Do at least one block if randommap fails us
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 unsigned long bytes_done[2]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct fio_file *f, const unsigned long long block)
29{
30 unsigned int idx = RAND_MAP_IDX(f, block);
31 unsigned int bit = RAND_MAP_BIT(f, block);
32
33 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
34
35 return (f->file_map[idx] & (1 << bit)) == 0;
36}
37
38/*
39 * Mark a given offset as used in the map.
40 */
41static void mark_random_map(struct thread_data *td, struct io_u *io_u)
42{
43 unsigned int min_bs = td->o.rw_min_bs;
44 struct fio_file *f = io_u->file;
45 unsigned long long block;
46 unsigned int blocks, nr_blocks;
47
48 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
49 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
50 blocks = 0;
51
52 while (nr_blocks) {
53 unsigned int this_blocks, mask;
54 unsigned int idx, bit;
55
56 /*
57 * If we have a mixed random workload, we may
58 * encounter blocks we already did IO to.
59 */
60 if ((td->o.ddir_nr == 1) && !random_map_free(f, block)) {
61 if (!blocks)
62 blocks = 1;
63 break;
64 }
65
66 idx = RAND_MAP_IDX(f, block);
67 bit = RAND_MAP_BIT(f, block);
68
69 fio_assert(td, idx < f->num_maps);
70
71 this_blocks = nr_blocks;
72 if (this_blocks + bit > BLOCKS_PER_MAP)
73 this_blocks = BLOCKS_PER_MAP - bit;
74
75 if (this_blocks == BLOCKS_PER_MAP)
76 mask = -1U;
77 else
78 mask = ((1U << this_blocks) - 1) << bit;
79
80 fio_assert(td, !(f->file_map[idx] & mask));
81 f->file_map[idx] |= mask;
82 nr_blocks -= this_blocks;
83 blocks += this_blocks;
84 block += this_blocks;
85 }
86
87 if ((blocks * min_bs) < io_u->buflen)
88 io_u->buflen = blocks * min_bs;
89}
90
91static unsigned long long last_block(struct thread_data *td, struct fio_file *f,
92 enum fio_ddir ddir)
93{
94 unsigned long long max_blocks;
95 unsigned long long max_size;
96
97 /*
98 * Hmm, should we make sure that ->io_size <= ->real_file_size?
99 */
100 max_size = f->io_size;
101 if (max_size > f->real_file_size)
102 max_size = f->real_file_size;
103
104 max_blocks = max_size / (unsigned long long) td->o.min_bs[ddir];
105 if (!max_blocks)
106 return 0;
107
108 return max_blocks;
109}
110
111/*
112 * Return the next free block in the map.
113 */
114static int get_next_free_block(struct thread_data *td, struct fio_file *f,
115 enum fio_ddir ddir, unsigned long long *b)
116{
117 unsigned long long min_bs = td->o.rw_min_bs;
118 int i;
119
120 i = f->last_free_lookup;
121 *b = (i * BLOCKS_PER_MAP);
122 while ((*b) * min_bs < f->real_file_size) {
123 if (f->file_map[i] != (unsigned int) -1) {
124 *b += ffz(f->file_map[i]);
125 if (*b > last_block(td, f, ddir))
126 break;
127 f->last_free_lookup = i;
128 return 0;
129 }
130
131 *b += BLOCKS_PER_MAP;
132 i++;
133 }
134
135 dprint(FD_IO, "failed finding a free block\n");
136 return 1;
137}
138
139static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
140 enum fio_ddir ddir, unsigned long long *b)
141{
142 unsigned long long r;
143 int loops = 5;
144
145 do {
146 r = os_random_long(&td->random_state);
147 dprint(FD_RANDOM, "off rand %llu\n", r);
148 *b = (last_block(td, f, ddir) - 1)
149 * (r / ((unsigned long long) RAND_MAX + 1.0));
150
151 /*
152 * if we are not maintaining a random map, we are done.
153 */
154 if (!file_randommap(td, f))
155 return 0;
156
157 /*
158 * calculate map offset and check if it's free
159 */
160 if (random_map_free(f, *b))
161 return 0;
162
163 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
164 *b);
165 } while (--loops);
166
167 /*
168 * we get here, if we didn't suceed in looking up a block. generate
169 * a random start offset into the filemap, and find the first free
170 * block from there.
171 */
172 loops = 10;
173 do {
174 f->last_free_lookup = (f->num_maps - 1) * (r / (RAND_MAX+1.0));
175 if (!get_next_free_block(td, f, ddir, b))
176 return 0;
177
178 r = os_random_long(&td->random_state);
179 } while (--loops);
180
181 /*
182 * that didn't work either, try exhaustive search from the start
183 */
184 f->last_free_lookup = 0;
185 return get_next_free_block(td, f, ddir, b);
186}
187
188/*
189 * For random io, generate a random new block and see if it's used. Repeat
190 * until we find a free one. For sequential io, just return the end of
191 * the last io issued.
192 */
193static int get_next_offset(struct thread_data *td, struct io_u *io_u)
194{
195 struct fio_file *f = io_u->file;
196 unsigned long long b;
197 enum fio_ddir ddir = io_u->ddir;
198
199 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
200 td->ddir_nr = td->o.ddir_nr;
201
202 if (get_next_rand_offset(td, f, ddir, &b))
203 return 1;
204 } else {
205 if (f->last_pos >= f->real_file_size) {
206 if (!td_random(td) ||
207 get_next_rand_offset(td, f, ddir, &b))
208 return 1;
209 } else
210 b = (f->last_pos - f->file_offset) / td->o.min_bs[ddir];
211 }
212
213 io_u->offset = b * td->o.min_bs[ddir];
214 if (io_u->offset >= f->io_size) {
215 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
216 io_u->offset, f->io_size);
217 return 1;
218 }
219
220 io_u->offset += f->file_offset;
221 if (io_u->offset >= f->real_file_size) {
222 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
223 io_u->offset, f->real_file_size);
224 return 1;
225 }
226
227 return 0;
228}
229
230static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
231{
232 const int ddir = io_u->ddir;
233 unsigned int buflen = buflen; /* silence dumb gcc warning */
234 long r;
235
236 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
237 buflen = td->o.min_bs[ddir];
238 else {
239 r = os_random_long(&td->bsrange_state);
240 if (!td->o.bssplit_nr) {
241 buflen = (unsigned int)
242 (1 + (double) (td->o.max_bs[ddir] - 1)
243 * r / (RAND_MAX + 1.0));
244 } else {
245 long perc = 0;
246 unsigned int i;
247
248 for (i = 0; i < td->o.bssplit_nr; i++) {
249 struct bssplit *bsp = &td->o.bssplit[i];
250
251 buflen = bsp->bs;
252 perc += bsp->perc;
253 if (r <= ((LONG_MAX / 100L) * perc))
254 break;
255 }
256 }
257 if (!td->o.bs_unaligned) {
258 buflen = (buflen + td->o.min_bs[ddir] - 1)
259 & ~(td->o.min_bs[ddir] - 1);
260 }
261 }
262
263 if (io_u->offset + buflen > io_u->file->real_file_size) {
264 dprint(FD_IO, "lower buflen %u -> %u (ddir=%d)\n", buflen,
265 td->o.min_bs[ddir], ddir);
266 buflen = td->o.min_bs[ddir];
267 }
268
269 return buflen;
270}
271
272static void set_rwmix_bytes(struct thread_data *td)
273{
274 unsigned int diff;
275
276 /*
277 * we do time or byte based switch. this is needed because
278 * buffered writes may issue a lot quicker than they complete,
279 * whereas reads do not.
280 */
281 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
282 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
283}
284
285static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
286{
287 unsigned int v;
288 long r;
289
290 r = os_random_long(&td->rwmix_state);
291 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
292 if (v <= td->o.rwmix[DDIR_READ])
293 return DDIR_READ;
294
295 return DDIR_WRITE;
296}
297
298/*
299 * Return the data direction for the next io_u. If the job is a
300 * mixed read/write workload, check the rwmix cycle and switch if
301 * necessary.
302 */
303static enum fio_ddir get_rw_ddir(struct thread_data *td)
304{
305 if (td_rw(td)) {
306 /*
307 * Check if it's time to seed a new data direction.
308 */
309 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
310 unsigned long long max_bytes;
311 enum fio_ddir ddir;
312
313 /*
314 * Put a top limit on how many bytes we do for
315 * one data direction, to avoid overflowing the
316 * ranges too much
317 */
318 ddir = get_rand_ddir(td);
319 max_bytes = td->this_io_bytes[ddir];
320 if (max_bytes >=
321 (td->o.size * td->o.rwmix[ddir] / 100)) {
322 if (!td->rw_end_set[ddir])
323 td->rw_end_set[ddir] = 1;
324
325 ddir ^= 1;
326 }
327
328 if (ddir != td->rwmix_ddir)
329 set_rwmix_bytes(td);
330
331 td->rwmix_ddir = ddir;
332 }
333 return td->rwmix_ddir;
334 } else if (td_read(td))
335 return DDIR_READ;
336 else
337 return DDIR_WRITE;
338}
339
340static void put_file_log(struct thread_data *td, struct fio_file *f)
341{
342 int ret = put_file(td, f);
343
344 if (ret)
345 td_verror(td, ret, "file close");
346}
347
348void put_io_u(struct thread_data *td, struct io_u *io_u)
349{
350 assert((io_u->flags & IO_U_F_FREE) == 0);
351 io_u->flags |= IO_U_F_FREE;
352
353 if (io_u->file)
354 put_file_log(td, io_u->file);
355
356 io_u->file = NULL;
357 list_del(&io_u->list);
358 list_add(&io_u->list, &td->io_u_freelist);
359 td->cur_depth--;
360}
361
362void requeue_io_u(struct thread_data *td, struct io_u **io_u)
363{
364 struct io_u *__io_u = *io_u;
365
366 dprint(FD_IO, "requeue %p\n", __io_u);
367
368 __io_u->flags |= IO_U_F_FREE;
369 if ((__io_u->flags & IO_U_F_FLIGHT) && (__io_u->ddir != DDIR_SYNC))
370 td->io_issues[__io_u->ddir]--;
371
372 __io_u->flags &= ~IO_U_F_FLIGHT;
373
374 list_del(&__io_u->list);
375 list_add_tail(&__io_u->list, &td->io_u_requeues);
376 td->cur_depth--;
377 *io_u = NULL;
378}
379
380static int fill_io_u(struct thread_data *td, struct io_u *io_u)
381{
382 if (td->io_ops->flags & FIO_NOIO)
383 goto out;
384
385 /*
386 * see if it's time to sync
387 */
388 if (td->o.fsync_blocks &&
389 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
390 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
391 io_u->ddir = DDIR_SYNC;
392 goto out;
393 }
394
395 io_u->ddir = get_rw_ddir(td);
396
397 /*
398 * See if it's time to switch to a new zone
399 */
400 if (td->zone_bytes >= td->o.zone_size) {
401 td->zone_bytes = 0;
402 io_u->file->last_pos += td->o.zone_skip;
403 td->io_skip_bytes += td->o.zone_skip;
404 }
405
406 /*
407 * No log, let the seq/rand engine retrieve the next buflen and
408 * position.
409 */
410 if (get_next_offset(td, io_u)) {
411 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
412 return 1;
413 }
414
415 io_u->buflen = get_next_buflen(td, io_u);
416 if (!io_u->buflen) {
417 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
418 return 1;
419 }
420
421 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
422 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
423 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
424 io_u->buflen, io_u->file->real_file_size);
425 return 1;
426 }
427
428 /*
429 * mark entry before potentially trimming io_u
430 */
431 if (td_random(td) && file_randommap(td, io_u->file))
432 mark_random_map(td, io_u);
433
434 /*
435 * If using a write iolog, store this entry.
436 */
437out:
438 dprint_io_u(io_u, "fill_io_u");
439 td->zone_bytes += io_u->buflen;
440 log_io_u(td, io_u);
441 return 0;
442}
443
444static void __io_u_mark_map(unsigned int *map, unsigned int nr)
445{
446 int index = 0;
447
448 switch (nr) {
449 default:
450 index = 6;
451 break;
452 case 33 ... 64:
453 index = 5;
454 break;
455 case 17 ... 32:
456 index = 4;
457 break;
458 case 9 ... 16:
459 index = 3;
460 break;
461 case 5 ... 8:
462 index = 2;
463 break;
464 case 1 ... 4:
465 index = 1;
466 case 0:
467 break;
468 }
469
470 map[index]++;
471}
472
473void io_u_mark_submit(struct thread_data *td, unsigned int nr)
474{
475 __io_u_mark_map(td->ts.io_u_submit, nr);
476 td->ts.total_submit++;
477}
478
479void io_u_mark_complete(struct thread_data *td, unsigned int nr)
480{
481 __io_u_mark_map(td->ts.io_u_complete, nr);
482 td->ts.total_complete++;
483}
484
485void io_u_mark_depth(struct thread_data *td, unsigned int nr)
486{
487 int index = 0;
488
489 switch (td->cur_depth) {
490 default:
491 index = 6;
492 break;
493 case 32 ... 63:
494 index = 5;
495 break;
496 case 16 ... 31:
497 index = 4;
498 break;
499 case 8 ... 15:
500 index = 3;
501 break;
502 case 4 ... 7:
503 index = 2;
504 break;
505 case 2 ... 3:
506 index = 1;
507 case 1:
508 break;
509 }
510
511 td->ts.io_u_map[index] += nr;
512}
513
514static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
515{
516 int index = 0;
517
518 assert(usec < 1000);
519
520 switch (usec) {
521 case 750 ... 999:
522 index = 9;
523 break;
524 case 500 ... 749:
525 index = 8;
526 break;
527 case 250 ... 499:
528 index = 7;
529 break;
530 case 100 ... 249:
531 index = 6;
532 break;
533 case 50 ... 99:
534 index = 5;
535 break;
536 case 20 ... 49:
537 index = 4;
538 break;
539 case 10 ... 19:
540 index = 3;
541 break;
542 case 4 ... 9:
543 index = 2;
544 break;
545 case 2 ... 3:
546 index = 1;
547 case 0 ... 1:
548 break;
549 }
550
551 assert(index < FIO_IO_U_LAT_U_NR);
552 td->ts.io_u_lat_u[index]++;
553}
554
555static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
556{
557 int index = 0;
558
559 switch (msec) {
560 default:
561 index = 11;
562 break;
563 case 1000 ... 1999:
564 index = 10;
565 break;
566 case 750 ... 999:
567 index = 9;
568 break;
569 case 500 ... 749:
570 index = 8;
571 break;
572 case 250 ... 499:
573 index = 7;
574 break;
575 case 100 ... 249:
576 index = 6;
577 break;
578 case 50 ... 99:
579 index = 5;
580 break;
581 case 20 ... 49:
582 index = 4;
583 break;
584 case 10 ... 19:
585 index = 3;
586 break;
587 case 4 ... 9:
588 index = 2;
589 break;
590 case 2 ... 3:
591 index = 1;
592 case 0 ... 1:
593 break;
594 }
595
596 assert(index < FIO_IO_U_LAT_M_NR);
597 td->ts.io_u_lat_m[index]++;
598}
599
600static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
601{
602 if (usec < 1000)
603 io_u_mark_lat_usec(td, usec);
604 else
605 io_u_mark_lat_msec(td, usec / 1000);
606}
607
608/*
609 * Get next file to service by choosing one at random
610 */
611static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
612 int badf)
613{
614 struct fio_file *f;
615 int fno;
616
617 do {
618 long r = os_random_long(&td->next_file_state);
619
620 fno = (unsigned int) ((double) td->o.nr_files
621 * (r / (RAND_MAX + 1.0)));
622 f = td->files[fno];
623 if (f->flags & FIO_FILE_DONE)
624 continue;
625
626 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
627 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
628 return f;
629 }
630 } while (1);
631}
632
633/*
634 * Get next file to service by doing round robin between all available ones
635 */
636static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
637 int badf)
638{
639 unsigned int old_next_file = td->next_file;
640 struct fio_file *f;
641
642 do {
643 f = td->files[td->next_file];
644
645 td->next_file++;
646 if (td->next_file >= td->o.nr_files)
647 td->next_file = 0;
648
649 if (f->flags & FIO_FILE_DONE) {
650 f = NULL;
651 continue;
652 }
653
654 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
655 break;
656
657 f = NULL;
658 } while (td->next_file != old_next_file);
659
660 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
661 return f;
662}
663
664static struct fio_file *get_next_file(struct thread_data *td)
665{
666 struct fio_file *f;
667
668 assert(td->o.nr_files <= td->files_index);
669
670 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files) {
671 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
672 " nr_files=%d\n", td->nr_open_files,
673 td->nr_done_files,
674 td->o.nr_files);
675 return NULL;
676 }
677
678 f = td->file_service_file;
679 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
680 goto out;
681
682 if (td->o.file_service_type == FIO_FSERVICE_RR)
683 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
684 else
685 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
686
687 td->file_service_file = f;
688 td->file_service_left = td->file_service_nr - 1;
689out:
690 dprint(FD_FILE, "get_next_file: %p\n", f);
691 return f;
692}
693
694static struct fio_file *find_next_new_file(struct thread_data *td)
695{
696 struct fio_file *f;
697
698 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
699 return NULL;
700
701 if (td->o.file_service_type == FIO_FSERVICE_RR)
702 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
703 else
704 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
705
706 return f;
707}
708
709static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
710{
711 struct fio_file *f;
712
713 do {
714 f = get_next_file(td);
715 if (!f)
716 return 1;
717
718set_file:
719 io_u->file = f;
720 get_file(f);
721
722 if (!fill_io_u(td, io_u))
723 break;
724
725 /*
726 * optimization to prevent close/open of the same file. This
727 * way we preserve queueing etc.
728 */
729 if (td->o.nr_files == 1 && td->o.time_based) {
730 put_file_log(td, f);
731 fio_file_reset(f);
732 goto set_file;
733 }
734
735 /*
736 * td_io_close() does a put_file() as well, so no need to
737 * do that here.
738 */
739 io_u->file = NULL;
740 td_io_close_file(td, f);
741 f->flags |= FIO_FILE_DONE;
742 td->nr_done_files++;
743
744 /*
745 * probably not the right place to do this, but see
746 * if we need to open a new file
747 */
748 if (td->nr_open_files < td->o.open_files &&
749 td->o.open_files != td->o.nr_files) {
750 f = find_next_new_file(td);
751
752 if (!f || td_io_open_file(td, f))
753 return 1;
754
755 goto set_file;
756 }
757 } while (1);
758
759 return 0;
760}
761
762
763struct io_u *__get_io_u(struct thread_data *td)
764{
765 struct io_u *io_u = NULL;
766
767 if (!list_empty(&td->io_u_requeues))
768 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
769 else if (!queue_full(td)) {
770 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
771
772 io_u->buflen = 0;
773 io_u->resid = 0;
774 io_u->file = NULL;
775 io_u->end_io = NULL;
776 }
777
778 if (io_u) {
779 assert(io_u->flags & IO_U_F_FREE);
780 io_u->flags &= ~IO_U_F_FREE;
781
782 io_u->error = 0;
783 list_del(&io_u->list);
784 list_add(&io_u->list, &td->io_u_busylist);
785 td->cur_depth++;
786 }
787
788 return io_u;
789}
790
791/*
792 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
793 * etc. The returned io_u is fully ready to be prepped and submitted.
794 */
795struct io_u *get_io_u(struct thread_data *td)
796{
797 struct fio_file *f;
798 struct io_u *io_u;
799
800 io_u = __get_io_u(td);
801 if (!io_u) {
802 dprint(FD_IO, "__get_io_u failed\n");
803 return NULL;
804 }
805
806 /*
807 * from a requeue, io_u already setup
808 */
809 if (io_u->file)
810 goto out;
811
812 /*
813 * If using an iolog, grab next piece if any available.
814 */
815 if (td->o.read_iolog_file) {
816 if (read_iolog_get(td, io_u))
817 goto err_put;
818 } else if (set_io_u_file(td, io_u)) {
819 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
820 goto err_put;
821 }
822
823 f = io_u->file;
824 assert(f->flags & FIO_FILE_OPEN);
825
826 if (io_u->ddir != DDIR_SYNC) {
827 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
828 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
829 goto err_put;
830 }
831
832 f->last_pos = io_u->offset + io_u->buflen;
833
834 if (td->o.verify != VERIFY_NONE)
835 populate_verify_io_u(td, io_u);
836 else if (td->o.refill_buffers && io_u->ddir == DDIR_WRITE)
837 io_u_fill_buffer(td, io_u, io_u->xfer_buflen);
838 }
839
840 /*
841 * Set io data pointers.
842 */
843 io_u->endpos = io_u->offset + io_u->buflen;
844 io_u->xfer_buf = io_u->buf;
845 io_u->xfer_buflen = io_u->buflen;
846
847out:
848 if (!td_io_prep(td, io_u)) {
849 fio_gettime(&io_u->start_time, NULL);
850 return io_u;
851 }
852err_put:
853 dprint(FD_IO, "get_io_u failed\n");
854 put_io_u(td, io_u);
855 return NULL;
856}
857
858void io_u_log_error(struct thread_data *td, struct io_u *io_u)
859{
860 const char *msg[] = { "read", "write", "sync" };
861
862 log_err("fio: io_u error");
863
864 if (io_u->file)
865 log_err(" on file %s", io_u->file->file_name);
866
867 log_err(": %s\n", strerror(io_u->error));
868
869 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
870 io_u->offset, io_u->xfer_buflen);
871
872 if (!td->error)
873 td_verror(td, io_u->error, "io_u error");
874}
875
876static void io_completed(struct thread_data *td, struct io_u *io_u,
877 struct io_completion_data *icd)
878{
879 unsigned long usec;
880
881 dprint_io_u(io_u, "io complete");
882
883 assert(io_u->flags & IO_U_F_FLIGHT);
884 io_u->flags &= ~IO_U_F_FLIGHT;
885
886 if (io_u->ddir == DDIR_SYNC) {
887 td->last_was_sync = 1;
888 return;
889 }
890
891 td->last_was_sync = 0;
892
893 if (!io_u->error) {
894 unsigned int bytes = io_u->buflen - io_u->resid;
895 const enum fio_ddir idx = io_u->ddir;
896 int ret;
897
898 td->io_blocks[idx]++;
899 td->io_bytes[idx] += bytes;
900 td->this_io_bytes[idx] += bytes;
901
902 usec = utime_since(&io_u->issue_time, &icd->time);
903
904 add_clat_sample(td, idx, usec);
905 add_bw_sample(td, idx, &icd->time);
906 io_u_mark_latency(td, usec);
907
908 if (td_write(td) && idx == DDIR_WRITE &&
909 td->o.do_verify &&
910 td->o.verify != VERIFY_NONE)
911 log_io_piece(td, io_u);
912
913 icd->bytes_done[idx] += bytes;
914
915 if (io_u->end_io) {
916 ret = io_u->end_io(td, io_u);
917 if (ret && !icd->error)
918 icd->error = ret;
919 }
920 } else {
921 icd->error = io_u->error;
922 io_u_log_error(td, io_u);
923 }
924}
925
926static void init_icd(struct io_completion_data *icd, int nr)
927{
928 fio_gettime(&icd->time, NULL);
929
930 icd->nr = nr;
931
932 icd->error = 0;
933 icd->bytes_done[0] = icd->bytes_done[1] = 0;
934}
935
936static void ios_completed(struct thread_data *td,
937 struct io_completion_data *icd)
938{
939 struct io_u *io_u;
940 int i;
941
942 for (i = 0; i < icd->nr; i++) {
943 io_u = td->io_ops->event(td, i);
944
945 io_completed(td, io_u, icd);
946 put_io_u(td, io_u);
947 }
948}
949
950/*
951 * Complete a single io_u for the sync engines.
952 */
953long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
954{
955 struct io_completion_data icd;
956
957 init_icd(&icd, 1);
958 io_completed(td, io_u, &icd);
959 put_io_u(td, io_u);
960
961 if (!icd.error)
962 return icd.bytes_done[0] + icd.bytes_done[1];
963
964 td_verror(td, icd.error, "io_u_sync_complete");
965 return -1;
966}
967
968/*
969 * Called to complete min_events number of io for the async engines.
970 */
971long io_u_queued_complete(struct thread_data *td, int min_events)
972{
973 struct io_completion_data icd;
974 struct timespec *tvp = NULL;
975 int ret;
976 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
977
978 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_events);
979
980 if (!min_events)
981 tvp = &ts;
982
983 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
984 if (ret < 0) {
985 td_verror(td, -ret, "td_io_getevents");
986 return ret;
987 } else if (!ret)
988 return ret;
989
990 init_icd(&icd, ret);
991 ios_completed(td, &icd);
992 if (!icd.error)
993 return icd.bytes_done[0] + icd.bytes_done[1];
994
995 td_verror(td, icd.error, "io_u_queued_complete");
996 return -1;
997}
998
999/*
1000 * Call when io_u is really queued, to update the submission latency.
1001 */
1002void io_u_queued(struct thread_data *td, struct io_u *io_u)
1003{
1004 unsigned long slat_time;
1005
1006 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1007 add_slat_sample(td, io_u->ddir, slat_time);
1008}
1009
1010/*
1011 * "randomly" fill the buffer contents
1012 */
1013void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1014 unsigned int max_bs)
1015{
1016 long *ptr = io_u->buf;
1017
1018 if (!td->o.zero_buffers) {
1019 while ((void *) ptr - io_u->buf < max_bs) {
1020 *ptr = rand() * GOLDEN_RATIO_PRIME;
1021 ptr++;
1022 }
1023 } else
1024 memset(ptr, 0, max_bs);
1025}
1026
1027#ifdef FIO_USE_TIMEOUT
1028void io_u_set_timeout(struct thread_data *td)
1029{
1030 assert(td->cur_depth);
1031
1032 td->timer.it_interval.tv_sec = 0;
1033 td->timer.it_interval.tv_usec = 0;
1034 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
1035 td->timer.it_value.tv_usec = 0;
1036 setitimer(ITIMER_REAL, &td->timer, NULL);
1037 fio_gettime(&td->timeout_end, NULL);
1038}
1039
1040static void io_u_dump(struct io_u *io_u)
1041{
1042 unsigned long t_start = mtime_since_now(&io_u->start_time);
1043 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
1044
1045 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
1046 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf,
1047 io_u->xfer_buf, io_u->buflen,
1048 io_u->xfer_buflen,
1049 io_u->offset);
1050 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
1051}
1052#else
1053void io_u_set_timeout(struct thread_data fio_unused *td)
1054{
1055}
1056#endif
1057
1058#ifdef FIO_USE_TIMEOUT
1059static void io_u_timeout_handler(int fio_unused sig)
1060{
1061 struct thread_data *td, *__td;
1062 pid_t pid = getpid();
1063 struct list_head *entry;
1064 struct io_u *io_u;
1065 int i;
1066
1067 log_err("fio: io_u timeout\n");
1068
1069 /*
1070 * TLS would be nice...
1071 */
1072 td = NULL;
1073 for_each_td(__td, i) {
1074 if (__td->pid == pid) {
1075 td = __td;
1076 break;
1077 }
1078 }
1079
1080 if (!td) {
1081 log_err("fio: io_u timeout, can't find job\n");
1082 exit(1);
1083 }
1084
1085 if (!td->cur_depth) {
1086 log_err("fio: timeout without pending work?\n");
1087 return;
1088 }
1089
1090 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
1091
1092 list_for_each(entry, &td->io_u_busylist) {
1093 io_u = list_entry(entry, struct io_u, list);
1094
1095 io_u_dump(io_u);
1096 }
1097
1098 td_verror(td, ETIMEDOUT, "io_u timeout");
1099 exit(1);
1100}
1101#endif
1102
1103void io_u_init_timeout(void)
1104{
1105#ifdef FIO_USE_TIMEOUT
1106 signal(SIGALRM, io_u_timeout_handler);
1107#endif
1108}