }
149
150 block += BLOCKS_PER_MAP;
151 i++;
152 }
153
154 dprint(FD_IO, "failed finding a free block\n");
155 return 1;
156}
157
158static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
159 enum fio_ddir ddir, unsigned long long *b)
160{
161 unsigned long long rmax, r, lastb;
162 int loops = 5;
163
164 lastb = last_block(td, f, ddir);
165 if (!lastb)
166 return 1;
167
168 if (f->failed_rands >= 200)
169 goto ffz;
170
171 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
172 do {
173 if (td->o.use_os_rand)
174 r = os_random_long(&td->random_state);
175 else
176 r = __rand(&td->__random_state);
177
178 *b = (lastb - 1) * (r / ((unsigned long long) rmax + 1.0));
179
180 dprint(FD_RANDOM, "off rand %llu\n", r);
181
182
183 /*
184 * if we are not maintaining a random map, we are done.
185 */
186 if (!file_randommap(td, f))
187 goto ret_good;
188
189 /*
190 * calculate map offset and check if it's free
191 */
192 if (random_map_free(f, *b))
193 goto ret_good;
194
195 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
196 *b);
197 } while (--loops);
198
199 if (!f->failed_rands++)
200 f->last_free_lookup = 0;
201
202 /*
203 * we get here, if we didn't suceed in looking up a block. generate
204 * a random start offset into the filemap, and find the first free
205 * block from there.
206 */
207 loops = 10;
208 do {
209 f->last_free_lookup = (f->num_maps - 1) *
210 (r / ((unsigned long long) rmax + 1.0));
211 if (!get_next_free_block(td, f, ddir, b))
212 goto ret;
213
214 if (td->o.use_os_rand)
215 r = os_random_long(&td->random_state);
216 else
217 r = __rand(&td->__random_state);
218 } while (--loops);
219
220 /*
221 * that didn't work either, try exhaustive search from the start
222 */
223 f->last_free_lookup = 0;
224ffz:
225 if (!get_next_free_block(td, f, ddir, b))
226 return 0;
227 f->last_free_lookup = 0;
228 return get_next_free_block(td, f, ddir, b);
229ret_good:
230 f->failed_rands = 0;
231ret:
232 return 0;
233}
234
235static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
236 enum fio_ddir ddir, unsigned long long *b)
237{
238 if (get_next_rand_offset(td, f, ddir, b)) {
239 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
240 f->file_name, f->last_pos, f->real_file_size);
241 return 1;
242 }
243
244 return 0;
245}
246
247static int get_next_seq_block(struct thread_data *td, struct fio_file *f,
248 enum fio_ddir ddir, unsigned long long *b)
249{
250 assert(ddir_rw(ddir));
251
252 if (f->last_pos < f->real_file_size) {
253 unsigned long long pos;
254
255 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
256 f->last_pos = f->real_file_size;
257
258 pos = f->last_pos - f->file_offset;
259 if (pos)
260 pos += td->o.ddir_seq_add;
261
262 *b = pos / td->o.min_bs[ddir];
263 return 0;
264 }
265
266 return 1;
267}
268
269static int get_next_block(struct thread_data *td, struct io_u *io_u,
270 enum fio_ddir ddir, int rw_seq, unsigned long long *b)
271{
272 struct fio_file *f = io_u->file;
273 int ret;
274
275 assert(ddir_rw(ddir));
276
277 if (rw_seq) {
278 if (td_random(td))
279 ret = get_next_rand_block(td, f, ddir, b);
280 else
281 ret = get_next_seq_block(td, f, ddir, b);
282 } else {
283 io_u->flags |= IO_U_F_BUSY_OK;
284
285 if (td->o.rw_seq == RW_SEQ_SEQ) {
286 ret = get_next_seq_block(td, f, ddir, b);
287 if (ret)
288 ret = get_next_rand_block(td, f, ddir, b);
289 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
290 if (f->last_start != -1ULL)
291 *b = (f->last_start - f->file_offset)
292 / td->o.min_bs[ddir];
293 else
294 *b = 0;
295 ret = 0;
296 } else {
297 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
298 ret = 1;
299 }
300 }
301
302 return ret;
303}
304
305/*
306 * For random io, generate a random new block and see if it's used. Repeat
307 * until we find a free one. For sequential io, just return the end of
308 * the last io issued.
309 */
310static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
311{
312 struct fio_file *f = io_u->file;
313 unsigned long long b;
314 enum fio_ddir ddir = io_u->ddir;
315 int rw_seq_hit = 0;
316
317 assert(ddir_rw(ddir));
318
319 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
320 rw_seq_hit = 1;
321 td->ddir_seq_nr = td->o.ddir_seq_nr;
322 }
323
324 if (get_next_block(td, io_u, ddir, rw_seq_hit, &b))
325 return 1;
326
327 io_u->offset = b * td->o.ba[ddir];
328 if (io_u->offset >= f->io_size) {
329 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
330 io_u->offset, f->io_size);
331 return 1;
332 }
333
334 io_u->offset += f->file_offset;
335 if (io_u->offset >= f->real_file_size) {
336 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
337 io_u->offset, f->real_file_size);
338 return 1;
339 }
340
341 return 0;
342}
343
344static int get_next_offset(struct thread_data *td, struct io_u *io_u)
345{
346 struct prof_io_ops *ops = &td->prof_io_ops;
347
348 if (ops->fill_io_u_off)
349 return ops->fill_io_u_off(td, io_u);
350
351 return __get_next_offset(td, io_u);
352}
353
354static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
355 unsigned int buflen)
356{
357 struct fio_file *f = io_u->file;
358
359 return io_u->offset + buflen <= f->io_size + td->o.start_offset;
360}
361
362static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
363{
364 const int ddir = io_u->ddir;
365 unsigned int uninitialized_var(buflen);
366 unsigned int minbs, maxbs;
367 unsigned long r, rand_max;
368
369 assert(ddir_rw(ddir));
370
371 minbs = td->o.min_bs[ddir];
372 maxbs = td->o.max_bs[ddir];
373
374 if (minbs == maxbs)
375 return minbs;
376
377 if (td->o.use_os_rand)
378 rand_max = OS_RAND_MAX;
379 else
380 rand_max = FRAND_MAX;
381
382 do {
383 if (td->o.use_os_rand)
384 r = os_random_long(&td->bsrange_state);
385 else
386 r = __rand(&td->__bsrange_state);
387
388 if (!td->o.bssplit_nr[ddir]) {
389 buflen = 1 + (unsigned int) ((double) maxbs *
390 (r / (rand_max + 1.0)));
391 if (buflen < minbs)
392 buflen = minbs;
393 } else {
394 long perc = 0;
395 unsigned int i;
396
397 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
398 struct bssplit *bsp = &td->o.bssplit[ddir][i];
399
400 buflen = bsp->bs;
401 perc += bsp->perc;
402 if ((r <= ((rand_max / 100L) * perc)) &&
403 io_u_fits(td, io_u, buflen))
404 break;
405 }
406 }
407
408 if (!td->o.bs_unaligned && is_power_of_2(minbs))
409 buflen = (buflen + minbs - 1) & ~(minbs - 1);
410
411 } while (!io_u_fits(td, io_u, buflen));
412
413 return buflen;
414}
415
416static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
417{
418 struct prof_io_ops *ops = &td->prof_io_ops;
419
420 if (ops->fill_io_u_size)
421 return ops->fill_io_u_size(td, io_u);
422
423 return __get_next_buflen(td, io_u);
424}
425
426static void set_rwmix_bytes(struct thread_data *td)
427{
428 unsigned int diff;
429
430 /*
431 * we do time or byte based switch. this is needed because
432 * buffered writes may issue a lot quicker than they complete,
433 * whereas reads do not.
434 */
435 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
436 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
437}
438
439static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
440{
441 unsigned int v;
442 unsigned long r;
443
444 if (td->o.use_os_rand) {
445 r = os_random_long(&td->rwmix_state);
446 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
447 } else {
448 r = __rand(&td->__rwmix_state);
449 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
450 }
451
452 if (v <= td->o.rwmix[DDIR_READ])
453 return DDIR_READ;
454
455 return DDIR_WRITE;
456}
457
458static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
459{
460 enum fio_ddir odir = ddir ^ 1;
461 struct timeval t;
462 long usec;
463
464 assert(ddir_rw(ddir));
465
466 if (td->rate_pending_usleep[ddir] <= 0)
467 return ddir;
468
469 /*
470 * We have too much pending sleep in this direction. See if we
471 * should switch.
472 */
473 if (td_rw(td)) {
474 /*
475 * Other direction does not have too much pending, switch
476 */
477 if (td->rate_pending_usleep[odir] < 100000)
478 return odir;
479
480 /*
481 * Both directions have pending sleep. Sleep the minimum time
482 * and deduct from both.
483 */
484 if (td->rate_pending_usleep[ddir] <=
485 td->rate_pending_usleep[odir]) {
486 usec = td->rate_pending_usleep[ddir];
487 } else {
488 usec = td->rate_pending_usleep[odir];
489 ddir = odir;
490 }
491 } else
492 usec = td->rate_pending_usleep[ddir];
493
494 /*
495 * We are going to sleep, ensure that we flush anything pending as
496 * not to skew our latency numbers
497 */
498 if (td->cur_depth) {
499 int fio_unused ret;
500
501 ret = io_u_queued_complete(td, td->cur_depth, NULL);
502 }
503
504 fio_gettime(&t, NULL);
505 usec_sleep(td, usec);
506 usec = utime_since_now(&t);
507
508 td->rate_pending_usleep[ddir] -= usec;
509
510 odir = ddir ^ 1;
511 if (td_rw(td) && __should_check_rate(td, odir))
512 td->rate_pending_usleep[odir] -= usec;
513
514 return ddir;
515}
516
517/*
518 * Return the data direction for the next io_u. If the job is a
519 * mixed read/write workload, check the rwmix cycle and switch if
520 * necessary.
521 */
522static enum fio_ddir get_rw_ddir(struct thread_data *td)
523{
524 enum fio_ddir ddir;
525
526 /*
527 * see if it's time to fsync
528 */
529 if (td->o.fsync_blocks &&
530 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
531 td->io_issues[DDIR_WRITE] && should_fsync(td))
532 return DDIR_SYNC;
533
534 /*
535 * see if it's time to fdatasync
536 */
537 if (td->o.fdatasync_blocks &&
538 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
539 td->io_issues[DDIR_WRITE] && should_fsync(td))
540 return DDIR_DATASYNC;
541
542 /*
543 * see if it's time to sync_file_range
544 */
545 if (td->sync_file_range_nr &&
546 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
547 td->io_issues[DDIR_WRITE] && should_fsync(td))
548 return DDIR_SYNC_FILE_RANGE;
549
550 if (td_rw(td)) {
551 /*
552 * Check if it's time to seed a new data direction.
553 */
554 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
555 /*
556 * Put a top limit on how many bytes we do for
557 * one data direction, to avoid overflowing the
558 * ranges too much
559 */
560 ddir = get_rand_ddir(td);
561
562 if (ddir != td->rwmix_ddir)
563 set_rwmix_bytes(td);
564
565 td->rwmix_ddir = ddir;
566 }
567 ddir = td->rwmix_ddir;
568 } else if (td_read(td))
569 ddir = DDIR_READ;
570 else
571 ddir = DDIR_WRITE;
572
573 td->rwmix_ddir = rate_ddir(td, ddir);
574 return td->rwmix_ddir;
575}
576
577static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
578{
579 io_u->ddir = get_rw_ddir(td);
580
581 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
582 td->o.barrier_blocks &&
583 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
584 td->io_issues[DDIR_WRITE])
585 io_u->flags |= IO_U_F_BARRIER;
586}
587
588void put_file_log(struct thread_data *td, struct fio_file *f)
589{
590 int ret = put_file(td, f);
591
592 if (ret)
593 td_verror(td, ret, "file close");
594}
595
596void put_io_u(struct thread_data *td, struct io_u *io_u)
597{
598 td_io_u_lock(td);
599
600 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
601 put_file_log(td, io_u->file);
602 io_u->file = NULL;
603 io_u->flags &= ~IO_U_F_FREE_DEF;
604 io_u->flags |= IO_U_F_FREE;
605
606 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
607 td->cur_depth--;
608 flist_del_init(&io_u->list);
609 flist_add(&io_u->list, &td->io_u_freelist);
610 td_io_u_unlock(td);
611 td_io_u_free_notify(td);
612}
613
614void clear_io_u(struct thread_data *td, struct io_u *io_u)
615{
616 io_u->flags &= ~IO_U_F_FLIGHT;
617 put_io_u(td, io_u);
618}
619
620void requeue_io_u(struct thread_data *td, struct io_u **io_u)
621{
622 struct io_u *__io_u = *io_u;
623
624 dprint(FD_IO, "requeue %p\n", __io_u);
625
626 td_io_u_lock(td);
627
628 __io_u->flags |= IO_U_F_FREE;
629 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir))
630 td->io_issues[__io_u->ddir]--;
631
632 __io_u->flags &= ~IO_U_F_FLIGHT;
633 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
634 td->cur_depth--;
635 flist_del(&__io_u->list);
636 flist_add_tail(&__io_u->list, &td->io_u_requeues);
637 td_io_u_unlock(td);
638 *io_u = NULL;
639}
640
641static int fill_io_u(struct thread_data *td, struct io_u *io_u)
642{
643 if (td->io_ops->flags & FIO_NOIO)
644 goto out;
645
646 set_rw_ddir(td, io_u);
647
648 /*
649 * fsync() or fdatasync() or trim etc, we are done
650 */
651 if (!ddir_rw(io_u->ddir))
652 goto out;
653
654 /*
655 * See if it's time to switch to a new zone
656 */
657 if (td->zone_bytes >= td->o.zone_size) {
658 td->zone_bytes = 0;
659 io_u->file->last_pos += td->o.zone_skip;
660 td->io_skip_bytes += td->o.zone_skip;
661 }
662
663 /*
664 * No log, let the seq/rand engine retrieve the next buflen and
665 * position.
666 */
667 if (get_next_offset(td, io_u)) {
668 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
669 return 1;
670 }
671
672 io_u->buflen = get_next_buflen(td, io_u);
673 if (!io_u->buflen) {
674 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
675 return 1;
676 }
677
678 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
679 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
680 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
681 io_u->buflen, io_u->file->real_file_size);
682 return 1;
683 }
684
685 /*
686 * mark entry before potentially trimming io_u
687 */
688 if (td_random(td) && file_randommap(td, io_u->file))
689 mark_random_map(td, io_u);
690
691 /*
692 * If using a write iolog, store this entry.
693 */
694out:
695 dprint_io_u(io_u, "fill_io_u");
696 td->zone_bytes += io_u->buflen;
697 log_io_u(td, io_u);
698 return 0;
699}
700
701static void __io_u_mark_map(unsigned int *map, unsigned int nr)
702{
703 int idx = 0;
704
705 switch (nr) {
706 default:
707 idx = 6;
708 break;
709 case 33 ... 64:
710 idx = 5;
711 break;
712 case 17 ... 32:
713 idx = 4;
714 break;
715 case 9 ... 16:
716 idx = 3;
717 break;
718 case 5 ... 8:
719 idx = 2;
720 break;
721 case 1 ... 4:
722 idx = 1;
723 case 0:
724 break;
725 }
726
727 map[idx]++;
728}
729
730void io_u_mark_submit(struct thread_data *td, unsigned int nr)
731{
732 __io_u_mark_map(td->ts.io_u_submit, nr);
733 td->ts.total_submit++;
734}
735
736void io_u_mark_complete(struct thread_data *td, unsigned int nr)
737{
738 __io_u_mark_map(td->ts.io_u_complete, nr);
739 td->ts.total_complete++;
740}
741
742void io_u_mark_depth(struct thread_data *td, unsigned int nr)
743{
744 int idx = 0;
745
746 switch (td->cur_depth) {
747 default:
748 idx = 6;
749 break;
750 case 32 ... 63:
751 idx = 5;
752 break;
753 case 16 ... 31:
754 idx = 4;
755 break;
756 case 8 ... 15:
757 idx = 3;
758 break;
759 case 4 ... 7:
760 idx = 2;
761 break;
762 case 2 ... 3:
763 idx = 1;
764 case 1:
765 break;
766 }
767
768 td->ts.io_u_map[idx] += nr;
769}
770
771static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
772{
773 int idx = 0;
774
775 assert(usec < 1000);
776
777 switch (usec) {
778 case 750 ... 999:
779 idx = 9;
780 break;
781 case 500 ... 749:
782 idx = 8;
783 break;
784 case 250 ... 499:
785 idx = 7;
786 break;
787 case 100 ... 249:
788 idx = 6;
789 break;
790 case 50 ... 99:
791 idx = 5;
792 break;
793 case 20 ... 49:
794 idx = 4;
795 break;
796 case 10 ... 19:
797 idx = 3;
798 break;
799 case 4 ... 9:
800 idx = 2;
801 break;
802 case 2 ... 3:
803 idx = 1;
804 case 0 ... 1:
805 break;
806 }
807
808 assert(idx < FIO_IO_U_LAT_U_NR);
809 td->ts.io_u_lat_u[idx]++;
810}
811
812static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
813{
814 int idx = 0;
815
816 switch (msec) {
817 default:
818 idx = 11;
819 break;
820 case 1000 ... 1999:
821 idx = 10;
822 break;
823 case 750 ... 999:
824 idx = 9;
825 break;
826 case 500 ... 749:
827 idx = 8;
828 break;
829 case 250 ... 499:
830 idx = 7;
831 break;
832 case 100 ... 249:
833 idx = 6;
834 break;
835 case 50 ... 99:
836 idx = 5;
837 break;
838 case 20 ... 49:
839 idx = 4;
840 break;
841 case 10 ... 19:
842 idx = 3;
843 break;
844 case 4 ... 9:
845 idx = 2;
846 break;
847 case 2 ... 3:
848 idx = 1;
849 case 0 ... 1:
850 break;
851 }
852
853 assert(idx < FIO_IO_U_LAT_M_NR);
854 td->ts.io_u_lat_m[idx]++;
855}
856
857static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
858{
859 if (usec < 1000)
860 io_u_mark_lat_usec(td, usec);
861 else
862 io_u_mark_lat_msec(td, usec / 1000);
863}
864
865/*
866 * Get next file to service by choosing one at random
867 */
868static struct fio_file *get_next_file_rand(struct thread_data *td,
869 enum fio_file_flags goodf,
870 enum fio_file_flags badf)
871{
872 struct fio_file *f;
873 int fno;
874
875 do {
876 int opened = 0;
877 unsigned long r;
878
879 if (td->o.use_os_rand) {
880 r = os_random_long(&td->next_file_state);
881 fno = (unsigned int) ((double) td->o.nr_files
882 * (r / (OS_RAND_MAX + 1.0)));
883 } else {
884 r = __rand(&td->__next_file_state);
885 fno = (unsigned int) ((double) td->o.nr_files
886 * (r / (FRAND_MAX + 1.0)));
887 }
888
889 f = td->files[fno];
890 if (fio_file_done(f))
891 continue;
892
893 if (!fio_file_open(f)) {
894 int err;
895
896 err = td_io_open_file(td, f);
897 if (err)
898 continue;
899 opened = 1;
900 }
901
902 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
903 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
904 return f;
905 }
906 if (opened)
907 td_io_close_file(td, f);
908 } while (1);
909}
910
911/*
912 * Get next file to service by doing round robin between all available ones
913 */
914static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
915 int badf)
916{
917 unsigned int old_next_file = td->next_file;
918 struct fio_file *f;
919
920 do {
921 int opened = 0;
922
923 f = td->files[td->next_file];
924
925 td->next_file++;
926 if (td->next_file >= td->o.nr_files)
927 td->next_file = 0;
928
929 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
930 if (fio_file_done(f)) {
931 f = NULL;
932 continue;
933 }
934
935 if (!fio_file_open(f)) {
936 int err;
937
938 err = td_io_open_file(td, f);
939 if (err) {
940 dprint(FD_FILE, "error %d on open of %s\n",
941 err, f->file_name);
942 f = NULL;
943 continue;
944 }
945 opened = 1;
946 }
947
948 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
949 f->flags);
950 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
951 break;
952
953 if (opened)
954 td_io_close_file(td, f);
955
956 f = NULL;
957 } while (td->next_file != old_next_file);
958
959 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
960 return f;
961}
962
963static struct fio_file *__get_next_file(struct thread_data *td)
964{
965 struct fio_file *f;
966
967 assert(td->o.nr_files <= td->files_index);
968
969 if (td->nr_done_files >= td->o.nr_files) {
970 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
971 " nr_files=%d\n", td->nr_open_files,
972 td->nr_done_files,
973 td->o.nr_files);
974 return NULL;
975 }
976
977 f = td->file_service_file;
978 if (f && fio_file_open(f) && !fio_file_closing(f)) {
979 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
980 goto out;
981 if (td->file_service_left--)
982 goto out;
983 }
984
985 if (td->o.file_service_type == FIO_FSERVICE_RR ||
986 td->o.file_service_type == FIO_FSERVICE_SEQ)
987 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
988 else
989 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
990
991 td->file_service_file = f;
992 td->file_service_left = td->file_service_nr - 1;
993out:
994 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
995 return f;
996}
997
998static struct fio_file *get_next_file(struct thread_data *td)
999{
1000 struct prof_io_ops *ops = &td->prof_io_ops;
1001
1002 if (ops->get_next_file)
1003 return ops->get_next_file(td);
1004
1005 return __get_next_file(td);
1006}
1007
1008static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1009{
1010 struct fio_file *f;
1011
1012 do {
1013 f = get_next_file(td);
1014 if (!f)
1015 return 1;
1016
1017 io_u->file = f;
1018 get_file(f);
1019
1020 if (!fill_io_u(td, io_u))
1021 break;
1022
1023 put_file_log(td, f);
1024 td_io_close_file(td, f);
1025 io_u->file = NULL;
1026 fio_file_set_done(f);
1027 td->nr_done_files++;
1028 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1029 td->nr_done_files, td->o.nr_files);
1030 } while (1);
1031
1032 return 0;
1033}
1034
1035
1036struct io_u *__get_io_u(struct thread_data *td)
1037{
1038 struct io_u *io_u = NULL;
1039
1040 td_io_u_lock(td);
1041
1042again:
1043 if (!flist_empty(&td->io_u_requeues))
1044 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
1045 else if (!queue_full(td)) {
1046 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
1047
1048 io_u->buflen = 0;
1049 io_u->resid = 0;
1050 io_u->file = NULL;
1051 io_u->end_io = NULL;
1052 }
1053
1054 if (io_u) {
1055 assert(io_u->flags & IO_U_F_FREE);
1056 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1057 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1058
1059 io_u->error = 0;
1060 flist_del(&io_u->list);
1061 flist_add(&io_u->list, &td->io_u_busylist);
1062 td->cur_depth++;
1063 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1064 } else if (td->o.verify_async) {
1065 /*
1066 * We ran out, wait for async verify threads to finish and
1067 * return one
1068 */
1069 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1070 goto again;
1071 }
1072
1073 td_io_u_unlock(td);
1074 return io_u;
1075}
1076
1077static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1078{
1079 if (td->o.trim_backlog && td->trim_entries) {
1080 int get_trim = 0;
1081
1082 if (td->trim_batch) {
1083 td->trim_batch--;
1084 get_trim = 1;
1085 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1086 td->last_ddir != DDIR_READ) {
1087 td->trim_batch = td->o.trim_batch;
1088 if (!td->trim_batch)
1089 td->trim_batch = td->o.trim_backlog;
1090 get_trim = 1;
1091 }
1092
1093 if (get_trim && !get_next_trim(td, io_u))
1094 return 1;
1095 }
1096
1097 return 0;
1098}
1099
1100static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1101{
1102 if (td->o.verify_backlog && td->io_hist_len) {
1103 int get_verify = 0;
1104
1105 if (td->verify_batch) {
1106 td->verify_batch--;
1107 get_verify = 1;
1108 } else if (!(td->io_hist_len % td->o.verify_backlog) &&
1109 td->last_ddir != DDIR_READ) {
1110 td->verify_batch = td->o.verify_batch;
1111 if (!td->verify_batch)
1112 td->verify_batch = td->o.verify_backlog;
1113 get_verify = 1;
1114 }
1115
1116 if (get_verify && !get_next_verify(td, io_u))
1117 return 1;
1118 }
1119
1120 return 0;
1121}
1122
1123/*
1124 * Fill offset and start time into the buffer content, to prevent too
1125 * easy compressible data for simple de-dupe attempts. Do this for every
1126 * 512b block in the range, since that should be the smallest block size
1127 * we can expect from a device.
1128 */
1129static void small_content_scramble(struct io_u *io_u)
1130{
1131 unsigned int i, nr_blocks = io_u->buflen / 512;
1132 unsigned long long boffset;
1133 unsigned int offset;
1134 void *p, *end;
1135
1136 if (!nr_blocks)
1137 return;
1138
1139 p = io_u->xfer_buf;
1140 boffset = io_u->offset;
1141
1142 for (i = 0; i < nr_blocks; i++) {
1143 /*
1144 * Fill the byte offset into a "random" start offset of
1145 * the buffer, given by the product of the usec time
1146 * and the actual offset.
1147 */
1148 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1149 offset &= ~(sizeof(unsigned long long) - 1);
1150 if (offset >= 512 - sizeof(unsigned long long))
1151 offset -= sizeof(unsigned long long);
1152 memcpy(p + offset, &boffset, sizeof(boffset));
1153
1154 end = p + 512 - sizeof(io_u->start_time);
1155 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1156 p += 512;
1157 boffset += 512;
1158 }
1159}
1160
1161/*
1162 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1163 * etc. The returned io_u is fully ready to be prepped and submitted.
1164 */
1165struct io_u *get_io_u(struct thread_data *td)
1166{
1167 struct fio_file *f;
1168 struct io_u *io_u;
1169 int do_scramble = 0;
1170
1171 io_u = __get_io_u(td);
1172 if (!io_u) {
1173 dprint(FD_IO, "__get_io_u failed\n");
1174 return NULL;
1175 }
1176
1177 if (check_get_verify(td, io_u))
1178 goto out;
1179 if (check_get_trim(td, io_u))
1180 goto out;
1181
1182 /*
1183 * from a requeue, io_u already setup
1184 */
1185 if (io_u->file)
1186 goto out;
1187
1188 /*
1189 * If using an iolog, grab next piece if any available.
1190 */
1191 if (td->o.read_iolog_file) {
1192 if (read_iolog_get(td, io_u))
1193 goto err_put;
1194 } else if (set_io_u_file(td, io_u)) {
1195 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1196 goto err_put;
1197 }
1198
1199 f = io_u->file;
1200 assert(fio_file_open(f));
1201
1202 if (ddir_rw(io_u->ddir)) {
1203 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1204 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1205 goto err_put;
1206 }
1207
1208 f->last_start = io_u->offset;
1209 f->last_pos = io_u->offset + io_u->buflen;
1210
1211 if (io_u->ddir == DDIR_WRITE) {
1212 if (td->o.verify != VERIFY_NONE)
1213 populate_verify_io_u(td, io_u);
1214 else if (td->o.refill_buffers)
1215 io_u_fill_buffer(td, io_u, io_u->xfer_buflen);
1216 else if (td->o.scramble_buffers)
1217 do_scramble = 1;
1218 } else if (io_u->ddir == DDIR_READ) {
1219 /*
1220 * Reset the buf_filled parameters so next time if the
1221 * buffer is used for writes it is refilled.
1222 */
1223 io_u->buf_filled_len = 0;
1224 }
1225 }
1226
1227 /*
1228 * Set io data pointers.
1229 */
1230 io_u->xfer_buf = io_u->buf;
1231 io_u->xfer_buflen = io_u->buflen;
1232
1233out:
1234 assert(io_u->file);
1235 if (!td_io_prep(td, io_u)) {
1236 if (!td->o.disable_slat)
1237 fio_gettime(&io_u->start_time, NULL);
1238 if (do_scramble)
1239 small_content_scramble(io_u);
1240 return io_u;
1241 }
1242err_put:
1243 dprint(FD_IO, "get_io_u failed\n");
1244 put_io_u(td, io_u);
1245 return NULL;
1246}
1247
1248void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1249{
1250 const char *msg[] = { "read", "write", "sync", "datasync",
1251 "sync_file_range", "wait", "trim" };
1252
1253
1254
1255 log_err("fio: io_u error");
1256
1257 if (io_u->file)
1258 log_err(" on file %s", io_u->file->file_name);
1259
1260 log_err(": %s\n", strerror(io_u->error));
1261
1262 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1263 io_u->offset, io_u->xfer_buflen);
1264
1265 if (!td->error)
1266 td_verror(td, io_u->error, "io_u error");
1267}
1268
1269static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1270 struct io_completion_data *icd,
1271 const enum fio_ddir idx, unsigned int bytes)
1272{
1273 unsigned long uninitialized_var(lusec);
1274
1275 if (!icd->account)
1276 return;
1277
1278 if (!td->o.disable_clat || !td->o.disable_bw)
1279 lusec = utime_since(&io_u->issue_time, &icd->time);
1280
1281 if (!td->o.disable_lat) {
1282 unsigned long tusec;
1283
1284 tusec = utime_since(&io_u->start_time, &icd->time);
1285 add_lat_sample(td, idx, tusec, bytes);
1286 }
1287
1288 if (!td->o.disable_clat) {
1289 add_clat_sample(td, idx, lusec, bytes);
1290 io_u_mark_latency(td, lusec);
1291 }
1292
1293 if (!td->o.disable_bw)
1294 add_bw_sample(td, idx, bytes, &icd->time);
1295
1296 add_iops_sample(td, idx, &icd->time);
1297}
1298
1299static void io_completed(struct thread_data *td, struct io_u *io_u,
1300 struct io_completion_data *icd)
1301{
1302 /*
1303 * Older gcc's are too dumb to realize that usec is always used
1304 * initialized, silence that warning.
1305 */
1306 unsigned long uninitialized_var(usec);
1307 struct fio_file *f;
1308
1309 dprint_io_u(io_u, "io complete");
1310
1311 td_io_u_lock(td);
1312 assert(io_u->flags & IO_U_F_FLIGHT);
1313 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1314 td_io_u_unlock(td);
1315
1316 if (ddir_sync(io_u->ddir)) {
1317 td->last_was_sync = 1;
1318 f = io_u->file;
1319 if (f) {
1320 f->first_write = -1ULL;
1321 f->last_write = -1ULL;
1322 }
1323 return;
1324 }
1325
1326 td->last_was_sync = 0;
1327 td->last_ddir = io_u->ddir;
1328
1329 if (!io_u->error && ddir_rw(io_u->ddir)) {
1330 unsigned int bytes = io_u->buflen - io_u->resid;
1331 const enum fio_ddir idx = io_u->ddir;
1332 const enum fio_ddir odx = io_u->ddir ^ 1;
1333 int ret;
1334
1335 td->io_blocks[idx]++;
1336 td->this_io_blocks[idx]++;
1337 td->io_bytes[idx] += bytes;
1338 td->this_io_bytes[idx] += bytes;
1339
1340 if (idx == DDIR_WRITE) {
1341 f = io_u->file;
1342 if (f) {
1343 if (f->first_write == -1ULL ||
1344 io_u->offset < f->first_write)
1345 f->first_write = io_u->offset;
1346 if (f->last_write == -1ULL ||
1347 ((io_u->offset + bytes) > f->last_write))
1348 f->last_write = io_u->offset + bytes;
1349 }
1350 }
1351
1352 if (ramp_time_over(td) && td->runstate == TD_RUNNING) {
1353 account_io_completion(td, io_u, icd, idx, bytes);
1354
1355 if (__should_check_rate(td, idx)) {
1356 td->rate_pending_usleep[idx] =
1357 ((td->this_io_bytes[idx] *
1358 td->rate_nsec_cycle[idx]) / 1000 -
1359 utime_since_now(&td->start));
1360 }
1361 if (__should_check_rate(td, idx ^ 1))
1362 td->rate_pending_usleep[odx] =
1363 ((td->this_io_bytes[odx] *
1364 td->rate_nsec_cycle[odx]) / 1000 -
1365 utime_since_now(&td->start));
1366 }
1367
1368 if (td_write(td) && idx == DDIR_WRITE &&
1369 td->o.do_verify &&
1370 td->o.verify != VERIFY_NONE)
1371 log_io_piece(td, io_u);
1372
1373 icd->bytes_done[idx] += bytes;
1374
1375 if (io_u->end_io) {
1376 ret = io_u->end_io(td, io_u);
1377 if (ret && !icd->error)
1378 icd->error = ret;
1379 }
1380 } else if (io_u->error) {
1381 icd->error = io_u->error;
1382 io_u_log_error(td, io_u);
1383 }
1384 if (td->o.continue_on_error && icd->error &&
1385 td_non_fatal_error(icd->error)) {
1386 /*
1387 * If there is a non_fatal error, then add to the error count
1388 * and clear all the errors.
1389 */
1390 update_error_count(td, icd->error);
1391 td_clear_error(td);
1392 icd->error = 0;
1393 io_u->error = 0;
1394 }
1395}
1396
1397static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1398 int nr)
1399{
1400 if (!td->o.disable_clat || !td->o.disable_bw)
1401 fio_gettime(&icd->time, NULL);
1402
1403 icd->nr = nr;
1404 icd->account = 1;
1405
1406 icd->error = 0;
1407 icd->bytes_done[0] = icd->bytes_done[1] = 0;
1408}
1409
1410static void ios_completed(struct thread_data *td,
1411 struct io_completion_data *icd)
1412{
1413 struct io_u *io_u;
1414 int i;
1415
1416 for (i = 0; i < icd->nr; i++) {
1417 io_u = td->io_ops->event(td, i);
1418
1419 io_completed(td, io_u, icd);
1420
1421 if (!(io_u->flags & IO_U_F_FREE_DEF))
1422 put_io_u(td, io_u);
1423
1424 icd->account = 0;
1425 }
1426}
1427
1428/*
1429 * Complete a single io_u for the sync engines.
1430 */
1431int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1432 unsigned long *bytes)
1433{
1434 struct io_completion_data icd;
1435
1436 init_icd(td, &icd, 1);
1437 io_completed(td, io_u, &icd);
1438
1439 if (!(io_u->flags & IO_U_F_FREE_DEF))
1440 put_io_u(td, io_u);
1441
1442 if (icd.error) {
1443 td_verror(td, icd.error, "io_u_sync_complete");
1444 return -1;
1445 }
1446
1447 if (bytes) {
1448 bytes[0] += icd.bytes_done[0];
1449 bytes[1] += icd.bytes_done[1];
1450 }
1451
1452 return 0;
1453}
1454
1455/*
1456 * Called to complete min_events number of io for the async engines.
1457 */
1458int io_u_queued_complete(struct thread_data *td, int min_evts,
1459 unsigned long *bytes)
1460{
1461 struct io_completion_data icd;
1462 struct timespec *tvp = NULL;
1463 int ret;
1464 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1465
1466 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1467
1468 if (!min_evts)
1469 tvp = &ts;
1470
1471 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1472 if (ret < 0) {
1473 td_verror(td, -ret, "td_io_getevents");
1474 return ret;
1475 } else if (!ret)
1476 return ret;
1477
1478 init_icd(td, &icd, ret);
1479 ios_completed(td, &icd);
1480 if (icd.error) {
1481 td_verror(td, icd.error, "io_u_queued_complete");
1482 return -1;
1483 }
1484
1485 if (bytes) {
1486 bytes[0] += icd.bytes_done[0];
1487 bytes[1] += icd.bytes_done[1];
1488 }
1489
1490 return 0;
1491}
1492
1493/*
1494 * Call when io_u is really queued, to update the submission latency.
1495 */
1496void io_u_queued(struct thread_data *td, struct io_u *io_u)
1497{
1498 if (!td->o.disable_slat) {
1499 unsigned long slat_time;
1500
1501 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1502 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1503 }
1504}
1505
1506/*
1507 * "randomly" fill the buffer contents
1508 */
1509void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1510 unsigned int max_bs)
1511{
1512 io_u->buf_filled_len = 0;
1513
1514 if (!td->o.zero_buffers)
1515 fill_random_buf(&td->buf_state, io_u->buf, max_bs);
1516 else
1517 memset(io_u->buf, 0, max_bs);
1518}