Add few debug statements and limit thread usage.
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "os.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 unsigned long bytes_done[2]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct thread_data *td, struct fio_file *f,
29 unsigned long long block)
30{
31 unsigned int idx = RAND_MAP_IDX(td, f, block);
32 unsigned int bit = RAND_MAP_BIT(td, f, block);
33
34 return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct io_u *io_u)
41{
42 unsigned int min_bs = td->o.rw_min_bs;
43 struct fio_file *f = io_u->file;
44 unsigned long long block;
45 unsigned int blocks;
46 unsigned int nr_blocks;
47
48 block = io_u->offset / (unsigned long long) min_bs;
49 blocks = 0;
50 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
51
52 while (blocks < nr_blocks) {
53 unsigned int idx, bit;
54
55 if (!random_map_free(td, f, block))
56 break;
57
58 idx = RAND_MAP_IDX(td, f, block);
59 bit = RAND_MAP_BIT(td, f, block);
60
61 fio_assert(td, idx < f->num_maps);
62
63 f->file_map[idx] |= (1UL << bit);
64 block++;
65 blocks++;
66 }
67
68 if ((blocks * min_bs) < io_u->buflen)
69 io_u->buflen = blocks * min_bs;
70}
71
72/*
73 * Return the next free block in the map.
74 */
75static int get_next_free_block(struct thread_data *td, struct fio_file *f,
76 unsigned long long *b)
77{
78 int i;
79
80 i = f->last_free_lookup;
81 *b = (i * BLOCKS_PER_MAP);
82 while ((*b) * td->o.rw_min_bs < f->real_file_size) {
83 if (f->file_map[i] != -1UL) {
84 *b += ffz(f->file_map[i]);
85 f->last_free_lookup = i;
86 return 0;
87 }
88
89 *b += BLOCKS_PER_MAP;
90 i++;
91 }
92
93 return 1;
94}
95
96/*
97 * For random io, generate a random new block and see if it's used. Repeat
98 * until we find a free one. For sequential io, just return the end of
99 * the last io issued.
100 */
101static int get_next_offset(struct thread_data *td, struct io_u *io_u)
102{
103 struct fio_file *f = io_u->file;
104 const int ddir = io_u->ddir;
105 unsigned long long b, rb;
106 long r;
107
108 if (td_random(td)) {
109 unsigned long long max_blocks = f->file_size / td->o.min_bs[ddir];
110 int loops = 5;
111
112 do {
113 r = os_random_long(&td->random_state);
114 if (!max_blocks)
115 b = 0;
116 else
117 b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
118 if (td->o.norandommap)
119 break;
120 rb = b + (f->file_offset / td->o.min_bs[ddir]);
121 loops--;
122 } while (!random_map_free(td, f, rb) && loops);
123
124 /*
125 * if we failed to retrieve a truly random offset within
126 * the loops assigned, see if there are free ones left at all
127 */
128 if (!loops && get_next_free_block(td, f, &b))
129 return 1;
130 } else
131 b = f->last_pos / td->o.min_bs[ddir];
132
133 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset;
134 if (io_u->offset >= f->real_file_size)
135 return 1;
136
137 return 0;
138}
139
140static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
141{
142 struct fio_file *f = io_u->file;
143 const int ddir = io_u->ddir;
144 unsigned int buflen;
145 long r;
146
147 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
148 buflen = td->o.min_bs[ddir];
149 else {
150 r = os_random_long(&td->bsrange_state);
151 buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
152 if (!td->o.bs_unaligned)
153 buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1);
154 }
155
156 while (buflen + io_u->offset > f->real_file_size) {
157 if (buflen == td->o.min_bs[ddir]) {
158 if (!td->o.odirect) {
159 assert(io_u->offset <= f->real_file_size);
160 buflen = f->real_file_size - io_u->offset;
161 return buflen;
162 }
163 return 0;
164 }
165
166 buflen = td->o.min_bs[ddir];
167 }
168
169 return buflen;
170}
171
172static void set_rwmix_bytes(struct thread_data *td)
173{
174 unsigned long long rbytes;
175 unsigned int diff;
176
177 /*
178 * we do time or byte based switch. this is needed because
179 * buffered writes may issue a lot quicker than they complete,
180 * whereas reads do not.
181 */
182 rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes;
183 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
184
185 td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff);
186}
187
188static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
189{
190 unsigned int v;
191 long r;
192
193 r = os_random_long(&td->rwmix_state);
194 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
195 if (v < td->o.rwmix[DDIR_READ])
196 return DDIR_READ;
197
198 return DDIR_WRITE;
199}
200
201/*
202 * Return the data direction for the next io_u. If the job is a
203 * mixed read/write workload, check the rwmix cycle and switch if
204 * necessary.
205 */
206static enum fio_ddir get_rw_ddir(struct thread_data *td)
207{
208 if (td_rw(td)) {
209 struct timeval now;
210 unsigned long elapsed;
211 unsigned int cycle;
212
213 fio_gettime(&now, NULL);
214 elapsed = mtime_since_now(&td->rwmix_switch);
215
216 /*
217 * if this is the first cycle, make it shorter
218 */
219 cycle = td->o.rwmixcycle;
220 if (!td->rwmix_bytes)
221 cycle /= 10;
222
223 /*
224 * Check if it's time to seed a new data direction.
225 */
226 if (elapsed >= cycle ||
227 td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) {
228 unsigned long long max_bytes;
229 enum fio_ddir ddir;
230
231 /*
232 * Put a top limit on how many bytes we do for
233 * one data direction, to avoid overflowing the
234 * ranges too much
235 */
236 ddir = get_rand_ddir(td);
237 max_bytes = td->this_io_bytes[ddir];
238 if (max_bytes >= (td->io_size * td->o.rwmix[ddir] / 100)) {
239 if (!td->rw_end_set[ddir]) {
240 td->rw_end_set[ddir] = 1;
241 memcpy(&td->rw_end[ddir], &now, sizeof(now));
242 }
243 ddir ^= 1;
244 }
245
246 if (ddir != td->rwmix_ddir)
247 set_rwmix_bytes(td);
248
249 td->rwmix_ddir = ddir;
250 memcpy(&td->rwmix_switch, &now, sizeof(now));
251 }
252 return td->rwmix_ddir;
253 } else if (td_read(td))
254 return DDIR_READ;
255 else
256 return DDIR_WRITE;
257}
258
259void put_io_u(struct thread_data *td, struct io_u *io_u)
260{
261 assert((io_u->flags & IO_U_F_FREE) == 0);
262 io_u->flags |= IO_U_F_FREE;
263
264 io_u->file = NULL;
265 list_del(&io_u->list);
266 list_add(&io_u->list, &td->io_u_freelist);
267 td->cur_depth--;
268}
269
270void requeue_io_u(struct thread_data *td, struct io_u **io_u)
271{
272 struct io_u *__io_u = *io_u;
273
274 __io_u->flags |= IO_U_F_FREE;
275 __io_u->flags &= ~IO_U_F_FLIGHT;
276
277 list_del(&__io_u->list);
278 list_add_tail(&__io_u->list, &td->io_u_requeues);
279 td->cur_depth--;
280 *io_u = NULL;
281}
282
283static int fill_io_u(struct thread_data *td, struct io_u *io_u)
284{
285 /*
286 * If using an iolog, grab next piece if any available.
287 */
288 if (td->o.read_iolog)
289 return read_iolog_get(td, io_u);
290
291 /*
292 * see if it's time to sync
293 */
294 if (td->o.fsync_blocks &&
295 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
296 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
297 io_u->ddir = DDIR_SYNC;
298 return 0;
299 }
300
301 io_u->ddir = get_rw_ddir(td);
302
303 /*
304 * No log, let the seq/rand engine retrieve the next buflen and
305 * position.
306 */
307 if (get_next_offset(td, io_u))
308 return 1;
309
310 io_u->buflen = get_next_buflen(td, io_u);
311 if (!io_u->buflen)
312 return 1;
313
314 /*
315 * mark entry before potentially trimming io_u
316 */
317 if (!td->o.read_iolog && td_random(td) && !td->o.norandommap)
318 mark_random_map(td, io_u);
319
320 /*
321 * If using a write iolog, store this entry.
322 */
323 if (td->o.write_iolog_file)
324 write_iolog_put(td, io_u);
325
326 return 0;
327}
328
329void io_u_mark_depth(struct thread_data *td, struct io_u *io_u)
330{
331 int index = 0;
332
333 if (io_u->ddir == DDIR_SYNC)
334 return;
335
336 switch (td->cur_depth) {
337 default:
338 index++;
339 case 32 ... 63:
340 index++;
341 case 16 ... 31:
342 index++;
343 case 8 ... 15:
344 index++;
345 case 4 ... 7:
346 index++;
347 case 2 ... 3:
348 index++;
349 case 1:
350 break;
351 }
352
353 td->ts.io_u_map[index]++;
354 td->ts.total_io_u[io_u->ddir]++;
355}
356
357static void io_u_mark_latency(struct thread_data *td, unsigned long msec)
358{
359 int index = 0;
360
361 switch (msec) {
362 default:
363 index++;
364 case 1000 ... 1999:
365 index++;
366 case 750 ... 999:
367 index++;
368 case 500 ... 749:
369 index++;
370 case 250 ... 499:
371 index++;
372 case 100 ... 249:
373 index++;
374 case 50 ... 99:
375 index++;
376 case 20 ... 49:
377 index++;
378 case 10 ... 19:
379 index++;
380 case 4 ... 9:
381 index++;
382 case 2 ... 3:
383 index++;
384 case 0 ... 1:
385 break;
386 }
387
388 td->ts.io_u_lat[index]++;
389}
390
391/*
392 * Get next file to service by choosing one at random
393 */
394static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
395 int badf)
396{
397 struct fio_file *f;
398 int fno;
399
400 do {
401 long r = os_random_long(&td->next_file_state);
402
403 fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0)));
404 f = &td->files[fno];
405
406 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
407 return f;
408 } while (1);
409}
410
411/*
412 * Get next file to service by doing round robin between all available ones
413 */
414static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
415 int badf)
416{
417 unsigned int old_next_file = td->next_file;
418 struct fio_file *f;
419
420 do {
421 f = &td->files[td->next_file];
422
423 td->next_file++;
424 if (td->next_file >= td->o.nr_files)
425 td->next_file = 0;
426
427 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
428 break;
429
430 f = NULL;
431 } while (td->next_file != old_next_file);
432
433 return f;
434}
435
436static struct fio_file *get_next_file(struct thread_data *td)
437{
438 struct fio_file *f;
439
440 assert(td->o.nr_files <= td->files_index);
441
442 if (!td->nr_open_files)
443 return NULL;
444
445 f = td->file_service_file;
446 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
447 return f;
448
449 if (td->o.file_service_type == FIO_FSERVICE_RR)
450 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
451 else
452 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
453
454 td->file_service_file = f;
455 td->file_service_left = td->file_service_nr - 1;
456 return f;
457}
458
459static struct fio_file *find_next_new_file(struct thread_data *td)
460{
461 struct fio_file *f;
462
463 if (td->o.file_service_type == FIO_FSERVICE_RR)
464 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
465 else
466 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
467
468 return f;
469}
470
471struct io_u *__get_io_u(struct thread_data *td)
472{
473 struct io_u *io_u = NULL;
474
475 if (!list_empty(&td->io_u_requeues))
476 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
477 else if (!queue_full(td)) {
478 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
479
480 io_u->buflen = 0;
481 io_u->resid = 0;
482 io_u->file = NULL;
483 io_u->end_io = NULL;
484 }
485
486 if (io_u) {
487 assert(io_u->flags & IO_U_F_FREE);
488 io_u->flags &= ~IO_U_F_FREE;
489
490 io_u->error = 0;
491 list_del(&io_u->list);
492 list_add(&io_u->list, &td->io_u_busylist);
493 td->cur_depth++;
494 }
495
496 return io_u;
497}
498
499/*
500 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
501 * etc. The returned io_u is fully ready to be prepped and submitted.
502 */
503struct io_u *get_io_u(struct thread_data *td)
504{
505 struct fio_file *f;
506 struct io_u *io_u;
507 int ret;
508
509 io_u = __get_io_u(td);
510 if (!io_u)
511 return NULL;
512
513 /*
514 * from a requeue, io_u already setup
515 */
516 if (io_u->file)
517 goto out;
518
519 do {
520 f = get_next_file(td);
521 if (!f) {
522 put_io_u(td, io_u);
523 return NULL;
524 }
525
526set_file:
527 io_u->file = f;
528
529 if (!fill_io_u(td, io_u))
530 break;
531
532 /*
533 * No more to do for this file, close it
534 */
535 io_u->file = NULL;
536 td_io_close_file(td, f);
537
538 /*
539 * probably not the right place to do this, but see
540 * if we need to open a new file
541 */
542 if (td->nr_open_files < td->o.open_files &&
543 td->o.open_files != td->o.nr_files) {
544 f = find_next_new_file(td);
545
546 if (!f || (ret = td_io_open_file(td, f))) {
547 put_io_u(td, io_u);
548 return NULL;
549 }
550 goto set_file;
551 }
552 } while (1);
553
554 if (td->zone_bytes >= td->o.zone_size) {
555 td->zone_bytes = 0;
556 f->last_pos += td->o.zone_skip;
557 }
558
559 if (io_u->buflen + io_u->offset > f->real_file_size) {
560 if (td->io_ops->flags & FIO_RAWIO) {
561 put_io_u(td, io_u);
562 return NULL;
563 }
564
565 io_u->buflen = f->real_file_size - io_u->offset;
566 }
567
568 if (io_u->ddir != DDIR_SYNC) {
569 if (!io_u->buflen) {
570 put_io_u(td, io_u);
571 return NULL;
572 }
573
574 f->last_pos = io_u->offset + io_u->buflen;
575
576 if (td->o.verify != VERIFY_NONE)
577 populate_verify_io_u(td, io_u);
578 }
579
580 /*
581 * Set io data pointers.
582 */
583out:
584 io_u->xfer_buf = io_u->buf;
585 io_u->xfer_buflen = io_u->buflen;
586
587 if (td_io_prep(td, io_u)) {
588 put_io_u(td, io_u);
589 return NULL;
590 }
591
592 fio_gettime(&io_u->start_time, NULL);
593 return io_u;
594}
595
596void io_u_log_error(struct thread_data *td, struct io_u *io_u)
597{
598 const char *msg[] = { "read", "write", "sync" };
599
600 log_err("fio: io_u error");
601
602 if (io_u->file)
603 log_err(" on file %s", io_u->file->file_name);
604
605 log_err(": %s\n", strerror(io_u->error));
606
607 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen);
608
609 if (!td->error)
610 td_verror(td, io_u->error, "io_u error");
611}
612
613static void io_completed(struct thread_data *td, struct io_u *io_u,
614 struct io_completion_data *icd)
615{
616 unsigned long msec;
617
618 assert(io_u->flags & IO_U_F_FLIGHT);
619 io_u->flags &= ~IO_U_F_FLIGHT;
620
621 put_file(td, io_u->file);
622
623 if (io_u->ddir == DDIR_SYNC) {
624 td->last_was_sync = 1;
625 return;
626 }
627
628 td->last_was_sync = 0;
629
630 if (!io_u->error) {
631 unsigned int bytes = io_u->buflen - io_u->resid;
632 const enum fio_ddir idx = io_u->ddir;
633 int ret;
634
635 td->io_blocks[idx]++;
636 td->io_bytes[idx] += bytes;
637 td->zone_bytes += bytes;
638 td->this_io_bytes[idx] += bytes;
639
640 io_u->file->last_completed_pos = io_u->offset + io_u->buflen;
641
642 msec = mtime_since(&io_u->issue_time, &icd->time);
643
644 add_clat_sample(td, idx, msec);
645 add_bw_sample(td, idx, &icd->time);
646 io_u_mark_latency(td, msec);
647
648 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE)
649 log_io_piece(td, io_u);
650
651 icd->bytes_done[idx] += bytes;
652
653 if (io_u->end_io) {
654 ret = io_u->end_io(io_u);
655 if (ret && !icd->error)
656 icd->error = ret;
657 }
658 } else {
659 icd->error = io_u->error;
660 io_u_log_error(td, io_u);
661 }
662}
663
664static void init_icd(struct io_completion_data *icd, int nr)
665{
666 fio_gettime(&icd->time, NULL);
667
668 icd->nr = nr;
669
670 icd->error = 0;
671 icd->bytes_done[0] = icd->bytes_done[1] = 0;
672}
673
674static void ios_completed(struct thread_data *td,
675 struct io_completion_data *icd)
676{
677 struct io_u *io_u;
678 int i;
679
680 for (i = 0; i < icd->nr; i++) {
681 io_u = td->io_ops->event(td, i);
682
683 io_completed(td, io_u, icd);
684 put_io_u(td, io_u);
685 }
686}
687
688/*
689 * Complete a single io_u for the sync engines.
690 */
691long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
692{
693 struct io_completion_data icd;
694
695 init_icd(&icd, 1);
696 io_completed(td, io_u, &icd);
697 put_io_u(td, io_u);
698
699 if (!icd.error)
700 return icd.bytes_done[0] + icd.bytes_done[1];
701
702 td_verror(td, icd.error, "io_u_sync_complete");
703 return -1;
704}
705
706/*
707 * Called to complete min_events number of io for the async engines.
708 */
709long io_u_queued_complete(struct thread_data *td, int min_events)
710{
711 struct io_completion_data icd;
712 struct timespec *tvp = NULL;
713 int ret;
714 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
715
716 if (!min_events)
717 tvp = &ts;
718
719 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
720 if (ret < 0) {
721 td_verror(td, -ret, "td_io_getevents");
722 return ret;
723 } else if (!ret)
724 return ret;
725
726 init_icd(&icd, ret);
727 ios_completed(td, &icd);
728 if (!icd.error)
729 return icd.bytes_done[0] + icd.bytes_done[1];
730
731 td_verror(td, icd.error, "io_u_queued_complete");
732 return -1;
733}
734
735/*
736 * Call when io_u is really queued, to update the submission latency.
737 */
738void io_u_queued(struct thread_data *td, struct io_u *io_u)
739{
740 unsigned long slat_time;
741
742 slat_time = mtime_since(&io_u->start_time, &io_u->issue_time);
743 add_slat_sample(td, io_u->ddir, slat_time);
744}
745
746#ifdef FIO_USE_TIMEOUT
747void io_u_set_timeout(struct thread_data *td)
748{
749 assert(td->cur_depth);
750
751 td->timer.it_interval.tv_sec = 0;
752 td->timer.it_interval.tv_usec = 0;
753 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
754 td->timer.it_value.tv_usec = 0;
755 setitimer(ITIMER_REAL, &td->timer, NULL);
756 fio_gettime(&td->timeout_end, NULL);
757}
758
759static void io_u_dump(struct io_u *io_u)
760{
761 unsigned long t_start = mtime_since_now(&io_u->start_time);
762 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
763
764 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
765 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
766 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
767}
768#else
769void io_u_set_timeout(struct thread_data fio_unused *td)
770{
771}
772#endif
773
774#ifdef FIO_USE_TIMEOUT
775static void io_u_timeout_handler(int fio_unused sig)
776{
777 struct thread_data *td, *__td;
778 pid_t pid = getpid();
779 struct list_head *entry;
780 struct io_u *io_u;
781 int i;
782
783 log_err("fio: io_u timeout\n");
784
785 /*
786 * TLS would be nice...
787 */
788 td = NULL;
789 for_each_td(__td, i) {
790 if (__td->pid == pid) {
791 td = __td;
792 break;
793 }
794 }
795
796 if (!td) {
797 log_err("fio: io_u timeout, can't find job\n");
798 exit(1);
799 }
800
801 if (!td->cur_depth) {
802 log_err("fio: timeout without pending work?\n");
803 return;
804 }
805
806 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
807
808 list_for_each(entry, &td->io_u_busylist) {
809 io_u = list_entry(entry, struct io_u, list);
810
811 io_u_dump(io_u);
812 }
813
814 td_verror(td, ETIMEDOUT, "io_u timeout");
815 exit(1);
816}
817#endif
818
819void io_u_init_timeout(void)
820{
821#ifdef FIO_USE_TIMEOUT
822 signal(SIGALRM, io_u_timeout_handler);
823#endif
824}