Fixing wraparound behavior for time-based sequential read jobs
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13
14struct io_completion_data {
15 int nr; /* input */
16
17 int error; /* output */
18 unsigned long bytes_done[2]; /* output */
19 struct timeval time; /* output */
20};
21
22/*
23 * The ->file_map[] contains a map of blocks we have or have not done io
24 * to yet. Used to make sure we cover the entire range in a fair fashion.
25 */
26static int random_map_free(struct fio_file *f, const unsigned long long block)
27{
28 unsigned int idx = RAND_MAP_IDX(f, block);
29 unsigned int bit = RAND_MAP_BIT(f, block);
30
31 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
32
33 return (f->file_map[idx] & (1UL << bit)) == 0;
34}
35
36/*
37 * Mark a given offset as used in the map.
38 */
39static void mark_random_map(struct thread_data *td, struct io_u *io_u)
40{
41 unsigned int min_bs = td->o.rw_min_bs;
42 struct fio_file *f = io_u->file;
43 unsigned long long block;
44 unsigned int blocks, nr_blocks;
45 int busy_check;
46
47 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
48 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
49 blocks = 0;
50 busy_check = !(io_u->flags & IO_U_F_BUSY_OK);
51
52 while (nr_blocks) {
53 unsigned int idx, bit;
54 unsigned long mask, this_blocks;
55
56 /*
57 * If we have a mixed random workload, we may
58 * encounter blocks we already did IO to.
59 */
60 if (!busy_check) {
61 blocks = nr_blocks;
62 break;
63 }
64 if ((td->o.ddir_seq_nr == 1) && !random_map_free(f, block))
65 break;
66
67 idx = RAND_MAP_IDX(f, block);
68 bit = RAND_MAP_BIT(f, block);
69
70 fio_assert(td, idx < f->num_maps);
71
72 this_blocks = nr_blocks;
73 if (this_blocks + bit > BLOCKS_PER_MAP)
74 this_blocks = BLOCKS_PER_MAP - bit;
75
76 do {
77 if (this_blocks == BLOCKS_PER_MAP)
78 mask = -1UL;
79 else
80 mask = ((1UL << this_blocks) - 1) << bit;
81
82 if (!(f->file_map[idx] & mask))
83 break;
84
85 this_blocks--;
86 } while (this_blocks);
87
88 if (!this_blocks)
89 break;
90
91 f->file_map[idx] |= mask;
92 nr_blocks -= this_blocks;
93 blocks += this_blocks;
94 block += this_blocks;
95 }
96
97 if ((blocks * min_bs) < io_u->buflen)
98 io_u->buflen = blocks * min_bs;
99}
100
101static unsigned long long last_block(struct thread_data *td, struct fio_file *f,
102 enum fio_ddir ddir)
103{
104 unsigned long long max_blocks;
105 unsigned long long max_size;
106
107 assert(ddir_rw(ddir));
108
109 /*
110 * Hmm, should we make sure that ->io_size <= ->real_file_size?
111 */
112 max_size = f->io_size;
113 if (max_size > f->real_file_size)
114 max_size = f->real_file_size;
115
116 if (td->o.zone_range)
117 max_size = td->o.zone_range;
118
119 max_blocks = max_size / (unsigned long long) td->o.ba[ddir];
120 if (!max_blocks)
121 return 0;
122
123 return max_blocks;
124}
125
126/*
127 * Return the next free block in the map.
128 */
129static int get_next_free_block(struct thread_data *td, struct fio_file *f,
130 enum fio_ddir ddir, unsigned long long *b)
131{
132 unsigned long long block, min_bs = td->o.rw_min_bs, lastb;
133 int i;
134
135 lastb = last_block(td, f, ddir);
136 if (!lastb)
137 return 1;
138
139 i = f->last_free_lookup;
140 block = i * BLOCKS_PER_MAP;
141 while (block * min_bs < f->real_file_size &&
142 block * min_bs < f->io_size) {
143 if (f->file_map[i] != -1UL) {
144 block += ffz(f->file_map[i]);
145 if (block > lastb)
146 break;
147 f->last_free_lookup = i;
148 *b = block;
149 return 0;
150 }
151
152 block += BLOCKS_PER_MAP;
153 i++;
154 }
155
156 dprint(FD_IO, "failed finding a free block\n");
157 return 1;
158}
159
160static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
161 enum fio_ddir ddir, unsigned long long *b)
162{
163 unsigned long long rmax, r, lastb;
164 int loops = 5;
165
166 lastb = last_block(td, f, ddir);
167 if (!lastb)
168 return 1;
169
170 if (f->failed_rands >= 200)
171 goto ffz;
172
173 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
174 do {
175 if (td->o.use_os_rand)
176 r = os_random_long(&td->random_state);
177 else
178 r = __rand(&td->__random_state);
179
180 *b = (lastb - 1) * (r / ((unsigned long long) rmax + 1.0));
181
182 dprint(FD_RANDOM, "off rand %llu\n", r);
183
184
185 /*
186 * if we are not maintaining a random map, we are done.
187 */
188 if (!file_randommap(td, f))
189 goto ret_good;
190
191 /*
192 * calculate map offset and check if it's free
193 */
194 if (random_map_free(f, *b))
195 goto ret_good;
196
197 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
198 *b);
199 } while (--loops);
200
201 if (!f->failed_rands++)
202 f->last_free_lookup = 0;
203
204 /*
205 * we get here, if we didn't suceed in looking up a block. generate
206 * a random start offset into the filemap, and find the first free
207 * block from there.
208 */
209 loops = 10;
210 do {
211 f->last_free_lookup = (f->num_maps - 1) *
212 (r / ((unsigned long long) rmax + 1.0));
213 if (!get_next_free_block(td, f, ddir, b))
214 goto ret;
215
216 if (td->o.use_os_rand)
217 r = os_random_long(&td->random_state);
218 else
219 r = __rand(&td->__random_state);
220 } while (--loops);
221
222 /*
223 * that didn't work either, try exhaustive search from the start
224 */
225 f->last_free_lookup = 0;
226ffz:
227 if (!get_next_free_block(td, f, ddir, b))
228 return 0;
229 f->last_free_lookup = 0;
230 return get_next_free_block(td, f, ddir, b);
231ret_good:
232 f->failed_rands = 0;
233ret:
234 return 0;
235}
236
237static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
238 enum fio_ddir ddir, unsigned long long *b)
239{
240 if (!get_next_rand_offset(td, f, ddir, b))
241 return 0;
242
243 if (td->o.time_based) {
244 fio_file_reset(f);
245 if (!get_next_rand_offset(td, f, ddir, b))
246 return 0;
247 }
248
249 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
250 f->file_name, f->last_pos, f->real_file_size);
251 return 1;
252}
253
254static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
255 enum fio_ddir ddir, unsigned long long *offset)
256{
257 assert(ddir_rw(ddir));
258
259 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based)
260 f->last_pos = f->last_pos - f->io_size;
261
262 if (f->last_pos < f->real_file_size) {
263 unsigned long long pos;
264
265 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
266 f->last_pos = f->real_file_size;
267
268 pos = f->last_pos - f->file_offset;
269 if (pos)
270 pos += td->o.ddir_seq_add;
271
272 *offset = pos;
273 return 0;
274 }
275
276 return 1;
277}
278
279static int get_next_block(struct thread_data *td, struct io_u *io_u,
280 enum fio_ddir ddir, int rw_seq)
281{
282 struct fio_file *f = io_u->file;
283 unsigned long long b, offset;
284 int ret;
285
286 assert(ddir_rw(ddir));
287
288 b = offset = -1ULL;
289
290 if (rw_seq) {
291 if (td_random(td))
292 ret = get_next_rand_block(td, f, ddir, &b);
293 else
294 ret = get_next_seq_offset(td, f, ddir, &offset);
295 } else {
296 io_u->flags |= IO_U_F_BUSY_OK;
297
298 if (td->o.rw_seq == RW_SEQ_SEQ) {
299 ret = get_next_seq_offset(td, f, ddir, &offset);
300 if (ret)
301 ret = get_next_rand_block(td, f, ddir, &b);
302 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
303 if (f->last_start != -1ULL)
304 offset = f->last_start - f->file_offset;
305 else
306 offset = 0;
307 ret = 0;
308 } else {
309 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
310 ret = 1;
311 }
312 }
313
314 if (!ret) {
315 if (offset != -1ULL)
316 io_u->offset = offset;
317 else if (b != -1ULL)
318 io_u->offset = b * td->o.ba[ddir];
319 else {
320 log_err("fio: bug in offset generation\n");
321 ret = 1;
322 }
323 }
324
325 return ret;
326}
327
328/*
329 * For random io, generate a random new block and see if it's used. Repeat
330 * until we find a free one. For sequential io, just return the end of
331 * the last io issued.
332 */
333static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
334{
335 struct fio_file *f = io_u->file;
336 enum fio_ddir ddir = io_u->ddir;
337 int rw_seq_hit = 0;
338
339 assert(ddir_rw(ddir));
340
341 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
342 rw_seq_hit = 1;
343 td->ddir_seq_nr = td->o.ddir_seq_nr;
344 }
345
346 if (get_next_block(td, io_u, ddir, rw_seq_hit))
347 return 1;
348
349 if (io_u->offset >= f->io_size) {
350 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
351 io_u->offset, f->io_size);
352 return 1;
353 }
354
355 io_u->offset += f->file_offset;
356 if (io_u->offset >= f->real_file_size) {
357 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
358 io_u->offset, f->real_file_size);
359 return 1;
360 }
361
362 return 0;
363}
364
365static int get_next_offset(struct thread_data *td, struct io_u *io_u)
366{
367 struct prof_io_ops *ops = &td->prof_io_ops;
368
369 if (ops->fill_io_u_off)
370 return ops->fill_io_u_off(td, io_u);
371
372 return __get_next_offset(td, io_u);
373}
374
375static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
376 unsigned int buflen)
377{
378 struct fio_file *f = io_u->file;
379
380 return io_u->offset + buflen <= f->io_size + get_start_offset(td);
381}
382
383static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
384{
385 const int ddir = io_u->ddir;
386 unsigned int uninitialized_var(buflen);
387 unsigned int minbs, maxbs;
388 unsigned long r, rand_max;
389
390 assert(ddir_rw(ddir));
391
392 minbs = td->o.min_bs[ddir];
393 maxbs = td->o.max_bs[ddir];
394
395 if (minbs == maxbs)
396 return minbs;
397
398 /*
399 * If we can't satisfy the min block size from here, then fail
400 */
401 if (!io_u_fits(td, io_u, minbs))
402 return 0;
403
404 if (td->o.use_os_rand)
405 rand_max = OS_RAND_MAX;
406 else
407 rand_max = FRAND_MAX;
408
409 do {
410 if (td->o.use_os_rand)
411 r = os_random_long(&td->bsrange_state);
412 else
413 r = __rand(&td->__bsrange_state);
414
415 if (!td->o.bssplit_nr[ddir]) {
416 buflen = 1 + (unsigned int) ((double) maxbs *
417 (r / (rand_max + 1.0)));
418 if (buflen < minbs)
419 buflen = minbs;
420 } else {
421 long perc = 0;
422 unsigned int i;
423
424 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
425 struct bssplit *bsp = &td->o.bssplit[ddir][i];
426
427 buflen = bsp->bs;
428 perc += bsp->perc;
429 if ((r <= ((rand_max / 100L) * perc)) &&
430 io_u_fits(td, io_u, buflen))
431 break;
432 }
433 }
434
435 if (!td->o.bs_unaligned && is_power_of_2(minbs))
436 buflen = (buflen + minbs - 1) & ~(minbs - 1);
437
438 } while (!io_u_fits(td, io_u, buflen));
439
440 return buflen;
441}
442
443static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
444{
445 struct prof_io_ops *ops = &td->prof_io_ops;
446
447 if (ops->fill_io_u_size)
448 return ops->fill_io_u_size(td, io_u);
449
450 return __get_next_buflen(td, io_u);
451}
452
453static void set_rwmix_bytes(struct thread_data *td)
454{
455 unsigned int diff;
456
457 /*
458 * we do time or byte based switch. this is needed because
459 * buffered writes may issue a lot quicker than they complete,
460 * whereas reads do not.
461 */
462 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
463 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
464}
465
466static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
467{
468 unsigned int v;
469 unsigned long r;
470
471 if (td->o.use_os_rand) {
472 r = os_random_long(&td->rwmix_state);
473 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
474 } else {
475 r = __rand(&td->__rwmix_state);
476 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
477 }
478
479 if (v <= td->o.rwmix[DDIR_READ])
480 return DDIR_READ;
481
482 return DDIR_WRITE;
483}
484
485static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
486{
487 enum fio_ddir odir = ddir ^ 1;
488 struct timeval t;
489 long usec;
490
491 assert(ddir_rw(ddir));
492
493 if (td->rate_pending_usleep[ddir] <= 0)
494 return ddir;
495
496 /*
497 * We have too much pending sleep in this direction. See if we
498 * should switch.
499 */
500 if (td_rw(td)) {
501 /*
502 * Other direction does not have too much pending, switch
503 */
504 if (td->rate_pending_usleep[odir] < 100000)
505 return odir;
506
507 /*
508 * Both directions have pending sleep. Sleep the minimum time
509 * and deduct from both.
510 */
511 if (td->rate_pending_usleep[ddir] <=
512 td->rate_pending_usleep[odir]) {
513 usec = td->rate_pending_usleep[ddir];
514 } else {
515 usec = td->rate_pending_usleep[odir];
516 ddir = odir;
517 }
518 } else
519 usec = td->rate_pending_usleep[ddir];
520
521 /*
522 * We are going to sleep, ensure that we flush anything pending as
523 * not to skew our latency numbers.
524 *
525 * Changed to only monitor 'in flight' requests here instead of the
526 * td->cur_depth, b/c td->cur_depth does not accurately represent
527 * io's that have been actually submitted to an async engine,
528 * and cur_depth is meaningless for sync engines.
529 */
530 if (td->io_u_in_flight) {
531 int fio_unused ret;
532
533 ret = io_u_queued_complete(td, td->io_u_in_flight, NULL);
534 }
535
536 fio_gettime(&t, NULL);
537 usec_sleep(td, usec);
538 usec = utime_since_now(&t);
539
540 td->rate_pending_usleep[ddir] -= usec;
541
542 odir = ddir ^ 1;
543 if (td_rw(td) && __should_check_rate(td, odir))
544 td->rate_pending_usleep[odir] -= usec;
545
546 return ddir;
547}
548
549/*
550 * Return the data direction for the next io_u. If the job is a
551 * mixed read/write workload, check the rwmix cycle and switch if
552 * necessary.
553 */
554static enum fio_ddir get_rw_ddir(struct thread_data *td)
555{
556 enum fio_ddir ddir;
557
558 /*
559 * see if it's time to fsync
560 */
561 if (td->o.fsync_blocks &&
562 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
563 td->io_issues[DDIR_WRITE] && should_fsync(td))
564 return DDIR_SYNC;
565
566 /*
567 * see if it's time to fdatasync
568 */
569 if (td->o.fdatasync_blocks &&
570 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
571 td->io_issues[DDIR_WRITE] && should_fsync(td))
572 return DDIR_DATASYNC;
573
574 /*
575 * see if it's time to sync_file_range
576 */
577 if (td->sync_file_range_nr &&
578 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
579 td->io_issues[DDIR_WRITE] && should_fsync(td))
580 return DDIR_SYNC_FILE_RANGE;
581
582 if (td_rw(td)) {
583 /*
584 * Check if it's time to seed a new data direction.
585 */
586 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
587 /*
588 * Put a top limit on how many bytes we do for
589 * one data direction, to avoid overflowing the
590 * ranges too much
591 */
592 ddir = get_rand_ddir(td);
593
594 if (ddir != td->rwmix_ddir)
595 set_rwmix_bytes(td);
596
597 td->rwmix_ddir = ddir;
598 }
599 ddir = td->rwmix_ddir;
600 } else if (td_read(td))
601 ddir = DDIR_READ;
602 else
603 ddir = DDIR_WRITE;
604
605 td->rwmix_ddir = rate_ddir(td, ddir);
606 return td->rwmix_ddir;
607}
608
609static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
610{
611 io_u->ddir = get_rw_ddir(td);
612
613 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
614 td->o.barrier_blocks &&
615 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
616 td->io_issues[DDIR_WRITE])
617 io_u->flags |= IO_U_F_BARRIER;
618}
619
620void put_file_log(struct thread_data *td, struct fio_file *f)
621{
622 int ret = put_file(td, f);
623
624 if (ret)
625 td_verror(td, ret, "file close");
626}
627
628void put_io_u(struct thread_data *td, struct io_u *io_u)
629{
630 td_io_u_lock(td);
631
632 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
633 put_file_log(td, io_u->file);
634 io_u->file = NULL;
635 io_u->flags &= ~IO_U_F_FREE_DEF;
636 io_u->flags |= IO_U_F_FREE;
637
638 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
639 td->cur_depth--;
640 flist_del_init(&io_u->list);
641 flist_add(&io_u->list, &td->io_u_freelist);
642 td_io_u_unlock(td);
643 td_io_u_free_notify(td);
644}
645
646void clear_io_u(struct thread_data *td, struct io_u *io_u)
647{
648 io_u->flags &= ~IO_U_F_FLIGHT;
649 put_io_u(td, io_u);
650}
651
652void requeue_io_u(struct thread_data *td, struct io_u **io_u)
653{
654 struct io_u *__io_u = *io_u;
655
656 dprint(FD_IO, "requeue %p\n", __io_u);
657
658 td_io_u_lock(td);
659
660 __io_u->flags |= IO_U_F_FREE;
661 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir))
662 td->io_issues[__io_u->ddir]--;
663
664 __io_u->flags &= ~IO_U_F_FLIGHT;
665 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
666 td->cur_depth--;
667 flist_del(&__io_u->list);
668 flist_add_tail(&__io_u->list, &td->io_u_requeues);
669 td_io_u_unlock(td);
670 *io_u = NULL;
671}
672
673static int fill_io_u(struct thread_data *td, struct io_u *io_u)
674{
675 if (td->io_ops->flags & FIO_NOIO)
676 goto out;
677
678 set_rw_ddir(td, io_u);
679
680 /*
681 * fsync() or fdatasync() or trim etc, we are done
682 */
683 if (!ddir_rw(io_u->ddir))
684 goto out;
685
686 /*
687 * See if it's time to switch to a new zone
688 */
689 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
690 td->zone_bytes = 0;
691 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
692 io_u->file->last_pos = io_u->file->file_offset;
693 td->io_skip_bytes += td->o.zone_skip;
694 }
695
696 /*
697 * No log, let the seq/rand engine retrieve the next buflen and
698 * position.
699 */
700 if (get_next_offset(td, io_u)) {
701 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
702 return 1;
703 }
704
705 io_u->buflen = get_next_buflen(td, io_u);
706 if (!io_u->buflen) {
707 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
708 return 1;
709 }
710
711 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
712 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
713 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
714 io_u->buflen, io_u->file->real_file_size);
715 return 1;
716 }
717
718 /*
719 * mark entry before potentially trimming io_u
720 */
721 if (td_random(td) && file_randommap(td, io_u->file))
722 mark_random_map(td, io_u);
723
724 /*
725 * If using a write iolog, store this entry.
726 */
727out:
728 dprint_io_u(io_u, "fill_io_u");
729 td->zone_bytes += io_u->buflen;
730 log_io_u(td, io_u);
731 return 0;
732}
733
734static void __io_u_mark_map(unsigned int *map, unsigned int nr)
735{
736 int idx = 0;
737
738 switch (nr) {
739 default:
740 idx = 6;
741 break;
742 case 33 ... 64:
743 idx = 5;
744 break;
745 case 17 ... 32:
746 idx = 4;
747 break;
748 case 9 ... 16:
749 idx = 3;
750 break;
751 case 5 ... 8:
752 idx = 2;
753 break;
754 case 1 ... 4:
755 idx = 1;
756 case 0:
757 break;
758 }
759
760 map[idx]++;
761}
762
763void io_u_mark_submit(struct thread_data *td, unsigned int nr)
764{
765 __io_u_mark_map(td->ts.io_u_submit, nr);
766 td->ts.total_submit++;
767}
768
769void io_u_mark_complete(struct thread_data *td, unsigned int nr)
770{
771 __io_u_mark_map(td->ts.io_u_complete, nr);
772 td->ts.total_complete++;
773}
774
775void io_u_mark_depth(struct thread_data *td, unsigned int nr)
776{
777 int idx = 0;
778
779 switch (td->cur_depth) {
780 default:
781 idx = 6;
782 break;
783 case 32 ... 63:
784 idx = 5;
785 break;
786 case 16 ... 31:
787 idx = 4;
788 break;
789 case 8 ... 15:
790 idx = 3;
791 break;
792 case 4 ... 7:
793 idx = 2;
794 break;
795 case 2 ... 3:
796 idx = 1;
797 case 1:
798 break;
799 }
800
801 td->ts.io_u_map[idx] += nr;
802}
803
804static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
805{
806 int idx = 0;
807
808 assert(usec < 1000);
809
810 switch (usec) {
811 case 750 ... 999:
812 idx = 9;
813 break;
814 case 500 ... 749:
815 idx = 8;
816 break;
817 case 250 ... 499:
818 idx = 7;
819 break;
820 case 100 ... 249:
821 idx = 6;
822 break;
823 case 50 ... 99:
824 idx = 5;
825 break;
826 case 20 ... 49:
827 idx = 4;
828 break;
829 case 10 ... 19:
830 idx = 3;
831 break;
832 case 4 ... 9:
833 idx = 2;
834 break;
835 case 2 ... 3:
836 idx = 1;
837 case 0 ... 1:
838 break;
839 }
840
841 assert(idx < FIO_IO_U_LAT_U_NR);
842 td->ts.io_u_lat_u[idx]++;
843}
844
845static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
846{
847 int idx = 0;
848
849 switch (msec) {
850 default:
851 idx = 11;
852 break;
853 case 1000 ... 1999:
854 idx = 10;
855 break;
856 case 750 ... 999:
857 idx = 9;
858 break;
859 case 500 ... 749:
860 idx = 8;
861 break;
862 case 250 ... 499:
863 idx = 7;
864 break;
865 case 100 ... 249:
866 idx = 6;
867 break;
868 case 50 ... 99:
869 idx = 5;
870 break;
871 case 20 ... 49:
872 idx = 4;
873 break;
874 case 10 ... 19:
875 idx = 3;
876 break;
877 case 4 ... 9:
878 idx = 2;
879 break;
880 case 2 ... 3:
881 idx = 1;
882 case 0 ... 1:
883 break;
884 }
885
886 assert(idx < FIO_IO_U_LAT_M_NR);
887 td->ts.io_u_lat_m[idx]++;
888}
889
890static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
891{
892 if (usec < 1000)
893 io_u_mark_lat_usec(td, usec);
894 else
895 io_u_mark_lat_msec(td, usec / 1000);
896}
897
898/*
899 * Get next file to service by choosing one at random
900 */
901static struct fio_file *get_next_file_rand(struct thread_data *td,
902 enum fio_file_flags goodf,
903 enum fio_file_flags badf)
904{
905 struct fio_file *f;
906 int fno;
907
908 do {
909 int opened = 0;
910 unsigned long r;
911
912 if (td->o.use_os_rand) {
913 r = os_random_long(&td->next_file_state);
914 fno = (unsigned int) ((double) td->o.nr_files
915 * (r / (OS_RAND_MAX + 1.0)));
916 } else {
917 r = __rand(&td->__next_file_state);
918 fno = (unsigned int) ((double) td->o.nr_files
919 * (r / (FRAND_MAX + 1.0)));
920 }
921
922 f = td->files[fno];
923 if (fio_file_done(f))
924 continue;
925
926 if (!fio_file_open(f)) {
927 int err;
928
929 err = td_io_open_file(td, f);
930 if (err)
931 continue;
932 opened = 1;
933 }
934
935 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
936 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
937 return f;
938 }
939 if (opened)
940 td_io_close_file(td, f);
941 } while (1);
942}
943
944/*
945 * Get next file to service by doing round robin between all available ones
946 */
947static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
948 int badf)
949{
950 unsigned int old_next_file = td->next_file;
951 struct fio_file *f;
952
953 do {
954 int opened = 0;
955
956 f = td->files[td->next_file];
957
958 td->next_file++;
959 if (td->next_file >= td->o.nr_files)
960 td->next_file = 0;
961
962 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
963 if (fio_file_done(f)) {
964 f = NULL;
965 continue;
966 }
967
968 if (!fio_file_open(f)) {
969 int err;
970
971 err = td_io_open_file(td, f);
972 if (err) {
973 dprint(FD_FILE, "error %d on open of %s\n",
974 err, f->file_name);
975 f = NULL;
976 continue;
977 }
978 opened = 1;
979 }
980
981 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
982 f->flags);
983 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
984 break;
985
986 if (opened)
987 td_io_close_file(td, f);
988
989 f = NULL;
990 } while (td->next_file != old_next_file);
991
992 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
993 return f;
994}
995
996static struct fio_file *__get_next_file(struct thread_data *td)
997{
998 struct fio_file *f;
999
1000 assert(td->o.nr_files <= td->files_index);
1001
1002 if (td->nr_done_files >= td->o.nr_files) {
1003 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1004 " nr_files=%d\n", td->nr_open_files,
1005 td->nr_done_files,
1006 td->o.nr_files);
1007 return NULL;
1008 }
1009
1010 f = td->file_service_file;
1011 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1012 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1013 goto out;
1014 if (td->file_service_left--)
1015 goto out;
1016 }
1017
1018 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1019 td->o.file_service_type == FIO_FSERVICE_SEQ)
1020 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1021 else
1022 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1023
1024 td->file_service_file = f;
1025 td->file_service_left = td->file_service_nr - 1;
1026out:
1027 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1028 return f;
1029}
1030
1031static struct fio_file *get_next_file(struct thread_data *td)
1032{
1033 struct prof_io_ops *ops = &td->prof_io_ops;
1034
1035 if (ops->get_next_file)
1036 return ops->get_next_file(td);
1037
1038 return __get_next_file(td);
1039}
1040
1041static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1042{
1043 struct fio_file *f;
1044
1045 do {
1046 f = get_next_file(td);
1047 if (!f)
1048 return 1;
1049
1050 io_u->file = f;
1051 get_file(f);
1052
1053 if (!fill_io_u(td, io_u))
1054 break;
1055
1056 put_file_log(td, f);
1057 td_io_close_file(td, f);
1058 io_u->file = NULL;
1059 fio_file_set_done(f);
1060 td->nr_done_files++;
1061 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1062 td->nr_done_files, td->o.nr_files);
1063 } while (1);
1064
1065 return 0;
1066}
1067
1068
1069struct io_u *__get_io_u(struct thread_data *td)
1070{
1071 struct io_u *io_u = NULL;
1072
1073 td_io_u_lock(td);
1074
1075again:
1076 if (!flist_empty(&td->io_u_requeues))
1077 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
1078 else if (!queue_full(td)) {
1079 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
1080
1081 io_u->buflen = 0;
1082 io_u->resid = 0;
1083 io_u->file = NULL;
1084 io_u->end_io = NULL;
1085 }
1086
1087 if (io_u) {
1088 assert(io_u->flags & IO_U_F_FREE);
1089 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1090 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1091 io_u->flags &= ~IO_U_F_VER_LIST;
1092
1093 io_u->error = 0;
1094 flist_del(&io_u->list);
1095 flist_add(&io_u->list, &td->io_u_busylist);
1096 td->cur_depth++;
1097 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1098 } else if (td->o.verify_async) {
1099 /*
1100 * We ran out, wait for async verify threads to finish and
1101 * return one
1102 */
1103 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1104 goto again;
1105 }
1106
1107 td_io_u_unlock(td);
1108 return io_u;
1109}
1110
1111static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1112{
1113 if (td->o.trim_backlog && td->trim_entries) {
1114 int get_trim = 0;
1115
1116 if (td->trim_batch) {
1117 td->trim_batch--;
1118 get_trim = 1;
1119 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1120 td->last_ddir != DDIR_READ) {
1121 td->trim_batch = td->o.trim_batch;
1122 if (!td->trim_batch)
1123 td->trim_batch = td->o.trim_backlog;
1124 get_trim = 1;
1125 }
1126
1127 if (get_trim && !get_next_trim(td, io_u))
1128 return 1;
1129 }
1130
1131 return 0;
1132}
1133
1134static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1135{
1136 if (td->o.verify_backlog && td->io_hist_len) {
1137 int get_verify = 0;
1138
1139 if (td->verify_batch)
1140 get_verify = 1;
1141 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1142 td->last_ddir != DDIR_READ) {
1143 td->verify_batch = td->o.verify_batch;
1144 if (!td->verify_batch)
1145 td->verify_batch = td->o.verify_backlog;
1146 get_verify = 1;
1147 }
1148
1149 if (get_verify && !get_next_verify(td, io_u)) {
1150 td->verify_batch--;
1151 return 1;
1152 }
1153 }
1154
1155 return 0;
1156}
1157
1158/*
1159 * Fill offset and start time into the buffer content, to prevent too
1160 * easy compressible data for simple de-dupe attempts. Do this for every
1161 * 512b block in the range, since that should be the smallest block size
1162 * we can expect from a device.
1163 */
1164static void small_content_scramble(struct io_u *io_u)
1165{
1166 unsigned int i, nr_blocks = io_u->buflen / 512;
1167 unsigned long long boffset;
1168 unsigned int offset;
1169 void *p, *end;
1170
1171 if (!nr_blocks)
1172 return;
1173
1174 p = io_u->xfer_buf;
1175 boffset = io_u->offset;
1176 io_u->buf_filled_len = 0;
1177
1178 for (i = 0; i < nr_blocks; i++) {
1179 /*
1180 * Fill the byte offset into a "random" start offset of
1181 * the buffer, given by the product of the usec time
1182 * and the actual offset.
1183 */
1184 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1185 offset &= ~(sizeof(unsigned long long) - 1);
1186 if (offset >= 512 - sizeof(unsigned long long))
1187 offset -= sizeof(unsigned long long);
1188 memcpy(p + offset, &boffset, sizeof(boffset));
1189
1190 end = p + 512 - sizeof(io_u->start_time);
1191 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1192 p += 512;
1193 boffset += 512;
1194 }
1195}
1196
1197/*
1198 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1199 * etc. The returned io_u is fully ready to be prepped and submitted.
1200 */
1201struct io_u *get_io_u(struct thread_data *td)
1202{
1203 struct fio_file *f;
1204 struct io_u *io_u;
1205 int do_scramble = 0;
1206
1207 io_u = __get_io_u(td);
1208 if (!io_u) {
1209 dprint(FD_IO, "__get_io_u failed\n");
1210 return NULL;
1211 }
1212
1213 if (check_get_verify(td, io_u))
1214 goto out;
1215 if (check_get_trim(td, io_u))
1216 goto out;
1217
1218 /*
1219 * from a requeue, io_u already setup
1220 */
1221 if (io_u->file)
1222 goto out;
1223
1224 /*
1225 * If using an iolog, grab next piece if any available.
1226 */
1227 if (td->o.read_iolog_file) {
1228 if (read_iolog_get(td, io_u))
1229 goto err_put;
1230 } else if (set_io_u_file(td, io_u)) {
1231 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1232 goto err_put;
1233 }
1234
1235 f = io_u->file;
1236 assert(fio_file_open(f));
1237
1238 if (ddir_rw(io_u->ddir)) {
1239 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1240 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1241 goto err_put;
1242 }
1243
1244 f->last_start = io_u->offset;
1245 f->last_pos = io_u->offset + io_u->buflen;
1246
1247 if (io_u->ddir == DDIR_WRITE) {
1248 if (td->o.refill_buffers) {
1249 io_u_fill_buffer(td, io_u,
1250 io_u->xfer_buflen, io_u->xfer_buflen);
1251 } else if (td->o.scramble_buffers)
1252 do_scramble = 1;
1253 if (td->o.verify != VERIFY_NONE) {
1254 populate_verify_io_u(td, io_u);
1255 do_scramble = 0;
1256 }
1257 } else if (io_u->ddir == DDIR_READ) {
1258 /*
1259 * Reset the buf_filled parameters so next time if the
1260 * buffer is used for writes it is refilled.
1261 */
1262 io_u->buf_filled_len = 0;
1263 }
1264 }
1265
1266 /*
1267 * Set io data pointers.
1268 */
1269 io_u->xfer_buf = io_u->buf;
1270 io_u->xfer_buflen = io_u->buflen;
1271
1272out:
1273 assert(io_u->file);
1274 if (!td_io_prep(td, io_u)) {
1275 if (!td->o.disable_slat)
1276 fio_gettime(&io_u->start_time, NULL);
1277 if (do_scramble)
1278 small_content_scramble(io_u);
1279 return io_u;
1280 }
1281err_put:
1282 dprint(FD_IO, "get_io_u failed\n");
1283 put_io_u(td, io_u);
1284 return NULL;
1285}
1286
1287void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1288{
1289 const char *msg[] = { "read", "write", "sync", "datasync",
1290 "sync_file_range", "wait", "trim" };
1291
1292
1293
1294 log_err("fio: io_u error");
1295
1296 if (io_u->file)
1297 log_err(" on file %s", io_u->file->file_name);
1298
1299 log_err(": %s\n", strerror(io_u->error));
1300
1301 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1302 io_u->offset, io_u->xfer_buflen);
1303
1304 if (!td->error)
1305 td_verror(td, io_u->error, "io_u error");
1306}
1307
1308static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1309 struct io_completion_data *icd,
1310 const enum fio_ddir idx, unsigned int bytes)
1311{
1312 unsigned long uninitialized_var(lusec);
1313
1314 if (!td->o.disable_clat || !td->o.disable_bw)
1315 lusec = utime_since(&io_u->issue_time, &icd->time);
1316
1317 if (!td->o.disable_lat) {
1318 unsigned long tusec;
1319
1320 tusec = utime_since(&io_u->start_time, &icd->time);
1321 add_lat_sample(td, idx, tusec, bytes);
1322 }
1323
1324 if (!td->o.disable_clat) {
1325 add_clat_sample(td, idx, lusec, bytes);
1326 io_u_mark_latency(td, lusec);
1327 }
1328
1329 if (!td->o.disable_bw)
1330 add_bw_sample(td, idx, bytes, &icd->time);
1331
1332 add_iops_sample(td, idx, &icd->time);
1333}
1334
1335static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1336{
1337 unsigned long long secs, remainder, bps, bytes;
1338 bytes = td->this_io_bytes[ddir];
1339 bps = td->rate_bps[ddir];
1340 secs = bytes / bps;
1341 remainder = bytes % bps;
1342 return remainder * 1000000 / bps + secs * 1000000;
1343}
1344
1345static void io_completed(struct thread_data *td, struct io_u *io_u,
1346 struct io_completion_data *icd)
1347{
1348 /*
1349 * Older gcc's are too dumb to realize that usec is always used
1350 * initialized, silence that warning.
1351 */
1352 unsigned long uninitialized_var(usec);
1353 struct fio_file *f;
1354
1355 dprint_io_u(io_u, "io complete");
1356
1357 td_io_u_lock(td);
1358 assert(io_u->flags & IO_U_F_FLIGHT);
1359 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1360 td_io_u_unlock(td);
1361
1362 if (ddir_sync(io_u->ddir)) {
1363 td->last_was_sync = 1;
1364 f = io_u->file;
1365 if (f) {
1366 f->first_write = -1ULL;
1367 f->last_write = -1ULL;
1368 }
1369 return;
1370 }
1371
1372 td->last_was_sync = 0;
1373 td->last_ddir = io_u->ddir;
1374
1375 if (!io_u->error && ddir_rw(io_u->ddir)) {
1376 unsigned int bytes = io_u->buflen - io_u->resid;
1377 const enum fio_ddir idx = io_u->ddir;
1378 const enum fio_ddir odx = io_u->ddir ^ 1;
1379 int ret;
1380
1381 td->io_blocks[idx]++;
1382 td->this_io_blocks[idx]++;
1383 td->io_bytes[idx] += bytes;
1384
1385 if (!(io_u->flags & IO_U_F_VER_LIST))
1386 td->this_io_bytes[idx] += bytes;
1387
1388 if (idx == DDIR_WRITE) {
1389 f = io_u->file;
1390 if (f) {
1391 if (f->first_write == -1ULL ||
1392 io_u->offset < f->first_write)
1393 f->first_write = io_u->offset;
1394 if (f->last_write == -1ULL ||
1395 ((io_u->offset + bytes) > f->last_write))
1396 f->last_write = io_u->offset + bytes;
1397 }
1398 }
1399
1400 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1401 td->runstate == TD_VERIFYING)) {
1402 account_io_completion(td, io_u, icd, idx, bytes);
1403
1404 if (__should_check_rate(td, idx)) {
1405 td->rate_pending_usleep[idx] =
1406 (usec_for_io(td, idx) -
1407 utime_since_now(&td->start));
1408 }
1409 if (__should_check_rate(td, odx))
1410 td->rate_pending_usleep[odx] =
1411 (usec_for_io(td, odx) -
1412 utime_since_now(&td->start));
1413 }
1414
1415 if (td_write(td) && idx == DDIR_WRITE &&
1416 td->o.do_verify &&
1417 td->o.verify != VERIFY_NONE)
1418 log_io_piece(td, io_u);
1419
1420 icd->bytes_done[idx] += bytes;
1421
1422 if (io_u->end_io) {
1423 ret = io_u->end_io(td, io_u);
1424 if (ret && !icd->error)
1425 icd->error = ret;
1426 }
1427 } else if (io_u->error) {
1428 icd->error = io_u->error;
1429 io_u_log_error(td, io_u);
1430 }
1431 if (icd->error && td_non_fatal_error(icd->error) &&
1432 (td->o.continue_on_error & td_error_type(io_u->ddir, icd->error))) {
1433 /*
1434 * If there is a non_fatal error, then add to the error count
1435 * and clear all the errors.
1436 */
1437 update_error_count(td, icd->error);
1438 td_clear_error(td);
1439 icd->error = 0;
1440 io_u->error = 0;
1441 }
1442}
1443
1444static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1445 int nr)
1446{
1447 if (!td->o.disable_clat || !td->o.disable_bw)
1448 fio_gettime(&icd->time, NULL);
1449
1450 icd->nr = nr;
1451
1452 icd->error = 0;
1453 icd->bytes_done[0] = icd->bytes_done[1] = 0;
1454}
1455
1456static void ios_completed(struct thread_data *td,
1457 struct io_completion_data *icd)
1458{
1459 struct io_u *io_u;
1460 int i;
1461
1462 for (i = 0; i < icd->nr; i++) {
1463 io_u = td->io_ops->event(td, i);
1464
1465 io_completed(td, io_u, icd);
1466
1467 if (!(io_u->flags & IO_U_F_FREE_DEF))
1468 put_io_u(td, io_u);
1469 }
1470}
1471
1472/*
1473 * Complete a single io_u for the sync engines.
1474 */
1475int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1476 unsigned long *bytes)
1477{
1478 struct io_completion_data icd;
1479
1480 init_icd(td, &icd, 1);
1481 io_completed(td, io_u, &icd);
1482
1483 if (!(io_u->flags & IO_U_F_FREE_DEF))
1484 put_io_u(td, io_u);
1485
1486 if (icd.error) {
1487 td_verror(td, icd.error, "io_u_sync_complete");
1488 return -1;
1489 }
1490
1491 if (bytes) {
1492 bytes[0] += icd.bytes_done[0];
1493 bytes[1] += icd.bytes_done[1];
1494 }
1495
1496 return 0;
1497}
1498
1499/*
1500 * Called to complete min_events number of io for the async engines.
1501 */
1502int io_u_queued_complete(struct thread_data *td, int min_evts,
1503 unsigned long *bytes)
1504{
1505 struct io_completion_data icd;
1506 struct timespec *tvp = NULL;
1507 int ret;
1508 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1509
1510 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1511
1512 if (!min_evts)
1513 tvp = &ts;
1514
1515 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1516 if (ret < 0) {
1517 td_verror(td, -ret, "td_io_getevents");
1518 return ret;
1519 } else if (!ret)
1520 return ret;
1521
1522 init_icd(td, &icd, ret);
1523 ios_completed(td, &icd);
1524 if (icd.error) {
1525 td_verror(td, icd.error, "io_u_queued_complete");
1526 return -1;
1527 }
1528
1529 if (bytes) {
1530 bytes[0] += icd.bytes_done[0];
1531 bytes[1] += icd.bytes_done[1];
1532 }
1533
1534 return 0;
1535}
1536
1537/*
1538 * Call when io_u is really queued, to update the submission latency.
1539 */
1540void io_u_queued(struct thread_data *td, struct io_u *io_u)
1541{
1542 if (!td->o.disable_slat) {
1543 unsigned long slat_time;
1544
1545 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1546 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1547 }
1548}
1549
1550/*
1551 * "randomly" fill the buffer contents
1552 */
1553void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1554 unsigned int min_write, unsigned int max_bs)
1555{
1556 io_u->buf_filled_len = 0;
1557
1558 if (!td->o.zero_buffers) {
1559 unsigned int perc = td->o.compress_percentage;
1560
1561 if (perc) {
1562 unsigned int seg = min_write;
1563
1564 seg = min(min_write, td->o.compress_chunk);
1565 fill_random_buf_percentage(&td->buf_state, io_u->buf,
1566 perc, seg, max_bs);
1567 } else
1568 fill_random_buf(&td->buf_state, io_u->buf, max_bs);
1569 } else
1570 memset(io_u->buf, 0, max_bs);
1571}