Add buffer_compress_percentage
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13
14struct io_completion_data {
15 int nr; /* input */
16 int account; /* input */
17
18 int error; /* output */
19 unsigned long bytes_done[2]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->file_map[] contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const unsigned long long block)
28{
29 unsigned int idx = RAND_MAP_IDX(f, block);
30 unsigned int bit = RAND_MAP_BIT(f, block);
31
32 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
33
34 return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct io_u *io_u)
41{
42 unsigned int min_bs = td->o.rw_min_bs;
43 struct fio_file *f = io_u->file;
44 unsigned long long block;
45 unsigned int blocks, nr_blocks;
46 int busy_check;
47
48 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
49 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
50 blocks = 0;
51 busy_check = !(io_u->flags & IO_U_F_BUSY_OK);
52
53 while (nr_blocks) {
54 unsigned int idx, bit;
55 unsigned long mask, this_blocks;
56
57 /*
58 * If we have a mixed random workload, we may
59 * encounter blocks we already did IO to.
60 */
61 if (!busy_check) {
62 blocks = nr_blocks;
63 break;
64 }
65 if ((td->o.ddir_seq_nr == 1) && !random_map_free(f, block))
66 break;
67
68 idx = RAND_MAP_IDX(f, block);
69 bit = RAND_MAP_BIT(f, block);
70
71 fio_assert(td, idx < f->num_maps);
72
73 this_blocks = nr_blocks;
74 if (this_blocks + bit > BLOCKS_PER_MAP)
75 this_blocks = BLOCKS_PER_MAP - bit;
76
77 do {
78 if (this_blocks == BLOCKS_PER_MAP)
79 mask = -1UL;
80 else
81 mask = ((1UL << this_blocks) - 1) << bit;
82
83 if (!(f->file_map[idx] & mask))
84 break;
85
86 this_blocks--;
87 } while (this_blocks);
88
89 if (!this_blocks)
90 break;
91
92 f->file_map[idx] |= mask;
93 nr_blocks -= this_blocks;
94 blocks += this_blocks;
95 block += this_blocks;
96 }
97
98 if ((blocks * min_bs) < io_u->buflen)
99 io_u->buflen = blocks * min_bs;
100}
101
102static unsigned long long last_block(struct thread_data *td, struct fio_file *f,
103 enum fio_ddir ddir)
104{
105 unsigned long long max_blocks;
106 unsigned long long max_size;
107
108 assert(ddir_rw(ddir));
109
110 /*
111 * Hmm, should we make sure that ->io_size <= ->real_file_size?
112 */
113 max_size = f->io_size;
114 if (max_size > f->real_file_size)
115 max_size = f->real_file_size;
116
117 if (td->o.zone_range)
118 max_size = td->o.zone_range;
119
120 max_blocks = max_size / (unsigned long long) td->o.ba[ddir];
121 if (!max_blocks)
122 return 0;
123
124 return max_blocks;
125}
126
127/*
128 * Return the next free block in the map.
129 */
130static int get_next_free_block(struct thread_data *td, struct fio_file *f,
131 enum fio_ddir ddir, unsigned long long *b)
132{
133 unsigned long long block, min_bs = td->o.rw_min_bs, lastb;
134 int i;
135
136 lastb = last_block(td, f, ddir);
137 if (!lastb)
138 return 1;
139
140 i = f->last_free_lookup;
141 block = i * BLOCKS_PER_MAP;
142 while (block * min_bs < f->real_file_size &&
143 block * min_bs < f->io_size) {
144 if (f->file_map[i] != -1UL) {
145 block += ffz(f->file_map[i]);
146 if (block > lastb)
147 break;
148 f->last_free_lookup = i;
149 *b = block;
150 return 0;
151 }
152
153 block += BLOCKS_PER_MAP;
154 i++;
155 }
156
157 dprint(FD_IO, "failed finding a free block\n");
158 return 1;
159}
160
161static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
162 enum fio_ddir ddir, unsigned long long *b)
163{
164 unsigned long long rmax, r, lastb;
165 int loops = 5;
166
167 lastb = last_block(td, f, ddir);
168 if (!lastb)
169 return 1;
170
171 if (f->failed_rands >= 200)
172 goto ffz;
173
174 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
175 do {
176 if (td->o.use_os_rand)
177 r = os_random_long(&td->random_state);
178 else
179 r = __rand(&td->__random_state);
180
181 *b = (lastb - 1) * (r / ((unsigned long long) rmax + 1.0));
182
183 dprint(FD_RANDOM, "off rand %llu\n", r);
184
185
186 /*
187 * if we are not maintaining a random map, we are done.
188 */
189 if (!file_randommap(td, f))
190 goto ret_good;
191
192 /*
193 * calculate map offset and check if it's free
194 */
195 if (random_map_free(f, *b))
196 goto ret_good;
197
198 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
199 *b);
200 } while (--loops);
201
202 if (!f->failed_rands++)
203 f->last_free_lookup = 0;
204
205 /*
206 * we get here, if we didn't suceed in looking up a block. generate
207 * a random start offset into the filemap, and find the first free
208 * block from there.
209 */
210 loops = 10;
211 do {
212 f->last_free_lookup = (f->num_maps - 1) *
213 (r / ((unsigned long long) rmax + 1.0));
214 if (!get_next_free_block(td, f, ddir, b))
215 goto ret;
216
217 if (td->o.use_os_rand)
218 r = os_random_long(&td->random_state);
219 else
220 r = __rand(&td->__random_state);
221 } while (--loops);
222
223 /*
224 * that didn't work either, try exhaustive search from the start
225 */
226 f->last_free_lookup = 0;
227ffz:
228 if (!get_next_free_block(td, f, ddir, b))
229 return 0;
230 f->last_free_lookup = 0;
231 return get_next_free_block(td, f, ddir, b);
232ret_good:
233 f->failed_rands = 0;
234ret:
235 return 0;
236}
237
238static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
239 enum fio_ddir ddir, unsigned long long *b)
240{
241 if (get_next_rand_offset(td, f, ddir, b)) {
242 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
243 f->file_name, f->last_pos, f->real_file_size);
244 return 1;
245 }
246
247 return 0;
248}
249
250static int get_next_seq_block(struct thread_data *td, struct fio_file *f,
251 enum fio_ddir ddir, unsigned long long *b)
252{
253 assert(ddir_rw(ddir));
254
255 if (f->last_pos < f->real_file_size) {
256 unsigned long long pos;
257
258 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
259 f->last_pos = f->real_file_size;
260
261 pos = f->last_pos - f->file_offset;
262 if (pos)
263 pos += td->o.ddir_seq_add;
264
265 *b = pos / td->o.min_bs[ddir];
266 return 0;
267 }
268
269 return 1;
270}
271
272static int get_next_block(struct thread_data *td, struct io_u *io_u,
273 enum fio_ddir ddir, int rw_seq, unsigned long long *b)
274{
275 struct fio_file *f = io_u->file;
276 int ret;
277
278 assert(ddir_rw(ddir));
279
280 if (rw_seq) {
281 if (td_random(td))
282 ret = get_next_rand_block(td, f, ddir, b);
283 else
284 ret = get_next_seq_block(td, f, ddir, b);
285 } else {
286 io_u->flags |= IO_U_F_BUSY_OK;
287
288 if (td->o.rw_seq == RW_SEQ_SEQ) {
289 ret = get_next_seq_block(td, f, ddir, b);
290 if (ret)
291 ret = get_next_rand_block(td, f, ddir, b);
292 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
293 if (f->last_start != -1ULL)
294 *b = (f->last_start - f->file_offset)
295 / td->o.min_bs[ddir];
296 else
297 *b = 0;
298 ret = 0;
299 } else {
300 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
301 ret = 1;
302 }
303 }
304
305 return ret;
306}
307
308/*
309 * For random io, generate a random new block and see if it's used. Repeat
310 * until we find a free one. For sequential io, just return the end of
311 * the last io issued.
312 */
313static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
314{
315 struct fio_file *f = io_u->file;
316 unsigned long long b;
317 enum fio_ddir ddir = io_u->ddir;
318 int rw_seq_hit = 0;
319
320 assert(ddir_rw(ddir));
321
322 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
323 rw_seq_hit = 1;
324 td->ddir_seq_nr = td->o.ddir_seq_nr;
325 }
326
327 if (get_next_block(td, io_u, ddir, rw_seq_hit, &b))
328 return 1;
329
330 io_u->offset = b * td->o.ba[ddir];
331 if (io_u->offset >= f->io_size) {
332 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
333 io_u->offset, f->io_size);
334 return 1;
335 }
336
337 io_u->offset += f->file_offset;
338 if (io_u->offset >= f->real_file_size) {
339 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
340 io_u->offset, f->real_file_size);
341 return 1;
342 }
343
344 return 0;
345}
346
347static int get_next_offset(struct thread_data *td, struct io_u *io_u)
348{
349 struct prof_io_ops *ops = &td->prof_io_ops;
350
351 if (ops->fill_io_u_off)
352 return ops->fill_io_u_off(td, io_u);
353
354 return __get_next_offset(td, io_u);
355}
356
357static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
358 unsigned int buflen)
359{
360 struct fio_file *f = io_u->file;
361
362 return io_u->offset + buflen <= f->io_size + td->o.start_offset;
363}
364
365static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
366{
367 const int ddir = io_u->ddir;
368 unsigned int uninitialized_var(buflen);
369 unsigned int minbs, maxbs;
370 unsigned long r, rand_max;
371
372 assert(ddir_rw(ddir));
373
374 minbs = td->o.min_bs[ddir];
375 maxbs = td->o.max_bs[ddir];
376
377 if (minbs == maxbs)
378 return minbs;
379
380 /*
381 * If we can't satisfy the min block size from here, then fail
382 */
383 if (!io_u_fits(td, io_u, minbs))
384 return 0;
385
386 if (td->o.use_os_rand)
387 rand_max = OS_RAND_MAX;
388 else
389 rand_max = FRAND_MAX;
390
391 do {
392 if (td->o.use_os_rand)
393 r = os_random_long(&td->bsrange_state);
394 else
395 r = __rand(&td->__bsrange_state);
396
397 if (!td->o.bssplit_nr[ddir]) {
398 buflen = 1 + (unsigned int) ((double) maxbs *
399 (r / (rand_max + 1.0)));
400 if (buflen < minbs)
401 buflen = minbs;
402 } else {
403 long perc = 0;
404 unsigned int i;
405
406 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
407 struct bssplit *bsp = &td->o.bssplit[ddir][i];
408
409 buflen = bsp->bs;
410 perc += bsp->perc;
411 if ((r <= ((rand_max / 100L) * perc)) &&
412 io_u_fits(td, io_u, buflen))
413 break;
414 }
415 }
416
417 if (!td->o.bs_unaligned && is_power_of_2(minbs))
418 buflen = (buflen + minbs - 1) & ~(minbs - 1);
419
420 } while (!io_u_fits(td, io_u, buflen));
421
422 return buflen;
423}
424
425static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
426{
427 struct prof_io_ops *ops = &td->prof_io_ops;
428
429 if (ops->fill_io_u_size)
430 return ops->fill_io_u_size(td, io_u);
431
432 return __get_next_buflen(td, io_u);
433}
434
435static void set_rwmix_bytes(struct thread_data *td)
436{
437 unsigned int diff;
438
439 /*
440 * we do time or byte based switch. this is needed because
441 * buffered writes may issue a lot quicker than they complete,
442 * whereas reads do not.
443 */
444 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
445 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
446}
447
448static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
449{
450 unsigned int v;
451 unsigned long r;
452
453 if (td->o.use_os_rand) {
454 r = os_random_long(&td->rwmix_state);
455 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
456 } else {
457 r = __rand(&td->__rwmix_state);
458 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
459 }
460
461 if (v <= td->o.rwmix[DDIR_READ])
462 return DDIR_READ;
463
464 return DDIR_WRITE;
465}
466
467static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
468{
469 enum fio_ddir odir = ddir ^ 1;
470 struct timeval t;
471 long usec;
472
473 assert(ddir_rw(ddir));
474
475 if (td->rate_pending_usleep[ddir] <= 0)
476 return ddir;
477
478 /*
479 * We have too much pending sleep in this direction. See if we
480 * should switch.
481 */
482 if (td_rw(td)) {
483 /*
484 * Other direction does not have too much pending, switch
485 */
486 if (td->rate_pending_usleep[odir] < 100000)
487 return odir;
488
489 /*
490 * Both directions have pending sleep. Sleep the minimum time
491 * and deduct from both.
492 */
493 if (td->rate_pending_usleep[ddir] <=
494 td->rate_pending_usleep[odir]) {
495 usec = td->rate_pending_usleep[ddir];
496 } else {
497 usec = td->rate_pending_usleep[odir];
498 ddir = odir;
499 }
500 } else
501 usec = td->rate_pending_usleep[ddir];
502
503 /*
504 * We are going to sleep, ensure that we flush anything pending as
505 * not to skew our latency numbers.
506 *
507 * Changed to only monitor 'in flight' requests here instead of the
508 * td->cur_depth, b/c td->cur_depth does not accurately represent
509 * io's that have been actually submitted to an async engine,
510 * and cur_depth is meaningless for sync engines.
511 */
512 if (td->io_u_in_flight) {
513 int fio_unused ret;
514
515 ret = io_u_queued_complete(td, td->io_u_in_flight, NULL);
516 }
517
518 fio_gettime(&t, NULL);
519 usec_sleep(td, usec);
520 usec = utime_since_now(&t);
521
522 td->rate_pending_usleep[ddir] -= usec;
523
524 odir = ddir ^ 1;
525 if (td_rw(td) && __should_check_rate(td, odir))
526 td->rate_pending_usleep[odir] -= usec;
527
528 return ddir;
529}
530
531/*
532 * Return the data direction for the next io_u. If the job is a
533 * mixed read/write workload, check the rwmix cycle and switch if
534 * necessary.
535 */
536static enum fio_ddir get_rw_ddir(struct thread_data *td)
537{
538 enum fio_ddir ddir;
539
540 /*
541 * see if it's time to fsync
542 */
543 if (td->o.fsync_blocks &&
544 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
545 td->io_issues[DDIR_WRITE] && should_fsync(td))
546 return DDIR_SYNC;
547
548 /*
549 * see if it's time to fdatasync
550 */
551 if (td->o.fdatasync_blocks &&
552 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
553 td->io_issues[DDIR_WRITE] && should_fsync(td))
554 return DDIR_DATASYNC;
555
556 /*
557 * see if it's time to sync_file_range
558 */
559 if (td->sync_file_range_nr &&
560 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
561 td->io_issues[DDIR_WRITE] && should_fsync(td))
562 return DDIR_SYNC_FILE_RANGE;
563
564 if (td_rw(td)) {
565 /*
566 * Check if it's time to seed a new data direction.
567 */
568 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
569 /*
570 * Put a top limit on how many bytes we do for
571 * one data direction, to avoid overflowing the
572 * ranges too much
573 */
574 ddir = get_rand_ddir(td);
575
576 if (ddir != td->rwmix_ddir)
577 set_rwmix_bytes(td);
578
579 td->rwmix_ddir = ddir;
580 }
581 ddir = td->rwmix_ddir;
582 } else if (td_read(td))
583 ddir = DDIR_READ;
584 else
585 ddir = DDIR_WRITE;
586
587 td->rwmix_ddir = rate_ddir(td, ddir);
588 return td->rwmix_ddir;
589}
590
591static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
592{
593 io_u->ddir = get_rw_ddir(td);
594
595 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
596 td->o.barrier_blocks &&
597 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
598 td->io_issues[DDIR_WRITE])
599 io_u->flags |= IO_U_F_BARRIER;
600}
601
602void put_file_log(struct thread_data *td, struct fio_file *f)
603{
604 int ret = put_file(td, f);
605
606 if (ret)
607 td_verror(td, ret, "file close");
608}
609
610void put_io_u(struct thread_data *td, struct io_u *io_u)
611{
612 td_io_u_lock(td);
613
614 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
615 put_file_log(td, io_u->file);
616 io_u->file = NULL;
617 io_u->flags &= ~IO_U_F_FREE_DEF;
618 io_u->flags |= IO_U_F_FREE;
619
620 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
621 td->cur_depth--;
622 flist_del_init(&io_u->list);
623 flist_add(&io_u->list, &td->io_u_freelist);
624 td_io_u_unlock(td);
625 td_io_u_free_notify(td);
626}
627
628void clear_io_u(struct thread_data *td, struct io_u *io_u)
629{
630 io_u->flags &= ~IO_U_F_FLIGHT;
631 put_io_u(td, io_u);
632}
633
634void requeue_io_u(struct thread_data *td, struct io_u **io_u)
635{
636 struct io_u *__io_u = *io_u;
637
638 dprint(FD_IO, "requeue %p\n", __io_u);
639
640 td_io_u_lock(td);
641
642 __io_u->flags |= IO_U_F_FREE;
643 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir))
644 td->io_issues[__io_u->ddir]--;
645
646 __io_u->flags &= ~IO_U_F_FLIGHT;
647 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
648 td->cur_depth--;
649 flist_del(&__io_u->list);
650 flist_add_tail(&__io_u->list, &td->io_u_requeues);
651 td_io_u_unlock(td);
652 *io_u = NULL;
653}
654
655static int fill_io_u(struct thread_data *td, struct io_u *io_u)
656{
657 if (td->io_ops->flags & FIO_NOIO)
658 goto out;
659
660 set_rw_ddir(td, io_u);
661
662 /*
663 * fsync() or fdatasync() or trim etc, we are done
664 */
665 if (!ddir_rw(io_u->ddir))
666 goto out;
667
668 /*
669 * See if it's time to switch to a new zone
670 */
671 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
672 td->zone_bytes = 0;
673 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
674 io_u->file->last_pos = io_u->file->file_offset;
675 td->io_skip_bytes += td->o.zone_skip;
676 }
677
678 /*
679 * No log, let the seq/rand engine retrieve the next buflen and
680 * position.
681 */
682 if (get_next_offset(td, io_u)) {
683 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
684 return 1;
685 }
686
687 io_u->buflen = get_next_buflen(td, io_u);
688 if (!io_u->buflen) {
689 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
690 return 1;
691 }
692
693 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
694 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
695 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
696 io_u->buflen, io_u->file->real_file_size);
697 return 1;
698 }
699
700 /*
701 * mark entry before potentially trimming io_u
702 */
703 if (td_random(td) && file_randommap(td, io_u->file))
704 mark_random_map(td, io_u);
705
706 /*
707 * If using a write iolog, store this entry.
708 */
709out:
710 dprint_io_u(io_u, "fill_io_u");
711 td->zone_bytes += io_u->buflen;
712 log_io_u(td, io_u);
713 return 0;
714}
715
716static void __io_u_mark_map(unsigned int *map, unsigned int nr)
717{
718 int idx = 0;
719
720 switch (nr) {
721 default:
722 idx = 6;
723 break;
724 case 33 ... 64:
725 idx = 5;
726 break;
727 case 17 ... 32:
728 idx = 4;
729 break;
730 case 9 ... 16:
731 idx = 3;
732 break;
733 case 5 ... 8:
734 idx = 2;
735 break;
736 case 1 ... 4:
737 idx = 1;
738 case 0:
739 break;
740 }
741
742 map[idx]++;
743}
744
745void io_u_mark_submit(struct thread_data *td, unsigned int nr)
746{
747 __io_u_mark_map(td->ts.io_u_submit, nr);
748 td->ts.total_submit++;
749}
750
751void io_u_mark_complete(struct thread_data *td, unsigned int nr)
752{
753 __io_u_mark_map(td->ts.io_u_complete, nr);
754 td->ts.total_complete++;
755}
756
757void io_u_mark_depth(struct thread_data *td, unsigned int nr)
758{
759 int idx = 0;
760
761 switch (td->cur_depth) {
762 default:
763 idx = 6;
764 break;
765 case 32 ... 63:
766 idx = 5;
767 break;
768 case 16 ... 31:
769 idx = 4;
770 break;
771 case 8 ... 15:
772 idx = 3;
773 break;
774 case 4 ... 7:
775 idx = 2;
776 break;
777 case 2 ... 3:
778 idx = 1;
779 case 1:
780 break;
781 }
782
783 td->ts.io_u_map[idx] += nr;
784}
785
786static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
787{
788 int idx = 0;
789
790 assert(usec < 1000);
791
792 switch (usec) {
793 case 750 ... 999:
794 idx = 9;
795 break;
796 case 500 ... 749:
797 idx = 8;
798 break;
799 case 250 ... 499:
800 idx = 7;
801 break;
802 case 100 ... 249:
803 idx = 6;
804 break;
805 case 50 ... 99:
806 idx = 5;
807 break;
808 case 20 ... 49:
809 idx = 4;
810 break;
811 case 10 ... 19:
812 idx = 3;
813 break;
814 case 4 ... 9:
815 idx = 2;
816 break;
817 case 2 ... 3:
818 idx = 1;
819 case 0 ... 1:
820 break;
821 }
822
823 assert(idx < FIO_IO_U_LAT_U_NR);
824 td->ts.io_u_lat_u[idx]++;
825}
826
827static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
828{
829 int idx = 0;
830
831 switch (msec) {
832 default:
833 idx = 11;
834 break;
835 case 1000 ... 1999:
836 idx = 10;
837 break;
838 case 750 ... 999:
839 idx = 9;
840 break;
841 case 500 ... 749:
842 idx = 8;
843 break;
844 case 250 ... 499:
845 idx = 7;
846 break;
847 case 100 ... 249:
848 idx = 6;
849 break;
850 case 50 ... 99:
851 idx = 5;
852 break;
853 case 20 ... 49:
854 idx = 4;
855 break;
856 case 10 ... 19:
857 idx = 3;
858 break;
859 case 4 ... 9:
860 idx = 2;
861 break;
862 case 2 ... 3:
863 idx = 1;
864 case 0 ... 1:
865 break;
866 }
867
868 assert(idx < FIO_IO_U_LAT_M_NR);
869 td->ts.io_u_lat_m[idx]++;
870}
871
872static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
873{
874 if (usec < 1000)
875 io_u_mark_lat_usec(td, usec);
876 else
877 io_u_mark_lat_msec(td, usec / 1000);
878}
879
880/*
881 * Get next file to service by choosing one at random
882 */
883static struct fio_file *get_next_file_rand(struct thread_data *td,
884 enum fio_file_flags goodf,
885 enum fio_file_flags badf)
886{
887 struct fio_file *f;
888 int fno;
889
890 do {
891 int opened = 0;
892 unsigned long r;
893
894 if (td->o.use_os_rand) {
895 r = os_random_long(&td->next_file_state);
896 fno = (unsigned int) ((double) td->o.nr_files
897 * (r / (OS_RAND_MAX + 1.0)));
898 } else {
899 r = __rand(&td->__next_file_state);
900 fno = (unsigned int) ((double) td->o.nr_files
901 * (r / (FRAND_MAX + 1.0)));
902 }
903
904 f = td->files[fno];
905 if (fio_file_done(f))
906 continue;
907
908 if (!fio_file_open(f)) {
909 int err;
910
911 err = td_io_open_file(td, f);
912 if (err)
913 continue;
914 opened = 1;
915 }
916
917 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
918 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
919 return f;
920 }
921 if (opened)
922 td_io_close_file(td, f);
923 } while (1);
924}
925
926/*
927 * Get next file to service by doing round robin between all available ones
928 */
929static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
930 int badf)
931{
932 unsigned int old_next_file = td->next_file;
933 struct fio_file *f;
934
935 do {
936 int opened = 0;
937
938 f = td->files[td->next_file];
939
940 td->next_file++;
941 if (td->next_file >= td->o.nr_files)
942 td->next_file = 0;
943
944 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
945 if (fio_file_done(f)) {
946 f = NULL;
947 continue;
948 }
949
950 if (!fio_file_open(f)) {
951 int err;
952
953 err = td_io_open_file(td, f);
954 if (err) {
955 dprint(FD_FILE, "error %d on open of %s\n",
956 err, f->file_name);
957 f = NULL;
958 continue;
959 }
960 opened = 1;
961 }
962
963 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
964 f->flags);
965 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
966 break;
967
968 if (opened)
969 td_io_close_file(td, f);
970
971 f = NULL;
972 } while (td->next_file != old_next_file);
973
974 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
975 return f;
976}
977
978static struct fio_file *__get_next_file(struct thread_data *td)
979{
980 struct fio_file *f;
981
982 assert(td->o.nr_files <= td->files_index);
983
984 if (td->nr_done_files >= td->o.nr_files) {
985 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
986 " nr_files=%d\n", td->nr_open_files,
987 td->nr_done_files,
988 td->o.nr_files);
989 return NULL;
990 }
991
992 f = td->file_service_file;
993 if (f && fio_file_open(f) && !fio_file_closing(f)) {
994 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
995 goto out;
996 if (td->file_service_left--)
997 goto out;
998 }
999
1000 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1001 td->o.file_service_type == FIO_FSERVICE_SEQ)
1002 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1003 else
1004 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1005
1006 td->file_service_file = f;
1007 td->file_service_left = td->file_service_nr - 1;
1008out:
1009 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1010 return f;
1011}
1012
1013static struct fio_file *get_next_file(struct thread_data *td)
1014{
1015 struct prof_io_ops *ops = &td->prof_io_ops;
1016
1017 if (ops->get_next_file)
1018 return ops->get_next_file(td);
1019
1020 return __get_next_file(td);
1021}
1022
1023static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1024{
1025 struct fio_file *f;
1026
1027 do {
1028 f = get_next_file(td);
1029 if (!f)
1030 return 1;
1031
1032 io_u->file = f;
1033 get_file(f);
1034
1035 if (!fill_io_u(td, io_u))
1036 break;
1037
1038 put_file_log(td, f);
1039 td_io_close_file(td, f);
1040 io_u->file = NULL;
1041 fio_file_set_done(f);
1042 td->nr_done_files++;
1043 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1044 td->nr_done_files, td->o.nr_files);
1045 } while (1);
1046
1047 return 0;
1048}
1049
1050
1051struct io_u *__get_io_u(struct thread_data *td)
1052{
1053 struct io_u *io_u = NULL;
1054
1055 td_io_u_lock(td);
1056
1057again:
1058 if (!flist_empty(&td->io_u_requeues))
1059 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
1060 else if (!queue_full(td)) {
1061 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
1062
1063 io_u->buflen = 0;
1064 io_u->resid = 0;
1065 io_u->file = NULL;
1066 io_u->end_io = NULL;
1067 }
1068
1069 if (io_u) {
1070 assert(io_u->flags & IO_U_F_FREE);
1071 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1072 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1073
1074 io_u->error = 0;
1075 flist_del(&io_u->list);
1076 flist_add(&io_u->list, &td->io_u_busylist);
1077 td->cur_depth++;
1078 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1079 } else if (td->o.verify_async) {
1080 /*
1081 * We ran out, wait for async verify threads to finish and
1082 * return one
1083 */
1084 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1085 goto again;
1086 }
1087
1088 td_io_u_unlock(td);
1089 return io_u;
1090}
1091
1092static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1093{
1094 if (td->o.trim_backlog && td->trim_entries) {
1095 int get_trim = 0;
1096
1097 if (td->trim_batch) {
1098 td->trim_batch--;
1099 get_trim = 1;
1100 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1101 td->last_ddir != DDIR_READ) {
1102 td->trim_batch = td->o.trim_batch;
1103 if (!td->trim_batch)
1104 td->trim_batch = td->o.trim_backlog;
1105 get_trim = 1;
1106 }
1107
1108 if (get_trim && !get_next_trim(td, io_u))
1109 return 1;
1110 }
1111
1112 return 0;
1113}
1114
1115static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1116{
1117 if (td->o.verify_backlog && td->io_hist_len) {
1118 int get_verify = 0;
1119
1120 if (td->verify_batch) {
1121 td->verify_batch--;
1122 get_verify = 1;
1123 } else if (!(td->io_hist_len % td->o.verify_backlog) &&
1124 td->last_ddir != DDIR_READ) {
1125 td->verify_batch = td->o.verify_batch;
1126 if (!td->verify_batch)
1127 td->verify_batch = td->o.verify_backlog;
1128 get_verify = 1;
1129 }
1130
1131 if (get_verify && !get_next_verify(td, io_u))
1132 return 1;
1133 }
1134
1135 return 0;
1136}
1137
1138/*
1139 * Fill offset and start time into the buffer content, to prevent too
1140 * easy compressible data for simple de-dupe attempts. Do this for every
1141 * 512b block in the range, since that should be the smallest block size
1142 * we can expect from a device.
1143 */
1144static void small_content_scramble(struct io_u *io_u)
1145{
1146 unsigned int i, nr_blocks = io_u->buflen / 512;
1147 unsigned long long boffset;
1148 unsigned int offset;
1149 void *p, *end;
1150
1151 if (!nr_blocks)
1152 return;
1153
1154 p = io_u->xfer_buf;
1155 boffset = io_u->offset;
1156 io_u->buf_filled_len = 0;
1157
1158 for (i = 0; i < nr_blocks; i++) {
1159 /*
1160 * Fill the byte offset into a "random" start offset of
1161 * the buffer, given by the product of the usec time
1162 * and the actual offset.
1163 */
1164 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1165 offset &= ~(sizeof(unsigned long long) - 1);
1166 if (offset >= 512 - sizeof(unsigned long long))
1167 offset -= sizeof(unsigned long long);
1168 memcpy(p + offset, &boffset, sizeof(boffset));
1169
1170 end = p + 512 - sizeof(io_u->start_time);
1171 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1172 p += 512;
1173 boffset += 512;
1174 }
1175}
1176
1177/*
1178 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1179 * etc. The returned io_u is fully ready to be prepped and submitted.
1180 */
1181struct io_u *get_io_u(struct thread_data *td)
1182{
1183 struct fio_file *f;
1184 struct io_u *io_u;
1185 int do_scramble = 0;
1186
1187 io_u = __get_io_u(td);
1188 if (!io_u) {
1189 dprint(FD_IO, "__get_io_u failed\n");
1190 return NULL;
1191 }
1192
1193 if (check_get_verify(td, io_u))
1194 goto out;
1195 if (check_get_trim(td, io_u))
1196 goto out;
1197
1198 /*
1199 * from a requeue, io_u already setup
1200 */
1201 if (io_u->file)
1202 goto out;
1203
1204 /*
1205 * If using an iolog, grab next piece if any available.
1206 */
1207 if (td->o.read_iolog_file) {
1208 if (read_iolog_get(td, io_u))
1209 goto err_put;
1210 } else if (set_io_u_file(td, io_u)) {
1211 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1212 goto err_put;
1213 }
1214
1215 f = io_u->file;
1216 assert(fio_file_open(f));
1217
1218 if (ddir_rw(io_u->ddir)) {
1219 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1220 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1221 goto err_put;
1222 }
1223
1224 f->last_start = io_u->offset;
1225 f->last_pos = io_u->offset + io_u->buflen;
1226
1227 if (io_u->ddir == DDIR_WRITE) {
1228 if (td->o.verify != VERIFY_NONE)
1229 populate_verify_io_u(td, io_u);
1230 else if (td->o.refill_buffers) {
1231 io_u_fill_buffer(td, io_u,
1232 io_u->xfer_buflen, io_u->xfer_buflen);
1233 } else if (td->o.scramble_buffers)
1234 do_scramble = 1;
1235 } else if (io_u->ddir == DDIR_READ) {
1236 /*
1237 * Reset the buf_filled parameters so next time if the
1238 * buffer is used for writes it is refilled.
1239 */
1240 io_u->buf_filled_len = 0;
1241 }
1242 }
1243
1244 /*
1245 * Set io data pointers.
1246 */
1247 io_u->xfer_buf = io_u->buf;
1248 io_u->xfer_buflen = io_u->buflen;
1249
1250out:
1251 assert(io_u->file);
1252 if (!td_io_prep(td, io_u)) {
1253 if (!td->o.disable_slat)
1254 fio_gettime(&io_u->start_time, NULL);
1255 if (do_scramble)
1256 small_content_scramble(io_u);
1257 return io_u;
1258 }
1259err_put:
1260 dprint(FD_IO, "get_io_u failed\n");
1261 put_io_u(td, io_u);
1262 return NULL;
1263}
1264
1265void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1266{
1267 const char *msg[] = { "read", "write", "sync", "datasync",
1268 "sync_file_range", "wait", "trim" };
1269
1270
1271
1272 log_err("fio: io_u error");
1273
1274 if (io_u->file)
1275 log_err(" on file %s", io_u->file->file_name);
1276
1277 log_err(": %s\n", strerror(io_u->error));
1278
1279 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1280 io_u->offset, io_u->xfer_buflen);
1281
1282 if (!td->error)
1283 td_verror(td, io_u->error, "io_u error");
1284}
1285
1286static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1287 struct io_completion_data *icd,
1288 const enum fio_ddir idx, unsigned int bytes)
1289{
1290 unsigned long uninitialized_var(lusec);
1291
1292 if (!icd->account)
1293 return;
1294
1295 if (!td->o.disable_clat || !td->o.disable_bw)
1296 lusec = utime_since(&io_u->issue_time, &icd->time);
1297
1298 if (!td->o.disable_lat) {
1299 unsigned long tusec;
1300
1301 tusec = utime_since(&io_u->start_time, &icd->time);
1302 add_lat_sample(td, idx, tusec, bytes);
1303 }
1304
1305 if (!td->o.disable_clat) {
1306 add_clat_sample(td, idx, lusec, bytes);
1307 io_u_mark_latency(td, lusec);
1308 }
1309
1310 if (!td->o.disable_bw)
1311 add_bw_sample(td, idx, bytes, &icd->time);
1312
1313 add_iops_sample(td, idx, &icd->time);
1314}
1315
1316static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1317{
1318 unsigned long long secs, remainder, bps, bytes;
1319 bytes = td->this_io_bytes[ddir];
1320 bps = td->rate_bps[ddir];
1321 secs = bytes / bps;
1322 remainder = bytes % bps;
1323 return remainder * 1000000 / bps + secs * 1000000;
1324}
1325
1326static void io_completed(struct thread_data *td, struct io_u *io_u,
1327 struct io_completion_data *icd)
1328{
1329 /*
1330 * Older gcc's are too dumb to realize that usec is always used
1331 * initialized, silence that warning.
1332 */
1333 unsigned long uninitialized_var(usec);
1334 struct fio_file *f;
1335
1336 dprint_io_u(io_u, "io complete");
1337
1338 td_io_u_lock(td);
1339 assert(io_u->flags & IO_U_F_FLIGHT);
1340 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1341 td_io_u_unlock(td);
1342
1343 if (ddir_sync(io_u->ddir)) {
1344 td->last_was_sync = 1;
1345 f = io_u->file;
1346 if (f) {
1347 f->first_write = -1ULL;
1348 f->last_write = -1ULL;
1349 }
1350 return;
1351 }
1352
1353 td->last_was_sync = 0;
1354 td->last_ddir = io_u->ddir;
1355
1356 if (!io_u->error && ddir_rw(io_u->ddir)) {
1357 unsigned int bytes = io_u->buflen - io_u->resid;
1358 const enum fio_ddir idx = io_u->ddir;
1359 const enum fio_ddir odx = io_u->ddir ^ 1;
1360 int ret;
1361
1362 td->io_blocks[idx]++;
1363 td->this_io_blocks[idx]++;
1364 td->io_bytes[idx] += bytes;
1365 td->this_io_bytes[idx] += bytes;
1366
1367 if (idx == DDIR_WRITE) {
1368 f = io_u->file;
1369 if (f) {
1370 if (f->first_write == -1ULL ||
1371 io_u->offset < f->first_write)
1372 f->first_write = io_u->offset;
1373 if (f->last_write == -1ULL ||
1374 ((io_u->offset + bytes) > f->last_write))
1375 f->last_write = io_u->offset + bytes;
1376 }
1377 }
1378
1379 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1380 td->runstate == TD_VERIFYING)) {
1381 account_io_completion(td, io_u, icd, idx, bytes);
1382
1383 if (__should_check_rate(td, idx)) {
1384 td->rate_pending_usleep[idx] =
1385 (usec_for_io(td, idx) -
1386 utime_since_now(&td->start));
1387 }
1388 if (__should_check_rate(td, odx))
1389 td->rate_pending_usleep[odx] =
1390 (usec_for_io(td, odx) -
1391 utime_since_now(&td->start));
1392 }
1393
1394 if (td_write(td) && idx == DDIR_WRITE &&
1395 td->o.do_verify &&
1396 td->o.verify != VERIFY_NONE)
1397 log_io_piece(td, io_u);
1398
1399 icd->bytes_done[idx] += bytes;
1400
1401 if (io_u->end_io) {
1402 ret = io_u->end_io(td, io_u);
1403 if (ret && !icd->error)
1404 icd->error = ret;
1405 }
1406 } else if (io_u->error) {
1407 icd->error = io_u->error;
1408 io_u_log_error(td, io_u);
1409 }
1410 if (icd->error && td_non_fatal_error(icd->error) &&
1411 (td->o.continue_on_error & td_error_type(io_u->ddir, icd->error))) {
1412 /*
1413 * If there is a non_fatal error, then add to the error count
1414 * and clear all the errors.
1415 */
1416 update_error_count(td, icd->error);
1417 td_clear_error(td);
1418 icd->error = 0;
1419 io_u->error = 0;
1420 }
1421}
1422
1423static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1424 int nr)
1425{
1426 if (!td->o.disable_clat || !td->o.disable_bw)
1427 fio_gettime(&icd->time, NULL);
1428
1429 icd->nr = nr;
1430 icd->account = 1;
1431
1432 icd->error = 0;
1433 icd->bytes_done[0] = icd->bytes_done[1] = 0;
1434}
1435
1436static void ios_completed(struct thread_data *td,
1437 struct io_completion_data *icd)
1438{
1439 struct io_u *io_u;
1440 int i;
1441
1442 for (i = 0; i < icd->nr; i++) {
1443 io_u = td->io_ops->event(td, i);
1444
1445 io_completed(td, io_u, icd);
1446
1447 if (!(io_u->flags & IO_U_F_FREE_DEF))
1448 put_io_u(td, io_u);
1449
1450 icd->account = 0;
1451 }
1452}
1453
1454/*
1455 * Complete a single io_u for the sync engines.
1456 */
1457int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1458 unsigned long *bytes)
1459{
1460 struct io_completion_data icd;
1461
1462 init_icd(td, &icd, 1);
1463 io_completed(td, io_u, &icd);
1464
1465 if (!(io_u->flags & IO_U_F_FREE_DEF))
1466 put_io_u(td, io_u);
1467
1468 if (icd.error) {
1469 td_verror(td, icd.error, "io_u_sync_complete");
1470 return -1;
1471 }
1472
1473 if (bytes) {
1474 bytes[0] += icd.bytes_done[0];
1475 bytes[1] += icd.bytes_done[1];
1476 }
1477
1478 return 0;
1479}
1480
1481/*
1482 * Called to complete min_events number of io for the async engines.
1483 */
1484int io_u_queued_complete(struct thread_data *td, int min_evts,
1485 unsigned long *bytes)
1486{
1487 struct io_completion_data icd;
1488 struct timespec *tvp = NULL;
1489 int ret;
1490 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1491
1492 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1493
1494 if (!min_evts)
1495 tvp = &ts;
1496
1497 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1498 if (ret < 0) {
1499 td_verror(td, -ret, "td_io_getevents");
1500 return ret;
1501 } else if (!ret)
1502 return ret;
1503
1504 init_icd(td, &icd, ret);
1505 ios_completed(td, &icd);
1506 if (icd.error) {
1507 td_verror(td, icd.error, "io_u_queued_complete");
1508 return -1;
1509 }
1510
1511 if (bytes) {
1512 bytes[0] += icd.bytes_done[0];
1513 bytes[1] += icd.bytes_done[1];
1514 }
1515
1516 return 0;
1517}
1518
1519/*
1520 * Call when io_u is really queued, to update the submission latency.
1521 */
1522void io_u_queued(struct thread_data *td, struct io_u *io_u)
1523{
1524 if (!td->o.disable_slat) {
1525 unsigned long slat_time;
1526
1527 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1528 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1529 }
1530}
1531
1532/*
1533 * "randomly" fill the buffer contents
1534 */
1535void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1536 unsigned int min_write, unsigned int max_bs)
1537{
1538 io_u->buf_filled_len = 0;
1539
1540 if (!td->o.zero_buffers) {
1541 unsigned int perc = td->o.compress_percentage;
1542
1543 if (perc) {
1544 fill_random_buf_percentage(&td->buf_state, io_u->buf,
1545 perc, min_write, max_bs);
1546 } else
1547 fill_random_buf(&td->buf_state, io_u->buf, max_bs);
1548 } else
1549 memset(io_u->buf, 0, max_bs);
1550}