flist: add flist_first_entry()
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->io_axmap contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct fio_file *f, const uint64_t block)
29{
30 return !axmap_isset(f->io_axmap, block);
31}
32
33/*
34 * Mark a given offset as used in the map.
35 */
36static void mark_random_map(struct thread_data *td, struct io_u *io_u)
37{
38 unsigned int min_bs = td->o.rw_min_bs;
39 struct fio_file *f = io_u->file;
40 unsigned int nr_blocks;
41 uint64_t block;
42
43 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
44 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
45
46 if (!(io_u->flags & IO_U_F_BUSY_OK))
47 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
48
49 if ((nr_blocks * min_bs) < io_u->buflen)
50 io_u->buflen = nr_blocks * min_bs;
51}
52
53static uint64_t last_block(struct thread_data *td, struct fio_file *f,
54 enum fio_ddir ddir)
55{
56 uint64_t max_blocks;
57 uint64_t max_size;
58
59 assert(ddir_rw(ddir));
60
61 /*
62 * Hmm, should we make sure that ->io_size <= ->real_file_size?
63 */
64 max_size = f->io_size;
65 if (max_size > f->real_file_size)
66 max_size = f->real_file_size;
67
68 if (td->o.zone_range)
69 max_size = td->o.zone_range;
70
71 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
72 if (!max_blocks)
73 return 0;
74
75 return max_blocks;
76}
77
78struct rand_off {
79 struct flist_head list;
80 uint64_t off;
81};
82
83static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
84 enum fio_ddir ddir, uint64_t *b)
85{
86 uint64_t r, lastb;
87
88 lastb = last_block(td, f, ddir);
89 if (!lastb)
90 return 1;
91
92 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
93 uint64_t rmax;
94
95 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
96
97 if (td->o.use_os_rand) {
98 rmax = OS_RAND_MAX;
99 r = os_random_long(&td->random_state);
100 } else {
101 rmax = FRAND_MAX;
102 r = __rand(&td->__random_state);
103 }
104
105 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
106
107 *b = lastb * (r / ((uint64_t) rmax + 1.0));
108 } else {
109 uint64_t off = 0;
110
111 if (lfsr_next(&f->lfsr, &off, lastb))
112 return 1;
113
114 *b = off;
115 }
116
117 /*
118 * if we are not maintaining a random map, we are done.
119 */
120 if (!file_randommap(td, f))
121 goto ret;
122
123 /*
124 * calculate map offset and check if it's free
125 */
126 if (random_map_free(f, *b))
127 goto ret;
128
129 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
130 (unsigned long long) *b);
131
132 *b = axmap_next_free(f->io_axmap, *b);
133 if (*b == (uint64_t) -1ULL)
134 return 1;
135ret:
136 return 0;
137}
138
139static int __get_next_rand_offset_zipf(struct thread_data *td,
140 struct fio_file *f, enum fio_ddir ddir,
141 uint64_t *b)
142{
143 *b = zipf_next(&f->zipf);
144 return 0;
145}
146
147static int __get_next_rand_offset_pareto(struct thread_data *td,
148 struct fio_file *f, enum fio_ddir ddir,
149 uint64_t *b)
150{
151 *b = pareto_next(&f->zipf);
152 return 0;
153}
154
155static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
156{
157 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
158 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
159
160 return r1->off - r2->off;
161}
162
163static int get_off_from_method(struct thread_data *td, struct fio_file *f,
164 enum fio_ddir ddir, uint64_t *b)
165{
166 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
167 return __get_next_rand_offset(td, f, ddir, b);
168 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
169 return __get_next_rand_offset_zipf(td, f, ddir, b);
170 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
171 return __get_next_rand_offset_pareto(td, f, ddir, b);
172
173 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
174 return 1;
175}
176
177/*
178 * Sort the reads for a verify phase in batches of verifysort_nr, if
179 * specified.
180 */
181static inline int should_sort_io(struct thread_data *td)
182{
183 if (!td->o.verifysort_nr || !td->o.do_verify)
184 return 0;
185 if (!td_random(td))
186 return 0;
187 if (td->runstate != TD_VERIFYING)
188 return 0;
189 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
190 return 0;
191
192 return 1;
193}
194
195static int should_do_random(struct thread_data *td, enum fio_ddir ddir)
196{
197 unsigned int v;
198 unsigned long r;
199
200 if (td->o.perc_rand[ddir] == 100)
201 return 1;
202
203 if (td->o.use_os_rand) {
204 r = os_random_long(&td->seq_rand_state[ddir]);
205 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
206 } else {
207 r = __rand(&td->__seq_rand_state[ddir]);
208 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
209 }
210
211 return v <= td->o.perc_rand[ddir];
212}
213
214static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
215 enum fio_ddir ddir, uint64_t *b)
216{
217 struct rand_off *r;
218 int i, ret = 1;
219
220 if (!should_sort_io(td))
221 return get_off_from_method(td, f, ddir, b);
222
223 if (!flist_empty(&td->next_rand_list)) {
224 struct rand_off *r;
225fetch:
226 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
227 flist_del(&r->list);
228 *b = r->off;
229 free(r);
230 return 0;
231 }
232
233 for (i = 0; i < td->o.verifysort_nr; i++) {
234 r = malloc(sizeof(*r));
235
236 ret = get_off_from_method(td, f, ddir, &r->off);
237 if (ret) {
238 free(r);
239 break;
240 }
241
242 flist_add(&r->list, &td->next_rand_list);
243 }
244
245 if (ret && !i)
246 return ret;
247
248 assert(!flist_empty(&td->next_rand_list));
249 flist_sort(NULL, &td->next_rand_list, flist_cmp);
250 goto fetch;
251}
252
253static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
254 enum fio_ddir ddir, uint64_t *b)
255{
256 if (!get_next_rand_offset(td, f, ddir, b))
257 return 0;
258
259 if (td->o.time_based) {
260 fio_file_reset(td, f);
261 if (!get_next_rand_offset(td, f, ddir, b))
262 return 0;
263 }
264
265 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
266 f->file_name, (unsigned long long) f->last_pos,
267 (unsigned long long) f->real_file_size);
268 return 1;
269}
270
271static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
272 enum fio_ddir ddir, uint64_t *offset)
273{
274 assert(ddir_rw(ddir));
275
276 if (f->last_pos >= f->io_size + get_start_offset(td, f) && td->o.time_based)
277 f->last_pos = f->last_pos - f->io_size;
278
279 if (f->last_pos < f->real_file_size) {
280 uint64_t pos;
281
282 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
283 f->last_pos = f->real_file_size;
284
285 pos = f->last_pos - f->file_offset;
286 if (pos)
287 pos += td->o.ddir_seq_add;
288
289 *offset = pos;
290 return 0;
291 }
292
293 return 1;
294}
295
296static int get_next_block(struct thread_data *td, struct io_u *io_u,
297 enum fio_ddir ddir, int rw_seq,
298 unsigned int *is_random)
299{
300 struct fio_file *f = io_u->file;
301 uint64_t b, offset;
302 int ret;
303
304 assert(ddir_rw(ddir));
305
306 b = offset = -1ULL;
307
308 if (rw_seq) {
309 if (td_random(td)) {
310 if (should_do_random(td, ddir)) {
311 ret = get_next_rand_block(td, f, ddir, &b);
312 *is_random = 1;
313 } else {
314 *is_random = 0;
315 io_u->flags |= IO_U_F_BUSY_OK;
316 ret = get_next_seq_offset(td, f, ddir, &offset);
317 if (ret)
318 ret = get_next_rand_block(td, f, ddir, &b);
319 }
320 } else {
321 *is_random = 0;
322 ret = get_next_seq_offset(td, f, ddir, &offset);
323 }
324 } else {
325 io_u->flags |= IO_U_F_BUSY_OK;
326 *is_random = 0;
327
328 if (td->o.rw_seq == RW_SEQ_SEQ) {
329 ret = get_next_seq_offset(td, f, ddir, &offset);
330 if (ret) {
331 ret = get_next_rand_block(td, f, ddir, &b);
332 *is_random = 0;
333 }
334 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
335 if (f->last_start != -1ULL)
336 offset = f->last_start - f->file_offset;
337 else
338 offset = 0;
339 ret = 0;
340 } else {
341 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
342 ret = 1;
343 }
344 }
345
346 if (!ret) {
347 if (offset != -1ULL)
348 io_u->offset = offset;
349 else if (b != -1ULL)
350 io_u->offset = b * td->o.ba[ddir];
351 else {
352 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
353 ret = 1;
354 }
355 }
356
357 return ret;
358}
359
360/*
361 * For random io, generate a random new block and see if it's used. Repeat
362 * until we find a free one. For sequential io, just return the end of
363 * the last io issued.
364 */
365static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
366 unsigned int *is_random)
367{
368 struct fio_file *f = io_u->file;
369 enum fio_ddir ddir = io_u->ddir;
370 int rw_seq_hit = 0;
371
372 assert(ddir_rw(ddir));
373
374 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
375 rw_seq_hit = 1;
376 td->ddir_seq_nr = td->o.ddir_seq_nr;
377 }
378
379 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
380 return 1;
381
382 if (io_u->offset >= f->io_size) {
383 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
384 (unsigned long long) io_u->offset,
385 (unsigned long long) f->io_size);
386 return 1;
387 }
388
389 io_u->offset += f->file_offset;
390 if (io_u->offset >= f->real_file_size) {
391 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
392 (unsigned long long) io_u->offset,
393 (unsigned long long) f->real_file_size);
394 return 1;
395 }
396
397 return 0;
398}
399
400static int get_next_offset(struct thread_data *td, struct io_u *io_u,
401 unsigned int *is_random)
402{
403 if (td->flags & TD_F_PROFILE_OPS) {
404 struct prof_io_ops *ops = &td->prof_io_ops;
405
406 if (ops->fill_io_u_off)
407 return ops->fill_io_u_off(td, io_u, is_random);
408 }
409
410 return __get_next_offset(td, io_u, is_random);
411}
412
413static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
414 unsigned int buflen)
415{
416 struct fio_file *f = io_u->file;
417
418 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
419}
420
421static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
422 unsigned int is_random)
423{
424 int ddir = io_u->ddir;
425 unsigned int buflen = 0;
426 unsigned int minbs, maxbs;
427 unsigned long r, rand_max;
428
429 assert(ddir_rw(ddir));
430
431 if (td->o.bs_is_seq_rand)
432 ddir = is_random ? DDIR_WRITE: DDIR_READ;
433
434 minbs = td->o.min_bs[ddir];
435 maxbs = td->o.max_bs[ddir];
436
437 if (minbs == maxbs)
438 return minbs;
439
440 /*
441 * If we can't satisfy the min block size from here, then fail
442 */
443 if (!io_u_fits(td, io_u, minbs))
444 return 0;
445
446 if (td->o.use_os_rand)
447 rand_max = OS_RAND_MAX;
448 else
449 rand_max = FRAND_MAX;
450
451 do {
452 if (td->o.use_os_rand)
453 r = os_random_long(&td->bsrange_state);
454 else
455 r = __rand(&td->__bsrange_state);
456
457 if (!td->o.bssplit_nr[ddir]) {
458 buflen = 1 + (unsigned int) ((double) maxbs *
459 (r / (rand_max + 1.0)));
460 if (buflen < minbs)
461 buflen = minbs;
462 } else {
463 long perc = 0;
464 unsigned int i;
465
466 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
467 struct bssplit *bsp = &td->o.bssplit[ddir][i];
468
469 buflen = bsp->bs;
470 perc += bsp->perc;
471 if ((r <= ((rand_max / 100L) * perc)) &&
472 io_u_fits(td, io_u, buflen))
473 break;
474 }
475 }
476
477 if (td->o.do_verify && td->o.verify != VERIFY_NONE)
478 buflen = (buflen + td->o.verify_interval - 1) &
479 ~(td->o.verify_interval - 1);
480
481 if (!td->o.bs_unaligned && is_power_of_2(minbs))
482 buflen = (buflen + minbs - 1) & ~(minbs - 1);
483
484 } while (!io_u_fits(td, io_u, buflen));
485
486 return buflen;
487}
488
489static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
490 unsigned int is_random)
491{
492 if (td->flags & TD_F_PROFILE_OPS) {
493 struct prof_io_ops *ops = &td->prof_io_ops;
494
495 if (ops->fill_io_u_size)
496 return ops->fill_io_u_size(td, io_u, is_random);
497 }
498
499 return __get_next_buflen(td, io_u, is_random);
500}
501
502static void set_rwmix_bytes(struct thread_data *td)
503{
504 unsigned int diff;
505
506 /*
507 * we do time or byte based switch. this is needed because
508 * buffered writes may issue a lot quicker than they complete,
509 * whereas reads do not.
510 */
511 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
512 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
513}
514
515static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
516{
517 unsigned int v;
518 unsigned long r;
519
520 if (td->o.use_os_rand) {
521 r = os_random_long(&td->rwmix_state);
522 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
523 } else {
524 r = __rand(&td->__rwmix_state);
525 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
526 }
527
528 if (v <= td->o.rwmix[DDIR_READ])
529 return DDIR_READ;
530
531 return DDIR_WRITE;
532}
533
534void io_u_quiesce(struct thread_data *td)
535{
536 /*
537 * We are going to sleep, ensure that we flush anything pending as
538 * not to skew our latency numbers.
539 *
540 * Changed to only monitor 'in flight' requests here instead of the
541 * td->cur_depth, b/c td->cur_depth does not accurately represent
542 * io's that have been actually submitted to an async engine,
543 * and cur_depth is meaningless for sync engines.
544 */
545 while (td->io_u_in_flight) {
546 int fio_unused ret;
547
548 ret = io_u_queued_complete(td, 1, NULL);
549 }
550}
551
552static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
553{
554 enum fio_ddir odir = ddir ^ 1;
555 struct timeval t;
556 long usec;
557
558 assert(ddir_rw(ddir));
559
560 if (td->rate_pending_usleep[ddir] <= 0)
561 return ddir;
562
563 /*
564 * We have too much pending sleep in this direction. See if we
565 * should switch.
566 */
567 if (td_rw(td) && td->o.rwmix[odir]) {
568 /*
569 * Other direction does not have too much pending, switch
570 */
571 if (td->rate_pending_usleep[odir] < 100000)
572 return odir;
573
574 /*
575 * Both directions have pending sleep. Sleep the minimum time
576 * and deduct from both.
577 */
578 if (td->rate_pending_usleep[ddir] <=
579 td->rate_pending_usleep[odir]) {
580 usec = td->rate_pending_usleep[ddir];
581 } else {
582 usec = td->rate_pending_usleep[odir];
583 ddir = odir;
584 }
585 } else
586 usec = td->rate_pending_usleep[ddir];
587
588 io_u_quiesce(td);
589
590 fio_gettime(&t, NULL);
591 usec_sleep(td, usec);
592 usec = utime_since_now(&t);
593
594 td->rate_pending_usleep[ddir] -= usec;
595
596 odir = ddir ^ 1;
597 if (td_rw(td) && __should_check_rate(td, odir))
598 td->rate_pending_usleep[odir] -= usec;
599
600 if (ddir_trim(ddir))
601 return ddir;
602
603 return ddir;
604}
605
606/*
607 * Return the data direction for the next io_u. If the job is a
608 * mixed read/write workload, check the rwmix cycle and switch if
609 * necessary.
610 */
611static enum fio_ddir get_rw_ddir(struct thread_data *td)
612{
613 enum fio_ddir ddir;
614
615 /*
616 * see if it's time to fsync
617 */
618 if (td->o.fsync_blocks &&
619 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
620 td->io_issues[DDIR_WRITE] && should_fsync(td))
621 return DDIR_SYNC;
622
623 /*
624 * see if it's time to fdatasync
625 */
626 if (td->o.fdatasync_blocks &&
627 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
628 td->io_issues[DDIR_WRITE] && should_fsync(td))
629 return DDIR_DATASYNC;
630
631 /*
632 * see if it's time to sync_file_range
633 */
634 if (td->sync_file_range_nr &&
635 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
636 td->io_issues[DDIR_WRITE] && should_fsync(td))
637 return DDIR_SYNC_FILE_RANGE;
638
639 if (td_rw(td)) {
640 /*
641 * Check if it's time to seed a new data direction.
642 */
643 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
644 /*
645 * Put a top limit on how many bytes we do for
646 * one data direction, to avoid overflowing the
647 * ranges too much
648 */
649 ddir = get_rand_ddir(td);
650
651 if (ddir != td->rwmix_ddir)
652 set_rwmix_bytes(td);
653
654 td->rwmix_ddir = ddir;
655 }
656 ddir = td->rwmix_ddir;
657 } else if (td_read(td))
658 ddir = DDIR_READ;
659 else if (td_write(td))
660 ddir = DDIR_WRITE;
661 else
662 ddir = DDIR_TRIM;
663
664 td->rwmix_ddir = rate_ddir(td, ddir);
665 return td->rwmix_ddir;
666}
667
668static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
669{
670 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
671
672 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
673 td->o.barrier_blocks &&
674 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
675 td->io_issues[DDIR_WRITE])
676 io_u->flags |= IO_U_F_BARRIER;
677}
678
679void put_file_log(struct thread_data *td, struct fio_file *f)
680{
681 unsigned int ret = put_file(td, f);
682
683 if (ret)
684 td_verror(td, ret, "file close");
685}
686
687void put_io_u(struct thread_data *td, struct io_u *io_u)
688{
689 td_io_u_lock(td);
690
691 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
692 put_file_log(td, io_u->file);
693 io_u->file = NULL;
694 io_u->flags &= ~IO_U_F_FREE_DEF;
695 io_u->flags |= IO_U_F_FREE;
696
697 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
698 td->cur_depth--;
699 io_u_qpush(&td->io_u_freelist, io_u);
700 td_io_u_unlock(td);
701 td_io_u_free_notify(td);
702}
703
704void clear_io_u(struct thread_data *td, struct io_u *io_u)
705{
706 io_u->flags &= ~IO_U_F_FLIGHT;
707 put_io_u(td, io_u);
708}
709
710void requeue_io_u(struct thread_data *td, struct io_u **io_u)
711{
712 struct io_u *__io_u = *io_u;
713 enum fio_ddir ddir = acct_ddir(__io_u);
714
715 dprint(FD_IO, "requeue %p\n", __io_u);
716
717 td_io_u_lock(td);
718
719 __io_u->flags |= IO_U_F_FREE;
720 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
721 td->io_issues[ddir]--;
722
723 __io_u->flags &= ~IO_U_F_FLIGHT;
724 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
725 td->cur_depth--;
726
727 io_u_rpush(&td->io_u_requeues, __io_u);
728 td_io_u_unlock(td);
729 *io_u = NULL;
730}
731
732static int fill_io_u(struct thread_data *td, struct io_u *io_u)
733{
734 unsigned int is_random;
735
736 if (td->io_ops->flags & FIO_NOIO)
737 goto out;
738
739 set_rw_ddir(td, io_u);
740
741 /*
742 * fsync() or fdatasync() or trim etc, we are done
743 */
744 if (!ddir_rw(io_u->ddir))
745 goto out;
746
747 /*
748 * See if it's time to switch to a new zone
749 */
750 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
751 td->zone_bytes = 0;
752 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
753 io_u->file->last_pos = io_u->file->file_offset;
754 td->io_skip_bytes += td->o.zone_skip;
755 }
756
757 /*
758 * No log, let the seq/rand engine retrieve the next buflen and
759 * position.
760 */
761 if (get_next_offset(td, io_u, &is_random)) {
762 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
763 return 1;
764 }
765
766 io_u->buflen = get_next_buflen(td, io_u, is_random);
767 if (!io_u->buflen) {
768 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
769 return 1;
770 }
771
772 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
773 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
774 dprint(FD_IO, " off=%llu/%lu > %llu\n",
775 (unsigned long long) io_u->offset, io_u->buflen,
776 (unsigned long long) io_u->file->real_file_size);
777 return 1;
778 }
779
780 /*
781 * mark entry before potentially trimming io_u
782 */
783 if (td_random(td) && file_randommap(td, io_u->file))
784 mark_random_map(td, io_u);
785
786out:
787 dprint_io_u(io_u, "fill_io_u");
788 td->zone_bytes += io_u->buflen;
789 return 0;
790}
791
792static void __io_u_mark_map(unsigned int *map, unsigned int nr)
793{
794 int idx = 0;
795
796 switch (nr) {
797 default:
798 idx = 6;
799 break;
800 case 33 ... 64:
801 idx = 5;
802 break;
803 case 17 ... 32:
804 idx = 4;
805 break;
806 case 9 ... 16:
807 idx = 3;
808 break;
809 case 5 ... 8:
810 idx = 2;
811 break;
812 case 1 ... 4:
813 idx = 1;
814 case 0:
815 break;
816 }
817
818 map[idx]++;
819}
820
821void io_u_mark_submit(struct thread_data *td, unsigned int nr)
822{
823 __io_u_mark_map(td->ts.io_u_submit, nr);
824 td->ts.total_submit++;
825}
826
827void io_u_mark_complete(struct thread_data *td, unsigned int nr)
828{
829 __io_u_mark_map(td->ts.io_u_complete, nr);
830 td->ts.total_complete++;
831}
832
833void io_u_mark_depth(struct thread_data *td, unsigned int nr)
834{
835 int idx = 0;
836
837 switch (td->cur_depth) {
838 default:
839 idx = 6;
840 break;
841 case 32 ... 63:
842 idx = 5;
843 break;
844 case 16 ... 31:
845 idx = 4;
846 break;
847 case 8 ... 15:
848 idx = 3;
849 break;
850 case 4 ... 7:
851 idx = 2;
852 break;
853 case 2 ... 3:
854 idx = 1;
855 case 1:
856 break;
857 }
858
859 td->ts.io_u_map[idx] += nr;
860}
861
862static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
863{
864 int idx = 0;
865
866 assert(usec < 1000);
867
868 switch (usec) {
869 case 750 ... 999:
870 idx = 9;
871 break;
872 case 500 ... 749:
873 idx = 8;
874 break;
875 case 250 ... 499:
876 idx = 7;
877 break;
878 case 100 ... 249:
879 idx = 6;
880 break;
881 case 50 ... 99:
882 idx = 5;
883 break;
884 case 20 ... 49:
885 idx = 4;
886 break;
887 case 10 ... 19:
888 idx = 3;
889 break;
890 case 4 ... 9:
891 idx = 2;
892 break;
893 case 2 ... 3:
894 idx = 1;
895 case 0 ... 1:
896 break;
897 }
898
899 assert(idx < FIO_IO_U_LAT_U_NR);
900 td->ts.io_u_lat_u[idx]++;
901}
902
903static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
904{
905 int idx = 0;
906
907 switch (msec) {
908 default:
909 idx = 11;
910 break;
911 case 1000 ... 1999:
912 idx = 10;
913 break;
914 case 750 ... 999:
915 idx = 9;
916 break;
917 case 500 ... 749:
918 idx = 8;
919 break;
920 case 250 ... 499:
921 idx = 7;
922 break;
923 case 100 ... 249:
924 idx = 6;
925 break;
926 case 50 ... 99:
927 idx = 5;
928 break;
929 case 20 ... 49:
930 idx = 4;
931 break;
932 case 10 ... 19:
933 idx = 3;
934 break;
935 case 4 ... 9:
936 idx = 2;
937 break;
938 case 2 ... 3:
939 idx = 1;
940 case 0 ... 1:
941 break;
942 }
943
944 assert(idx < FIO_IO_U_LAT_M_NR);
945 td->ts.io_u_lat_m[idx]++;
946}
947
948static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
949{
950 if (usec < 1000)
951 io_u_mark_lat_usec(td, usec);
952 else
953 io_u_mark_lat_msec(td, usec / 1000);
954}
955
956/*
957 * Get next file to service by choosing one at random
958 */
959static struct fio_file *get_next_file_rand(struct thread_data *td,
960 enum fio_file_flags goodf,
961 enum fio_file_flags badf)
962{
963 struct fio_file *f;
964 int fno;
965
966 do {
967 int opened = 0;
968 unsigned long r;
969
970 if (td->o.use_os_rand) {
971 r = os_random_long(&td->next_file_state);
972 fno = (unsigned int) ((double) td->o.nr_files
973 * (r / (OS_RAND_MAX + 1.0)));
974 } else {
975 r = __rand(&td->__next_file_state);
976 fno = (unsigned int) ((double) td->o.nr_files
977 * (r / (FRAND_MAX + 1.0)));
978 }
979
980 f = td->files[fno];
981 if (fio_file_done(f))
982 continue;
983
984 if (!fio_file_open(f)) {
985 int err;
986
987 if (td->nr_open_files >= td->o.open_files)
988 return ERR_PTR(-EBUSY);
989
990 err = td_io_open_file(td, f);
991 if (err)
992 continue;
993 opened = 1;
994 }
995
996 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
997 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
998 return f;
999 }
1000 if (opened)
1001 td_io_close_file(td, f);
1002 } while (1);
1003}
1004
1005/*
1006 * Get next file to service by doing round robin between all available ones
1007 */
1008static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1009 int badf)
1010{
1011 unsigned int old_next_file = td->next_file;
1012 struct fio_file *f;
1013
1014 do {
1015 int opened = 0;
1016
1017 f = td->files[td->next_file];
1018
1019 td->next_file++;
1020 if (td->next_file >= td->o.nr_files)
1021 td->next_file = 0;
1022
1023 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1024 if (fio_file_done(f)) {
1025 f = NULL;
1026 continue;
1027 }
1028
1029 if (!fio_file_open(f)) {
1030 int err;
1031
1032 if (td->nr_open_files >= td->o.open_files)
1033 return ERR_PTR(-EBUSY);
1034
1035 err = td_io_open_file(td, f);
1036 if (err) {
1037 dprint(FD_FILE, "error %d on open of %s\n",
1038 err, f->file_name);
1039 f = NULL;
1040 continue;
1041 }
1042 opened = 1;
1043 }
1044
1045 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1046 f->flags);
1047 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1048 break;
1049
1050 if (opened)
1051 td_io_close_file(td, f);
1052
1053 f = NULL;
1054 } while (td->next_file != old_next_file);
1055
1056 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1057 return f;
1058}
1059
1060static struct fio_file *__get_next_file(struct thread_data *td)
1061{
1062 struct fio_file *f;
1063
1064 assert(td->o.nr_files <= td->files_index);
1065
1066 if (td->nr_done_files >= td->o.nr_files) {
1067 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1068 " nr_files=%d\n", td->nr_open_files,
1069 td->nr_done_files,
1070 td->o.nr_files);
1071 return NULL;
1072 }
1073
1074 f = td->file_service_file;
1075 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1076 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1077 goto out;
1078 if (td->file_service_left--)
1079 goto out;
1080 }
1081
1082 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1083 td->o.file_service_type == FIO_FSERVICE_SEQ)
1084 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1085 else
1086 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1087
1088 if (IS_ERR(f))
1089 return f;
1090
1091 td->file_service_file = f;
1092 td->file_service_left = td->file_service_nr - 1;
1093out:
1094 if (f)
1095 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1096 else
1097 dprint(FD_FILE, "get_next_file: NULL\n");
1098 return f;
1099}
1100
1101static struct fio_file *get_next_file(struct thread_data *td)
1102{
1103 if (td->flags & TD_F_PROFILE_OPS) {
1104 struct prof_io_ops *ops = &td->prof_io_ops;
1105
1106 if (ops->get_next_file)
1107 return ops->get_next_file(td);
1108 }
1109
1110 return __get_next_file(td);
1111}
1112
1113static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1114{
1115 struct fio_file *f;
1116
1117 do {
1118 f = get_next_file(td);
1119 if (IS_ERR_OR_NULL(f))
1120 return PTR_ERR(f);
1121
1122 io_u->file = f;
1123 get_file(f);
1124
1125 if (!fill_io_u(td, io_u))
1126 break;
1127
1128 put_file_log(td, f);
1129 td_io_close_file(td, f);
1130 io_u->file = NULL;
1131 fio_file_set_done(f);
1132 td->nr_done_files++;
1133 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1134 td->nr_done_files, td->o.nr_files);
1135 } while (1);
1136
1137 return 0;
1138}
1139
1140static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1141 unsigned long tusec, unsigned long max_usec)
1142{
1143 if (!td->error)
1144 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1145 td_verror(td, ETIMEDOUT, "max latency exceeded");
1146 icd->error = ETIMEDOUT;
1147}
1148
1149static void lat_new_cycle(struct thread_data *td)
1150{
1151 fio_gettime(&td->latency_ts, NULL);
1152 td->latency_ios = ddir_rw_sum(td->io_blocks);
1153 td->latency_failed = 0;
1154}
1155
1156/*
1157 * We had an IO outside the latency target. Reduce the queue depth. If we
1158 * are at QD=1, then it's time to give up.
1159 */
1160static int __lat_target_failed(struct thread_data *td)
1161{
1162 if (td->latency_qd == 1)
1163 return 1;
1164
1165 td->latency_qd_high = td->latency_qd;
1166
1167 if (td->latency_qd == td->latency_qd_low)
1168 td->latency_qd_low--;
1169
1170 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1171
1172 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1173
1174 /*
1175 * When we ramp QD down, quiesce existing IO to prevent
1176 * a storm of ramp downs due to pending higher depth.
1177 */
1178 io_u_quiesce(td);
1179 lat_new_cycle(td);
1180 return 0;
1181}
1182
1183static int lat_target_failed(struct thread_data *td)
1184{
1185 if (td->o.latency_percentile.u.f == 100.0)
1186 return __lat_target_failed(td);
1187
1188 td->latency_failed++;
1189 return 0;
1190}
1191
1192void lat_target_init(struct thread_data *td)
1193{
1194 td->latency_end_run = 0;
1195
1196 if (td->o.latency_target) {
1197 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1198 fio_gettime(&td->latency_ts, NULL);
1199 td->latency_qd = 1;
1200 td->latency_qd_high = td->o.iodepth;
1201 td->latency_qd_low = 1;
1202 td->latency_ios = ddir_rw_sum(td->io_blocks);
1203 } else
1204 td->latency_qd = td->o.iodepth;
1205}
1206
1207void lat_target_reset(struct thread_data *td)
1208{
1209 if (!td->latency_end_run)
1210 lat_target_init(td);
1211}
1212
1213static void lat_target_success(struct thread_data *td)
1214{
1215 const unsigned int qd = td->latency_qd;
1216 struct thread_options *o = &td->o;
1217
1218 td->latency_qd_low = td->latency_qd;
1219
1220 /*
1221 * If we haven't failed yet, we double up to a failing value instead
1222 * of bisecting from highest possible queue depth. If we have set
1223 * a limit other than td->o.iodepth, bisect between that.
1224 */
1225 if (td->latency_qd_high != o->iodepth)
1226 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1227 else
1228 td->latency_qd *= 2;
1229
1230 if (td->latency_qd > o->iodepth)
1231 td->latency_qd = o->iodepth;
1232
1233 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1234
1235 /*
1236 * Same as last one, we are done. Let it run a latency cycle, so
1237 * we get only the results from the targeted depth.
1238 */
1239 if (td->latency_qd == qd) {
1240 if (td->latency_end_run) {
1241 dprint(FD_RATE, "We are done\n");
1242 td->done = 1;
1243 } else {
1244 dprint(FD_RATE, "Quiesce and final run\n");
1245 io_u_quiesce(td);
1246 td->latency_end_run = 1;
1247 reset_all_stats(td);
1248 reset_io_stats(td);
1249 }
1250 }
1251
1252 lat_new_cycle(td);
1253}
1254
1255/*
1256 * Check if we can bump the queue depth
1257 */
1258void lat_target_check(struct thread_data *td)
1259{
1260 uint64_t usec_window;
1261 uint64_t ios;
1262 double success_ios;
1263
1264 usec_window = utime_since_now(&td->latency_ts);
1265 if (usec_window < td->o.latency_window)
1266 return;
1267
1268 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1269 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1270 success_ios *= 100.0;
1271
1272 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1273
1274 if (success_ios >= td->o.latency_percentile.u.f)
1275 lat_target_success(td);
1276 else
1277 __lat_target_failed(td);
1278}
1279
1280/*
1281 * If latency target is enabled, we might be ramping up or down and not
1282 * using the full queue depth available.
1283 */
1284int queue_full(struct thread_data *td)
1285{
1286 const int qempty = io_u_qempty(&td->io_u_freelist);
1287
1288 if (qempty)
1289 return 1;
1290 if (!td->o.latency_target)
1291 return 0;
1292
1293 return td->cur_depth >= td->latency_qd;
1294}
1295
1296struct io_u *__get_io_u(struct thread_data *td)
1297{
1298 struct io_u *io_u = NULL;
1299
1300 td_io_u_lock(td);
1301
1302again:
1303 if (!io_u_rempty(&td->io_u_requeues))
1304 io_u = io_u_rpop(&td->io_u_requeues);
1305 else if (!queue_full(td)) {
1306 io_u = io_u_qpop(&td->io_u_freelist);
1307
1308 io_u->file = NULL;
1309 io_u->buflen = 0;
1310 io_u->resid = 0;
1311 io_u->end_io = NULL;
1312 }
1313
1314 if (io_u) {
1315 assert(io_u->flags & IO_U_F_FREE);
1316 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1317 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1318 io_u->flags &= ~IO_U_F_VER_LIST;
1319
1320 io_u->error = 0;
1321 io_u->acct_ddir = -1;
1322 td->cur_depth++;
1323 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1324 io_u->ipo = NULL;
1325 } else if (td->o.verify_async) {
1326 /*
1327 * We ran out, wait for async verify threads to finish and
1328 * return one
1329 */
1330 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1331 goto again;
1332 }
1333
1334 td_io_u_unlock(td);
1335 return io_u;
1336}
1337
1338static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1339{
1340 if (!(td->flags & TD_F_TRIM_BACKLOG))
1341 return 0;
1342
1343 if (td->trim_entries) {
1344 int get_trim = 0;
1345
1346 if (td->trim_batch) {
1347 td->trim_batch--;
1348 get_trim = 1;
1349 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1350 td->last_ddir != DDIR_READ) {
1351 td->trim_batch = td->o.trim_batch;
1352 if (!td->trim_batch)
1353 td->trim_batch = td->o.trim_backlog;
1354 get_trim = 1;
1355 }
1356
1357 if (get_trim && !get_next_trim(td, io_u))
1358 return 1;
1359 }
1360
1361 return 0;
1362}
1363
1364static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1365{
1366 if (!(td->flags & TD_F_VER_BACKLOG))
1367 return 0;
1368
1369 if (td->io_hist_len) {
1370 int get_verify = 0;
1371
1372 if (td->verify_batch)
1373 get_verify = 1;
1374 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1375 td->last_ddir != DDIR_READ) {
1376 td->verify_batch = td->o.verify_batch;
1377 if (!td->verify_batch)
1378 td->verify_batch = td->o.verify_backlog;
1379 get_verify = 1;
1380 }
1381
1382 if (get_verify && !get_next_verify(td, io_u)) {
1383 td->verify_batch--;
1384 return 1;
1385 }
1386 }
1387
1388 return 0;
1389}
1390
1391/*
1392 * Fill offset and start time into the buffer content, to prevent too
1393 * easy compressible data for simple de-dupe attempts. Do this for every
1394 * 512b block in the range, since that should be the smallest block size
1395 * we can expect from a device.
1396 */
1397static void small_content_scramble(struct io_u *io_u)
1398{
1399 unsigned int i, nr_blocks = io_u->buflen / 512;
1400 uint64_t boffset;
1401 unsigned int offset;
1402 void *p, *end;
1403
1404 if (!nr_blocks)
1405 return;
1406
1407 p = io_u->xfer_buf;
1408 boffset = io_u->offset;
1409 io_u->buf_filled_len = 0;
1410
1411 for (i = 0; i < nr_blocks; i++) {
1412 /*
1413 * Fill the byte offset into a "random" start offset of
1414 * the buffer, given by the product of the usec time
1415 * and the actual offset.
1416 */
1417 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1418 offset &= ~(sizeof(uint64_t) - 1);
1419 if (offset >= 512 - sizeof(uint64_t))
1420 offset -= sizeof(uint64_t);
1421 memcpy(p + offset, &boffset, sizeof(boffset));
1422
1423 end = p + 512 - sizeof(io_u->start_time);
1424 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1425 p += 512;
1426 boffset += 512;
1427 }
1428}
1429
1430/*
1431 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1432 * etc. The returned io_u is fully ready to be prepped and submitted.
1433 */
1434struct io_u *get_io_u(struct thread_data *td)
1435{
1436 struct fio_file *f;
1437 struct io_u *io_u;
1438 int do_scramble = 0;
1439 long ret = 0;
1440
1441 io_u = __get_io_u(td);
1442 if (!io_u) {
1443 dprint(FD_IO, "__get_io_u failed\n");
1444 return NULL;
1445 }
1446
1447 if (check_get_verify(td, io_u))
1448 goto out;
1449 if (check_get_trim(td, io_u))
1450 goto out;
1451
1452 /*
1453 * from a requeue, io_u already setup
1454 */
1455 if (io_u->file)
1456 goto out;
1457
1458 /*
1459 * If using an iolog, grab next piece if any available.
1460 */
1461 if (td->flags & TD_F_READ_IOLOG) {
1462 if (read_iolog_get(td, io_u))
1463 goto err_put;
1464 } else if (set_io_u_file(td, io_u)) {
1465 ret = -EBUSY;
1466 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1467 goto err_put;
1468 }
1469
1470 f = io_u->file;
1471 if (!f) {
1472 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1473 goto err_put;
1474 }
1475
1476 assert(fio_file_open(f));
1477
1478 if (ddir_rw(io_u->ddir)) {
1479 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1480 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1481 goto err_put;
1482 }
1483
1484 f->last_start = io_u->offset;
1485 f->last_pos = io_u->offset + io_u->buflen;
1486
1487 if (io_u->ddir == DDIR_WRITE) {
1488 if (td->flags & TD_F_REFILL_BUFFERS) {
1489 io_u_fill_buffer(td, io_u,
1490 io_u->xfer_buflen, io_u->xfer_buflen);
1491 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1492 !(td->flags & TD_F_COMPRESS))
1493 do_scramble = 1;
1494 if (td->flags & TD_F_VER_NONE) {
1495 populate_verify_io_u(td, io_u);
1496 do_scramble = 0;
1497 }
1498 } else if (io_u->ddir == DDIR_READ) {
1499 /*
1500 * Reset the buf_filled parameters so next time if the
1501 * buffer is used for writes it is refilled.
1502 */
1503 io_u->buf_filled_len = 0;
1504 }
1505 }
1506
1507 /*
1508 * Set io data pointers.
1509 */
1510 io_u->xfer_buf = io_u->buf;
1511 io_u->xfer_buflen = io_u->buflen;
1512
1513out:
1514 assert(io_u->file);
1515 if (!td_io_prep(td, io_u)) {
1516 if (!td->o.disable_slat)
1517 fio_gettime(&io_u->start_time, NULL);
1518 if (do_scramble)
1519 small_content_scramble(io_u);
1520 return io_u;
1521 }
1522err_put:
1523 dprint(FD_IO, "get_io_u failed\n");
1524 put_io_u(td, io_u);
1525 return ERR_PTR(ret);
1526}
1527
1528void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1529{
1530 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1531 const char *msg[] = { "read", "write", "sync", "datasync",
1532 "sync_file_range", "wait", "trim" };
1533
1534 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1535 return;
1536
1537 log_err("fio: io_u error");
1538
1539 if (io_u->file)
1540 log_err(" on file %s", io_u->file->file_name);
1541
1542 log_err(": %s\n", strerror(io_u->error));
1543
1544 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1545 io_u->offset, io_u->xfer_buflen);
1546
1547 if (!td->error)
1548 td_verror(td, io_u->error, "io_u error");
1549}
1550
1551static inline int gtod_reduce(struct thread_data *td)
1552{
1553 return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat
1554 && td->o.disable_bw;
1555}
1556
1557static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1558 struct io_completion_data *icd,
1559 const enum fio_ddir idx, unsigned int bytes)
1560{
1561 unsigned long lusec = 0;
1562
1563 if (!gtod_reduce(td))
1564 lusec = utime_since(&io_u->issue_time, &icd->time);
1565
1566 if (!td->o.disable_lat) {
1567 unsigned long tusec;
1568
1569 tusec = utime_since(&io_u->start_time, &icd->time);
1570 add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1571
1572 if (td->flags & TD_F_PROFILE_OPS) {
1573 struct prof_io_ops *ops = &td->prof_io_ops;
1574
1575 if (ops->io_u_lat)
1576 icd->error = ops->io_u_lat(td, tusec);
1577 }
1578
1579 if (td->o.max_latency && tusec > td->o.max_latency)
1580 lat_fatal(td, icd, tusec, td->o.max_latency);
1581 if (td->o.latency_target && tusec > td->o.latency_target) {
1582 if (lat_target_failed(td))
1583 lat_fatal(td, icd, tusec, td->o.latency_target);
1584 }
1585 }
1586
1587 if (!td->o.disable_clat) {
1588 add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1589 io_u_mark_latency(td, lusec);
1590 }
1591
1592 if (!td->o.disable_bw)
1593 add_bw_sample(td, idx, bytes, &icd->time);
1594
1595 if (!gtod_reduce(td))
1596 add_iops_sample(td, idx, bytes, &icd->time);
1597}
1598
1599static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1600{
1601 uint64_t secs, remainder, bps, bytes;
1602
1603 bytes = td->this_io_bytes[ddir];
1604 bps = td->rate_bps[ddir];
1605 secs = bytes / bps;
1606 remainder = bytes % bps;
1607 return remainder * 1000000 / bps + secs * 1000000;
1608}
1609
1610static void io_completed(struct thread_data *td, struct io_u *io_u,
1611 struct io_completion_data *icd)
1612{
1613 struct fio_file *f;
1614
1615 dprint_io_u(io_u, "io complete");
1616
1617 td_io_u_lock(td);
1618 assert(io_u->flags & IO_U_F_FLIGHT);
1619 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1620
1621 /*
1622 * Mark IO ok to verify
1623 */
1624 if (io_u->ipo) {
1625 /*
1626 * Remove errored entry from the verification list
1627 */
1628 if (io_u->error)
1629 unlog_io_piece(td, io_u);
1630 else {
1631 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1632 write_barrier();
1633 }
1634 }
1635
1636 td_io_u_unlock(td);
1637
1638 if (ddir_sync(io_u->ddir)) {
1639 td->last_was_sync = 1;
1640 f = io_u->file;
1641 if (f) {
1642 f->first_write = -1ULL;
1643 f->last_write = -1ULL;
1644 }
1645 return;
1646 }
1647
1648 td->last_was_sync = 0;
1649 td->last_ddir = io_u->ddir;
1650
1651 if (!io_u->error && ddir_rw(io_u->ddir)) {
1652 unsigned int bytes = io_u->buflen - io_u->resid;
1653 const enum fio_ddir idx = io_u->ddir;
1654 const enum fio_ddir odx = io_u->ddir ^ 1;
1655 int ret;
1656
1657 td->io_blocks[idx]++;
1658 td->this_io_blocks[idx]++;
1659 td->io_bytes[idx] += bytes;
1660
1661 if (!(io_u->flags & IO_U_F_VER_LIST))
1662 td->this_io_bytes[idx] += bytes;
1663
1664 if (idx == DDIR_WRITE) {
1665 f = io_u->file;
1666 if (f) {
1667 if (f->first_write == -1ULL ||
1668 io_u->offset < f->first_write)
1669 f->first_write = io_u->offset;
1670 if (f->last_write == -1ULL ||
1671 ((io_u->offset + bytes) > f->last_write))
1672 f->last_write = io_u->offset + bytes;
1673 }
1674 }
1675
1676 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1677 td->runstate == TD_VERIFYING)) {
1678 account_io_completion(td, io_u, icd, idx, bytes);
1679
1680 if (__should_check_rate(td, idx)) {
1681 td->rate_pending_usleep[idx] =
1682 (usec_for_io(td, idx) -
1683 utime_since_now(&td->start));
1684 }
1685 if (idx != DDIR_TRIM && __should_check_rate(td, odx))
1686 td->rate_pending_usleep[odx] =
1687 (usec_for_io(td, odx) -
1688 utime_since_now(&td->start));
1689 }
1690
1691 icd->bytes_done[idx] += bytes;
1692
1693 if (io_u->end_io) {
1694 ret = io_u->end_io(td, io_u);
1695 if (ret && !icd->error)
1696 icd->error = ret;
1697 }
1698 } else if (io_u->error) {
1699 icd->error = io_u->error;
1700 io_u_log_error(td, io_u);
1701 }
1702 if (icd->error) {
1703 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
1704 if (!td_non_fatal_error(td, eb, icd->error))
1705 return;
1706 /*
1707 * If there is a non_fatal error, then add to the error count
1708 * and clear all the errors.
1709 */
1710 update_error_count(td, icd->error);
1711 td_clear_error(td);
1712 icd->error = 0;
1713 io_u->error = 0;
1714 }
1715}
1716
1717static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1718 int nr)
1719{
1720 int ddir;
1721
1722 if (!gtod_reduce(td))
1723 fio_gettime(&icd->time, NULL);
1724
1725 icd->nr = nr;
1726
1727 icd->error = 0;
1728 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1729 icd->bytes_done[ddir] = 0;
1730}
1731
1732static void ios_completed(struct thread_data *td,
1733 struct io_completion_data *icd)
1734{
1735 struct io_u *io_u;
1736 int i;
1737
1738 for (i = 0; i < icd->nr; i++) {
1739 io_u = td->io_ops->event(td, i);
1740
1741 io_completed(td, io_u, icd);
1742
1743 if (!(io_u->flags & IO_U_F_FREE_DEF))
1744 put_io_u(td, io_u);
1745 }
1746}
1747
1748/*
1749 * Complete a single io_u for the sync engines.
1750 */
1751int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1752 uint64_t *bytes)
1753{
1754 struct io_completion_data icd;
1755
1756 init_icd(td, &icd, 1);
1757 io_completed(td, io_u, &icd);
1758
1759 if (!(io_u->flags & IO_U_F_FREE_DEF))
1760 put_io_u(td, io_u);
1761
1762 if (icd.error) {
1763 td_verror(td, icd.error, "io_u_sync_complete");
1764 return -1;
1765 }
1766
1767 if (bytes) {
1768 int ddir;
1769
1770 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1771 bytes[ddir] += icd.bytes_done[ddir];
1772 }
1773
1774 return 0;
1775}
1776
1777/*
1778 * Called to complete min_events number of io for the async engines.
1779 */
1780int io_u_queued_complete(struct thread_data *td, int min_evts,
1781 uint64_t *bytes)
1782{
1783 struct io_completion_data icd;
1784 struct timespec *tvp = NULL;
1785 int ret;
1786 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1787
1788 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1789
1790 if (!min_evts)
1791 tvp = &ts;
1792
1793 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1794 if (ret < 0) {
1795 td_verror(td, -ret, "td_io_getevents");
1796 return ret;
1797 } else if (!ret)
1798 return ret;
1799
1800 init_icd(td, &icd, ret);
1801 ios_completed(td, &icd);
1802 if (icd.error) {
1803 td_verror(td, icd.error, "io_u_queued_complete");
1804 return -1;
1805 }
1806
1807 if (bytes) {
1808 int ddir;
1809
1810 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1811 bytes[ddir] += icd.bytes_done[ddir];
1812 }
1813
1814 return 0;
1815}
1816
1817/*
1818 * Call when io_u is really queued, to update the submission latency.
1819 */
1820void io_u_queued(struct thread_data *td, struct io_u *io_u)
1821{
1822 if (!td->o.disable_slat) {
1823 unsigned long slat_time;
1824
1825 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1826 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
1827 io_u->offset);
1828 }
1829}
1830
1831void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1832 unsigned int max_bs)
1833{
1834 if (td->o.buffer_pattern_bytes)
1835 fill_buffer_pattern(td, buf, max_bs);
1836 else if (!td->o.zero_buffers) {
1837 unsigned int perc = td->o.compress_percentage;
1838
1839 if (perc) {
1840 unsigned int seg = min_write;
1841
1842 seg = min(min_write, td->o.compress_chunk);
1843 if (!seg)
1844 seg = min_write;
1845
1846 fill_random_buf_percentage(&td->buf_state, buf,
1847 perc, seg, max_bs);
1848 } else
1849 fill_random_buf(&td->buf_state, buf, max_bs);
1850 } else
1851 memset(buf, 0, max_bs);
1852}
1853
1854/*
1855 * "randomly" fill the buffer contents
1856 */
1857void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1858 unsigned int min_write, unsigned int max_bs)
1859{
1860 io_u->buf_filled_len = 0;
1861 fill_io_buffer(td, io_u->buf, min_write, max_bs);
1862}