Fio 3.8
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <string.h>
3#include <assert.h>
4
5#include "fio.h"
6#include "verify.h"
7#include "trim.h"
8#include "lib/rand.h"
9#include "lib/axmap.h"
10#include "err.h"
11#include "lib/pow2.h"
12#include "minmax.h"
13
14struct io_completion_data {
15 int nr; /* input */
16
17 int error; /* output */
18 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
19 struct timespec time; /* output */
20};
21
22/*
23 * The ->io_axmap contains a map of blocks we have or have not done io
24 * to yet. Used to make sure we cover the entire range in a fair fashion.
25 */
26static bool random_map_free(struct fio_file *f, const uint64_t block)
27{
28 return !axmap_isset(f->io_axmap, block);
29}
30
31/*
32 * Mark a given offset as used in the map.
33 */
34static void mark_random_map(struct thread_data *td, struct io_u *io_u)
35{
36 unsigned int min_bs = td->o.min_bs[io_u->ddir];
37 struct fio_file *f = io_u->file;
38 unsigned int nr_blocks;
39 uint64_t block;
40
41 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
42 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
43
44 if (!(io_u->flags & IO_U_F_BUSY_OK))
45 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
46
47 if ((nr_blocks * min_bs) < io_u->buflen)
48 io_u->buflen = nr_blocks * min_bs;
49}
50
51static uint64_t last_block(struct thread_data *td, struct fio_file *f,
52 enum fio_ddir ddir)
53{
54 uint64_t max_blocks;
55 uint64_t max_size;
56
57 assert(ddir_rw(ddir));
58
59 /*
60 * Hmm, should we make sure that ->io_size <= ->real_file_size?
61 * -> not for now since there is code assuming it could go either.
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 if (td->o.min_bs[ddir] > td->o.ba[ddir])
71 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
72
73 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
74 if (!max_blocks)
75 return 0;
76
77 return max_blocks;
78}
79
80static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
81 enum fio_ddir ddir, uint64_t *b,
82 uint64_t lastb)
83{
84 uint64_t r;
85
86 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
87 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
88
89 r = __rand(&td->random_state);
90
91 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
92
93 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
94 } else {
95 uint64_t off = 0;
96
97 assert(fio_file_lfsr(f));
98
99 if (lfsr_next(&f->lfsr, &off))
100 return 1;
101
102 *b = off;
103 }
104
105 /*
106 * if we are not maintaining a random map, we are done.
107 */
108 if (!file_randommap(td, f))
109 goto ret;
110
111 /*
112 * calculate map offset and check if it's free
113 */
114 if (random_map_free(f, *b))
115 goto ret;
116
117 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
118 (unsigned long long) *b);
119
120 *b = axmap_next_free(f->io_axmap, *b);
121 if (*b == (uint64_t) -1ULL)
122 return 1;
123ret:
124 return 0;
125}
126
127static int __get_next_rand_offset_zipf(struct thread_data *td,
128 struct fio_file *f, enum fio_ddir ddir,
129 uint64_t *b)
130{
131 *b = zipf_next(&f->zipf);
132 return 0;
133}
134
135static int __get_next_rand_offset_pareto(struct thread_data *td,
136 struct fio_file *f, enum fio_ddir ddir,
137 uint64_t *b)
138{
139 *b = pareto_next(&f->zipf);
140 return 0;
141}
142
143static int __get_next_rand_offset_gauss(struct thread_data *td,
144 struct fio_file *f, enum fio_ddir ddir,
145 uint64_t *b)
146{
147 *b = gauss_next(&f->gauss);
148 return 0;
149}
150
151static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
152 struct fio_file *f,
153 enum fio_ddir ddir, uint64_t *b)
154{
155 struct zone_split_index *zsi;
156 uint64_t lastb, send, stotal;
157 unsigned int v;
158
159 lastb = last_block(td, f, ddir);
160 if (!lastb)
161 return 1;
162
163 if (!td->o.zone_split_nr[ddir]) {
164bail:
165 return __get_next_rand_offset(td, f, ddir, b, lastb);
166 }
167
168 /*
169 * Generate a value, v, between 1 and 100, both inclusive
170 */
171 v = rand_between(&td->zone_state, 1, 100);
172
173 /*
174 * Find our generated table. 'send' is the end block of this zone,
175 * 'stotal' is our start offset.
176 */
177 zsi = &td->zone_state_index[ddir][v - 1];
178 stotal = zsi->size_prev / td->o.ba[ddir];
179 send = zsi->size / td->o.ba[ddir];
180
181 /*
182 * Should never happen
183 */
184 if (send == -1U) {
185 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
186 log_err("fio: bug in zoned generation\n");
187 goto bail;
188 } else if (send > lastb) {
189 /*
190 * This happens if the user specifies ranges that exceed
191 * the file/device size. We can't handle that gracefully,
192 * so error and exit.
193 */
194 log_err("fio: zoned_abs sizes exceed file size\n");
195 return 1;
196 }
197
198 /*
199 * Generate index from 0..send-stotal
200 */
201 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
202 return 1;
203
204 *b += stotal;
205 return 0;
206}
207
208static int __get_next_rand_offset_zoned(struct thread_data *td,
209 struct fio_file *f, enum fio_ddir ddir,
210 uint64_t *b)
211{
212 unsigned int v, send, stotal;
213 uint64_t offset, lastb;
214 struct zone_split_index *zsi;
215
216 lastb = last_block(td, f, ddir);
217 if (!lastb)
218 return 1;
219
220 if (!td->o.zone_split_nr[ddir]) {
221bail:
222 return __get_next_rand_offset(td, f, ddir, b, lastb);
223 }
224
225 /*
226 * Generate a value, v, between 1 and 100, both inclusive
227 */
228 v = rand_between(&td->zone_state, 1, 100);
229
230 zsi = &td->zone_state_index[ddir][v - 1];
231 stotal = zsi->size_perc_prev;
232 send = zsi->size_perc;
233
234 /*
235 * Should never happen
236 */
237 if (send == -1U) {
238 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
239 log_err("fio: bug in zoned generation\n");
240 goto bail;
241 }
242
243 /*
244 * 'send' is some percentage below or equal to 100 that
245 * marks the end of the current IO range. 'stotal' marks
246 * the start, in percent.
247 */
248 if (stotal)
249 offset = stotal * lastb / 100ULL;
250 else
251 offset = 0;
252
253 lastb = lastb * (send - stotal) / 100ULL;
254
255 /*
256 * Generate index from 0..send-of-lastb
257 */
258 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
259 return 1;
260
261 /*
262 * Add our start offset, if any
263 */
264 if (offset)
265 *b += offset;
266
267 return 0;
268}
269
270static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
271 enum fio_ddir ddir, uint64_t *b)
272{
273 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
274 uint64_t lastb;
275
276 lastb = last_block(td, f, ddir);
277 if (!lastb)
278 return 1;
279
280 return __get_next_rand_offset(td, f, ddir, b, lastb);
281 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
282 return __get_next_rand_offset_zipf(td, f, ddir, b);
283 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
284 return __get_next_rand_offset_pareto(td, f, ddir, b);
285 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
286 return __get_next_rand_offset_gauss(td, f, ddir, b);
287 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
288 return __get_next_rand_offset_zoned(td, f, ddir, b);
289 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
290 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
291
292 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
293 return 1;
294}
295
296static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
297{
298 unsigned int v;
299
300 if (td->o.perc_rand[ddir] == 100)
301 return true;
302
303 v = rand_between(&td->seq_rand_state[ddir], 1, 100);
304
305 return v <= td->o.perc_rand[ddir];
306}
307
308static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
309{
310 struct thread_options *o = &td->o;
311
312 if (o->invalidate_cache && !o->odirect) {
313 int fio_unused ret;
314
315 ret = file_invalidate_cache(td, f);
316 }
317}
318
319static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
320 enum fio_ddir ddir, uint64_t *b)
321{
322 if (!get_next_rand_offset(td, f, ddir, b))
323 return 0;
324
325 if (td->o.time_based ||
326 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
327 fio_file_reset(td, f);
328 loop_cache_invalidate(td, f);
329 if (!get_next_rand_offset(td, f, ddir, b))
330 return 0;
331 }
332
333 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
334 f->file_name, (unsigned long long) f->last_pos[ddir],
335 (unsigned long long) f->real_file_size);
336 return 1;
337}
338
339static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
340 enum fio_ddir ddir, uint64_t *offset)
341{
342 struct thread_options *o = &td->o;
343
344 assert(ddir_rw(ddir));
345
346 /*
347 * If we reach the end for a time based run, reset us back to 0
348 * and invalidate the cache, if we need to.
349 */
350 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
351 o->time_based) {
352 f->last_pos[ddir] = f->file_offset;
353 loop_cache_invalidate(td, f);
354 }
355
356 if (f->last_pos[ddir] < f->real_file_size) {
357 uint64_t pos;
358
359 /*
360 * Only rewind if we already hit the end
361 */
362 if (f->last_pos[ddir] == f->file_offset &&
363 f->file_offset && o->ddir_seq_add < 0) {
364 if (f->real_file_size > f->io_size)
365 f->last_pos[ddir] = f->io_size;
366 else
367 f->last_pos[ddir] = f->real_file_size;
368 }
369
370 pos = f->last_pos[ddir] - f->file_offset;
371 if (pos && o->ddir_seq_add) {
372 pos += o->ddir_seq_add;
373
374 /*
375 * If we reach beyond the end of the file
376 * with holed IO, wrap around to the
377 * beginning again. If we're doing backwards IO,
378 * wrap to the end.
379 */
380 if (pos >= f->real_file_size) {
381 if (o->ddir_seq_add > 0)
382 pos = f->file_offset;
383 else {
384 if (f->real_file_size > f->io_size)
385 pos = f->io_size;
386 else
387 pos = f->real_file_size;
388
389 pos += o->ddir_seq_add;
390 }
391 }
392 }
393
394 *offset = pos;
395 return 0;
396 }
397
398 return 1;
399}
400
401static int get_next_block(struct thread_data *td, struct io_u *io_u,
402 enum fio_ddir ddir, int rw_seq,
403 bool *is_random)
404{
405 struct fio_file *f = io_u->file;
406 uint64_t b, offset;
407 int ret;
408
409 assert(ddir_rw(ddir));
410
411 b = offset = -1ULL;
412
413 if (rw_seq) {
414 if (td_random(td)) {
415 if (should_do_random(td, ddir)) {
416 ret = get_next_rand_block(td, f, ddir, &b);
417 *is_random = true;
418 } else {
419 *is_random = false;
420 io_u_set(td, io_u, IO_U_F_BUSY_OK);
421 ret = get_next_seq_offset(td, f, ddir, &offset);
422 if (ret)
423 ret = get_next_rand_block(td, f, ddir, &b);
424 }
425 } else {
426 *is_random = false;
427 ret = get_next_seq_offset(td, f, ddir, &offset);
428 }
429 } else {
430 io_u_set(td, io_u, IO_U_F_BUSY_OK);
431 *is_random = false;
432
433 if (td->o.rw_seq == RW_SEQ_SEQ) {
434 ret = get_next_seq_offset(td, f, ddir, &offset);
435 if (ret) {
436 ret = get_next_rand_block(td, f, ddir, &b);
437 *is_random = false;
438 }
439 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
440 if (f->last_start[ddir] != -1ULL)
441 offset = f->last_start[ddir] - f->file_offset;
442 else
443 offset = 0;
444 ret = 0;
445 } else {
446 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
447 ret = 1;
448 }
449 }
450
451 if (!ret) {
452 if (offset != -1ULL)
453 io_u->offset = offset;
454 else if (b != -1ULL)
455 io_u->offset = b * td->o.ba[ddir];
456 else {
457 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
458 ret = 1;
459 }
460 }
461
462 return ret;
463}
464
465/*
466 * For random io, generate a random new block and see if it's used. Repeat
467 * until we find a free one. For sequential io, just return the end of
468 * the last io issued.
469 */
470static int get_next_offset(struct thread_data *td, struct io_u *io_u,
471 bool *is_random)
472{
473 struct fio_file *f = io_u->file;
474 enum fio_ddir ddir = io_u->ddir;
475 int rw_seq_hit = 0;
476
477 assert(ddir_rw(ddir));
478
479 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
480 rw_seq_hit = 1;
481 td->ddir_seq_nr = td->o.ddir_seq_nr;
482 }
483
484 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
485 return 1;
486
487 if (io_u->offset >= f->io_size) {
488 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
489 (unsigned long long) io_u->offset,
490 (unsigned long long) f->io_size);
491 return 1;
492 }
493
494 io_u->offset += f->file_offset;
495 if (io_u->offset >= f->real_file_size) {
496 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
497 (unsigned long long) io_u->offset,
498 (unsigned long long) f->real_file_size);
499 return 1;
500 }
501
502 return 0;
503}
504
505static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
506 unsigned int buflen)
507{
508 struct fio_file *f = io_u->file;
509
510 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
511}
512
513static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
514 bool is_random)
515{
516 int ddir = io_u->ddir;
517 unsigned int buflen = 0;
518 unsigned int minbs, maxbs;
519 uint64_t frand_max, r;
520 bool power_2;
521
522 assert(ddir_rw(ddir));
523
524 if (td->o.bs_is_seq_rand)
525 ddir = is_random ? DDIR_WRITE : DDIR_READ;
526
527 minbs = td->o.min_bs[ddir];
528 maxbs = td->o.max_bs[ddir];
529
530 if (minbs == maxbs)
531 return minbs;
532
533 /*
534 * If we can't satisfy the min block size from here, then fail
535 */
536 if (!io_u_fits(td, io_u, minbs))
537 return 0;
538
539 frand_max = rand_max(&td->bsrange_state[ddir]);
540 do {
541 r = __rand(&td->bsrange_state[ddir]);
542
543 if (!td->o.bssplit_nr[ddir]) {
544 buflen = minbs + (unsigned int) ((double) maxbs *
545 (r / (frand_max + 1.0)));
546 } else {
547 long long perc = 0;
548 unsigned int i;
549
550 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
551 struct bssplit *bsp = &td->o.bssplit[ddir][i];
552
553 buflen = bsp->bs;
554 perc += bsp->perc;
555 if (!perc)
556 break;
557 if ((r / perc <= frand_max / 100ULL) &&
558 io_u_fits(td, io_u, buflen))
559 break;
560 }
561 }
562
563 power_2 = is_power_of_2(minbs);
564 if (!td->o.bs_unaligned && power_2)
565 buflen &= ~(minbs - 1);
566 else if (!td->o.bs_unaligned && !power_2)
567 buflen -= buflen % minbs;
568 } while (!io_u_fits(td, io_u, buflen));
569
570 return buflen;
571}
572
573static void set_rwmix_bytes(struct thread_data *td)
574{
575 unsigned int diff;
576
577 /*
578 * we do time or byte based switch. this is needed because
579 * buffered writes may issue a lot quicker than they complete,
580 * whereas reads do not.
581 */
582 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
583 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
584}
585
586static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
587{
588 unsigned int v;
589
590 v = rand_between(&td->rwmix_state, 1, 100);
591
592 if (v <= td->o.rwmix[DDIR_READ])
593 return DDIR_READ;
594
595 return DDIR_WRITE;
596}
597
598int io_u_quiesce(struct thread_data *td)
599{
600 int completed = 0;
601
602 /*
603 * We are going to sleep, ensure that we flush anything pending as
604 * not to skew our latency numbers.
605 *
606 * Changed to only monitor 'in flight' requests here instead of the
607 * td->cur_depth, b/c td->cur_depth does not accurately represent
608 * io's that have been actually submitted to an async engine,
609 * and cur_depth is meaningless for sync engines.
610 */
611 if (td->io_u_queued || td->cur_depth)
612 td_io_commit(td);
613
614 while (td->io_u_in_flight) {
615 int ret;
616
617 ret = io_u_queued_complete(td, 1);
618 if (ret > 0)
619 completed += ret;
620 }
621
622 if (td->flags & TD_F_REGROW_LOGS)
623 regrow_logs(td);
624
625 return completed;
626}
627
628static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
629{
630 enum fio_ddir odir = ddir ^ 1;
631 uint64_t usec;
632 uint64_t now;
633
634 assert(ddir_rw(ddir));
635 now = utime_since_now(&td->start);
636
637 /*
638 * if rate_next_io_time is in the past, need to catch up to rate
639 */
640 if (td->rate_next_io_time[ddir] <= now)
641 return ddir;
642
643 /*
644 * We are ahead of rate in this direction. See if we
645 * should switch.
646 */
647 if (td_rw(td) && td->o.rwmix[odir]) {
648 /*
649 * Other direction is behind rate, switch
650 */
651 if (td->rate_next_io_time[odir] <= now)
652 return odir;
653
654 /*
655 * Both directions are ahead of rate. sleep the min,
656 * switch if necessary
657 */
658 if (td->rate_next_io_time[ddir] <=
659 td->rate_next_io_time[odir]) {
660 usec = td->rate_next_io_time[ddir] - now;
661 } else {
662 usec = td->rate_next_io_time[odir] - now;
663 ddir = odir;
664 }
665 } else
666 usec = td->rate_next_io_time[ddir] - now;
667
668 if (td->o.io_submit_mode == IO_MODE_INLINE)
669 io_u_quiesce(td);
670
671 usec_sleep(td, usec);
672 return ddir;
673}
674
675/*
676 * Return the data direction for the next io_u. If the job is a
677 * mixed read/write workload, check the rwmix cycle and switch if
678 * necessary.
679 */
680static enum fio_ddir get_rw_ddir(struct thread_data *td)
681{
682 enum fio_ddir ddir;
683
684 /*
685 * See if it's time to fsync/fdatasync/sync_file_range first,
686 * and if not then move on to check regular I/Os.
687 */
688 if (should_fsync(td)) {
689 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
690 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
691 return DDIR_SYNC;
692
693 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
694 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
695 return DDIR_DATASYNC;
696
697 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
698 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
699 return DDIR_SYNC_FILE_RANGE;
700 }
701
702 if (td_rw(td)) {
703 /*
704 * Check if it's time to seed a new data direction.
705 */
706 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
707 /*
708 * Put a top limit on how many bytes we do for
709 * one data direction, to avoid overflowing the
710 * ranges too much
711 */
712 ddir = get_rand_ddir(td);
713
714 if (ddir != td->rwmix_ddir)
715 set_rwmix_bytes(td);
716
717 td->rwmix_ddir = ddir;
718 }
719 ddir = td->rwmix_ddir;
720 } else if (td_read(td))
721 ddir = DDIR_READ;
722 else if (td_write(td))
723 ddir = DDIR_WRITE;
724 else if (td_trim(td))
725 ddir = DDIR_TRIM;
726 else
727 ddir = DDIR_INVAL;
728
729 td->rwmix_ddir = rate_ddir(td, ddir);
730 return td->rwmix_ddir;
731}
732
733static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
734{
735 enum fio_ddir ddir = get_rw_ddir(td);
736
737 if (td_trimwrite(td)) {
738 struct fio_file *f = io_u->file;
739 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
740 ddir = DDIR_TRIM;
741 else
742 ddir = DDIR_WRITE;
743 }
744
745 io_u->ddir = io_u->acct_ddir = ddir;
746
747 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
748 td->o.barrier_blocks &&
749 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
750 td->io_issues[DDIR_WRITE])
751 io_u_set(td, io_u, IO_U_F_BARRIER);
752}
753
754void put_file_log(struct thread_data *td, struct fio_file *f)
755{
756 unsigned int ret = put_file(td, f);
757
758 if (ret)
759 td_verror(td, ret, "file close");
760}
761
762void put_io_u(struct thread_data *td, struct io_u *io_u)
763{
764 if (td->parent)
765 td = td->parent;
766
767 td_io_u_lock(td);
768
769 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
770 put_file_log(td, io_u->file);
771
772 io_u->file = NULL;
773 io_u_set(td, io_u, IO_U_F_FREE);
774
775 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
776 td->cur_depth--;
777 assert(!(td->flags & TD_F_CHILD));
778 }
779 io_u_qpush(&td->io_u_freelist, io_u);
780 td_io_u_free_notify(td);
781 td_io_u_unlock(td);
782}
783
784void clear_io_u(struct thread_data *td, struct io_u *io_u)
785{
786 io_u_clear(td, io_u, IO_U_F_FLIGHT);
787 put_io_u(td, io_u);
788}
789
790void requeue_io_u(struct thread_data *td, struct io_u **io_u)
791{
792 struct io_u *__io_u = *io_u;
793 enum fio_ddir ddir = acct_ddir(__io_u);
794
795 dprint(FD_IO, "requeue %p\n", __io_u);
796
797 if (td->parent)
798 td = td->parent;
799
800 td_io_u_lock(td);
801
802 io_u_set(td, __io_u, IO_U_F_FREE);
803 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
804 td->io_issues[ddir]--;
805
806 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
807 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
808 td->cur_depth--;
809 assert(!(td->flags & TD_F_CHILD));
810 }
811
812 io_u_rpush(&td->io_u_requeues, __io_u);
813 td_io_u_free_notify(td);
814 td_io_u_unlock(td);
815 *io_u = NULL;
816}
817
818static void __fill_io_u_zone(struct thread_data *td, struct io_u *io_u)
819{
820 struct fio_file *f = io_u->file;
821
822 /*
823 * See if it's time to switch to a new zone
824 */
825 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
826 td->zone_bytes = 0;
827 f->file_offset += td->o.zone_range + td->o.zone_skip;
828
829 /*
830 * Wrap from the beginning, if we exceed the file size
831 */
832 if (f->file_offset >= f->real_file_size)
833 f->file_offset = get_start_offset(td, f);
834
835 f->last_pos[io_u->ddir] = f->file_offset;
836 td->io_skip_bytes += td->o.zone_skip;
837 }
838
839 /*
840 * If zone_size > zone_range, then maintain the same zone until
841 * zone_bytes >= zone_size.
842 */
843 if (f->last_pos[io_u->ddir] >= (f->file_offset + td->o.zone_range)) {
844 dprint(FD_IO, "io_u maintain zone offset=%" PRIu64 "/last_pos=%" PRIu64 "\n",
845 f->file_offset, f->last_pos[io_u->ddir]);
846 f->last_pos[io_u->ddir] = f->file_offset;
847 }
848
849 /*
850 * For random: if 'norandommap' is not set and zone_size > zone_range,
851 * map needs to be reset as it's done with zone_range everytime.
852 */
853 if ((td->zone_bytes % td->o.zone_range) == 0)
854 fio_file_reset(td, f);
855}
856
857static int fill_io_u(struct thread_data *td, struct io_u *io_u)
858{
859 bool is_random;
860
861 if (td_ioengine_flagged(td, FIO_NOIO))
862 goto out;
863
864 set_rw_ddir(td, io_u);
865
866 /*
867 * fsync() or fdatasync() or trim etc, we are done
868 */
869 if (!ddir_rw(io_u->ddir))
870 goto out;
871
872 /*
873 * When file is zoned zone_range is always positive
874 */
875 if (td->o.zone_range)
876 __fill_io_u_zone(td, io_u);
877
878 /*
879 * No log, let the seq/rand engine retrieve the next buflen and
880 * position.
881 */
882 if (get_next_offset(td, io_u, &is_random)) {
883 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
884 return 1;
885 }
886
887 io_u->buflen = get_next_buflen(td, io_u, is_random);
888 if (!io_u->buflen) {
889 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
890 return 1;
891 }
892
893 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
894 dprint(FD_IO, "io_u %p, off=0x%llx + len=0x%lx exceeds file size=0x%llx\n",
895 io_u,
896 (unsigned long long) io_u->offset, io_u->buflen,
897 (unsigned long long) io_u->file->real_file_size);
898 return 1;
899 }
900
901 /*
902 * mark entry before potentially trimming io_u
903 */
904 if (td_random(td) && file_randommap(td, io_u->file))
905 mark_random_map(td, io_u);
906
907out:
908 dprint_io_u(io_u, "fill");
909 td->zone_bytes += io_u->buflen;
910 return 0;
911}
912
913static void __io_u_mark_map(uint64_t *map, unsigned int nr)
914{
915 int idx = 0;
916
917 switch (nr) {
918 default:
919 idx = 6;
920 break;
921 case 33 ... 64:
922 idx = 5;
923 break;
924 case 17 ... 32:
925 idx = 4;
926 break;
927 case 9 ... 16:
928 idx = 3;
929 break;
930 case 5 ... 8:
931 idx = 2;
932 break;
933 case 1 ... 4:
934 idx = 1;
935 case 0:
936 break;
937 }
938
939 map[idx]++;
940}
941
942void io_u_mark_submit(struct thread_data *td, unsigned int nr)
943{
944 __io_u_mark_map(td->ts.io_u_submit, nr);
945 td->ts.total_submit++;
946}
947
948void io_u_mark_complete(struct thread_data *td, unsigned int nr)
949{
950 __io_u_mark_map(td->ts.io_u_complete, nr);
951 td->ts.total_complete++;
952}
953
954void io_u_mark_depth(struct thread_data *td, unsigned int nr)
955{
956 int idx = 0;
957
958 switch (td->cur_depth) {
959 default:
960 idx = 6;
961 break;
962 case 32 ... 63:
963 idx = 5;
964 break;
965 case 16 ... 31:
966 idx = 4;
967 break;
968 case 8 ... 15:
969 idx = 3;
970 break;
971 case 4 ... 7:
972 idx = 2;
973 break;
974 case 2 ... 3:
975 idx = 1;
976 case 1:
977 break;
978 }
979
980 td->ts.io_u_map[idx] += nr;
981}
982
983static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
984{
985 int idx = 0;
986
987 assert(nsec < 1000);
988
989 switch (nsec) {
990 case 750 ... 999:
991 idx = 9;
992 break;
993 case 500 ... 749:
994 idx = 8;
995 break;
996 case 250 ... 499:
997 idx = 7;
998 break;
999 case 100 ... 249:
1000 idx = 6;
1001 break;
1002 case 50 ... 99:
1003 idx = 5;
1004 break;
1005 case 20 ... 49:
1006 idx = 4;
1007 break;
1008 case 10 ... 19:
1009 idx = 3;
1010 break;
1011 case 4 ... 9:
1012 idx = 2;
1013 break;
1014 case 2 ... 3:
1015 idx = 1;
1016 case 0 ... 1:
1017 break;
1018 }
1019
1020 assert(idx < FIO_IO_U_LAT_N_NR);
1021 td->ts.io_u_lat_n[idx]++;
1022}
1023
1024static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1025{
1026 int idx = 0;
1027
1028 assert(usec < 1000 && usec >= 1);
1029
1030 switch (usec) {
1031 case 750 ... 999:
1032 idx = 9;
1033 break;
1034 case 500 ... 749:
1035 idx = 8;
1036 break;
1037 case 250 ... 499:
1038 idx = 7;
1039 break;
1040 case 100 ... 249:
1041 idx = 6;
1042 break;
1043 case 50 ... 99:
1044 idx = 5;
1045 break;
1046 case 20 ... 49:
1047 idx = 4;
1048 break;
1049 case 10 ... 19:
1050 idx = 3;
1051 break;
1052 case 4 ... 9:
1053 idx = 2;
1054 break;
1055 case 2 ... 3:
1056 idx = 1;
1057 case 0 ... 1:
1058 break;
1059 }
1060
1061 assert(idx < FIO_IO_U_LAT_U_NR);
1062 td->ts.io_u_lat_u[idx]++;
1063}
1064
1065static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1066{
1067 int idx = 0;
1068
1069 assert(msec >= 1);
1070
1071 switch (msec) {
1072 default:
1073 idx = 11;
1074 break;
1075 case 1000 ... 1999:
1076 idx = 10;
1077 break;
1078 case 750 ... 999:
1079 idx = 9;
1080 break;
1081 case 500 ... 749:
1082 idx = 8;
1083 break;
1084 case 250 ... 499:
1085 idx = 7;
1086 break;
1087 case 100 ... 249:
1088 idx = 6;
1089 break;
1090 case 50 ... 99:
1091 idx = 5;
1092 break;
1093 case 20 ... 49:
1094 idx = 4;
1095 break;
1096 case 10 ... 19:
1097 idx = 3;
1098 break;
1099 case 4 ... 9:
1100 idx = 2;
1101 break;
1102 case 2 ... 3:
1103 idx = 1;
1104 case 0 ... 1:
1105 break;
1106 }
1107
1108 assert(idx < FIO_IO_U_LAT_M_NR);
1109 td->ts.io_u_lat_m[idx]++;
1110}
1111
1112static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1113{
1114 if (nsec < 1000)
1115 io_u_mark_lat_nsec(td, nsec);
1116 else if (nsec < 1000000)
1117 io_u_mark_lat_usec(td, nsec / 1000);
1118 else
1119 io_u_mark_lat_msec(td, nsec / 1000000);
1120}
1121
1122static unsigned int __get_next_fileno_rand(struct thread_data *td)
1123{
1124 unsigned long fileno;
1125
1126 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1127 uint64_t frand_max = rand_max(&td->next_file_state);
1128 unsigned long r;
1129
1130 r = __rand(&td->next_file_state);
1131 return (unsigned int) ((double) td->o.nr_files
1132 * (r / (frand_max + 1.0)));
1133 }
1134
1135 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1136 fileno = zipf_next(&td->next_file_zipf);
1137 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1138 fileno = pareto_next(&td->next_file_zipf);
1139 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1140 fileno = gauss_next(&td->next_file_gauss);
1141 else {
1142 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1143 assert(0);
1144 return 0;
1145 }
1146
1147 return fileno >> FIO_FSERVICE_SHIFT;
1148}
1149
1150/*
1151 * Get next file to service by choosing one at random
1152 */
1153static struct fio_file *get_next_file_rand(struct thread_data *td,
1154 enum fio_file_flags goodf,
1155 enum fio_file_flags badf)
1156{
1157 struct fio_file *f;
1158 int fno;
1159
1160 do {
1161 int opened = 0;
1162
1163 fno = __get_next_fileno_rand(td);
1164
1165 f = td->files[fno];
1166 if (fio_file_done(f))
1167 continue;
1168
1169 if (!fio_file_open(f)) {
1170 int err;
1171
1172 if (td->nr_open_files >= td->o.open_files)
1173 return ERR_PTR(-EBUSY);
1174
1175 err = td_io_open_file(td, f);
1176 if (err)
1177 continue;
1178 opened = 1;
1179 }
1180
1181 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1182 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1183 return f;
1184 }
1185 if (opened)
1186 td_io_close_file(td, f);
1187 } while (1);
1188}
1189
1190/*
1191 * Get next file to service by doing round robin between all available ones
1192 */
1193static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1194 int badf)
1195{
1196 unsigned int old_next_file = td->next_file;
1197 struct fio_file *f;
1198
1199 do {
1200 int opened = 0;
1201
1202 f = td->files[td->next_file];
1203
1204 td->next_file++;
1205 if (td->next_file >= td->o.nr_files)
1206 td->next_file = 0;
1207
1208 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1209 if (fio_file_done(f)) {
1210 f = NULL;
1211 continue;
1212 }
1213
1214 if (!fio_file_open(f)) {
1215 int err;
1216
1217 if (td->nr_open_files >= td->o.open_files)
1218 return ERR_PTR(-EBUSY);
1219
1220 err = td_io_open_file(td, f);
1221 if (err) {
1222 dprint(FD_FILE, "error %d on open of %s\n",
1223 err, f->file_name);
1224 f = NULL;
1225 continue;
1226 }
1227 opened = 1;
1228 }
1229
1230 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1231 f->flags);
1232 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1233 break;
1234
1235 if (opened)
1236 td_io_close_file(td, f);
1237
1238 f = NULL;
1239 } while (td->next_file != old_next_file);
1240
1241 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1242 return f;
1243}
1244
1245static struct fio_file *__get_next_file(struct thread_data *td)
1246{
1247 struct fio_file *f;
1248
1249 assert(td->o.nr_files <= td->files_index);
1250
1251 if (td->nr_done_files >= td->o.nr_files) {
1252 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1253 " nr_files=%d\n", td->nr_open_files,
1254 td->nr_done_files,
1255 td->o.nr_files);
1256 return NULL;
1257 }
1258
1259 f = td->file_service_file;
1260 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1261 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1262 goto out;
1263 if (td->file_service_left--)
1264 goto out;
1265 }
1266
1267 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1268 td->o.file_service_type == FIO_FSERVICE_SEQ)
1269 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1270 else
1271 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1272
1273 if (IS_ERR(f))
1274 return f;
1275
1276 td->file_service_file = f;
1277 td->file_service_left = td->file_service_nr - 1;
1278out:
1279 if (f)
1280 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1281 else
1282 dprint(FD_FILE, "get_next_file: NULL\n");
1283 return f;
1284}
1285
1286static struct fio_file *get_next_file(struct thread_data *td)
1287{
1288 return __get_next_file(td);
1289}
1290
1291static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1292{
1293 struct fio_file *f;
1294
1295 do {
1296 f = get_next_file(td);
1297 if (IS_ERR_OR_NULL(f))
1298 return PTR_ERR(f);
1299
1300 io_u->file = f;
1301 get_file(f);
1302
1303 if (!fill_io_u(td, io_u))
1304 break;
1305
1306 put_file_log(td, f);
1307 td_io_close_file(td, f);
1308 io_u->file = NULL;
1309 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1310 fio_file_reset(td, f);
1311 else {
1312 fio_file_set_done(f);
1313 td->nr_done_files++;
1314 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1315 td->nr_done_files, td->o.nr_files);
1316 }
1317 } while (1);
1318
1319 return 0;
1320}
1321
1322static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1323 unsigned long long tnsec, unsigned long long max_nsec)
1324{
1325 if (!td->error)
1326 log_err("fio: latency of %llu nsec exceeds specified max (%llu nsec)\n", tnsec, max_nsec);
1327 td_verror(td, ETIMEDOUT, "max latency exceeded");
1328 icd->error = ETIMEDOUT;
1329}
1330
1331static void lat_new_cycle(struct thread_data *td)
1332{
1333 fio_gettime(&td->latency_ts, NULL);
1334 td->latency_ios = ddir_rw_sum(td->io_blocks);
1335 td->latency_failed = 0;
1336}
1337
1338/*
1339 * We had an IO outside the latency target. Reduce the queue depth. If we
1340 * are at QD=1, then it's time to give up.
1341 */
1342static bool __lat_target_failed(struct thread_data *td)
1343{
1344 if (td->latency_qd == 1)
1345 return true;
1346
1347 td->latency_qd_high = td->latency_qd;
1348
1349 if (td->latency_qd == td->latency_qd_low)
1350 td->latency_qd_low--;
1351
1352 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1353
1354 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1355
1356 /*
1357 * When we ramp QD down, quiesce existing IO to prevent
1358 * a storm of ramp downs due to pending higher depth.
1359 */
1360 io_u_quiesce(td);
1361 lat_new_cycle(td);
1362 return false;
1363}
1364
1365static bool lat_target_failed(struct thread_data *td)
1366{
1367 if (td->o.latency_percentile.u.f == 100.0)
1368 return __lat_target_failed(td);
1369
1370 td->latency_failed++;
1371 return false;
1372}
1373
1374void lat_target_init(struct thread_data *td)
1375{
1376 td->latency_end_run = 0;
1377
1378 if (td->o.latency_target) {
1379 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1380 fio_gettime(&td->latency_ts, NULL);
1381 td->latency_qd = 1;
1382 td->latency_qd_high = td->o.iodepth;
1383 td->latency_qd_low = 1;
1384 td->latency_ios = ddir_rw_sum(td->io_blocks);
1385 } else
1386 td->latency_qd = td->o.iodepth;
1387}
1388
1389void lat_target_reset(struct thread_data *td)
1390{
1391 if (!td->latency_end_run)
1392 lat_target_init(td);
1393}
1394
1395static void lat_target_success(struct thread_data *td)
1396{
1397 const unsigned int qd = td->latency_qd;
1398 struct thread_options *o = &td->o;
1399
1400 td->latency_qd_low = td->latency_qd;
1401
1402 /*
1403 * If we haven't failed yet, we double up to a failing value instead
1404 * of bisecting from highest possible queue depth. If we have set
1405 * a limit other than td->o.iodepth, bisect between that.
1406 */
1407 if (td->latency_qd_high != o->iodepth)
1408 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1409 else
1410 td->latency_qd *= 2;
1411
1412 if (td->latency_qd > o->iodepth)
1413 td->latency_qd = o->iodepth;
1414
1415 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1416
1417 /*
1418 * Same as last one, we are done. Let it run a latency cycle, so
1419 * we get only the results from the targeted depth.
1420 */
1421 if (td->latency_qd == qd) {
1422 if (td->latency_end_run) {
1423 dprint(FD_RATE, "We are done\n");
1424 td->done = 1;
1425 } else {
1426 dprint(FD_RATE, "Quiesce and final run\n");
1427 io_u_quiesce(td);
1428 td->latency_end_run = 1;
1429 reset_all_stats(td);
1430 reset_io_stats(td);
1431 }
1432 }
1433
1434 lat_new_cycle(td);
1435}
1436
1437/*
1438 * Check if we can bump the queue depth
1439 */
1440void lat_target_check(struct thread_data *td)
1441{
1442 uint64_t usec_window;
1443 uint64_t ios;
1444 double success_ios;
1445
1446 usec_window = utime_since_now(&td->latency_ts);
1447 if (usec_window < td->o.latency_window)
1448 return;
1449
1450 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1451 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1452 success_ios *= 100.0;
1453
1454 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1455
1456 if (success_ios >= td->o.latency_percentile.u.f)
1457 lat_target_success(td);
1458 else
1459 __lat_target_failed(td);
1460}
1461
1462/*
1463 * If latency target is enabled, we might be ramping up or down and not
1464 * using the full queue depth available.
1465 */
1466bool queue_full(const struct thread_data *td)
1467{
1468 const int qempty = io_u_qempty(&td->io_u_freelist);
1469
1470 if (qempty)
1471 return true;
1472 if (!td->o.latency_target)
1473 return false;
1474
1475 return td->cur_depth >= td->latency_qd;
1476}
1477
1478struct io_u *__get_io_u(struct thread_data *td)
1479{
1480 struct io_u *io_u = NULL;
1481 int ret;
1482
1483 if (td->stop_io)
1484 return NULL;
1485
1486 td_io_u_lock(td);
1487
1488again:
1489 if (!io_u_rempty(&td->io_u_requeues))
1490 io_u = io_u_rpop(&td->io_u_requeues);
1491 else if (!queue_full(td)) {
1492 io_u = io_u_qpop(&td->io_u_freelist);
1493
1494 io_u->file = NULL;
1495 io_u->buflen = 0;
1496 io_u->resid = 0;
1497 io_u->end_io = NULL;
1498 }
1499
1500 if (io_u) {
1501 assert(io_u->flags & IO_U_F_FREE);
1502 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1503 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1504 IO_U_F_VER_LIST);
1505
1506 io_u->error = 0;
1507 io_u->acct_ddir = -1;
1508 td->cur_depth++;
1509 assert(!(td->flags & TD_F_CHILD));
1510 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1511 io_u->ipo = NULL;
1512 } else if (td_async_processing(td)) {
1513 /*
1514 * We ran out, wait for async verify threads to finish and
1515 * return one
1516 */
1517 assert(!(td->flags & TD_F_CHILD));
1518 ret = pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1519 assert(ret == 0);
1520 goto again;
1521 }
1522
1523 td_io_u_unlock(td);
1524 return io_u;
1525}
1526
1527static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1528{
1529 if (!(td->flags & TD_F_TRIM_BACKLOG))
1530 return false;
1531 if (!td->trim_entries)
1532 return false;
1533
1534 if (td->trim_batch) {
1535 td->trim_batch--;
1536 if (get_next_trim(td, io_u))
1537 return true;
1538 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1539 td->last_ddir != DDIR_READ) {
1540 td->trim_batch = td->o.trim_batch;
1541 if (!td->trim_batch)
1542 td->trim_batch = td->o.trim_backlog;
1543 if (get_next_trim(td, io_u))
1544 return true;
1545 }
1546
1547 return false;
1548}
1549
1550static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1551{
1552 if (!(td->flags & TD_F_VER_BACKLOG))
1553 return false;
1554
1555 if (td->io_hist_len) {
1556 int get_verify = 0;
1557
1558 if (td->verify_batch)
1559 get_verify = 1;
1560 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1561 td->last_ddir != DDIR_READ) {
1562 td->verify_batch = td->o.verify_batch;
1563 if (!td->verify_batch)
1564 td->verify_batch = td->o.verify_backlog;
1565 get_verify = 1;
1566 }
1567
1568 if (get_verify && !get_next_verify(td, io_u)) {
1569 td->verify_batch--;
1570 return true;
1571 }
1572 }
1573
1574 return false;
1575}
1576
1577/*
1578 * Fill offset and start time into the buffer content, to prevent too
1579 * easy compressible data for simple de-dupe attempts. Do this for every
1580 * 512b block in the range, since that should be the smallest block size
1581 * we can expect from a device.
1582 */
1583static void small_content_scramble(struct io_u *io_u)
1584{
1585 unsigned int i, nr_blocks = io_u->buflen >> 9;
1586 unsigned int offset;
1587 uint64_t boffset, *iptr;
1588 char *p;
1589
1590 if (!nr_blocks)
1591 return;
1592
1593 p = io_u->xfer_buf;
1594 boffset = io_u->offset;
1595
1596 if (io_u->buf_filled_len)
1597 io_u->buf_filled_len = 0;
1598
1599 /*
1600 * Generate random index between 0..7. We do chunks of 512b, if
1601 * we assume a cacheline is 64 bytes, then we have 8 of those.
1602 * Scramble content within the blocks in the same cacheline to
1603 * speed things up.
1604 */
1605 offset = (io_u->start_time.tv_nsec ^ boffset) & 7;
1606
1607 for (i = 0; i < nr_blocks; i++) {
1608 /*
1609 * Fill offset into start of cacheline, time into end
1610 * of cacheline
1611 */
1612 iptr = (void *) p + (offset << 6);
1613 *iptr = boffset;
1614
1615 iptr = (void *) p + 64 - 2 * sizeof(uint64_t);
1616 iptr[0] = io_u->start_time.tv_sec;
1617 iptr[1] = io_u->start_time.tv_nsec;
1618
1619 p += 512;
1620 boffset += 512;
1621 }
1622}
1623
1624/*
1625 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1626 * etc. The returned io_u is fully ready to be prepped, populated and submitted.
1627 */
1628struct io_u *get_io_u(struct thread_data *td)
1629{
1630 struct fio_file *f;
1631 struct io_u *io_u;
1632 int do_scramble = 0;
1633 long ret = 0;
1634
1635 io_u = __get_io_u(td);
1636 if (!io_u) {
1637 dprint(FD_IO, "__get_io_u failed\n");
1638 return NULL;
1639 }
1640
1641 if (check_get_verify(td, io_u))
1642 goto out;
1643 if (check_get_trim(td, io_u))
1644 goto out;
1645
1646 /*
1647 * from a requeue, io_u already setup
1648 */
1649 if (io_u->file)
1650 goto out;
1651
1652 /*
1653 * If using an iolog, grab next piece if any available.
1654 */
1655 if (td->flags & TD_F_READ_IOLOG) {
1656 if (read_iolog_get(td, io_u))
1657 goto err_put;
1658 } else if (set_io_u_file(td, io_u)) {
1659 ret = -EBUSY;
1660 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1661 goto err_put;
1662 }
1663
1664 f = io_u->file;
1665 if (!f) {
1666 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1667 goto err_put;
1668 }
1669
1670 assert(fio_file_open(f));
1671
1672 if (ddir_rw(io_u->ddir)) {
1673 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1674 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1675 goto err_put;
1676 }
1677
1678 f->last_start[io_u->ddir] = io_u->offset;
1679 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1680
1681 if (io_u->ddir == DDIR_WRITE) {
1682 if (td->flags & TD_F_REFILL_BUFFERS) {
1683 io_u_fill_buffer(td, io_u,
1684 td->o.min_bs[DDIR_WRITE],
1685 io_u->buflen);
1686 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1687 !(td->flags & TD_F_COMPRESS) &&
1688 !(td->flags & TD_F_DO_VERIFY))
1689 do_scramble = 1;
1690 } else if (io_u->ddir == DDIR_READ) {
1691 /*
1692 * Reset the buf_filled parameters so next time if the
1693 * buffer is used for writes it is refilled.
1694 */
1695 io_u->buf_filled_len = 0;
1696 }
1697 }
1698
1699 /*
1700 * Set io data pointers.
1701 */
1702 io_u->xfer_buf = io_u->buf;
1703 io_u->xfer_buflen = io_u->buflen;
1704
1705out:
1706 assert(io_u->file);
1707 if (!td_io_prep(td, io_u)) {
1708 if (!td->o.disable_lat)
1709 fio_gettime(&io_u->start_time, NULL);
1710
1711 if (do_scramble)
1712 small_content_scramble(io_u);
1713
1714 return io_u;
1715 }
1716err_put:
1717 dprint(FD_IO, "get_io_u failed\n");
1718 put_io_u(td, io_u);
1719 return ERR_PTR(ret);
1720}
1721
1722static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1723{
1724 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1725
1726 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1727 return;
1728
1729 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1730 io_u->file ? " on file " : "",
1731 io_u->file ? io_u->file->file_name : "",
1732 strerror(io_u->error),
1733 io_ddir_name(io_u->ddir),
1734 io_u->offset, io_u->xfer_buflen);
1735
1736 if (td->io_ops->errdetails) {
1737 char *err = td->io_ops->errdetails(io_u);
1738
1739 log_err("fio: %s\n", err);
1740 free(err);
1741 }
1742
1743 if (!td->error)
1744 td_verror(td, io_u->error, "io_u error");
1745}
1746
1747void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1748{
1749 __io_u_log_error(td, io_u);
1750 if (td->parent)
1751 __io_u_log_error(td->parent, io_u);
1752}
1753
1754static inline bool gtod_reduce(struct thread_data *td)
1755{
1756 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1757 || td->o.gtod_reduce;
1758}
1759
1760static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1761 struct io_completion_data *icd,
1762 const enum fio_ddir idx, unsigned int bytes)
1763{
1764 const int no_reduce = !gtod_reduce(td);
1765 unsigned long long llnsec = 0;
1766
1767 if (td->parent)
1768 td = td->parent;
1769
1770 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1771 return;
1772
1773 if (no_reduce)
1774 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1775
1776 if (!td->o.disable_lat) {
1777 unsigned long long tnsec;
1778
1779 tnsec = ntime_since(&io_u->start_time, &icd->time);
1780 add_lat_sample(td, idx, tnsec, bytes, io_u->offset);
1781
1782 if (td->flags & TD_F_PROFILE_OPS) {
1783 struct prof_io_ops *ops = &td->prof_io_ops;
1784
1785 if (ops->io_u_lat)
1786 icd->error = ops->io_u_lat(td, tnsec);
1787 }
1788
1789 if (td->o.max_latency && tnsec > td->o.max_latency)
1790 lat_fatal(td, icd, tnsec, td->o.max_latency);
1791 if (td->o.latency_target && tnsec > td->o.latency_target) {
1792 if (lat_target_failed(td))
1793 lat_fatal(td, icd, tnsec, td->o.latency_target);
1794 }
1795 }
1796
1797 if (ddir_rw(idx)) {
1798 if (!td->o.disable_clat) {
1799 add_clat_sample(td, idx, llnsec, bytes, io_u->offset);
1800 io_u_mark_latency(td, llnsec);
1801 }
1802
1803 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1804 add_bw_sample(td, io_u, bytes, llnsec);
1805
1806 if (no_reduce && per_unit_log(td->iops_log))
1807 add_iops_sample(td, io_u, bytes);
1808 } else if (ddir_sync(idx) && !td->o.disable_clat)
1809 add_sync_clat_sample(&td->ts, llnsec);
1810
1811 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1812 uint32_t *info = io_u_block_info(td, io_u);
1813 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1814 if (io_u->ddir == DDIR_TRIM) {
1815 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1816 BLOCK_INFO_TRIMS(*info) + 1);
1817 } else if (io_u->ddir == DDIR_WRITE) {
1818 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1819 *info);
1820 }
1821 }
1822 }
1823}
1824
1825static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1826 uint64_t offset, unsigned int bytes)
1827{
1828 int idx;
1829
1830 if (!f)
1831 return;
1832
1833 if (f->first_write == -1ULL || offset < f->first_write)
1834 f->first_write = offset;
1835 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1836 f->last_write = offset + bytes;
1837
1838 if (!f->last_write_comp)
1839 return;
1840
1841 idx = f->last_write_idx++;
1842 f->last_write_comp[idx] = offset;
1843 if (f->last_write_idx == td->o.iodepth)
1844 f->last_write_idx = 0;
1845}
1846
1847static bool should_account(struct thread_data *td)
1848{
1849 return ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1850 td->runstate == TD_VERIFYING);
1851}
1852
1853static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1854 struct io_completion_data *icd)
1855{
1856 struct io_u *io_u = *io_u_ptr;
1857 enum fio_ddir ddir = io_u->ddir;
1858 struct fio_file *f = io_u->file;
1859
1860 dprint_io_u(io_u, "complete");
1861
1862 assert(io_u->flags & IO_U_F_FLIGHT);
1863 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1864
1865 /*
1866 * Mark IO ok to verify
1867 */
1868 if (io_u->ipo) {
1869 /*
1870 * Remove errored entry from the verification list
1871 */
1872 if (io_u->error)
1873 unlog_io_piece(td, io_u);
1874 else {
1875 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1876 write_barrier();
1877 }
1878 }
1879
1880 if (ddir_sync(ddir)) {
1881 td->last_was_sync = true;
1882 if (f) {
1883 f->first_write = -1ULL;
1884 f->last_write = -1ULL;
1885 }
1886 if (should_account(td))
1887 account_io_completion(td, io_u, icd, ddir, io_u->buflen);
1888 return;
1889 }
1890
1891 td->last_was_sync = false;
1892 td->last_ddir = ddir;
1893
1894 if (!io_u->error && ddir_rw(ddir)) {
1895 unsigned int bytes = io_u->buflen - io_u->resid;
1896 int ret;
1897
1898 td->io_blocks[ddir]++;
1899 td->io_bytes[ddir] += bytes;
1900
1901 if (!(io_u->flags & IO_U_F_VER_LIST)) {
1902 td->this_io_blocks[ddir]++;
1903 td->this_io_bytes[ddir] += bytes;
1904 }
1905
1906 if (ddir == DDIR_WRITE)
1907 file_log_write_comp(td, f, io_u->offset, bytes);
1908
1909 if (should_account(td))
1910 account_io_completion(td, io_u, icd, ddir, bytes);
1911
1912 icd->bytes_done[ddir] += bytes;
1913
1914 if (io_u->end_io) {
1915 ret = io_u->end_io(td, io_u_ptr);
1916 io_u = *io_u_ptr;
1917 if (ret && !icd->error)
1918 icd->error = ret;
1919 }
1920 } else if (io_u->error) {
1921 icd->error = io_u->error;
1922 io_u_log_error(td, io_u);
1923 }
1924 if (icd->error) {
1925 enum error_type_bit eb = td_error_type(ddir, icd->error);
1926
1927 if (!td_non_fatal_error(td, eb, icd->error))
1928 return;
1929
1930 /*
1931 * If there is a non_fatal error, then add to the error count
1932 * and clear all the errors.
1933 */
1934 update_error_count(td, icd->error);
1935 td_clear_error(td);
1936 icd->error = 0;
1937 if (io_u)
1938 io_u->error = 0;
1939 }
1940}
1941
1942static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1943 int nr)
1944{
1945 int ddir;
1946
1947 if (!gtod_reduce(td))
1948 fio_gettime(&icd->time, NULL);
1949
1950 icd->nr = nr;
1951
1952 icd->error = 0;
1953 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1954 icd->bytes_done[ddir] = 0;
1955}
1956
1957static void ios_completed(struct thread_data *td,
1958 struct io_completion_data *icd)
1959{
1960 struct io_u *io_u;
1961 int i;
1962
1963 for (i = 0; i < icd->nr; i++) {
1964 io_u = td->io_ops->event(td, i);
1965
1966 io_completed(td, &io_u, icd);
1967
1968 if (io_u)
1969 put_io_u(td, io_u);
1970 }
1971}
1972
1973/*
1974 * Complete a single io_u for the sync engines.
1975 */
1976int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1977{
1978 struct io_completion_data icd;
1979 int ddir;
1980
1981 init_icd(td, &icd, 1);
1982 io_completed(td, &io_u, &icd);
1983
1984 if (io_u)
1985 put_io_u(td, io_u);
1986
1987 if (icd.error) {
1988 td_verror(td, icd.error, "io_u_sync_complete");
1989 return -1;
1990 }
1991
1992 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1993 td->bytes_done[ddir] += icd.bytes_done[ddir];
1994
1995 return 0;
1996}
1997
1998/*
1999 * Called to complete min_events number of io for the async engines.
2000 */
2001int io_u_queued_complete(struct thread_data *td, int min_evts)
2002{
2003 struct io_completion_data icd;
2004 struct timespec *tvp = NULL;
2005 int ret, ddir;
2006 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2007
2008 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2009
2010 if (!min_evts)
2011 tvp = &ts;
2012 else if (min_evts > td->cur_depth)
2013 min_evts = td->cur_depth;
2014
2015 /* No worries, td_io_getevents fixes min and max if they are
2016 * set incorrectly */
2017 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2018 if (ret < 0) {
2019 td_verror(td, -ret, "td_io_getevents");
2020 return ret;
2021 } else if (!ret)
2022 return ret;
2023
2024 init_icd(td, &icd, ret);
2025 ios_completed(td, &icd);
2026 if (icd.error) {
2027 td_verror(td, icd.error, "io_u_queued_complete");
2028 return -1;
2029 }
2030
2031 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2032 td->bytes_done[ddir] += icd.bytes_done[ddir];
2033
2034 return ret;
2035}
2036
2037/*
2038 * Call when io_u is really queued, to update the submission latency.
2039 */
2040void io_u_queued(struct thread_data *td, struct io_u *io_u)
2041{
2042 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2043 unsigned long slat_time;
2044
2045 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2046
2047 if (td->parent)
2048 td = td->parent;
2049
2050 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2051 io_u->offset);
2052 }
2053}
2054
2055/*
2056 * See if we should reuse the last seed, if dedupe is enabled
2057 */
2058static struct frand_state *get_buf_state(struct thread_data *td)
2059{
2060 unsigned int v;
2061
2062 if (!td->o.dedupe_percentage)
2063 return &td->buf_state;
2064 else if (td->o.dedupe_percentage == 100) {
2065 frand_copy(&td->buf_state_prev, &td->buf_state);
2066 return &td->buf_state;
2067 }
2068
2069 v = rand_between(&td->dedupe_state, 1, 100);
2070
2071 if (v <= td->o.dedupe_percentage)
2072 return &td->buf_state_prev;
2073
2074 return &td->buf_state;
2075}
2076
2077static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2078{
2079 if (td->o.dedupe_percentage == 100)
2080 frand_copy(rs, &td->buf_state_prev);
2081 else if (rs == &td->buf_state)
2082 frand_copy(&td->buf_state_prev, rs);
2083}
2084
2085void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2086 unsigned int max_bs)
2087{
2088 struct thread_options *o = &td->o;
2089
2090 if (o->mem_type == MEM_CUDA_MALLOC)
2091 return;
2092
2093 if (o->compress_percentage || o->dedupe_percentage) {
2094 unsigned int perc = td->o.compress_percentage;
2095 struct frand_state *rs;
2096 unsigned int left = max_bs;
2097 unsigned int this_write;
2098
2099 do {
2100 rs = get_buf_state(td);
2101
2102 min_write = min(min_write, left);
2103
2104 if (perc) {
2105 this_write = min_not_zero(min_write,
2106 td->o.compress_chunk);
2107
2108 fill_random_buf_percentage(rs, buf, perc,
2109 this_write, this_write,
2110 o->buffer_pattern,
2111 o->buffer_pattern_bytes);
2112 } else {
2113 fill_random_buf(rs, buf, min_write);
2114 this_write = min_write;
2115 }
2116
2117 buf += this_write;
2118 left -= this_write;
2119 save_buf_state(td, rs);
2120 } while (left);
2121 } else if (o->buffer_pattern_bytes)
2122 fill_buffer_pattern(td, buf, max_bs);
2123 else if (o->zero_buffers)
2124 memset(buf, 0, max_bs);
2125 else
2126 fill_random_buf(get_buf_state(td), buf, max_bs);
2127}
2128
2129/*
2130 * "randomly" fill the buffer contents
2131 */
2132void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2133 unsigned int min_write, unsigned int max_bs)
2134{
2135 io_u->buf_filled_len = 0;
2136 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2137}
2138
2139static int do_sync_file_range(const struct thread_data *td,
2140 struct fio_file *f)
2141{
2142 off64_t offset, nbytes;
2143
2144 offset = f->first_write;
2145 nbytes = f->last_write - f->first_write;
2146
2147 if (!nbytes)
2148 return 0;
2149
2150 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2151}
2152
2153int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2154{
2155 int ret;
2156
2157 if (io_u->ddir == DDIR_SYNC) {
2158 ret = fsync(io_u->file->fd);
2159 } else if (io_u->ddir == DDIR_DATASYNC) {
2160#ifdef CONFIG_FDATASYNC
2161 ret = fdatasync(io_u->file->fd);
2162#else
2163 ret = io_u->xfer_buflen;
2164 io_u->error = EINVAL;
2165#endif
2166 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2167 ret = do_sync_file_range(td, io_u->file);
2168 else {
2169 ret = io_u->xfer_buflen;
2170 io_u->error = EINVAL;
2171 }
2172
2173 if (ret < 0)
2174 io_u->error = errno;
2175
2176 return ret;
2177}
2178
2179int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2180{
2181#ifndef FIO_HAVE_TRIM
2182 io_u->error = EINVAL;
2183 return 0;
2184#else
2185 struct fio_file *f = io_u->file;
2186 int ret;
2187
2188 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2189 if (!ret)
2190 return io_u->xfer_buflen;
2191
2192 io_u->error = ret;
2193 return 0;
2194#endif
2195}