Excessive passing around of struct fio_file
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "os.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 unsigned long bytes_done[2]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct thread_data *td, struct fio_file *f,
29 unsigned long long block)
30{
31 unsigned int idx = RAND_MAP_IDX(td, f, block);
32 unsigned int bit = RAND_MAP_BIT(td, f, block);
33
34 return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct io_u *io_u)
41{
42 unsigned int min_bs = td->rw_min_bs;
43 struct fio_file *f = io_u->file;
44 unsigned long long block;
45 unsigned int blocks;
46 unsigned int nr_blocks;
47
48 block = io_u->offset / (unsigned long long) min_bs;
49 blocks = 0;
50 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
51
52 while (blocks < nr_blocks) {
53 unsigned int idx, bit;
54
55 if (!random_map_free(td, f, block))
56 break;
57
58 idx = RAND_MAP_IDX(td, f, block);
59 bit = RAND_MAP_BIT(td, f, block);
60
61 fio_assert(td, idx < f->num_maps);
62
63 f->file_map[idx] |= (1UL << bit);
64 block++;
65 blocks++;
66 }
67
68 if ((blocks * min_bs) < io_u->buflen)
69 io_u->buflen = blocks * min_bs;
70}
71
72/*
73 * Return the next free block in the map.
74 */
75static int get_next_free_block(struct thread_data *td, struct fio_file *f,
76 unsigned long long *b)
77{
78 int i;
79
80 i = f->last_free_lookup;
81 *b = (i * BLOCKS_PER_MAP);
82 while ((*b) * td->rw_min_bs < f->real_file_size) {
83 if (f->file_map[i] != -1UL) {
84 *b += ffz(f->file_map[i]);
85 f->last_free_lookup = i;
86 return 0;
87 }
88
89 *b += BLOCKS_PER_MAP;
90 i++;
91 }
92
93 return 1;
94}
95
96/*
97 * For random io, generate a random new block and see if it's used. Repeat
98 * until we find a free one. For sequential io, just return the end of
99 * the last io issued.
100 */
101static int get_next_offset(struct thread_data *td, struct io_u *io_u)
102{
103 struct fio_file *f = io_u->file;
104 const int ddir = io_u->ddir;
105 unsigned long long b, rb;
106 long r;
107
108 if (td_random(td)) {
109 unsigned long long max_blocks = f->file_size / td->min_bs[ddir];
110 int loops = 5;
111
112 do {
113 r = os_random_long(&td->random_state);
114 b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
115 if (td->norandommap)
116 break;
117 rb = b + (f->file_offset / td->min_bs[ddir]);
118 loops--;
119 } while (!random_map_free(td, f, rb) && loops);
120
121 /*
122 * if we failed to retrieve a truly random offset within
123 * the loops assigned, see if there are free ones left at all
124 */
125 if (!loops && get_next_free_block(td, f, &b))
126 return 1;
127 } else
128 b = f->last_pos / td->min_bs[ddir];
129
130 io_u->offset = (b * td->min_bs[ddir]) + f->file_offset;
131 if (io_u->offset >= f->real_file_size)
132 return 1;
133
134 return 0;
135}
136
137static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
138{
139 struct fio_file *f = io_u->file;
140 const int ddir = io_u->ddir;
141 unsigned int buflen;
142 long r;
143
144 if (td->min_bs[ddir] == td->max_bs[ddir])
145 buflen = td->min_bs[ddir];
146 else {
147 r = os_random_long(&td->bsrange_state);
148 buflen = (unsigned int) (1 + (double) (td->max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
149 if (!td->bs_unaligned)
150 buflen = (buflen + td->min_bs[ddir] - 1) & ~(td->min_bs[ddir] - 1);
151 }
152
153 while (buflen + io_u->offset > f->real_file_size) {
154 if (buflen == td->min_bs[ddir])
155 return 0;
156
157 buflen = td->min_bs[ddir];
158 }
159
160 return buflen;
161}
162
163/*
164 * Return the data direction for the next io_u. If the job is a
165 * mixed read/write workload, check the rwmix cycle and switch if
166 * necessary.
167 */
168static enum fio_ddir get_rw_ddir(struct thread_data *td)
169{
170 if (td_rw(td)) {
171 struct timeval now;
172 unsigned long elapsed;
173
174 fio_gettime(&now, NULL);
175 elapsed = mtime_since_now(&td->rwmix_switch);
176
177 /*
178 * Check if it's time to seed a new data direction.
179 */
180 if (elapsed >= td->rwmixcycle) {
181 unsigned int v;
182 long r;
183
184 r = os_random_long(&td->rwmix_state);
185 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
186 if (v < td->rwmixread)
187 td->rwmix_ddir = DDIR_READ;
188 else
189 td->rwmix_ddir = DDIR_WRITE;
190 memcpy(&td->rwmix_switch, &now, sizeof(now));
191 }
192 return td->rwmix_ddir;
193 } else if (td_read(td))
194 return DDIR_READ;
195 else
196 return DDIR_WRITE;
197}
198
199void put_io_u(struct thread_data *td, struct io_u *io_u)
200{
201 assert((io_u->flags & IO_U_F_FREE) == 0);
202 io_u->flags |= IO_U_F_FREE;
203
204 io_u->file = NULL;
205 list_del(&io_u->list);
206 list_add(&io_u->list, &td->io_u_freelist);
207 td->cur_depth--;
208}
209
210void requeue_io_u(struct thread_data *td, struct io_u **io_u)
211{
212 struct io_u *__io_u = *io_u;
213
214 __io_u->flags |= IO_U_F_FREE;
215 __io_u->flags &= ~IO_U_F_FLIGHT;
216
217 list_del(&__io_u->list);
218 list_add_tail(&__io_u->list, &td->io_u_requeues);
219 td->cur_depth--;
220 *io_u = NULL;
221}
222
223static int fill_io_u(struct thread_data *td, struct io_u *io_u)
224{
225 /*
226 * If using an iolog, grab next piece if any available.
227 */
228 if (td->read_iolog)
229 return read_iolog_get(td, io_u);
230
231 /*
232 * see if it's time to sync
233 */
234 if (td->fsync_blocks && !(td->io_issues[DDIR_WRITE] % td->fsync_blocks)
235 && td->io_issues[DDIR_WRITE] && should_fsync(td)) {
236 io_u->ddir = DDIR_SYNC;
237 return 0;
238 }
239
240 io_u->ddir = get_rw_ddir(td);
241
242 /*
243 * No log, let the seq/rand engine retrieve the next buflen and
244 * position.
245 */
246 if (get_next_offset(td, io_u))
247 return 1;
248
249 io_u->buflen = get_next_buflen(td, io_u);
250 if (!io_u->buflen)
251 return 1;
252
253 /*
254 * mark entry before potentially trimming io_u
255 */
256 if (!td->read_iolog && td_random(td) && !td->norandommap)
257 mark_random_map(td, io_u);
258
259 /*
260 * If using a write iolog, store this entry.
261 */
262 if (td->write_iolog_file)
263 write_iolog_put(td, io_u);
264
265 return 0;
266}
267
268static void io_u_mark_depth(struct thread_data *td)
269{
270 int index = 0;
271
272 switch (td->cur_depth) {
273 default:
274 index++;
275 case 32 ... 63:
276 index++;
277 case 16 ... 31:
278 index++;
279 case 8 ... 15:
280 index++;
281 case 4 ... 7:
282 index++;
283 case 2 ... 3:
284 index++;
285 case 1:
286 break;
287 }
288
289 td->io_u_map[index]++;
290 td->total_io_u++;
291}
292
293static void io_u_mark_latency(struct thread_data *td, unsigned long msec)
294{
295 int index = 0;
296
297 switch (msec) {
298 default:
299 index++;
300 case 1000 ... 1999:
301 index++;
302 case 750 ... 999:
303 index++;
304 case 500 ... 749:
305 index++;
306 case 250 ... 499:
307 index++;
308 case 100 ... 249:
309 index++;
310 case 50 ... 99:
311 index++;
312 case 20 ... 49:
313 index++;
314 case 10 ... 19:
315 index++;
316 case 4 ... 9:
317 index++;
318 case 2 ... 3:
319 index++;
320 case 0 ... 1:
321 break;
322 }
323
324 td->io_u_lat[index]++;
325}
326
327/*
328 * Get next file to service by choosing one at random
329 */
330static struct fio_file *get_next_file_rand(struct thread_data *td)
331{
332 long r = os_random_long(&td->next_file_state);
333 unsigned int fileno;
334 struct fio_file *f;
335
336 do {
337 fileno = (unsigned int) ((double) (td->nr_files - 1) * r / (RAND_MAX + 1.0));
338 f = &td->files[fileno];
339 if (f->fd != -1)
340 return f;
341 } while (1);
342}
343
344/*
345 * Get next file to service by doing round robin between all available ones
346 */
347static struct fio_file *get_next_file_rr(struct thread_data *td)
348{
349 unsigned int old_next_file = td->next_file;
350 struct fio_file *f;
351
352 do {
353 f = &td->files[td->next_file];
354
355 td->next_file++;
356 if (td->next_file >= td->nr_files)
357 td->next_file = 0;
358
359 if (f->fd != -1)
360 break;
361
362 f = NULL;
363 } while (td->next_file != old_next_file);
364
365 return f;
366}
367
368struct io_u *__get_io_u(struct thread_data *td)
369{
370 struct io_u *io_u = NULL;
371
372 if (!list_empty(&td->io_u_requeues))
373 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
374 else if (!queue_full(td)) {
375 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
376
377 io_u->buflen = 0;
378 io_u->resid = 0;
379 io_u->file = NULL;
380 io_u->end_io = NULL;
381 }
382
383 if (io_u) {
384 assert(io_u->flags & IO_U_F_FREE);
385 io_u->flags &= ~IO_U_F_FREE;
386
387 io_u->error = 0;
388 list_del(&io_u->list);
389 list_add(&io_u->list, &td->io_u_busylist);
390 td->cur_depth++;
391 io_u_mark_depth(td);
392 }
393
394 return io_u;
395}
396
397/*
398 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
399 * etc. The returned io_u is fully ready to be prepped and submitted.
400 */
401struct io_u *get_io_u(struct thread_data *td)
402{
403 struct fio_file *f;
404 struct io_u *io_u;
405
406 io_u = __get_io_u(td);
407 if (!io_u)
408 return NULL;
409
410 /*
411 * from a requeue, io_u already setup
412 */
413 if (io_u->file)
414 goto out;
415
416 if (td->file_service_type == FIO_FSERVICE_RR)
417 f = get_next_file_rr(td);
418 else
419 f = get_next_file_rand(td);
420
421 if (!f) {
422 put_io_u(td, io_u);
423 return NULL;
424 }
425
426 io_u->file = f;
427
428
429 if (fill_io_u(td, io_u)) {
430 put_io_u(td, io_u);
431 return NULL;
432 }
433
434 if (td->zone_bytes >= td->zone_size) {
435 td->zone_bytes = 0;
436 f->last_pos += td->zone_skip;
437 }
438
439 if (io_u->buflen + io_u->offset > f->real_file_size) {
440 if (td->io_ops->flags & FIO_RAWIO) {
441 put_io_u(td, io_u);
442 return NULL;
443 }
444
445 io_u->buflen = f->real_file_size - io_u->offset;
446 }
447
448 if (io_u->ddir != DDIR_SYNC) {
449 if (!io_u->buflen) {
450 put_io_u(td, io_u);
451 return NULL;
452 }
453
454 f->last_pos = io_u->offset + io_u->buflen;
455
456 if (td->verify != VERIFY_NONE)
457 populate_verify_io_u(td, io_u);
458 }
459
460 /*
461 * Set io data pointers.
462 */
463out:
464 io_u->xfer_buf = io_u->buf;
465 io_u->xfer_buflen = io_u->buflen;
466
467 if (td_io_prep(td, io_u)) {
468 put_io_u(td, io_u);
469 return NULL;
470 }
471
472 fio_gettime(&io_u->start_time, NULL);
473 return io_u;
474}
475
476static void io_completed(struct thread_data *td, struct io_u *io_u,
477 struct io_completion_data *icd)
478{
479 unsigned long msec;
480
481 assert(io_u->flags & IO_U_F_FLIGHT);
482 io_u->flags &= ~IO_U_F_FLIGHT;
483
484 if (io_u->ddir == DDIR_SYNC) {
485 td->last_was_sync = 1;
486 return;
487 }
488
489 td->last_was_sync = 0;
490
491 if (!io_u->error) {
492 unsigned int bytes = io_u->buflen - io_u->resid;
493 const enum fio_ddir idx = io_u->ddir;
494 int ret;
495
496 td->io_blocks[idx]++;
497 td->io_bytes[idx] += bytes;
498 td->zone_bytes += bytes;
499 td->this_io_bytes[idx] += bytes;
500
501 io_u->file->last_completed_pos = io_u->offset + io_u->buflen;
502
503 msec = mtime_since(&io_u->issue_time, &icd->time);
504
505 add_clat_sample(td, idx, msec);
506 add_bw_sample(td, idx, &icd->time);
507 io_u_mark_latency(td, msec);
508
509 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE)
510 log_io_piece(td, io_u);
511
512 icd->bytes_done[idx] += bytes;
513
514 if (io_u->end_io) {
515 ret = io_u->end_io(io_u);
516 if (ret && !icd->error)
517 icd->error = ret;
518 }
519 } else
520 icd->error = io_u->error;
521}
522
523static void init_icd(struct io_completion_data *icd, int nr)
524{
525 fio_gettime(&icd->time, NULL);
526
527 icd->nr = nr;
528
529 icd->error = 0;
530 icd->bytes_done[0] = icd->bytes_done[1] = 0;
531}
532
533static void ios_completed(struct thread_data *td,
534 struct io_completion_data *icd)
535{
536 struct io_u *io_u;
537 int i;
538
539 for (i = 0; i < icd->nr; i++) {
540 io_u = td->io_ops->event(td, i);
541
542 io_completed(td, io_u, icd);
543 put_io_u(td, io_u);
544 }
545}
546
547/*
548 * Complete a single io_u for the sync engines.
549 */
550long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
551{
552 struct io_completion_data icd;
553
554 init_icd(&icd, 1);
555 io_completed(td, io_u, &icd);
556 put_io_u(td, io_u);
557
558 if (!icd.error)
559 return icd.bytes_done[0] + icd.bytes_done[1];
560
561 return -1;
562}
563
564/*
565 * Called to complete min_events number of io for the async engines.
566 */
567long io_u_queued_complete(struct thread_data *td, int min_events)
568{
569 struct io_completion_data icd;
570 struct timespec *tvp = NULL;
571 int ret;
572
573 if (!min_events) {
574 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
575
576 tvp = &ts;
577 }
578
579 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
580 if (ret < 0) {
581 td_verror(td, -ret, "td_io_getevents");
582 return ret;
583 } else if (!ret)
584 return ret;
585
586 init_icd(&icd, ret);
587 ios_completed(td, &icd);
588 if (!icd.error)
589 return icd.bytes_done[0] + icd.bytes_done[1];
590
591 return -1;
592}
593
594/*
595 * Call when io_u is really queued, to update the submission latency.
596 */
597void io_u_queued(struct thread_data *td, struct io_u *io_u)
598{
599 unsigned long slat_time;
600
601 slat_time = mtime_since(&io_u->start_time, &io_u->issue_time);
602 add_slat_sample(td, io_u->ddir, slat_time);
603}
604
605#ifdef FIO_USE_TIMEOUT
606void io_u_set_timeout(struct thread_data *td)
607{
608 assert(td->cur_depth);
609
610 td->timer.it_interval.tv_sec = 0;
611 td->timer.it_interval.tv_usec = 0;
612 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
613 td->timer.it_value.tv_usec = 0;
614 setitimer(ITIMER_REAL, &td->timer, NULL);
615 fio_gettime(&td->timeout_end, NULL);
616}
617
618static void io_u_dump(struct io_u *io_u)
619{
620 unsigned long t_start = mtime_since_now(&io_u->start_time);
621 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
622
623 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
624 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
625 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
626}
627#else
628void io_u_set_timeout(struct thread_data fio_unused *td)
629{
630}
631#endif
632
633#ifdef FIO_USE_TIMEOUT
634static void io_u_timeout_handler(int fio_unused sig)
635{
636 struct thread_data *td, *__td;
637 pid_t pid = getpid();
638 struct list_head *entry;
639 struct io_u *io_u;
640 int i;
641
642 log_err("fio: io_u timeout\n");
643
644 /*
645 * TLS would be nice...
646 */
647 td = NULL;
648 for_each_td(__td, i) {
649 if (__td->pid == pid) {
650 td = __td;
651 break;
652 }
653 }
654
655 if (!td) {
656 log_err("fio: io_u timeout, can't find job\n");
657 exit(1);
658 }
659
660 if (!td->cur_depth) {
661 log_err("fio: timeout without pending work?\n");
662 return;
663 }
664
665 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->name, td->pid);
666
667 list_for_each(entry, &td->io_u_busylist) {
668 io_u = list_entry(entry, struct io_u, list);
669
670 io_u_dump(io_u);
671 }
672
673 td_verror(td, ETIMEDOUT, "io_u timeout");
674 exit(1);
675}
676#endif
677
678void io_u_init_timeout(void)
679{
680#ifdef FIO_USE_TIMEOUT
681 signal(SIGALRM, io_u_timeout_handler);
682#endif
683}