io_u: Converting usec from long to uint64_t
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timespec time; /* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32 return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.min_bs[io_u->ddir];
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57{
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 * -> not for now since there is code assuming it could go either.
66 */
67 max_size = f->io_size;
68 if (max_size > f->real_file_size)
69 max_size = f->real_file_size;
70
71 if (td->o.zone_range)
72 max_size = td->o.zone_range;
73
74 if (td->o.min_bs[ddir] > td->o.ba[ddir])
75 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
76
77 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
78 if (!max_blocks)
79 return 0;
80
81 return max_blocks;
82}
83
84struct rand_off {
85 struct flist_head list;
86 uint64_t off;
87};
88
89static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
90 enum fio_ddir ddir, uint64_t *b,
91 uint64_t lastb)
92{
93 uint64_t r;
94
95 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
96 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
97
98 r = __rand(&td->random_state);
99
100 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
101
102 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
103 } else {
104 uint64_t off = 0;
105
106 assert(fio_file_lfsr(f));
107
108 if (lfsr_next(&f->lfsr, &off))
109 return 1;
110
111 *b = off;
112 }
113
114 /*
115 * if we are not maintaining a random map, we are done.
116 */
117 if (!file_randommap(td, f))
118 goto ret;
119
120 /*
121 * calculate map offset and check if it's free
122 */
123 if (random_map_free(f, *b))
124 goto ret;
125
126 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
127 (unsigned long long) *b);
128
129 *b = axmap_next_free(f->io_axmap, *b);
130 if (*b == (uint64_t) -1ULL)
131 return 1;
132ret:
133 return 0;
134}
135
136static int __get_next_rand_offset_zipf(struct thread_data *td,
137 struct fio_file *f, enum fio_ddir ddir,
138 uint64_t *b)
139{
140 *b = zipf_next(&f->zipf);
141 return 0;
142}
143
144static int __get_next_rand_offset_pareto(struct thread_data *td,
145 struct fio_file *f, enum fio_ddir ddir,
146 uint64_t *b)
147{
148 *b = pareto_next(&f->zipf);
149 return 0;
150}
151
152static int __get_next_rand_offset_gauss(struct thread_data *td,
153 struct fio_file *f, enum fio_ddir ddir,
154 uint64_t *b)
155{
156 *b = gauss_next(&f->gauss);
157 return 0;
158}
159
160static int __get_next_rand_offset_zoned(struct thread_data *td,
161 struct fio_file *f, enum fio_ddir ddir,
162 uint64_t *b)
163{
164 unsigned int v, send, stotal;
165 uint64_t offset, lastb;
166 static int warned;
167 struct zone_split_index *zsi;
168
169 lastb = last_block(td, f, ddir);
170 if (!lastb)
171 return 1;
172
173 if (!td->o.zone_split_nr[ddir]) {
174bail:
175 return __get_next_rand_offset(td, f, ddir, b, lastb);
176 }
177
178 /*
179 * Generate a value, v, between 1 and 100, both inclusive
180 */
181 v = rand32_between(&td->zone_state, 1, 100);
182
183 zsi = &td->zone_state_index[ddir][v - 1];
184 stotal = zsi->size_perc_prev;
185 send = zsi->size_perc;
186
187 /*
188 * Should never happen
189 */
190 if (send == -1U) {
191 if (!warned) {
192 log_err("fio: bug in zoned generation\n");
193 warned = 1;
194 }
195 goto bail;
196 }
197
198 /*
199 * 'send' is some percentage below or equal to 100 that
200 * marks the end of the current IO range. 'stotal' marks
201 * the start, in percent.
202 */
203 if (stotal)
204 offset = stotal * lastb / 100ULL;
205 else
206 offset = 0;
207
208 lastb = lastb * (send - stotal) / 100ULL;
209
210 /*
211 * Generate index from 0..send-of-lastb
212 */
213 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
214 return 1;
215
216 /*
217 * Add our start offset, if any
218 */
219 if (offset)
220 *b += offset;
221
222 return 0;
223}
224
225static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
226{
227 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
228 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
229
230 return r1->off - r2->off;
231}
232
233static int get_off_from_method(struct thread_data *td, struct fio_file *f,
234 enum fio_ddir ddir, uint64_t *b)
235{
236 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
237 uint64_t lastb;
238
239 lastb = last_block(td, f, ddir);
240 if (!lastb)
241 return 1;
242
243 return __get_next_rand_offset(td, f, ddir, b, lastb);
244 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
245 return __get_next_rand_offset_zipf(td, f, ddir, b);
246 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
247 return __get_next_rand_offset_pareto(td, f, ddir, b);
248 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
249 return __get_next_rand_offset_gauss(td, f, ddir, b);
250 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
251 return __get_next_rand_offset_zoned(td, f, ddir, b);
252
253 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
254 return 1;
255}
256
257/*
258 * Sort the reads for a verify phase in batches of verifysort_nr, if
259 * specified.
260 */
261static inline bool should_sort_io(struct thread_data *td)
262{
263 if (!td->o.verifysort_nr || !td->o.do_verify)
264 return false;
265 if (!td_random(td))
266 return false;
267 if (td->runstate != TD_VERIFYING)
268 return false;
269 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
270 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
271 return false;
272
273 return true;
274}
275
276static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
277{
278 unsigned int v;
279
280 if (td->o.perc_rand[ddir] == 100)
281 return true;
282
283 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
284
285 return v <= td->o.perc_rand[ddir];
286}
287
288static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
289 enum fio_ddir ddir, uint64_t *b)
290{
291 struct rand_off *r;
292 int i, ret = 1;
293
294 if (!should_sort_io(td))
295 return get_off_from_method(td, f, ddir, b);
296
297 if (!flist_empty(&td->next_rand_list)) {
298fetch:
299 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
300 flist_del(&r->list);
301 *b = r->off;
302 free(r);
303 return 0;
304 }
305
306 for (i = 0; i < td->o.verifysort_nr; i++) {
307 r = malloc(sizeof(*r));
308
309 ret = get_off_from_method(td, f, ddir, &r->off);
310 if (ret) {
311 free(r);
312 break;
313 }
314
315 flist_add(&r->list, &td->next_rand_list);
316 }
317
318 if (ret && !i)
319 return ret;
320
321 assert(!flist_empty(&td->next_rand_list));
322 flist_sort(NULL, &td->next_rand_list, flist_cmp);
323 goto fetch;
324}
325
326static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
327 enum fio_ddir ddir, uint64_t *b)
328{
329 if (!get_next_rand_offset(td, f, ddir, b))
330 return 0;
331
332 if (td->o.time_based ||
333 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
334 fio_file_reset(td, f);
335 if (!get_next_rand_offset(td, f, ddir, b))
336 return 0;
337 }
338
339 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
340 f->file_name, (unsigned long long) f->last_pos[ddir],
341 (unsigned long long) f->real_file_size);
342 return 1;
343}
344
345static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
346 enum fio_ddir ddir, uint64_t *offset)
347{
348 struct thread_options *o = &td->o;
349
350 assert(ddir_rw(ddir));
351
352 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
353 o->time_based) {
354 struct thread_options *o = &td->o;
355 uint64_t io_size = f->io_size + (f->io_size % o->min_bs[ddir]);
356
357 if (io_size > f->last_pos[ddir])
358 f->last_pos[ddir] = 0;
359 else
360 f->last_pos[ddir] = f->last_pos[ddir] - io_size;
361 }
362
363 if (f->last_pos[ddir] < f->real_file_size) {
364 uint64_t pos;
365
366 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
367 if (f->real_file_size > f->io_size)
368 f->last_pos[ddir] = f->io_size;
369 else
370 f->last_pos[ddir] = f->real_file_size;
371 }
372
373 pos = f->last_pos[ddir] - f->file_offset;
374 if (pos && o->ddir_seq_add) {
375 pos += o->ddir_seq_add;
376
377 /*
378 * If we reach beyond the end of the file
379 * with holed IO, wrap around to the
380 * beginning again. If we're doing backwards IO,
381 * wrap to the end.
382 */
383 if (pos >= f->real_file_size) {
384 if (o->ddir_seq_add > 0)
385 pos = f->file_offset;
386 else {
387 if (f->real_file_size > f->io_size)
388 pos = f->io_size;
389 else
390 pos = f->real_file_size;
391
392 pos += o->ddir_seq_add;
393 }
394 }
395 }
396
397 *offset = pos;
398 return 0;
399 }
400
401 return 1;
402}
403
404static int get_next_block(struct thread_data *td, struct io_u *io_u,
405 enum fio_ddir ddir, int rw_seq,
406 unsigned int *is_random)
407{
408 struct fio_file *f = io_u->file;
409 uint64_t b, offset;
410 int ret;
411
412 assert(ddir_rw(ddir));
413
414 b = offset = -1ULL;
415
416 if (rw_seq) {
417 if (td_random(td)) {
418 if (should_do_random(td, ddir)) {
419 ret = get_next_rand_block(td, f, ddir, &b);
420 *is_random = 1;
421 } else {
422 *is_random = 0;
423 io_u_set(td, io_u, IO_U_F_BUSY_OK);
424 ret = get_next_seq_offset(td, f, ddir, &offset);
425 if (ret)
426 ret = get_next_rand_block(td, f, ddir, &b);
427 }
428 } else {
429 *is_random = 0;
430 ret = get_next_seq_offset(td, f, ddir, &offset);
431 }
432 } else {
433 io_u_set(td, io_u, IO_U_F_BUSY_OK);
434 *is_random = 0;
435
436 if (td->o.rw_seq == RW_SEQ_SEQ) {
437 ret = get_next_seq_offset(td, f, ddir, &offset);
438 if (ret) {
439 ret = get_next_rand_block(td, f, ddir, &b);
440 *is_random = 0;
441 }
442 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
443 if (f->last_start[ddir] != -1ULL)
444 offset = f->last_start[ddir] - f->file_offset;
445 else
446 offset = 0;
447 ret = 0;
448 } else {
449 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
450 ret = 1;
451 }
452 }
453
454 if (!ret) {
455 if (offset != -1ULL)
456 io_u->offset = offset;
457 else if (b != -1ULL)
458 io_u->offset = b * td->o.ba[ddir];
459 else {
460 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
461 ret = 1;
462 }
463 }
464
465 return ret;
466}
467
468/*
469 * For random io, generate a random new block and see if it's used. Repeat
470 * until we find a free one. For sequential io, just return the end of
471 * the last io issued.
472 */
473static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
474 unsigned int *is_random)
475{
476 struct fio_file *f = io_u->file;
477 enum fio_ddir ddir = io_u->ddir;
478 int rw_seq_hit = 0;
479
480 assert(ddir_rw(ddir));
481
482 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
483 rw_seq_hit = 1;
484 td->ddir_seq_nr = td->o.ddir_seq_nr;
485 }
486
487 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
488 return 1;
489
490 if (io_u->offset >= f->io_size) {
491 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
492 (unsigned long long) io_u->offset,
493 (unsigned long long) f->io_size);
494 return 1;
495 }
496
497 io_u->offset += f->file_offset;
498 if (io_u->offset >= f->real_file_size) {
499 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
500 (unsigned long long) io_u->offset,
501 (unsigned long long) f->real_file_size);
502 return 1;
503 }
504
505 return 0;
506}
507
508static int get_next_offset(struct thread_data *td, struct io_u *io_u,
509 unsigned int *is_random)
510{
511 if (td->flags & TD_F_PROFILE_OPS) {
512 struct prof_io_ops *ops = &td->prof_io_ops;
513
514 if (ops->fill_io_u_off)
515 return ops->fill_io_u_off(td, io_u, is_random);
516 }
517
518 return __get_next_offset(td, io_u, is_random);
519}
520
521static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
522 unsigned int buflen)
523{
524 struct fio_file *f = io_u->file;
525
526 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
527}
528
529static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
530 unsigned int is_random)
531{
532 int ddir = io_u->ddir;
533 unsigned int buflen = 0;
534 unsigned int minbs, maxbs;
535 uint64_t frand_max, r;
536 bool power_2;
537
538 assert(ddir_rw(ddir));
539
540 if (td->o.bs_is_seq_rand)
541 ddir = is_random ? DDIR_WRITE: DDIR_READ;
542
543 minbs = td->o.min_bs[ddir];
544 maxbs = td->o.max_bs[ddir];
545
546 if (minbs == maxbs)
547 return minbs;
548
549 /*
550 * If we can't satisfy the min block size from here, then fail
551 */
552 if (!io_u_fits(td, io_u, minbs))
553 return 0;
554
555 frand_max = rand_max(&td->bsrange_state[ddir]);
556 do {
557 r = __rand(&td->bsrange_state[ddir]);
558
559 if (!td->o.bssplit_nr[ddir]) {
560 buflen = 1 + (unsigned int) ((double) maxbs *
561 (r / (frand_max + 1.0)));
562 if (buflen < minbs)
563 buflen = minbs;
564 } else {
565 long long perc = 0;
566 unsigned int i;
567
568 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
569 struct bssplit *bsp = &td->o.bssplit[ddir][i];
570
571 buflen = bsp->bs;
572 perc += bsp->perc;
573 if (!perc)
574 break;
575 if ((r / perc <= frand_max / 100ULL) &&
576 io_u_fits(td, io_u, buflen))
577 break;
578 }
579 }
580
581 power_2 = is_power_of_2(minbs);
582 if (!td->o.bs_unaligned && power_2)
583 buflen &= ~(minbs - 1);
584 else if (!td->o.bs_unaligned && !power_2)
585 buflen -= buflen % minbs;
586 } while (!io_u_fits(td, io_u, buflen));
587
588 return buflen;
589}
590
591static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
592 unsigned int is_random)
593{
594 if (td->flags & TD_F_PROFILE_OPS) {
595 struct prof_io_ops *ops = &td->prof_io_ops;
596
597 if (ops->fill_io_u_size)
598 return ops->fill_io_u_size(td, io_u, is_random);
599 }
600
601 return __get_next_buflen(td, io_u, is_random);
602}
603
604static void set_rwmix_bytes(struct thread_data *td)
605{
606 unsigned int diff;
607
608 /*
609 * we do time or byte based switch. this is needed because
610 * buffered writes may issue a lot quicker than they complete,
611 * whereas reads do not.
612 */
613 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
614 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
615}
616
617static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
618{
619 unsigned int v;
620
621 v = rand32_between(&td->rwmix_state, 1, 100);
622
623 if (v <= td->o.rwmix[DDIR_READ])
624 return DDIR_READ;
625
626 return DDIR_WRITE;
627}
628
629int io_u_quiesce(struct thread_data *td)
630{
631 int completed = 0;
632
633 /*
634 * We are going to sleep, ensure that we flush anything pending as
635 * not to skew our latency numbers.
636 *
637 * Changed to only monitor 'in flight' requests here instead of the
638 * td->cur_depth, b/c td->cur_depth does not accurately represent
639 * io's that have been actually submitted to an async engine,
640 * and cur_depth is meaningless for sync engines.
641 */
642 if (td->io_u_queued || td->cur_depth) {
643 int fio_unused ret;
644
645 ret = td_io_commit(td);
646 }
647
648 while (td->io_u_in_flight) {
649 int ret;
650
651 ret = io_u_queued_complete(td, 1);
652 if (ret > 0)
653 completed += ret;
654 }
655
656 if (td->flags & TD_F_REGROW_LOGS)
657 regrow_logs(td);
658
659 return completed;
660}
661
662static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
663{
664 enum fio_ddir odir = ddir ^ 1;
665 uint64_t usec;
666 uint64_t now;
667
668 assert(ddir_rw(ddir));
669 now = utime_since_now(&td->start);
670
671 /*
672 * if rate_next_io_time is in the past, need to catch up to rate
673 */
674 if (td->rate_next_io_time[ddir] <= now)
675 return ddir;
676
677 /*
678 * We are ahead of rate in this direction. See if we
679 * should switch.
680 */
681 if (td_rw(td) && td->o.rwmix[odir]) {
682 /*
683 * Other direction is behind rate, switch
684 */
685 if (td->rate_next_io_time[odir] <= now)
686 return odir;
687
688 /*
689 * Both directions are ahead of rate. sleep the min
690 * switch if necissary
691 */
692 if (td->rate_next_io_time[ddir] <=
693 td->rate_next_io_time[odir]) {
694 usec = td->rate_next_io_time[ddir] - now;
695 } else {
696 usec = td->rate_next_io_time[odir] - now;
697 ddir = odir;
698 }
699 } else
700 usec = td->rate_next_io_time[ddir] - now;
701
702 if (td->o.io_submit_mode == IO_MODE_INLINE)
703 io_u_quiesce(td);
704
705 usec = usec_sleep(td, usec);
706
707 return ddir;
708}
709
710/*
711 * Return the data direction for the next io_u. If the job is a
712 * mixed read/write workload, check the rwmix cycle and switch if
713 * necessary.
714 */
715static enum fio_ddir get_rw_ddir(struct thread_data *td)
716{
717 enum fio_ddir ddir;
718
719 /*
720 * See if it's time to fsync/fdatasync/sync_file_range first,
721 * and if not then move on to check regular I/Os.
722 */
723 if (should_fsync(td)) {
724 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
725 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
726 return DDIR_SYNC;
727
728 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
729 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
730 return DDIR_DATASYNC;
731
732 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
733 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
734 return DDIR_SYNC_FILE_RANGE;
735 }
736
737 if (td_rw(td)) {
738 /*
739 * Check if it's time to seed a new data direction.
740 */
741 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
742 /*
743 * Put a top limit on how many bytes we do for
744 * one data direction, to avoid overflowing the
745 * ranges too much
746 */
747 ddir = get_rand_ddir(td);
748
749 if (ddir != td->rwmix_ddir)
750 set_rwmix_bytes(td);
751
752 td->rwmix_ddir = ddir;
753 }
754 ddir = td->rwmix_ddir;
755 } else if (td_read(td))
756 ddir = DDIR_READ;
757 else if (td_write(td))
758 ddir = DDIR_WRITE;
759 else if (td_trim(td))
760 ddir = DDIR_TRIM;
761 else
762 ddir = DDIR_INVAL;
763
764 td->rwmix_ddir = rate_ddir(td, ddir);
765 return td->rwmix_ddir;
766}
767
768static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
769{
770 enum fio_ddir ddir = get_rw_ddir(td);
771
772 if (td_trimwrite(td)) {
773 struct fio_file *f = io_u->file;
774 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
775 ddir = DDIR_TRIM;
776 else
777 ddir = DDIR_WRITE;
778 }
779
780 io_u->ddir = io_u->acct_ddir = ddir;
781
782 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
783 td->o.barrier_blocks &&
784 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
785 td->io_issues[DDIR_WRITE])
786 io_u_set(td, io_u, IO_U_F_BARRIER);
787}
788
789void put_file_log(struct thread_data *td, struct fio_file *f)
790{
791 unsigned int ret = put_file(td, f);
792
793 if (ret)
794 td_verror(td, ret, "file close");
795}
796
797void put_io_u(struct thread_data *td, struct io_u *io_u)
798{
799 if (td->parent)
800 td = td->parent;
801
802 td_io_u_lock(td);
803
804 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
805 put_file_log(td, io_u->file);
806
807 io_u->file = NULL;
808 io_u_set(td, io_u, IO_U_F_FREE);
809
810 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
811 td->cur_depth--;
812 assert(!(td->flags & TD_F_CHILD));
813 }
814 io_u_qpush(&td->io_u_freelist, io_u);
815 td_io_u_unlock(td);
816 td_io_u_free_notify(td);
817}
818
819void clear_io_u(struct thread_data *td, struct io_u *io_u)
820{
821 io_u_clear(td, io_u, IO_U_F_FLIGHT);
822 put_io_u(td, io_u);
823}
824
825void requeue_io_u(struct thread_data *td, struct io_u **io_u)
826{
827 struct io_u *__io_u = *io_u;
828 enum fio_ddir ddir = acct_ddir(__io_u);
829
830 dprint(FD_IO, "requeue %p\n", __io_u);
831
832 if (td->parent)
833 td = td->parent;
834
835 td_io_u_lock(td);
836
837 io_u_set(td, __io_u, IO_U_F_FREE);
838 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
839 td->io_issues[ddir]--;
840
841 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
842 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
843 td->cur_depth--;
844 assert(!(td->flags & TD_F_CHILD));
845 }
846
847 io_u_rpush(&td->io_u_requeues, __io_u);
848 td_io_u_unlock(td);
849 td_io_u_free_notify(td);
850 *io_u = NULL;
851}
852
853static int fill_io_u(struct thread_data *td, struct io_u *io_u)
854{
855 unsigned int is_random;
856
857 if (td_ioengine_flagged(td, FIO_NOIO))
858 goto out;
859
860 set_rw_ddir(td, io_u);
861
862 /*
863 * fsync() or fdatasync() or trim etc, we are done
864 */
865 if (!ddir_rw(io_u->ddir))
866 goto out;
867
868 /*
869 * See if it's time to switch to a new zone
870 */
871 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
872 struct fio_file *f = io_u->file;
873
874 td->zone_bytes = 0;
875 f->file_offset += td->o.zone_range + td->o.zone_skip;
876
877 /*
878 * Wrap from the beginning, if we exceed the file size
879 */
880 if (f->file_offset >= f->real_file_size)
881 f->file_offset = f->real_file_size - f->file_offset;
882 f->last_pos[io_u->ddir] = f->file_offset;
883 td->io_skip_bytes += td->o.zone_skip;
884 }
885
886 /*
887 * No log, let the seq/rand engine retrieve the next buflen and
888 * position.
889 */
890 if (get_next_offset(td, io_u, &is_random)) {
891 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
892 return 1;
893 }
894
895 io_u->buflen = get_next_buflen(td, io_u, is_random);
896 if (!io_u->buflen) {
897 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
898 return 1;
899 }
900
901 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
902 dprint(FD_IO, "io_u %p, offset + buflen exceeds file size\n",
903 io_u);
904 dprint(FD_IO, " offset=%llu/buflen=%lu > %llu\n",
905 (unsigned long long) io_u->offset, io_u->buflen,
906 (unsigned long long) io_u->file->real_file_size);
907 return 1;
908 }
909
910 /*
911 * mark entry before potentially trimming io_u
912 */
913 if (td_random(td) && file_randommap(td, io_u->file))
914 mark_random_map(td, io_u);
915
916out:
917 dprint_io_u(io_u, "fill_io_u");
918 td->zone_bytes += io_u->buflen;
919 return 0;
920}
921
922static void __io_u_mark_map(unsigned int *map, unsigned int nr)
923{
924 int idx = 0;
925
926 switch (nr) {
927 default:
928 idx = 6;
929 break;
930 case 33 ... 64:
931 idx = 5;
932 break;
933 case 17 ... 32:
934 idx = 4;
935 break;
936 case 9 ... 16:
937 idx = 3;
938 break;
939 case 5 ... 8:
940 idx = 2;
941 break;
942 case 1 ... 4:
943 idx = 1;
944 case 0:
945 break;
946 }
947
948 map[idx]++;
949}
950
951void io_u_mark_submit(struct thread_data *td, unsigned int nr)
952{
953 __io_u_mark_map(td->ts.io_u_submit, nr);
954 td->ts.total_submit++;
955}
956
957void io_u_mark_complete(struct thread_data *td, unsigned int nr)
958{
959 __io_u_mark_map(td->ts.io_u_complete, nr);
960 td->ts.total_complete++;
961}
962
963void io_u_mark_depth(struct thread_data *td, unsigned int nr)
964{
965 int idx = 0;
966
967 switch (td->cur_depth) {
968 default:
969 idx = 6;
970 break;
971 case 32 ... 63:
972 idx = 5;
973 break;
974 case 16 ... 31:
975 idx = 4;
976 break;
977 case 8 ... 15:
978 idx = 3;
979 break;
980 case 4 ... 7:
981 idx = 2;
982 break;
983 case 2 ... 3:
984 idx = 1;
985 case 1:
986 break;
987 }
988
989 td->ts.io_u_map[idx] += nr;
990}
991
992static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
993{
994 int idx = 0;
995
996 assert(nsec < 1000);
997
998 switch (nsec) {
999 case 750 ... 999:
1000 idx = 9;
1001 break;
1002 case 500 ... 749:
1003 idx = 8;
1004 break;
1005 case 250 ... 499:
1006 idx = 7;
1007 break;
1008 case 100 ... 249:
1009 idx = 6;
1010 break;
1011 case 50 ... 99:
1012 idx = 5;
1013 break;
1014 case 20 ... 49:
1015 idx = 4;
1016 break;
1017 case 10 ... 19:
1018 idx = 3;
1019 break;
1020 case 4 ... 9:
1021 idx = 2;
1022 break;
1023 case 2 ... 3:
1024 idx = 1;
1025 case 0 ... 1:
1026 break;
1027 }
1028
1029 assert(idx < FIO_IO_U_LAT_N_NR);
1030 td->ts.io_u_lat_n[idx]++;
1031}
1032
1033static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1034{
1035 int idx = 0;
1036
1037 assert(usec < 1000 && usec >= 1);
1038
1039 switch (usec) {
1040 case 750 ... 999:
1041 idx = 9;
1042 break;
1043 case 500 ... 749:
1044 idx = 8;
1045 break;
1046 case 250 ... 499:
1047 idx = 7;
1048 break;
1049 case 100 ... 249:
1050 idx = 6;
1051 break;
1052 case 50 ... 99:
1053 idx = 5;
1054 break;
1055 case 20 ... 49:
1056 idx = 4;
1057 break;
1058 case 10 ... 19:
1059 idx = 3;
1060 break;
1061 case 4 ... 9:
1062 idx = 2;
1063 break;
1064 case 2 ... 3:
1065 idx = 1;
1066 case 0 ... 1:
1067 break;
1068 }
1069
1070 assert(idx < FIO_IO_U_LAT_U_NR);
1071 td->ts.io_u_lat_u[idx]++;
1072}
1073
1074static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1075{
1076 int idx = 0;
1077
1078 assert(msec >= 1);
1079
1080 switch (msec) {
1081 default:
1082 idx = 11;
1083 break;
1084 case 1000 ... 1999:
1085 idx = 10;
1086 break;
1087 case 750 ... 999:
1088 idx = 9;
1089 break;
1090 case 500 ... 749:
1091 idx = 8;
1092 break;
1093 case 250 ... 499:
1094 idx = 7;
1095 break;
1096 case 100 ... 249:
1097 idx = 6;
1098 break;
1099 case 50 ... 99:
1100 idx = 5;
1101 break;
1102 case 20 ... 49:
1103 idx = 4;
1104 break;
1105 case 10 ... 19:
1106 idx = 3;
1107 break;
1108 case 4 ... 9:
1109 idx = 2;
1110 break;
1111 case 2 ... 3:
1112 idx = 1;
1113 case 0 ... 1:
1114 break;
1115 }
1116
1117 assert(idx < FIO_IO_U_LAT_M_NR);
1118 td->ts.io_u_lat_m[idx]++;
1119}
1120
1121static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1122{
1123 if (nsec < 1000)
1124 io_u_mark_lat_nsec(td, nsec);
1125 else if (nsec < 1000000)
1126 io_u_mark_lat_usec(td, nsec / 1000);
1127 else
1128 io_u_mark_lat_msec(td, nsec / 1000000);
1129}
1130
1131static unsigned int __get_next_fileno_rand(struct thread_data *td)
1132{
1133 unsigned long fileno;
1134
1135 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1136 uint64_t frand_max = rand_max(&td->next_file_state);
1137 unsigned long r;
1138
1139 r = __rand(&td->next_file_state);
1140 return (unsigned int) ((double) td->o.nr_files
1141 * (r / (frand_max + 1.0)));
1142 }
1143
1144 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1145 fileno = zipf_next(&td->next_file_zipf);
1146 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1147 fileno = pareto_next(&td->next_file_zipf);
1148 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1149 fileno = gauss_next(&td->next_file_gauss);
1150 else {
1151 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1152 assert(0);
1153 return 0;
1154 }
1155
1156 return fileno >> FIO_FSERVICE_SHIFT;
1157}
1158
1159/*
1160 * Get next file to service by choosing one at random
1161 */
1162static struct fio_file *get_next_file_rand(struct thread_data *td,
1163 enum fio_file_flags goodf,
1164 enum fio_file_flags badf)
1165{
1166 struct fio_file *f;
1167 int fno;
1168
1169 do {
1170 int opened = 0;
1171
1172 fno = __get_next_fileno_rand(td);
1173
1174 f = td->files[fno];
1175 if (fio_file_done(f))
1176 continue;
1177
1178 if (!fio_file_open(f)) {
1179 int err;
1180
1181 if (td->nr_open_files >= td->o.open_files)
1182 return ERR_PTR(-EBUSY);
1183
1184 err = td_io_open_file(td, f);
1185 if (err)
1186 continue;
1187 opened = 1;
1188 }
1189
1190 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1191 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1192 return f;
1193 }
1194 if (opened)
1195 td_io_close_file(td, f);
1196 } while (1);
1197}
1198
1199/*
1200 * Get next file to service by doing round robin between all available ones
1201 */
1202static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1203 int badf)
1204{
1205 unsigned int old_next_file = td->next_file;
1206 struct fio_file *f;
1207
1208 do {
1209 int opened = 0;
1210
1211 f = td->files[td->next_file];
1212
1213 td->next_file++;
1214 if (td->next_file >= td->o.nr_files)
1215 td->next_file = 0;
1216
1217 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1218 if (fio_file_done(f)) {
1219 f = NULL;
1220 continue;
1221 }
1222
1223 if (!fio_file_open(f)) {
1224 int err;
1225
1226 if (td->nr_open_files >= td->o.open_files)
1227 return ERR_PTR(-EBUSY);
1228
1229 err = td_io_open_file(td, f);
1230 if (err) {
1231 dprint(FD_FILE, "error %d on open of %s\n",
1232 err, f->file_name);
1233 f = NULL;
1234 continue;
1235 }
1236 opened = 1;
1237 }
1238
1239 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1240 f->flags);
1241 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1242 break;
1243
1244 if (opened)
1245 td_io_close_file(td, f);
1246
1247 f = NULL;
1248 } while (td->next_file != old_next_file);
1249
1250 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1251 return f;
1252}
1253
1254static struct fio_file *__get_next_file(struct thread_data *td)
1255{
1256 struct fio_file *f;
1257
1258 assert(td->o.nr_files <= td->files_index);
1259
1260 if (td->nr_done_files >= td->o.nr_files) {
1261 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1262 " nr_files=%d\n", td->nr_open_files,
1263 td->nr_done_files,
1264 td->o.nr_files);
1265 return NULL;
1266 }
1267
1268 f = td->file_service_file;
1269 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1270 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1271 goto out;
1272 if (td->file_service_left--)
1273 goto out;
1274 }
1275
1276 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1277 td->o.file_service_type == FIO_FSERVICE_SEQ)
1278 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1279 else
1280 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1281
1282 if (IS_ERR(f))
1283 return f;
1284
1285 td->file_service_file = f;
1286 td->file_service_left = td->file_service_nr - 1;
1287out:
1288 if (f)
1289 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1290 else
1291 dprint(FD_FILE, "get_next_file: NULL\n");
1292 return f;
1293}
1294
1295static struct fio_file *get_next_file(struct thread_data *td)
1296{
1297 if (td->flags & TD_F_PROFILE_OPS) {
1298 struct prof_io_ops *ops = &td->prof_io_ops;
1299
1300 if (ops->get_next_file)
1301 return ops->get_next_file(td);
1302 }
1303
1304 return __get_next_file(td);
1305}
1306
1307static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1308{
1309 struct fio_file *f;
1310
1311 do {
1312 f = get_next_file(td);
1313 if (IS_ERR_OR_NULL(f))
1314 return PTR_ERR(f);
1315
1316 io_u->file = f;
1317 get_file(f);
1318
1319 if (!fill_io_u(td, io_u))
1320 break;
1321
1322 put_file_log(td, f);
1323 td_io_close_file(td, f);
1324 io_u->file = NULL;
1325 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1326 fio_file_reset(td, f);
1327 else {
1328 fio_file_set_done(f);
1329 td->nr_done_files++;
1330 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1331 td->nr_done_files, td->o.nr_files);
1332 }
1333 } while (1);
1334
1335 return 0;
1336}
1337
1338static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1339 unsigned long tusec, unsigned long max_usec)
1340{
1341 if (!td->error)
1342 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1343 td_verror(td, ETIMEDOUT, "max latency exceeded");
1344 icd->error = ETIMEDOUT;
1345}
1346
1347static void lat_new_cycle(struct thread_data *td)
1348{
1349 fio_gettime(&td->latency_ts, NULL);
1350 td->latency_ios = ddir_rw_sum(td->io_blocks);
1351 td->latency_failed = 0;
1352}
1353
1354/*
1355 * We had an IO outside the latency target. Reduce the queue depth. If we
1356 * are at QD=1, then it's time to give up.
1357 */
1358static bool __lat_target_failed(struct thread_data *td)
1359{
1360 if (td->latency_qd == 1)
1361 return true;
1362
1363 td->latency_qd_high = td->latency_qd;
1364
1365 if (td->latency_qd == td->latency_qd_low)
1366 td->latency_qd_low--;
1367
1368 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1369
1370 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1371
1372 /*
1373 * When we ramp QD down, quiesce existing IO to prevent
1374 * a storm of ramp downs due to pending higher depth.
1375 */
1376 io_u_quiesce(td);
1377 lat_new_cycle(td);
1378 return false;
1379}
1380
1381static bool lat_target_failed(struct thread_data *td)
1382{
1383 if (td->o.latency_percentile.u.f == 100.0)
1384 return __lat_target_failed(td);
1385
1386 td->latency_failed++;
1387 return false;
1388}
1389
1390void lat_target_init(struct thread_data *td)
1391{
1392 td->latency_end_run = 0;
1393
1394 if (td->o.latency_target) {
1395 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1396 fio_gettime(&td->latency_ts, NULL);
1397 td->latency_qd = 1;
1398 td->latency_qd_high = td->o.iodepth;
1399 td->latency_qd_low = 1;
1400 td->latency_ios = ddir_rw_sum(td->io_blocks);
1401 } else
1402 td->latency_qd = td->o.iodepth;
1403}
1404
1405void lat_target_reset(struct thread_data *td)
1406{
1407 if (!td->latency_end_run)
1408 lat_target_init(td);
1409}
1410
1411static void lat_target_success(struct thread_data *td)
1412{
1413 const unsigned int qd = td->latency_qd;
1414 struct thread_options *o = &td->o;
1415
1416 td->latency_qd_low = td->latency_qd;
1417
1418 /*
1419 * If we haven't failed yet, we double up to a failing value instead
1420 * of bisecting from highest possible queue depth. If we have set
1421 * a limit other than td->o.iodepth, bisect between that.
1422 */
1423 if (td->latency_qd_high != o->iodepth)
1424 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1425 else
1426 td->latency_qd *= 2;
1427
1428 if (td->latency_qd > o->iodepth)
1429 td->latency_qd = o->iodepth;
1430
1431 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1432
1433 /*
1434 * Same as last one, we are done. Let it run a latency cycle, so
1435 * we get only the results from the targeted depth.
1436 */
1437 if (td->latency_qd == qd) {
1438 if (td->latency_end_run) {
1439 dprint(FD_RATE, "We are done\n");
1440 td->done = 1;
1441 } else {
1442 dprint(FD_RATE, "Quiesce and final run\n");
1443 io_u_quiesce(td);
1444 td->latency_end_run = 1;
1445 reset_all_stats(td);
1446 reset_io_stats(td);
1447 }
1448 }
1449
1450 lat_new_cycle(td);
1451}
1452
1453/*
1454 * Check if we can bump the queue depth
1455 */
1456void lat_target_check(struct thread_data *td)
1457{
1458 uint64_t usec_window;
1459 uint64_t ios;
1460 double success_ios;
1461
1462 usec_window = utime_since_now(&td->latency_ts);
1463 if (usec_window < td->o.latency_window)
1464 return;
1465
1466 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1467 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1468 success_ios *= 100.0;
1469
1470 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1471
1472 if (success_ios >= td->o.latency_percentile.u.f)
1473 lat_target_success(td);
1474 else
1475 __lat_target_failed(td);
1476}
1477
1478/*
1479 * If latency target is enabled, we might be ramping up or down and not
1480 * using the full queue depth available.
1481 */
1482bool queue_full(const struct thread_data *td)
1483{
1484 const int qempty = io_u_qempty(&td->io_u_freelist);
1485
1486 if (qempty)
1487 return true;
1488 if (!td->o.latency_target)
1489 return false;
1490
1491 return td->cur_depth >= td->latency_qd;
1492}
1493
1494struct io_u *__get_io_u(struct thread_data *td)
1495{
1496 struct io_u *io_u = NULL;
1497
1498 if (td->stop_io)
1499 return NULL;
1500
1501 td_io_u_lock(td);
1502
1503again:
1504 if (!io_u_rempty(&td->io_u_requeues))
1505 io_u = io_u_rpop(&td->io_u_requeues);
1506 else if (!queue_full(td)) {
1507 io_u = io_u_qpop(&td->io_u_freelist);
1508
1509 io_u->file = NULL;
1510 io_u->buflen = 0;
1511 io_u->resid = 0;
1512 io_u->end_io = NULL;
1513 }
1514
1515 if (io_u) {
1516 assert(io_u->flags & IO_U_F_FREE);
1517 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1518 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1519 IO_U_F_VER_LIST);
1520
1521 io_u->error = 0;
1522 io_u->acct_ddir = -1;
1523 td->cur_depth++;
1524 assert(!(td->flags & TD_F_CHILD));
1525 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1526 io_u->ipo = NULL;
1527 } else if (td_async_processing(td)) {
1528 /*
1529 * We ran out, wait for async verify threads to finish and
1530 * return one
1531 */
1532 assert(!(td->flags & TD_F_CHILD));
1533 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1534 goto again;
1535 }
1536
1537 td_io_u_unlock(td);
1538 return io_u;
1539}
1540
1541static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1542{
1543 if (!(td->flags & TD_F_TRIM_BACKLOG))
1544 return false;
1545
1546 if (td->trim_entries) {
1547 int get_trim = 0;
1548
1549 if (td->trim_batch) {
1550 td->trim_batch--;
1551 get_trim = 1;
1552 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1553 td->last_ddir != DDIR_READ) {
1554 td->trim_batch = td->o.trim_batch;
1555 if (!td->trim_batch)
1556 td->trim_batch = td->o.trim_backlog;
1557 get_trim = 1;
1558 }
1559
1560 if (get_trim && get_next_trim(td, io_u))
1561 return true;
1562 }
1563
1564 return false;
1565}
1566
1567static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1568{
1569 if (!(td->flags & TD_F_VER_BACKLOG))
1570 return false;
1571
1572 if (td->io_hist_len) {
1573 int get_verify = 0;
1574
1575 if (td->verify_batch)
1576 get_verify = 1;
1577 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1578 td->last_ddir != DDIR_READ) {
1579 td->verify_batch = td->o.verify_batch;
1580 if (!td->verify_batch)
1581 td->verify_batch = td->o.verify_backlog;
1582 get_verify = 1;
1583 }
1584
1585 if (get_verify && !get_next_verify(td, io_u)) {
1586 td->verify_batch--;
1587 return true;
1588 }
1589 }
1590
1591 return false;
1592}
1593
1594/*
1595 * Fill offset and start time into the buffer content, to prevent too
1596 * easy compressible data for simple de-dupe attempts. Do this for every
1597 * 512b block in the range, since that should be the smallest block size
1598 * we can expect from a device.
1599 */
1600static void small_content_scramble(struct io_u *io_u)
1601{
1602 unsigned int i, nr_blocks = io_u->buflen / 512;
1603 uint64_t boffset;
1604 unsigned int offset;
1605 char *p, *end;
1606
1607 if (!nr_blocks)
1608 return;
1609
1610 p = io_u->xfer_buf;
1611 boffset = io_u->offset;
1612 io_u->buf_filled_len = 0;
1613
1614 for (i = 0; i < nr_blocks; i++) {
1615 /*
1616 * Fill the byte offset into a "random" start offset of
1617 * the buffer, given by the product of the usec time
1618 * and the actual offset.
1619 */
1620 offset = ((io_u->start_time.tv_nsec/1000) ^ boffset) & 511;
1621 offset &= ~(sizeof(uint64_t) - 1);
1622 if (offset >= 512 - sizeof(uint64_t))
1623 offset -= sizeof(uint64_t);
1624 memcpy(p + offset, &boffset, sizeof(boffset));
1625
1626 end = p + 512 - sizeof(io_u->start_time);
1627 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1628 p += 512;
1629 boffset += 512;
1630 }
1631}
1632
1633/*
1634 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1635 * etc. The returned io_u is fully ready to be prepped and submitted.
1636 */
1637struct io_u *get_io_u(struct thread_data *td)
1638{
1639 struct fio_file *f;
1640 struct io_u *io_u;
1641 int do_scramble = 0;
1642 long ret = 0;
1643
1644 io_u = __get_io_u(td);
1645 if (!io_u) {
1646 dprint(FD_IO, "__get_io_u failed\n");
1647 return NULL;
1648 }
1649
1650 if (check_get_verify(td, io_u))
1651 goto out;
1652 if (check_get_trim(td, io_u))
1653 goto out;
1654
1655 /*
1656 * from a requeue, io_u already setup
1657 */
1658 if (io_u->file)
1659 goto out;
1660
1661 /*
1662 * If using an iolog, grab next piece if any available.
1663 */
1664 if (td->flags & TD_F_READ_IOLOG) {
1665 if (read_iolog_get(td, io_u))
1666 goto err_put;
1667 } else if (set_io_u_file(td, io_u)) {
1668 ret = -EBUSY;
1669 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1670 goto err_put;
1671 }
1672
1673 f = io_u->file;
1674 if (!f) {
1675 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1676 goto err_put;
1677 }
1678
1679 assert(fio_file_open(f));
1680
1681 if (ddir_rw(io_u->ddir)) {
1682 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1683 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1684 goto err_put;
1685 }
1686
1687 f->last_start[io_u->ddir] = io_u->offset;
1688 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1689
1690 if (io_u->ddir == DDIR_WRITE) {
1691 if (td->flags & TD_F_REFILL_BUFFERS) {
1692 io_u_fill_buffer(td, io_u,
1693 td->o.min_bs[DDIR_WRITE],
1694 io_u->buflen);
1695 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1696 !(td->flags & TD_F_COMPRESS))
1697 do_scramble = 1;
1698 if (td->flags & TD_F_VER_NONE) {
1699 populate_verify_io_u(td, io_u);
1700 do_scramble = 0;
1701 }
1702 } else if (io_u->ddir == DDIR_READ) {
1703 /*
1704 * Reset the buf_filled parameters so next time if the
1705 * buffer is used for writes it is refilled.
1706 */
1707 io_u->buf_filled_len = 0;
1708 }
1709 }
1710
1711 /*
1712 * Set io data pointers.
1713 */
1714 io_u->xfer_buf = io_u->buf;
1715 io_u->xfer_buflen = io_u->buflen;
1716
1717out:
1718 assert(io_u->file);
1719 if (!td_io_prep(td, io_u)) {
1720 if (!td->o.disable_lat)
1721 fio_gettime(&io_u->start_time, NULL);
1722
1723 if (do_scramble)
1724 small_content_scramble(io_u);
1725
1726 return io_u;
1727 }
1728err_put:
1729 dprint(FD_IO, "get_io_u failed\n");
1730 put_io_u(td, io_u);
1731 return ERR_PTR(ret);
1732}
1733
1734static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1735{
1736 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1737
1738 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1739 return;
1740
1741 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1742 io_u->file ? " on file " : "",
1743 io_u->file ? io_u->file->file_name : "",
1744 strerror(io_u->error),
1745 io_ddir_name(io_u->ddir),
1746 io_u->offset, io_u->xfer_buflen);
1747
1748 if (td->io_ops->errdetails) {
1749 char *err = td->io_ops->errdetails(io_u);
1750
1751 log_err("fio: %s\n", err);
1752 free(err);
1753 }
1754
1755 if (!td->error)
1756 td_verror(td, io_u->error, "io_u error");
1757}
1758
1759void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1760{
1761 __io_u_log_error(td, io_u);
1762 if (td->parent)
1763 __io_u_log_error(td->parent, io_u);
1764}
1765
1766static inline bool gtod_reduce(struct thread_data *td)
1767{
1768 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1769 || td->o.gtod_reduce;
1770}
1771
1772static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1773 struct io_completion_data *icd,
1774 const enum fio_ddir idx, unsigned int bytes)
1775{
1776 const int no_reduce = !gtod_reduce(td);
1777 unsigned long long llnsec = 0;
1778
1779 if (td->parent)
1780 td = td->parent;
1781
1782 if (!td->o.stats)
1783 return;
1784
1785 if (no_reduce)
1786 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1787
1788 if (!td->o.disable_lat) {
1789 unsigned long long tnsec;
1790
1791 tnsec = ntime_since(&io_u->start_time, &icd->time);
1792 add_lat_sample(td, idx, tnsec, bytes, io_u->offset);
1793
1794 if (td->flags & TD_F_PROFILE_OPS) {
1795 struct prof_io_ops *ops = &td->prof_io_ops;
1796
1797 if (ops->io_u_lat)
1798 icd->error = ops->io_u_lat(td, tnsec/1000);
1799 }
1800
1801 if (td->o.max_latency && tnsec/1000 > td->o.max_latency)
1802 lat_fatal(td, icd, tnsec/1000, td->o.max_latency);
1803 if (td->o.latency_target && tnsec/1000 > td->o.latency_target) {
1804 if (lat_target_failed(td))
1805 lat_fatal(td, icd, tnsec/1000, td->o.latency_target);
1806 }
1807 }
1808
1809 if (ddir_rw(idx)) {
1810 if (!td->o.disable_clat) {
1811 add_clat_sample(td, idx, llnsec, bytes, io_u->offset);
1812 io_u_mark_latency(td, llnsec);
1813 }
1814
1815 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1816 add_bw_sample(td, io_u, bytes, llnsec);
1817
1818 if (no_reduce && per_unit_log(td->iops_log))
1819 add_iops_sample(td, io_u, bytes);
1820 }
1821
1822 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1823 uint32_t *info = io_u_block_info(td, io_u);
1824 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1825 if (io_u->ddir == DDIR_TRIM) {
1826 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1827 BLOCK_INFO_TRIMS(*info) + 1);
1828 } else if (io_u->ddir == DDIR_WRITE) {
1829 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1830 *info);
1831 }
1832 }
1833 }
1834}
1835
1836static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1837 uint64_t offset, unsigned int bytes)
1838{
1839 int idx;
1840
1841 if (!f)
1842 return;
1843
1844 if (f->first_write == -1ULL || offset < f->first_write)
1845 f->first_write = offset;
1846 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1847 f->last_write = offset + bytes;
1848
1849 if (!f->last_write_comp)
1850 return;
1851
1852 idx = f->last_write_idx++;
1853 f->last_write_comp[idx] = offset;
1854 if (f->last_write_idx == td->o.iodepth)
1855 f->last_write_idx = 0;
1856}
1857
1858static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1859 struct io_completion_data *icd)
1860{
1861 struct io_u *io_u = *io_u_ptr;
1862 enum fio_ddir ddir = io_u->ddir;
1863 struct fio_file *f = io_u->file;
1864
1865 dprint_io_u(io_u, "io complete");
1866
1867 assert(io_u->flags & IO_U_F_FLIGHT);
1868 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1869
1870 /*
1871 * Mark IO ok to verify
1872 */
1873 if (io_u->ipo) {
1874 /*
1875 * Remove errored entry from the verification list
1876 */
1877 if (io_u->error)
1878 unlog_io_piece(td, io_u);
1879 else {
1880 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1881 write_barrier();
1882 }
1883 }
1884
1885 if (ddir_sync(ddir)) {
1886 td->last_was_sync = 1;
1887 if (f) {
1888 f->first_write = -1ULL;
1889 f->last_write = -1ULL;
1890 }
1891 return;
1892 }
1893
1894 td->last_was_sync = 0;
1895 td->last_ddir = ddir;
1896
1897 if (!io_u->error && ddir_rw(ddir)) {
1898 unsigned int bytes = io_u->buflen - io_u->resid;
1899 int ret;
1900
1901 td->io_blocks[ddir]++;
1902 td->this_io_blocks[ddir]++;
1903 td->io_bytes[ddir] += bytes;
1904
1905 if (!(io_u->flags & IO_U_F_VER_LIST))
1906 td->this_io_bytes[ddir] += bytes;
1907
1908 if (ddir == DDIR_WRITE)
1909 file_log_write_comp(td, f, io_u->offset, bytes);
1910
1911 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1912 td->runstate == TD_VERIFYING))
1913 account_io_completion(td, io_u, icd, ddir, bytes);
1914
1915 icd->bytes_done[ddir] += bytes;
1916
1917 if (io_u->end_io) {
1918 ret = io_u->end_io(td, io_u_ptr);
1919 io_u = *io_u_ptr;
1920 if (ret && !icd->error)
1921 icd->error = ret;
1922 }
1923 } else if (io_u->error) {
1924 icd->error = io_u->error;
1925 io_u_log_error(td, io_u);
1926 }
1927 if (icd->error) {
1928 enum error_type_bit eb = td_error_type(ddir, icd->error);
1929
1930 if (!td_non_fatal_error(td, eb, icd->error))
1931 return;
1932
1933 /*
1934 * If there is a non_fatal error, then add to the error count
1935 * and clear all the errors.
1936 */
1937 update_error_count(td, icd->error);
1938 td_clear_error(td);
1939 icd->error = 0;
1940 if (io_u)
1941 io_u->error = 0;
1942 }
1943}
1944
1945static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1946 int nr)
1947{
1948 int ddir;
1949
1950 if (!gtod_reduce(td))
1951 fio_gettime(&icd->time, NULL);
1952
1953 icd->nr = nr;
1954
1955 icd->error = 0;
1956 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1957 icd->bytes_done[ddir] = 0;
1958}
1959
1960static void ios_completed(struct thread_data *td,
1961 struct io_completion_data *icd)
1962{
1963 struct io_u *io_u;
1964 int i;
1965
1966 for (i = 0; i < icd->nr; i++) {
1967 io_u = td->io_ops->event(td, i);
1968
1969 io_completed(td, &io_u, icd);
1970
1971 if (io_u)
1972 put_io_u(td, io_u);
1973 }
1974}
1975
1976/*
1977 * Complete a single io_u for the sync engines.
1978 */
1979int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1980{
1981 struct io_completion_data icd;
1982 int ddir;
1983
1984 init_icd(td, &icd, 1);
1985 io_completed(td, &io_u, &icd);
1986
1987 if (io_u)
1988 put_io_u(td, io_u);
1989
1990 if (icd.error) {
1991 td_verror(td, icd.error, "io_u_sync_complete");
1992 return -1;
1993 }
1994
1995 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1996 td->bytes_done[ddir] += icd.bytes_done[ddir];
1997
1998 return 0;
1999}
2000
2001/*
2002 * Called to complete min_events number of io for the async engines.
2003 */
2004int io_u_queued_complete(struct thread_data *td, int min_evts)
2005{
2006 struct io_completion_data icd;
2007 struct timespec *tvp = NULL;
2008 int ret, ddir;
2009 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2010
2011 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2012
2013 if (!min_evts)
2014 tvp = &ts;
2015 else if (min_evts > td->cur_depth)
2016 min_evts = td->cur_depth;
2017
2018 /* No worries, td_io_getevents fixes min and max if they are
2019 * set incorrectly */
2020 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2021 if (ret < 0) {
2022 td_verror(td, -ret, "td_io_getevents");
2023 return ret;
2024 } else if (!ret)
2025 return ret;
2026
2027 init_icd(td, &icd, ret);
2028 ios_completed(td, &icd);
2029 if (icd.error) {
2030 td_verror(td, icd.error, "io_u_queued_complete");
2031 return -1;
2032 }
2033
2034 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2035 td->bytes_done[ddir] += icd.bytes_done[ddir];
2036
2037 return ret;
2038}
2039
2040/*
2041 * Call when io_u is really queued, to update the submission latency.
2042 */
2043void io_u_queued(struct thread_data *td, struct io_u *io_u)
2044{
2045 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2046 unsigned long slat_time;
2047
2048 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2049
2050 if (td->parent)
2051 td = td->parent;
2052
2053 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2054 io_u->offset);
2055 }
2056}
2057
2058/*
2059 * See if we should reuse the last seed, if dedupe is enabled
2060 */
2061static struct frand_state *get_buf_state(struct thread_data *td)
2062{
2063 unsigned int v;
2064
2065 if (!td->o.dedupe_percentage)
2066 return &td->buf_state;
2067 else if (td->o.dedupe_percentage == 100) {
2068 frand_copy(&td->buf_state_prev, &td->buf_state);
2069 return &td->buf_state;
2070 }
2071
2072 v = rand32_between(&td->dedupe_state, 1, 100);
2073
2074 if (v <= td->o.dedupe_percentage)
2075 return &td->buf_state_prev;
2076
2077 return &td->buf_state;
2078}
2079
2080static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2081{
2082 if (td->o.dedupe_percentage == 100)
2083 frand_copy(rs, &td->buf_state_prev);
2084 else if (rs == &td->buf_state)
2085 frand_copy(&td->buf_state_prev, rs);
2086}
2087
2088void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2089 unsigned int max_bs)
2090{
2091 struct thread_options *o = &td->o;
2092
2093 if (o->mem_type == MEM_CUDA_MALLOC)
2094 return;
2095
2096 if (o->compress_percentage || o->dedupe_percentage) {
2097 unsigned int perc = td->o.compress_percentage;
2098 struct frand_state *rs;
2099 unsigned int left = max_bs;
2100 unsigned int this_write;
2101
2102 do {
2103 rs = get_buf_state(td);
2104
2105 min_write = min(min_write, left);
2106
2107 if (perc) {
2108 this_write = min_not_zero(min_write,
2109 td->o.compress_chunk);
2110
2111 fill_random_buf_percentage(rs, buf, perc,
2112 this_write, this_write,
2113 o->buffer_pattern,
2114 o->buffer_pattern_bytes);
2115 } else {
2116 fill_random_buf(rs, buf, min_write);
2117 this_write = min_write;
2118 }
2119
2120 buf += this_write;
2121 left -= this_write;
2122 save_buf_state(td, rs);
2123 } while (left);
2124 } else if (o->buffer_pattern_bytes)
2125 fill_buffer_pattern(td, buf, max_bs);
2126 else if (o->zero_buffers)
2127 memset(buf, 0, max_bs);
2128 else
2129 fill_random_buf(get_buf_state(td), buf, max_bs);
2130}
2131
2132/*
2133 * "randomly" fill the buffer contents
2134 */
2135void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2136 unsigned int min_write, unsigned int max_bs)
2137{
2138 io_u->buf_filled_len = 0;
2139 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2140}
2141
2142static int do_sync_file_range(const struct thread_data *td,
2143 struct fio_file *f)
2144{
2145 off64_t offset, nbytes;
2146
2147 offset = f->first_write;
2148 nbytes = f->last_write - f->first_write;
2149
2150 if (!nbytes)
2151 return 0;
2152
2153 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2154}
2155
2156int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2157{
2158 int ret;
2159
2160 if (io_u->ddir == DDIR_SYNC) {
2161 ret = fsync(io_u->file->fd);
2162 } else if (io_u->ddir == DDIR_DATASYNC) {
2163#ifdef CONFIG_FDATASYNC
2164 ret = fdatasync(io_u->file->fd);
2165#else
2166 ret = io_u->xfer_buflen;
2167 io_u->error = EINVAL;
2168#endif
2169 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2170 ret = do_sync_file_range(td, io_u->file);
2171 else {
2172 ret = io_u->xfer_buflen;
2173 io_u->error = EINVAL;
2174 }
2175
2176 if (ret < 0)
2177 io_u->error = errno;
2178
2179 return ret;
2180}
2181
2182int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2183{
2184#ifndef FIO_HAVE_TRIM
2185 io_u->error = EINVAL;
2186 return 0;
2187#else
2188 struct fio_file *f = io_u->file;
2189 int ret;
2190
2191 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2192 if (!ret)
2193 return io_u->xfer_buflen;
2194
2195 io_u->error = ret;
2196 return 0;
2197#endif
2198}