Reenable io_u->buf_filled_len optimization
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13
14struct io_completion_data {
15 int nr; /* input */
16 int account; /* input */
17
18 int error; /* output */
19 unsigned long bytes_done[2]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->file_map[] contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const unsigned long long block)
28{
29 unsigned int idx = RAND_MAP_IDX(f, block);
30 unsigned int bit = RAND_MAP_BIT(f, block);
31
32 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
33
34 return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct io_u *io_u)
41{
42 unsigned int min_bs = td->o.rw_min_bs;
43 struct fio_file *f = io_u->file;
44 unsigned long long block;
45 unsigned int blocks, nr_blocks;
46 int busy_check;
47
48 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
49 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
50 blocks = 0;
51 busy_check = !(io_u->flags & IO_U_F_BUSY_OK);
52
53 while (nr_blocks) {
54 unsigned int idx, bit;
55 unsigned long mask, this_blocks;
56
57 /*
58 * If we have a mixed random workload, we may
59 * encounter blocks we already did IO to.
60 */
61 if (!busy_check) {
62 blocks = nr_blocks;
63 break;
64 }
65 if ((td->o.ddir_seq_nr == 1) && !random_map_free(f, block))
66 break;
67
68 idx = RAND_MAP_IDX(f, block);
69 bit = RAND_MAP_BIT(f, block);
70
71 fio_assert(td, idx < f->num_maps);
72
73 this_blocks = nr_blocks;
74 if (this_blocks + bit > BLOCKS_PER_MAP)
75 this_blocks = BLOCKS_PER_MAP - bit;
76
77 do {
78 if (this_blocks == BLOCKS_PER_MAP)
79 mask = -1UL;
80 else
81 mask = ((1UL << this_blocks) - 1) << bit;
82
83 if (!(f->file_map[idx] & mask))
84 break;
85
86 this_blocks--;
87 } while (this_blocks);
88
89 if (!this_blocks)
90 break;
91
92 f->file_map[idx] |= mask;
93 nr_blocks -= this_blocks;
94 blocks += this_blocks;
95 block += this_blocks;
96 }
97
98 if ((blocks * min_bs) < io_u->buflen)
99 io_u->buflen = blocks * min_bs;
100}
101
102static unsigned long long last_block(struct thread_data *td, struct fio_file *f,
103 enum fio_ddir ddir)
104{
105 unsigned long long max_blocks;
106 unsigned long long max_size;
107
108 assert(ddir_rw(ddir));
109
110 /*
111 * Hmm, should we make sure that ->io_size <= ->real_file_size?
112 */
113 max_size = f->io_size;
114 if (max_size > f->real_file_size)
115 max_size = f->real_file_size;
116
117 if (td->o.zone_range)
118 max_size = td->o.zone_range;
119
120 max_blocks = max_size / (unsigned long long) td->o.ba[ddir];
121 if (!max_blocks)
122 return 0;
123
124 return max_blocks;
125}
126
127/*
128 * Return the next free block in the map.
129 */
130static int get_next_free_block(struct thread_data *td, struct fio_file *f,
131 enum fio_ddir ddir, unsigned long long *b)
132{
133 unsigned long long block, min_bs = td->o.rw_min_bs, lastb;
134 int i;
135
136 lastb = last_block(td, f, ddir);
137 if (!lastb)
138 return 1;
139
140 i = f->last_free_lookup;
141 block = i * BLOCKS_PER_MAP;
142 while (block * min_bs < f->real_file_size &&
143 block * min_bs < f->io_size) {
144 if (f->file_map[i] != -1UL) {
145 block += ffz(f->file_map[i]);
146 if (block > lastb)
147 break;
148 f->last_free_lookup = i;
149 *b = block;
150 return 0;
151 }
152
153 block += BLOCKS_PER_MAP;
154 i++;
155 }
156
157 dprint(FD_IO, "failed finding a free block\n");
158 return 1;
159}
160
161static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
162 enum fio_ddir ddir, unsigned long long *b)
163{
164 unsigned long long rmax, r, lastb;
165 int loops = 5;
166
167 lastb = last_block(td, f, ddir);
168 if (!lastb)
169 return 1;
170
171 if (f->failed_rands >= 200)
172 goto ffz;
173
174 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
175 do {
176 if (td->o.use_os_rand)
177 r = os_random_long(&td->random_state);
178 else
179 r = __rand(&td->__random_state);
180
181 *b = (lastb - 1) * (r / ((unsigned long long) rmax + 1.0));
182
183 dprint(FD_RANDOM, "off rand %llu\n", r);
184
185
186 /*
187 * if we are not maintaining a random map, we are done.
188 */
189 if (!file_randommap(td, f))
190 goto ret_good;
191
192 /*
193 * calculate map offset and check if it's free
194 */
195 if (random_map_free(f, *b))
196 goto ret_good;
197
198 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
199 *b);
200 } while (--loops);
201
202 if (!f->failed_rands++)
203 f->last_free_lookup = 0;
204
205 /*
206 * we get here, if we didn't suceed in looking up a block. generate
207 * a random start offset into the filemap, and find the first free
208 * block from there.
209 */
210 loops = 10;
211 do {
212 f->last_free_lookup = (f->num_maps - 1) *
213 (r / ((unsigned long long) rmax + 1.0));
214 if (!get_next_free_block(td, f, ddir, b))
215 goto ret;
216
217 if (td->o.use_os_rand)
218 r = os_random_long(&td->random_state);
219 else
220 r = __rand(&td->__random_state);
221 } while (--loops);
222
223 /*
224 * that didn't work either, try exhaustive search from the start
225 */
226 f->last_free_lookup = 0;
227ffz:
228 if (!get_next_free_block(td, f, ddir, b))
229 return 0;
230 f->last_free_lookup = 0;
231 return get_next_free_block(td, f, ddir, b);
232ret_good:
233 f->failed_rands = 0;
234ret:
235 return 0;
236}
237
238static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
239 enum fio_ddir ddir, unsigned long long *b)
240{
241 if (get_next_rand_offset(td, f, ddir, b)) {
242 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
243 f->file_name, f->last_pos, f->real_file_size);
244 return 1;
245 }
246
247 return 0;
248}
249
250static int get_next_seq_block(struct thread_data *td, struct fio_file *f,
251 enum fio_ddir ddir, unsigned long long *b)
252{
253 assert(ddir_rw(ddir));
254
255 if (f->last_pos < f->real_file_size) {
256 unsigned long long pos;
257
258 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
259 f->last_pos = f->real_file_size;
260
261 pos = f->last_pos - f->file_offset;
262 if (pos)
263 pos += td->o.ddir_seq_add;
264
265 *b = pos / td->o.min_bs[ddir];
266 return 0;
267 }
268
269 return 1;
270}
271
272static int get_next_block(struct thread_data *td, struct io_u *io_u,
273 enum fio_ddir ddir, int rw_seq, unsigned long long *b)
274{
275 struct fio_file *f = io_u->file;
276 int ret;
277
278 assert(ddir_rw(ddir));
279
280 if (rw_seq) {
281 if (td_random(td))
282 ret = get_next_rand_block(td, f, ddir, b);
283 else
284 ret = get_next_seq_block(td, f, ddir, b);
285 } else {
286 io_u->flags |= IO_U_F_BUSY_OK;
287
288 if (td->o.rw_seq == RW_SEQ_SEQ) {
289 ret = get_next_seq_block(td, f, ddir, b);
290 if (ret)
291 ret = get_next_rand_block(td, f, ddir, b);
292 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
293 if (f->last_start != -1ULL)
294 *b = (f->last_start - f->file_offset)
295 / td->o.min_bs[ddir];
296 else
297 *b = 0;
298 ret = 0;
299 } else {
300 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
301 ret = 1;
302 }
303 }
304
305 return ret;
306}
307
308/*
309 * For random io, generate a random new block and see if it's used. Repeat
310 * until we find a free one. For sequential io, just return the end of
311 * the last io issued.
312 */
313static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
314{
315 struct fio_file *f = io_u->file;
316 unsigned long long b;
317 enum fio_ddir ddir = io_u->ddir;
318 int rw_seq_hit = 0;
319
320 assert(ddir_rw(ddir));
321
322 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
323 rw_seq_hit = 1;
324 td->ddir_seq_nr = td->o.ddir_seq_nr;
325 }
326
327 if (get_next_block(td, io_u, ddir, rw_seq_hit, &b))
328 return 1;
329
330 io_u->offset = b * td->o.ba[ddir];
331 if (io_u->offset >= f->io_size) {
332 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
333 io_u->offset, f->io_size);
334 return 1;
335 }
336
337 io_u->offset += f->file_offset;
338 if (io_u->offset >= f->real_file_size) {
339 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
340 io_u->offset, f->real_file_size);
341 return 1;
342 }
343
344 return 0;
345}
346
347static int get_next_offset(struct thread_data *td, struct io_u *io_u)
348{
349 struct prof_io_ops *ops = &td->prof_io_ops;
350
351 if (ops->fill_io_u_off)
352 return ops->fill_io_u_off(td, io_u);
353
354 return __get_next_offset(td, io_u);
355}
356
357static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
358 unsigned int buflen)
359{
360 struct fio_file *f = io_u->file;
361
362 return io_u->offset + buflen <= f->io_size + td->o.start_offset;
363}
364
365static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
366{
367 const int ddir = io_u->ddir;
368 unsigned int uninitialized_var(buflen);
369 unsigned int minbs, maxbs;
370 unsigned long r, rand_max;
371
372 assert(ddir_rw(ddir));
373
374 minbs = td->o.min_bs[ddir];
375 maxbs = td->o.max_bs[ddir];
376
377 if (minbs == maxbs)
378 return minbs;
379
380 if (td->o.use_os_rand)
381 rand_max = OS_RAND_MAX;
382 else
383 rand_max = FRAND_MAX;
384
385 do {
386 if (td->o.use_os_rand)
387 r = os_random_long(&td->bsrange_state);
388 else
389 r = __rand(&td->__bsrange_state);
390
391 if (!td->o.bssplit_nr[ddir]) {
392 buflen = 1 + (unsigned int) ((double) maxbs *
393 (r / (rand_max + 1.0)));
394 if (buflen < minbs)
395 buflen = minbs;
396 } else {
397 long perc = 0;
398 unsigned int i;
399
400 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
401 struct bssplit *bsp = &td->o.bssplit[ddir][i];
402
403 buflen = bsp->bs;
404 perc += bsp->perc;
405 if ((r <= ((rand_max / 100L) * perc)) &&
406 io_u_fits(td, io_u, buflen))
407 break;
408 }
409 }
410
411 if (!td->o.bs_unaligned && is_power_of_2(minbs))
412 buflen = (buflen + minbs - 1) & ~(minbs - 1);
413
414 } while (!io_u_fits(td, io_u, buflen));
415
416 return buflen;
417}
418
419static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
420{
421 struct prof_io_ops *ops = &td->prof_io_ops;
422
423 if (ops->fill_io_u_size)
424 return ops->fill_io_u_size(td, io_u);
425
426 return __get_next_buflen(td, io_u);
427}
428
429static void set_rwmix_bytes(struct thread_data *td)
430{
431 unsigned int diff;
432
433 /*
434 * we do time or byte based switch. this is needed because
435 * buffered writes may issue a lot quicker than they complete,
436 * whereas reads do not.
437 */
438 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
439 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
440}
441
442static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
443{
444 unsigned int v;
445 unsigned long r;
446
447 if (td->o.use_os_rand) {
448 r = os_random_long(&td->rwmix_state);
449 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
450 } else {
451 r = __rand(&td->__rwmix_state);
452 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
453 }
454
455 if (v <= td->o.rwmix[DDIR_READ])
456 return DDIR_READ;
457
458 return DDIR_WRITE;
459}
460
461static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
462{
463 enum fio_ddir odir = ddir ^ 1;
464 struct timeval t;
465 long usec;
466
467 assert(ddir_rw(ddir));
468
469 if (td->rate_pending_usleep[ddir] <= 0)
470 return ddir;
471
472 /*
473 * We have too much pending sleep in this direction. See if we
474 * should switch.
475 */
476 if (td_rw(td)) {
477 /*
478 * Other direction does not have too much pending, switch
479 */
480 if (td->rate_pending_usleep[odir] < 100000)
481 return odir;
482
483 /*
484 * Both directions have pending sleep. Sleep the minimum time
485 * and deduct from both.
486 */
487 if (td->rate_pending_usleep[ddir] <=
488 td->rate_pending_usleep[odir]) {
489 usec = td->rate_pending_usleep[ddir];
490 } else {
491 usec = td->rate_pending_usleep[odir];
492 ddir = odir;
493 }
494 } else
495 usec = td->rate_pending_usleep[ddir];
496
497 /*
498 * We are going to sleep, ensure that we flush anything pending as
499 * not to skew our latency numbers.
500 *
501 * Changed to only monitor 'in flight' requests here instead of the
502 * td->cur_depth, b/c td->cur_depth does not accurately represent
503 * io's that have been actually submitted to an async engine,
504 * and cur_depth is meaningless for sync engines.
505 */
506 if (td->io_u_in_flight) {
507 int fio_unused ret;
508
509 ret = io_u_queued_complete(td, td->io_u_in_flight, NULL);
510 }
511
512 fio_gettime(&t, NULL);
513 usec_sleep(td, usec);
514 usec = utime_since_now(&t);
515
516 td->rate_pending_usleep[ddir] -= usec;
517
518 odir = ddir ^ 1;
519 if (td_rw(td) && __should_check_rate(td, odir))
520 td->rate_pending_usleep[odir] -= usec;
521
522 return ddir;
523}
524
525/*
526 * Return the data direction for the next io_u. If the job is a
527 * mixed read/write workload, check the rwmix cycle and switch if
528 * necessary.
529 */
530static enum fio_ddir get_rw_ddir(struct thread_data *td)
531{
532 enum fio_ddir ddir;
533
534 /*
535 * see if it's time to fsync
536 */
537 if (td->o.fsync_blocks &&
538 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
539 td->io_issues[DDIR_WRITE] && should_fsync(td))
540 return DDIR_SYNC;
541
542 /*
543 * see if it's time to fdatasync
544 */
545 if (td->o.fdatasync_blocks &&
546 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
547 td->io_issues[DDIR_WRITE] && should_fsync(td))
548 return DDIR_DATASYNC;
549
550 /*
551 * see if it's time to sync_file_range
552 */
553 if (td->sync_file_range_nr &&
554 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
555 td->io_issues[DDIR_WRITE] && should_fsync(td))
556 return DDIR_SYNC_FILE_RANGE;
557
558 if (td_rw(td)) {
559 /*
560 * Check if it's time to seed a new data direction.
561 */
562 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
563 /*
564 * Put a top limit on how many bytes we do for
565 * one data direction, to avoid overflowing the
566 * ranges too much
567 */
568 ddir = get_rand_ddir(td);
569
570 if (ddir != td->rwmix_ddir)
571 set_rwmix_bytes(td);
572
573 td->rwmix_ddir = ddir;
574 }
575 ddir = td->rwmix_ddir;
576 } else if (td_read(td))
577 ddir = DDIR_READ;
578 else
579 ddir = DDIR_WRITE;
580
581 td->rwmix_ddir = rate_ddir(td, ddir);
582 return td->rwmix_ddir;
583}
584
585static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
586{
587 io_u->ddir = get_rw_ddir(td);
588
589 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
590 td->o.barrier_blocks &&
591 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
592 td->io_issues[DDIR_WRITE])
593 io_u->flags |= IO_U_F_BARRIER;
594}
595
596void put_file_log(struct thread_data *td, struct fio_file *f)
597{
598 int ret = put_file(td, f);
599
600 if (ret)
601 td_verror(td, ret, "file close");
602}
603
604void put_io_u(struct thread_data *td, struct io_u *io_u)
605{
606 td_io_u_lock(td);
607
608 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
609 put_file_log(td, io_u->file);
610 io_u->file = NULL;
611 io_u->flags &= ~IO_U_F_FREE_DEF;
612 io_u->flags |= IO_U_F_FREE;
613
614 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
615 td->cur_depth--;
616 flist_del_init(&io_u->list);
617 flist_add(&io_u->list, &td->io_u_freelist);
618 td_io_u_unlock(td);
619 td_io_u_free_notify(td);
620}
621
622void clear_io_u(struct thread_data *td, struct io_u *io_u)
623{
624 io_u->flags &= ~IO_U_F_FLIGHT;
625 put_io_u(td, io_u);
626}
627
628void requeue_io_u(struct thread_data *td, struct io_u **io_u)
629{
630 struct io_u *__io_u = *io_u;
631
632 dprint(FD_IO, "requeue %p\n", __io_u);
633
634 td_io_u_lock(td);
635
636 __io_u->flags |= IO_U_F_FREE;
637 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir))
638 td->io_issues[__io_u->ddir]--;
639
640 __io_u->flags &= ~IO_U_F_FLIGHT;
641 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
642 td->cur_depth--;
643 flist_del(&__io_u->list);
644 flist_add_tail(&__io_u->list, &td->io_u_requeues);
645 td_io_u_unlock(td);
646 *io_u = NULL;
647}
648
649static int fill_io_u(struct thread_data *td, struct io_u *io_u)
650{
651 if (td->io_ops->flags & FIO_NOIO)
652 goto out;
653
654 set_rw_ddir(td, io_u);
655
656 /*
657 * fsync() or fdatasync() or trim etc, we are done
658 */
659 if (!ddir_rw(io_u->ddir))
660 goto out;
661
662 /*
663 * See if it's time to switch to a new zone
664 */
665 if (td->zone_bytes >= td->o.zone_size) {
666 td->zone_bytes = 0;
667 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
668 io_u->file->last_pos = io_u->file->file_offset;
669 td->io_skip_bytes += td->o.zone_skip;
670 }
671
672 /*
673 * No log, let the seq/rand engine retrieve the next buflen and
674 * position.
675 */
676 if (get_next_offset(td, io_u)) {
677 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
678 return 1;
679 }
680
681 io_u->buflen = get_next_buflen(td, io_u);
682 if (!io_u->buflen) {
683 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
684 return 1;
685 }
686
687 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
688 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
689 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
690 io_u->buflen, io_u->file->real_file_size);
691 return 1;
692 }
693
694 /*
695 * mark entry before potentially trimming io_u
696 */
697 if (td_random(td) && file_randommap(td, io_u->file))
698 mark_random_map(td, io_u);
699
700 /*
701 * If using a write iolog, store this entry.
702 */
703out:
704 dprint_io_u(io_u, "fill_io_u");
705 td->zone_bytes += io_u->buflen;
706 log_io_u(td, io_u);
707 return 0;
708}
709
710static void __io_u_mark_map(unsigned int *map, unsigned int nr)
711{
712 int idx = 0;
713
714 switch (nr) {
715 default:
716 idx = 6;
717 break;
718 case 33 ... 64:
719 idx = 5;
720 break;
721 case 17 ... 32:
722 idx = 4;
723 break;
724 case 9 ... 16:
725 idx = 3;
726 break;
727 case 5 ... 8:
728 idx = 2;
729 break;
730 case 1 ... 4:
731 idx = 1;
732 case 0:
733 break;
734 }
735
736 map[idx]++;
737}
738
739void io_u_mark_submit(struct thread_data *td, unsigned int nr)
740{
741 __io_u_mark_map(td->ts.io_u_submit, nr);
742 td->ts.total_submit++;
743}
744
745void io_u_mark_complete(struct thread_data *td, unsigned int nr)
746{
747 __io_u_mark_map(td->ts.io_u_complete, nr);
748 td->ts.total_complete++;
749}
750
751void io_u_mark_depth(struct thread_data *td, unsigned int nr)
752{
753 int idx = 0;
754
755 switch (td->cur_depth) {
756 default:
757 idx = 6;
758 break;
759 case 32 ... 63:
760 idx = 5;
761 break;
762 case 16 ... 31:
763 idx = 4;
764 break;
765 case 8 ... 15:
766 idx = 3;
767 break;
768 case 4 ... 7:
769 idx = 2;
770 break;
771 case 2 ... 3:
772 idx = 1;
773 case 1:
774 break;
775 }
776
777 td->ts.io_u_map[idx] += nr;
778}
779
780static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
781{
782 int idx = 0;
783
784 assert(usec < 1000);
785
786 switch (usec) {
787 case 750 ... 999:
788 idx = 9;
789 break;
790 case 500 ... 749:
791 idx = 8;
792 break;
793 case 250 ... 499:
794 idx = 7;
795 break;
796 case 100 ... 249:
797 idx = 6;
798 break;
799 case 50 ... 99:
800 idx = 5;
801 break;
802 case 20 ... 49:
803 idx = 4;
804 break;
805 case 10 ... 19:
806 idx = 3;
807 break;
808 case 4 ... 9:
809 idx = 2;
810 break;
811 case 2 ... 3:
812 idx = 1;
813 case 0 ... 1:
814 break;
815 }
816
817 assert(idx < FIO_IO_U_LAT_U_NR);
818 td->ts.io_u_lat_u[idx]++;
819}
820
821static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
822{
823 int idx = 0;
824
825 switch (msec) {
826 default:
827 idx = 11;
828 break;
829 case 1000 ... 1999:
830 idx = 10;
831 break;
832 case 750 ... 999:
833 idx = 9;
834 break;
835 case 500 ... 749:
836 idx = 8;
837 break;
838 case 250 ... 499:
839 idx = 7;
840 break;
841 case 100 ... 249:
842 idx = 6;
843 break;
844 case 50 ... 99:
845 idx = 5;
846 break;
847 case 20 ... 49:
848 idx = 4;
849 break;
850 case 10 ... 19:
851 idx = 3;
852 break;
853 case 4 ... 9:
854 idx = 2;
855 break;
856 case 2 ... 3:
857 idx = 1;
858 case 0 ... 1:
859 break;
860 }
861
862 assert(idx < FIO_IO_U_LAT_M_NR);
863 td->ts.io_u_lat_m[idx]++;
864}
865
866static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
867{
868 if (usec < 1000)
869 io_u_mark_lat_usec(td, usec);
870 else
871 io_u_mark_lat_msec(td, usec / 1000);
872}
873
874/*
875 * Get next file to service by choosing one at random
876 */
877static struct fio_file *get_next_file_rand(struct thread_data *td,
878 enum fio_file_flags goodf,
879 enum fio_file_flags badf)
880{
881 struct fio_file *f;
882 int fno;
883
884 do {
885 int opened = 0;
886 unsigned long r;
887
888 if (td->o.use_os_rand) {
889 r = os_random_long(&td->next_file_state);
890 fno = (unsigned int) ((double) td->o.nr_files
891 * (r / (OS_RAND_MAX + 1.0)));
892 } else {
893 r = __rand(&td->__next_file_state);
894 fno = (unsigned int) ((double) td->o.nr_files
895 * (r / (FRAND_MAX + 1.0)));
896 }
897
898 f = td->files[fno];
899 if (fio_file_done(f))
900 continue;
901
902 if (!fio_file_open(f)) {
903 int err;
904
905 err = td_io_open_file(td, f);
906 if (err)
907 continue;
908 opened = 1;
909 }
910
911 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
912 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
913 return f;
914 }
915 if (opened)
916 td_io_close_file(td, f);
917 } while (1);
918}
919
920/*
921 * Get next file to service by doing round robin between all available ones
922 */
923static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
924 int badf)
925{
926 unsigned int old_next_file = td->next_file;
927 struct fio_file *f;
928
929 do {
930 int opened = 0;
931
932 f = td->files[td->next_file];
933
934 td->next_file++;
935 if (td->next_file >= td->o.nr_files)
936 td->next_file = 0;
937
938 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
939 if (fio_file_done(f)) {
940 f = NULL;
941 continue;
942 }
943
944 if (!fio_file_open(f)) {
945 int err;
946
947 err = td_io_open_file(td, f);
948 if (err) {
949 dprint(FD_FILE, "error %d on open of %s\n",
950 err, f->file_name);
951 f = NULL;
952 continue;
953 }
954 opened = 1;
955 }
956
957 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
958 f->flags);
959 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
960 break;
961
962 if (opened)
963 td_io_close_file(td, f);
964
965 f = NULL;
966 } while (td->next_file != old_next_file);
967
968 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
969 return f;
970}
971
972static struct fio_file *__get_next_file(struct thread_data *td)
973{
974 struct fio_file *f;
975
976 assert(td->o.nr_files <= td->files_index);
977
978 if (td->nr_done_files >= td->o.nr_files) {
979 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
980 " nr_files=%d\n", td->nr_open_files,
981 td->nr_done_files,
982 td->o.nr_files);
983 return NULL;
984 }
985
986 f = td->file_service_file;
987 if (f && fio_file_open(f) && !fio_file_closing(f)) {
988 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
989 goto out;
990 if (td->file_service_left--)
991 goto out;
992 }
993
994 if (td->o.file_service_type == FIO_FSERVICE_RR ||
995 td->o.file_service_type == FIO_FSERVICE_SEQ)
996 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
997 else
998 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
999
1000 td->file_service_file = f;
1001 td->file_service_left = td->file_service_nr - 1;
1002out:
1003 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1004 return f;
1005}
1006
1007static struct fio_file *get_next_file(struct thread_data *td)
1008{
1009 struct prof_io_ops *ops = &td->prof_io_ops;
1010
1011 if (ops->get_next_file)
1012 return ops->get_next_file(td);
1013
1014 return __get_next_file(td);
1015}
1016
1017static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1018{
1019 struct fio_file *f;
1020
1021 do {
1022 f = get_next_file(td);
1023 if (!f)
1024 return 1;
1025
1026 io_u->file = f;
1027 get_file(f);
1028
1029 if (!fill_io_u(td, io_u))
1030 break;
1031
1032 put_file_log(td, f);
1033 td_io_close_file(td, f);
1034 io_u->file = NULL;
1035 fio_file_set_done(f);
1036 td->nr_done_files++;
1037 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1038 td->nr_done_files, td->o.nr_files);
1039 } while (1);
1040
1041 return 0;
1042}
1043
1044
1045struct io_u *__get_io_u(struct thread_data *td)
1046{
1047 struct io_u *io_u = NULL;
1048
1049 td_io_u_lock(td);
1050
1051again:
1052 if (!flist_empty(&td->io_u_requeues))
1053 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
1054 else if (!queue_full(td)) {
1055 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
1056
1057 io_u->buflen = 0;
1058 io_u->resid = 0;
1059 io_u->file = NULL;
1060 io_u->end_io = NULL;
1061 }
1062
1063 if (io_u) {
1064 assert(io_u->flags & IO_U_F_FREE);
1065 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1066 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1067
1068 io_u->error = 0;
1069 flist_del(&io_u->list);
1070 flist_add(&io_u->list, &td->io_u_busylist);
1071 td->cur_depth++;
1072 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1073 } else if (td->o.verify_async) {
1074 /*
1075 * We ran out, wait for async verify threads to finish and
1076 * return one
1077 */
1078 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1079 goto again;
1080 }
1081
1082 td_io_u_unlock(td);
1083 return io_u;
1084}
1085
1086static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1087{
1088 if (td->o.trim_backlog && td->trim_entries) {
1089 int get_trim = 0;
1090
1091 if (td->trim_batch) {
1092 td->trim_batch--;
1093 get_trim = 1;
1094 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1095 td->last_ddir != DDIR_READ) {
1096 td->trim_batch = td->o.trim_batch;
1097 if (!td->trim_batch)
1098 td->trim_batch = td->o.trim_backlog;
1099 get_trim = 1;
1100 }
1101
1102 if (get_trim && !get_next_trim(td, io_u))
1103 return 1;
1104 }
1105
1106 return 0;
1107}
1108
1109static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1110{
1111 if (td->o.verify_backlog && td->io_hist_len) {
1112 int get_verify = 0;
1113
1114 if (td->verify_batch) {
1115 td->verify_batch--;
1116 get_verify = 1;
1117 } else if (!(td->io_hist_len % td->o.verify_backlog) &&
1118 td->last_ddir != DDIR_READ) {
1119 td->verify_batch = td->o.verify_batch;
1120 if (!td->verify_batch)
1121 td->verify_batch = td->o.verify_backlog;
1122 get_verify = 1;
1123 }
1124
1125 if (get_verify && !get_next_verify(td, io_u))
1126 return 1;
1127 }
1128
1129 return 0;
1130}
1131
1132/*
1133 * Fill offset and start time into the buffer content, to prevent too
1134 * easy compressible data for simple de-dupe attempts. Do this for every
1135 * 512b block in the range, since that should be the smallest block size
1136 * we can expect from a device.
1137 */
1138static void small_content_scramble(struct io_u *io_u)
1139{
1140 unsigned int i, nr_blocks = io_u->buflen / 512;
1141 unsigned long long boffset;
1142 unsigned int offset;
1143 void *p, *end;
1144
1145 if (!nr_blocks)
1146 return;
1147
1148 p = io_u->xfer_buf;
1149 boffset = io_u->offset;
1150 io_u->buf_filled_len = 0;
1151
1152 for (i = 0; i < nr_blocks; i++) {
1153 /*
1154 * Fill the byte offset into a "random" start offset of
1155 * the buffer, given by the product of the usec time
1156 * and the actual offset.
1157 */
1158 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1159 offset &= ~(sizeof(unsigned long long) - 1);
1160 if (offset >= 512 - sizeof(unsigned long long))
1161 offset -= sizeof(unsigned long long);
1162 memcpy(p + offset, &boffset, sizeof(boffset));
1163
1164 end = p + 512 - sizeof(io_u->start_time);
1165 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1166 p += 512;
1167 boffset += 512;
1168 }
1169}
1170
1171/*
1172 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1173 * etc. The returned io_u is fully ready to be prepped and submitted.
1174 */
1175struct io_u *get_io_u(struct thread_data *td)
1176{
1177 struct fio_file *f;
1178 struct io_u *io_u;
1179 int do_scramble = 0;
1180
1181 io_u = __get_io_u(td);
1182 if (!io_u) {
1183 dprint(FD_IO, "__get_io_u failed\n");
1184 return NULL;
1185 }
1186
1187 if (check_get_verify(td, io_u))
1188 goto out;
1189 if (check_get_trim(td, io_u))
1190 goto out;
1191
1192 /*
1193 * from a requeue, io_u already setup
1194 */
1195 if (io_u->file)
1196 goto out;
1197
1198 /*
1199 * If using an iolog, grab next piece if any available.
1200 */
1201 if (td->o.read_iolog_file) {
1202 if (read_iolog_get(td, io_u))
1203 goto err_put;
1204 } else if (set_io_u_file(td, io_u)) {
1205 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1206 goto err_put;
1207 }
1208
1209 f = io_u->file;
1210 assert(fio_file_open(f));
1211
1212 if (ddir_rw(io_u->ddir)) {
1213 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1214 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1215 goto err_put;
1216 }
1217
1218 f->last_start = io_u->offset;
1219 f->last_pos = io_u->offset + io_u->buflen;
1220
1221 if (io_u->ddir == DDIR_WRITE) {
1222 if (td->o.verify != VERIFY_NONE)
1223 populate_verify_io_u(td, io_u);
1224 else if (td->o.refill_buffers)
1225 io_u_fill_buffer(td, io_u, io_u->xfer_buflen);
1226 else if (td->o.scramble_buffers)
1227 do_scramble = 1;
1228 } else if (io_u->ddir == DDIR_READ) {
1229 /*
1230 * Reset the buf_filled parameters so next time if the
1231 * buffer is used for writes it is refilled.
1232 */
1233 io_u->buf_filled_len = 0;
1234 }
1235 }
1236
1237 /*
1238 * Set io data pointers.
1239 */
1240 io_u->xfer_buf = io_u->buf;
1241 io_u->xfer_buflen = io_u->buflen;
1242
1243out:
1244 assert(io_u->file);
1245 if (!td_io_prep(td, io_u)) {
1246 if (!td->o.disable_slat)
1247 fio_gettime(&io_u->start_time, NULL);
1248 if (do_scramble)
1249 small_content_scramble(io_u);
1250 return io_u;
1251 }
1252err_put:
1253 dprint(FD_IO, "get_io_u failed\n");
1254 put_io_u(td, io_u);
1255 return NULL;
1256}
1257
1258void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1259{
1260 const char *msg[] = { "read", "write", "sync", "datasync",
1261 "sync_file_range", "wait", "trim" };
1262
1263
1264
1265 log_err("fio: io_u error");
1266
1267 if (io_u->file)
1268 log_err(" on file %s", io_u->file->file_name);
1269
1270 log_err(": %s\n", strerror(io_u->error));
1271
1272 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1273 io_u->offset, io_u->xfer_buflen);
1274
1275 if (!td->error)
1276 td_verror(td, io_u->error, "io_u error");
1277}
1278
1279static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1280 struct io_completion_data *icd,
1281 const enum fio_ddir idx, unsigned int bytes)
1282{
1283 unsigned long uninitialized_var(lusec);
1284
1285 if (!icd->account)
1286 return;
1287
1288 if (!td->o.disable_clat || !td->o.disable_bw)
1289 lusec = utime_since(&io_u->issue_time, &icd->time);
1290
1291 if (!td->o.disable_lat) {
1292 unsigned long tusec;
1293
1294 tusec = utime_since(&io_u->start_time, &icd->time);
1295 add_lat_sample(td, idx, tusec, bytes);
1296 }
1297
1298 if (!td->o.disable_clat) {
1299 add_clat_sample(td, idx, lusec, bytes);
1300 io_u_mark_latency(td, lusec);
1301 }
1302
1303 if (!td->o.disable_bw)
1304 add_bw_sample(td, idx, bytes, &icd->time);
1305
1306 add_iops_sample(td, idx, &icd->time);
1307}
1308
1309static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1310{
1311 unsigned long long secs, remainder, bps, bytes;
1312 bytes = td->this_io_bytes[ddir];
1313 bps = td->rate_bps[ddir];
1314 secs = bytes / bps;
1315 remainder = bytes % bps;
1316 return remainder * 1000000 / bps + secs * 1000000;
1317}
1318
1319static void io_completed(struct thread_data *td, struct io_u *io_u,
1320 struct io_completion_data *icd)
1321{
1322 /*
1323 * Older gcc's are too dumb to realize that usec is always used
1324 * initialized, silence that warning.
1325 */
1326 unsigned long uninitialized_var(usec);
1327 struct fio_file *f;
1328
1329 dprint_io_u(io_u, "io complete");
1330
1331 td_io_u_lock(td);
1332 assert(io_u->flags & IO_U_F_FLIGHT);
1333 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1334 td_io_u_unlock(td);
1335
1336 if (ddir_sync(io_u->ddir)) {
1337 td->last_was_sync = 1;
1338 f = io_u->file;
1339 if (f) {
1340 f->first_write = -1ULL;
1341 f->last_write = -1ULL;
1342 }
1343 return;
1344 }
1345
1346 td->last_was_sync = 0;
1347 td->last_ddir = io_u->ddir;
1348
1349 if (!io_u->error && ddir_rw(io_u->ddir)) {
1350 unsigned int bytes = io_u->buflen - io_u->resid;
1351 const enum fio_ddir idx = io_u->ddir;
1352 const enum fio_ddir odx = io_u->ddir ^ 1;
1353 int ret;
1354
1355 td->io_blocks[idx]++;
1356 td->this_io_blocks[idx]++;
1357 td->io_bytes[idx] += bytes;
1358 td->this_io_bytes[idx] += bytes;
1359
1360 if (idx == DDIR_WRITE) {
1361 f = io_u->file;
1362 if (f) {
1363 if (f->first_write == -1ULL ||
1364 io_u->offset < f->first_write)
1365 f->first_write = io_u->offset;
1366 if (f->last_write == -1ULL ||
1367 ((io_u->offset + bytes) > f->last_write))
1368 f->last_write = io_u->offset + bytes;
1369 }
1370 }
1371
1372 if (ramp_time_over(td) && td->runstate == TD_RUNNING) {
1373 account_io_completion(td, io_u, icd, idx, bytes);
1374
1375 if (__should_check_rate(td, idx)) {
1376 td->rate_pending_usleep[idx] =
1377 (usec_for_io(td, idx) -
1378 utime_since_now(&td->start));
1379 }
1380 if (__should_check_rate(td, odx))
1381 td->rate_pending_usleep[odx] =
1382 (usec_for_io(td, odx) -
1383 utime_since_now(&td->start));
1384 }
1385
1386 if (td_write(td) && idx == DDIR_WRITE &&
1387 td->o.do_verify &&
1388 td->o.verify != VERIFY_NONE)
1389 log_io_piece(td, io_u);
1390
1391 icd->bytes_done[idx] += bytes;
1392
1393 if (io_u->end_io) {
1394 ret = io_u->end_io(td, io_u);
1395 if (ret && !icd->error)
1396 icd->error = ret;
1397 }
1398 } else if (io_u->error) {
1399 icd->error = io_u->error;
1400 io_u_log_error(td, io_u);
1401 }
1402 if (icd->error && td_non_fatal_error(icd->error) &&
1403 (td->o.continue_on_error & td_error_type(io_u->ddir, icd->error))) {
1404 /*
1405 * If there is a non_fatal error, then add to the error count
1406 * and clear all the errors.
1407 */
1408 update_error_count(td, icd->error);
1409 td_clear_error(td);
1410 icd->error = 0;
1411 io_u->error = 0;
1412 }
1413}
1414
1415static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1416 int nr)
1417{
1418 if (!td->o.disable_clat || !td->o.disable_bw)
1419 fio_gettime(&icd->time, NULL);
1420
1421 icd->nr = nr;
1422 icd->account = 1;
1423
1424 icd->error = 0;
1425 icd->bytes_done[0] = icd->bytes_done[1] = 0;
1426}
1427
1428static void ios_completed(struct thread_data *td,
1429 struct io_completion_data *icd)
1430{
1431 struct io_u *io_u;
1432 int i;
1433
1434 for (i = 0; i < icd->nr; i++) {
1435 io_u = td->io_ops->event(td, i);
1436
1437 io_completed(td, io_u, icd);
1438
1439 if (!(io_u->flags & IO_U_F_FREE_DEF))
1440 put_io_u(td, io_u);
1441
1442 icd->account = 0;
1443 }
1444}
1445
1446/*
1447 * Complete a single io_u for the sync engines.
1448 */
1449int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1450 unsigned long *bytes)
1451{
1452 struct io_completion_data icd;
1453
1454 init_icd(td, &icd, 1);
1455 io_completed(td, io_u, &icd);
1456
1457 if (!(io_u->flags & IO_U_F_FREE_DEF))
1458 put_io_u(td, io_u);
1459
1460 if (icd.error) {
1461 td_verror(td, icd.error, "io_u_sync_complete");
1462 return -1;
1463 }
1464
1465 if (bytes) {
1466 bytes[0] += icd.bytes_done[0];
1467 bytes[1] += icd.bytes_done[1];
1468 }
1469
1470 return 0;
1471}
1472
1473/*
1474 * Called to complete min_events number of io for the async engines.
1475 */
1476int io_u_queued_complete(struct thread_data *td, int min_evts,
1477 unsigned long *bytes)
1478{
1479 struct io_completion_data icd;
1480 struct timespec *tvp = NULL;
1481 int ret;
1482 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1483
1484 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1485
1486 if (!min_evts)
1487 tvp = &ts;
1488
1489 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1490 if (ret < 0) {
1491 td_verror(td, -ret, "td_io_getevents");
1492 return ret;
1493 } else if (!ret)
1494 return ret;
1495
1496 init_icd(td, &icd, ret);
1497 ios_completed(td, &icd);
1498 if (icd.error) {
1499 td_verror(td, icd.error, "io_u_queued_complete");
1500 return -1;
1501 }
1502
1503 if (bytes) {
1504 bytes[0] += icd.bytes_done[0];
1505 bytes[1] += icd.bytes_done[1];
1506 }
1507
1508 return 0;
1509}
1510
1511/*
1512 * Call when io_u is really queued, to update the submission latency.
1513 */
1514void io_u_queued(struct thread_data *td, struct io_u *io_u)
1515{
1516 if (!td->o.disable_slat) {
1517 unsigned long slat_time;
1518
1519 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1520 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1521 }
1522}
1523
1524/*
1525 * "randomly" fill the buffer contents
1526 */
1527void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1528 unsigned int max_bs)
1529{
1530 io_u->buf_filled_len = 0;
1531
1532 if (!td->o.zero_buffers)
1533 fill_random_buf(&td->buf_state, io_u->buf, max_bs);
1534 else
1535 memset(io_u->buf, 0, max_bs);
1536}