dedupe: fix dedupe_percentage=100
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->io_axmap contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct fio_file *f, const uint64_t block)
29{
30 return !axmap_isset(f->io_axmap, block);
31}
32
33/*
34 * Mark a given offset as used in the map.
35 */
36static void mark_random_map(struct thread_data *td, struct io_u *io_u)
37{
38 unsigned int min_bs = td->o.rw_min_bs;
39 struct fio_file *f = io_u->file;
40 unsigned int nr_blocks;
41 uint64_t block;
42
43 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
44 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
45
46 if (!(io_u->flags & IO_U_F_BUSY_OK))
47 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
48
49 if ((nr_blocks * min_bs) < io_u->buflen)
50 io_u->buflen = nr_blocks * min_bs;
51}
52
53static uint64_t last_block(struct thread_data *td, struct fio_file *f,
54 enum fio_ddir ddir)
55{
56 uint64_t max_blocks;
57 uint64_t max_size;
58
59 assert(ddir_rw(ddir));
60
61 /*
62 * Hmm, should we make sure that ->io_size <= ->real_file_size?
63 */
64 max_size = f->io_size;
65 if (max_size > f->real_file_size)
66 max_size = f->real_file_size;
67
68 if (td->o.zone_range)
69 max_size = td->o.zone_range;
70
71 if (td->o.min_bs[ddir] > td->o.ba[ddir])
72 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
73
74 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
75 if (!max_blocks)
76 return 0;
77
78 return max_blocks;
79}
80
81struct rand_off {
82 struct flist_head list;
83 uint64_t off;
84};
85
86static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
87 enum fio_ddir ddir, uint64_t *b)
88{
89 uint64_t r;
90
91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
92 uint64_t lastb;
93
94 lastb = last_block(td, f, ddir);
95 if (!lastb)
96 return 1;
97
98 r = __rand(&td->random_state);
99
100 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
101
102 *b = lastb * (r / ((uint64_t) FRAND_MAX + 1.0));
103 } else {
104 uint64_t off = 0;
105
106 assert(fio_file_lfsr(f));
107
108 if (lfsr_next(&f->lfsr, &off))
109 return 1;
110
111 *b = off;
112 }
113
114 /*
115 * if we are not maintaining a random map, we are done.
116 */
117 if (!file_randommap(td, f))
118 goto ret;
119
120 /*
121 * calculate map offset and check if it's free
122 */
123 if (random_map_free(f, *b))
124 goto ret;
125
126 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
127 (unsigned long long) *b);
128
129 *b = axmap_next_free(f->io_axmap, *b);
130 if (*b == (uint64_t) -1ULL)
131 return 1;
132ret:
133 return 0;
134}
135
136static int __get_next_rand_offset_zipf(struct thread_data *td,
137 struct fio_file *f, enum fio_ddir ddir,
138 uint64_t *b)
139{
140 *b = zipf_next(&f->zipf);
141 return 0;
142}
143
144static int __get_next_rand_offset_pareto(struct thread_data *td,
145 struct fio_file *f, enum fio_ddir ddir,
146 uint64_t *b)
147{
148 *b = pareto_next(&f->zipf);
149 return 0;
150}
151
152static int __get_next_rand_offset_gauss(struct thread_data *td,
153 struct fio_file *f, enum fio_ddir ddir,
154 uint64_t *b)
155{
156 *b = gauss_next(&f->gauss);
157 return 0;
158}
159
160
161static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
162{
163 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
164 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
165
166 return r1->off - r2->off;
167}
168
169static int get_off_from_method(struct thread_data *td, struct fio_file *f,
170 enum fio_ddir ddir, uint64_t *b)
171{
172 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
173 return __get_next_rand_offset(td, f, ddir, b);
174 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
175 return __get_next_rand_offset_zipf(td, f, ddir, b);
176 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
177 return __get_next_rand_offset_pareto(td, f, ddir, b);
178 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
179 return __get_next_rand_offset_gauss(td, f, ddir, b);
180
181 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
182 return 1;
183}
184
185/*
186 * Sort the reads for a verify phase in batches of verifysort_nr, if
187 * specified.
188 */
189static inline int should_sort_io(struct thread_data *td)
190{
191 if (!td->o.verifysort_nr || !td->o.do_verify)
192 return 0;
193 if (!td_random(td))
194 return 0;
195 if (td->runstate != TD_VERIFYING)
196 return 0;
197 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
198 return 0;
199
200 return 1;
201}
202
203static int should_do_random(struct thread_data *td, enum fio_ddir ddir)
204{
205 unsigned int v;
206 unsigned long r;
207
208 if (td->o.perc_rand[ddir] == 100)
209 return 1;
210
211 r = __rand(&td->seq_rand_state[ddir]);
212 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
213
214 return v <= td->o.perc_rand[ddir];
215}
216
217static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
218 enum fio_ddir ddir, uint64_t *b)
219{
220 struct rand_off *r;
221 int i, ret = 1;
222
223 if (!should_sort_io(td))
224 return get_off_from_method(td, f, ddir, b);
225
226 if (!flist_empty(&td->next_rand_list)) {
227fetch:
228 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
229 flist_del(&r->list);
230 *b = r->off;
231 free(r);
232 return 0;
233 }
234
235 for (i = 0; i < td->o.verifysort_nr; i++) {
236 r = malloc(sizeof(*r));
237
238 ret = get_off_from_method(td, f, ddir, &r->off);
239 if (ret) {
240 free(r);
241 break;
242 }
243
244 flist_add(&r->list, &td->next_rand_list);
245 }
246
247 if (ret && !i)
248 return ret;
249
250 assert(!flist_empty(&td->next_rand_list));
251 flist_sort(NULL, &td->next_rand_list, flist_cmp);
252 goto fetch;
253}
254
255static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
256 enum fio_ddir ddir, uint64_t *b)
257{
258 if (!get_next_rand_offset(td, f, ddir, b))
259 return 0;
260
261 if (td->o.time_based) {
262 fio_file_reset(td, f);
263 if (!get_next_rand_offset(td, f, ddir, b))
264 return 0;
265 }
266
267 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
268 f->file_name, (unsigned long long) f->last_pos[ddir],
269 (unsigned long long) f->real_file_size);
270 return 1;
271}
272
273static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
274 enum fio_ddir ddir, uint64_t *offset)
275{
276 struct thread_options *o = &td->o;
277
278 assert(ddir_rw(ddir));
279
280 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
281 o->time_based)
282 f->last_pos[ddir] = f->last_pos[ddir] - f->io_size;
283
284 if (f->last_pos[ddir] < f->real_file_size) {
285 uint64_t pos;
286
287 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0)
288 f->last_pos[ddir] = f->real_file_size;
289
290 pos = f->last_pos[ddir] - f->file_offset;
291 if (pos && o->ddir_seq_add) {
292 pos += o->ddir_seq_add;
293
294 /*
295 * If we reach beyond the end of the file
296 * with holed IO, wrap around to the
297 * beginning again.
298 */
299 if (pos >= f->real_file_size)
300 pos = f->file_offset;
301 }
302
303 *offset = pos;
304 return 0;
305 }
306
307 return 1;
308}
309
310static int get_next_block(struct thread_data *td, struct io_u *io_u,
311 enum fio_ddir ddir, int rw_seq,
312 unsigned int *is_random)
313{
314 struct fio_file *f = io_u->file;
315 uint64_t b, offset;
316 int ret;
317
318 assert(ddir_rw(ddir));
319
320 b = offset = -1ULL;
321
322 if (rw_seq) {
323 if (td_random(td)) {
324 if (should_do_random(td, ddir)) {
325 ret = get_next_rand_block(td, f, ddir, &b);
326 *is_random = 1;
327 } else {
328 *is_random = 0;
329 io_u_set(io_u, IO_U_F_BUSY_OK);
330 ret = get_next_seq_offset(td, f, ddir, &offset);
331 if (ret)
332 ret = get_next_rand_block(td, f, ddir, &b);
333 }
334 } else {
335 *is_random = 0;
336 ret = get_next_seq_offset(td, f, ddir, &offset);
337 }
338 } else {
339 io_u_set(io_u, IO_U_F_BUSY_OK);
340 *is_random = 0;
341
342 if (td->o.rw_seq == RW_SEQ_SEQ) {
343 ret = get_next_seq_offset(td, f, ddir, &offset);
344 if (ret) {
345 ret = get_next_rand_block(td, f, ddir, &b);
346 *is_random = 0;
347 }
348 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
349 if (f->last_start[ddir] != -1ULL)
350 offset = f->last_start[ddir] - f->file_offset;
351 else
352 offset = 0;
353 ret = 0;
354 } else {
355 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
356 ret = 1;
357 }
358 }
359
360 if (!ret) {
361 if (offset != -1ULL)
362 io_u->offset = offset;
363 else if (b != -1ULL)
364 io_u->offset = b * td->o.ba[ddir];
365 else {
366 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
367 ret = 1;
368 }
369 }
370
371 return ret;
372}
373
374/*
375 * For random io, generate a random new block and see if it's used. Repeat
376 * until we find a free one. For sequential io, just return the end of
377 * the last io issued.
378 */
379static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
380 unsigned int *is_random)
381{
382 struct fio_file *f = io_u->file;
383 enum fio_ddir ddir = io_u->ddir;
384 int rw_seq_hit = 0;
385
386 assert(ddir_rw(ddir));
387
388 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
389 rw_seq_hit = 1;
390 td->ddir_seq_nr = td->o.ddir_seq_nr;
391 }
392
393 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
394 return 1;
395
396 if (io_u->offset >= f->io_size) {
397 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
398 (unsigned long long) io_u->offset,
399 (unsigned long long) f->io_size);
400 return 1;
401 }
402
403 io_u->offset += f->file_offset;
404 if (io_u->offset >= f->real_file_size) {
405 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
406 (unsigned long long) io_u->offset,
407 (unsigned long long) f->real_file_size);
408 return 1;
409 }
410
411 return 0;
412}
413
414static int get_next_offset(struct thread_data *td, struct io_u *io_u,
415 unsigned int *is_random)
416{
417 if (td->flags & TD_F_PROFILE_OPS) {
418 struct prof_io_ops *ops = &td->prof_io_ops;
419
420 if (ops->fill_io_u_off)
421 return ops->fill_io_u_off(td, io_u, is_random);
422 }
423
424 return __get_next_offset(td, io_u, is_random);
425}
426
427static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
428 unsigned int buflen)
429{
430 struct fio_file *f = io_u->file;
431
432 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
433}
434
435static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
436 unsigned int is_random)
437{
438 int ddir = io_u->ddir;
439 unsigned int buflen = 0;
440 unsigned int minbs, maxbs;
441 unsigned long r;
442
443 assert(ddir_rw(ddir));
444
445 if (td->o.bs_is_seq_rand)
446 ddir = is_random ? DDIR_WRITE: DDIR_READ;
447
448 minbs = td->o.min_bs[ddir];
449 maxbs = td->o.max_bs[ddir];
450
451 if (minbs == maxbs)
452 return minbs;
453
454 /*
455 * If we can't satisfy the min block size from here, then fail
456 */
457 if (!io_u_fits(td, io_u, minbs))
458 return 0;
459
460 do {
461 r = __rand(&td->bsrange_state);
462
463 if (!td->o.bssplit_nr[ddir]) {
464 buflen = 1 + (unsigned int) ((double) maxbs *
465 (r / (FRAND_MAX + 1.0)));
466 if (buflen < minbs)
467 buflen = minbs;
468 } else {
469 long perc = 0;
470 unsigned int i;
471
472 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
473 struct bssplit *bsp = &td->o.bssplit[ddir][i];
474
475 buflen = bsp->bs;
476 perc += bsp->perc;
477 if ((r <= ((FRAND_MAX / 100L) * perc)) &&
478 io_u_fits(td, io_u, buflen))
479 break;
480 }
481 }
482
483 if (td->o.do_verify && td->o.verify != VERIFY_NONE)
484 buflen = (buflen + td->o.verify_interval - 1) &
485 ~(td->o.verify_interval - 1);
486
487 if (!td->o.bs_unaligned && is_power_of_2(minbs))
488 buflen &= ~(minbs - 1);
489
490 } while (!io_u_fits(td, io_u, buflen));
491
492 return buflen;
493}
494
495static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
496 unsigned int is_random)
497{
498 if (td->flags & TD_F_PROFILE_OPS) {
499 struct prof_io_ops *ops = &td->prof_io_ops;
500
501 if (ops->fill_io_u_size)
502 return ops->fill_io_u_size(td, io_u, is_random);
503 }
504
505 return __get_next_buflen(td, io_u, is_random);
506}
507
508static void set_rwmix_bytes(struct thread_data *td)
509{
510 unsigned int diff;
511
512 /*
513 * we do time or byte based switch. this is needed because
514 * buffered writes may issue a lot quicker than they complete,
515 * whereas reads do not.
516 */
517 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
518 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
519}
520
521static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
522{
523 unsigned int v;
524 unsigned long r;
525
526 r = __rand(&td->rwmix_state);
527 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
528
529 if (v <= td->o.rwmix[DDIR_READ])
530 return DDIR_READ;
531
532 return DDIR_WRITE;
533}
534
535void io_u_quiesce(struct thread_data *td)
536{
537 /*
538 * We are going to sleep, ensure that we flush anything pending as
539 * not to skew our latency numbers.
540 *
541 * Changed to only monitor 'in flight' requests here instead of the
542 * td->cur_depth, b/c td->cur_depth does not accurately represent
543 * io's that have been actually submitted to an async engine,
544 * and cur_depth is meaningless for sync engines.
545 */
546 if (td->io_u_queued || td->cur_depth) {
547 int fio_unused ret;
548
549 ret = td_io_commit(td);
550 }
551
552 while (td->io_u_in_flight) {
553 int fio_unused ret;
554
555 ret = io_u_queued_complete(td, 1);
556 }
557}
558
559static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
560{
561 enum fio_ddir odir = ddir ^ 1;
562 long usec;
563
564 assert(ddir_rw(ddir));
565
566 if (td->rate_pending_usleep[ddir] <= 0)
567 return ddir;
568
569 /*
570 * We have too much pending sleep in this direction. See if we
571 * should switch.
572 */
573 if (td_rw(td) && td->o.rwmix[odir]) {
574 /*
575 * Other direction does not have too much pending, switch
576 */
577 if (td->rate_pending_usleep[odir] < 100000)
578 return odir;
579
580 /*
581 * Both directions have pending sleep. Sleep the minimum time
582 * and deduct from both.
583 */
584 if (td->rate_pending_usleep[ddir] <=
585 td->rate_pending_usleep[odir]) {
586 usec = td->rate_pending_usleep[ddir];
587 } else {
588 usec = td->rate_pending_usleep[odir];
589 ddir = odir;
590 }
591 } else
592 usec = td->rate_pending_usleep[ddir];
593
594 if (td->o.io_submit_mode == IO_MODE_INLINE)
595 io_u_quiesce(td);
596
597 usec = usec_sleep(td, usec);
598
599 td->rate_pending_usleep[ddir] -= usec;
600
601 odir = ddir ^ 1;
602 if (td_rw(td) && __should_check_rate(td, odir))
603 td->rate_pending_usleep[odir] -= usec;
604
605 return ddir;
606}
607
608/*
609 * Return the data direction for the next io_u. If the job is a
610 * mixed read/write workload, check the rwmix cycle and switch if
611 * necessary.
612 */
613static enum fio_ddir get_rw_ddir(struct thread_data *td)
614{
615 enum fio_ddir ddir;
616
617 /*
618 * see if it's time to fsync
619 */
620 if (td->o.fsync_blocks &&
621 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
622 td->io_issues[DDIR_WRITE] && should_fsync(td))
623 return DDIR_SYNC;
624
625 /*
626 * see if it's time to fdatasync
627 */
628 if (td->o.fdatasync_blocks &&
629 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
630 td->io_issues[DDIR_WRITE] && should_fsync(td))
631 return DDIR_DATASYNC;
632
633 /*
634 * see if it's time to sync_file_range
635 */
636 if (td->sync_file_range_nr &&
637 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
638 td->io_issues[DDIR_WRITE] && should_fsync(td))
639 return DDIR_SYNC_FILE_RANGE;
640
641 if (td_rw(td)) {
642 /*
643 * Check if it's time to seed a new data direction.
644 */
645 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
646 /*
647 * Put a top limit on how many bytes we do for
648 * one data direction, to avoid overflowing the
649 * ranges too much
650 */
651 ddir = get_rand_ddir(td);
652
653 if (ddir != td->rwmix_ddir)
654 set_rwmix_bytes(td);
655
656 td->rwmix_ddir = ddir;
657 }
658 ddir = td->rwmix_ddir;
659 } else if (td_read(td))
660 ddir = DDIR_READ;
661 else if (td_write(td))
662 ddir = DDIR_WRITE;
663 else
664 ddir = DDIR_TRIM;
665
666 td->rwmix_ddir = rate_ddir(td, ddir);
667 return td->rwmix_ddir;
668}
669
670static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
671{
672 enum fio_ddir ddir = get_rw_ddir(td);
673
674 if (td_trimwrite(td)) {
675 struct fio_file *f = io_u->file;
676 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
677 ddir = DDIR_TRIM;
678 else
679 ddir = DDIR_WRITE;
680 }
681
682 io_u->ddir = io_u->acct_ddir = ddir;
683
684 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
685 td->o.barrier_blocks &&
686 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
687 td->io_issues[DDIR_WRITE])
688 io_u_set(io_u, IO_U_F_BARRIER);
689}
690
691void put_file_log(struct thread_data *td, struct fio_file *f)
692{
693 unsigned int ret = put_file(td, f);
694
695 if (ret)
696 td_verror(td, ret, "file close");
697}
698
699void put_io_u(struct thread_data *td, struct io_u *io_u)
700{
701 if (td->parent)
702 td = td->parent;
703
704 td_io_u_lock(td);
705
706 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
707 put_file_log(td, io_u->file);
708
709 io_u->file = NULL;
710 io_u_set(io_u, IO_U_F_FREE);
711
712 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
713 td->cur_depth--;
714 assert(!(td->flags & TD_F_CHILD));
715 }
716 io_u_qpush(&td->io_u_freelist, io_u);
717 td_io_u_unlock(td);
718 td_io_u_free_notify(td);
719}
720
721void clear_io_u(struct thread_data *td, struct io_u *io_u)
722{
723 io_u_clear(io_u, IO_U_F_FLIGHT);
724 put_io_u(td, io_u);
725}
726
727void requeue_io_u(struct thread_data *td, struct io_u **io_u)
728{
729 struct io_u *__io_u = *io_u;
730 enum fio_ddir ddir = acct_ddir(__io_u);
731
732 dprint(FD_IO, "requeue %p\n", __io_u);
733
734 if (td->parent)
735 td = td->parent;
736
737 td_io_u_lock(td);
738
739 io_u_set(__io_u, IO_U_F_FREE);
740 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
741 td->io_issues[ddir]--;
742
743 io_u_clear(__io_u, IO_U_F_FLIGHT);
744 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
745 td->cur_depth--;
746 assert(!(td->flags & TD_F_CHILD));
747 }
748
749 io_u_rpush(&td->io_u_requeues, __io_u);
750 td_io_u_unlock(td);
751 td_io_u_free_notify(td);
752 *io_u = NULL;
753}
754
755static int fill_io_u(struct thread_data *td, struct io_u *io_u)
756{
757 unsigned int is_random;
758
759 if (td->io_ops->flags & FIO_NOIO)
760 goto out;
761
762 set_rw_ddir(td, io_u);
763
764 /*
765 * fsync() or fdatasync() or trim etc, we are done
766 */
767 if (!ddir_rw(io_u->ddir))
768 goto out;
769
770 /*
771 * See if it's time to switch to a new zone
772 */
773 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
774 struct fio_file *f = io_u->file;
775
776 td->zone_bytes = 0;
777 f->file_offset += td->o.zone_range + td->o.zone_skip;
778
779 /*
780 * Wrap from the beginning, if we exceed the file size
781 */
782 if (f->file_offset >= f->real_file_size)
783 f->file_offset = f->real_file_size - f->file_offset;
784 f->last_pos[io_u->ddir] = f->file_offset;
785 td->io_skip_bytes += td->o.zone_skip;
786 }
787
788 /*
789 * No log, let the seq/rand engine retrieve the next buflen and
790 * position.
791 */
792 if (get_next_offset(td, io_u, &is_random)) {
793 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
794 return 1;
795 }
796
797 io_u->buflen = get_next_buflen(td, io_u, is_random);
798 if (!io_u->buflen) {
799 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
800 return 1;
801 }
802
803 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
804 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
805 dprint(FD_IO, " off=%llu/%lu > %llu\n",
806 (unsigned long long) io_u->offset, io_u->buflen,
807 (unsigned long long) io_u->file->real_file_size);
808 return 1;
809 }
810
811 /*
812 * mark entry before potentially trimming io_u
813 */
814 if (td_random(td) && file_randommap(td, io_u->file))
815 mark_random_map(td, io_u);
816
817out:
818 dprint_io_u(io_u, "fill_io_u");
819 td->zone_bytes += io_u->buflen;
820 return 0;
821}
822
823static void __io_u_mark_map(unsigned int *map, unsigned int nr)
824{
825 int idx = 0;
826
827 switch (nr) {
828 default:
829 idx = 6;
830 break;
831 case 33 ... 64:
832 idx = 5;
833 break;
834 case 17 ... 32:
835 idx = 4;
836 break;
837 case 9 ... 16:
838 idx = 3;
839 break;
840 case 5 ... 8:
841 idx = 2;
842 break;
843 case 1 ... 4:
844 idx = 1;
845 case 0:
846 break;
847 }
848
849 map[idx]++;
850}
851
852void io_u_mark_submit(struct thread_data *td, unsigned int nr)
853{
854 __io_u_mark_map(td->ts.io_u_submit, nr);
855 td->ts.total_submit++;
856}
857
858void io_u_mark_complete(struct thread_data *td, unsigned int nr)
859{
860 __io_u_mark_map(td->ts.io_u_complete, nr);
861 td->ts.total_complete++;
862}
863
864void io_u_mark_depth(struct thread_data *td, unsigned int nr)
865{
866 int idx = 0;
867
868 switch (td->cur_depth) {
869 default:
870 idx = 6;
871 break;
872 case 32 ... 63:
873 idx = 5;
874 break;
875 case 16 ... 31:
876 idx = 4;
877 break;
878 case 8 ... 15:
879 idx = 3;
880 break;
881 case 4 ... 7:
882 idx = 2;
883 break;
884 case 2 ... 3:
885 idx = 1;
886 case 1:
887 break;
888 }
889
890 td->ts.io_u_map[idx] += nr;
891}
892
893static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
894{
895 int idx = 0;
896
897 assert(usec < 1000);
898
899 switch (usec) {
900 case 750 ... 999:
901 idx = 9;
902 break;
903 case 500 ... 749:
904 idx = 8;
905 break;
906 case 250 ... 499:
907 idx = 7;
908 break;
909 case 100 ... 249:
910 idx = 6;
911 break;
912 case 50 ... 99:
913 idx = 5;
914 break;
915 case 20 ... 49:
916 idx = 4;
917 break;
918 case 10 ... 19:
919 idx = 3;
920 break;
921 case 4 ... 9:
922 idx = 2;
923 break;
924 case 2 ... 3:
925 idx = 1;
926 case 0 ... 1:
927 break;
928 }
929
930 assert(idx < FIO_IO_U_LAT_U_NR);
931 td->ts.io_u_lat_u[idx]++;
932}
933
934static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
935{
936 int idx = 0;
937
938 switch (msec) {
939 default:
940 idx = 11;
941 break;
942 case 1000 ... 1999:
943 idx = 10;
944 break;
945 case 750 ... 999:
946 idx = 9;
947 break;
948 case 500 ... 749:
949 idx = 8;
950 break;
951 case 250 ... 499:
952 idx = 7;
953 break;
954 case 100 ... 249:
955 idx = 6;
956 break;
957 case 50 ... 99:
958 idx = 5;
959 break;
960 case 20 ... 49:
961 idx = 4;
962 break;
963 case 10 ... 19:
964 idx = 3;
965 break;
966 case 4 ... 9:
967 idx = 2;
968 break;
969 case 2 ... 3:
970 idx = 1;
971 case 0 ... 1:
972 break;
973 }
974
975 assert(idx < FIO_IO_U_LAT_M_NR);
976 td->ts.io_u_lat_m[idx]++;
977}
978
979static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
980{
981 if (usec < 1000)
982 io_u_mark_lat_usec(td, usec);
983 else
984 io_u_mark_lat_msec(td, usec / 1000);
985}
986
987/*
988 * Get next file to service by choosing one at random
989 */
990static struct fio_file *get_next_file_rand(struct thread_data *td,
991 enum fio_file_flags goodf,
992 enum fio_file_flags badf)
993{
994 struct fio_file *f;
995 int fno;
996
997 do {
998 int opened = 0;
999 unsigned long r;
1000
1001 r = __rand(&td->next_file_state);
1002 fno = (unsigned int) ((double) td->o.nr_files
1003 * (r / (FRAND_MAX + 1.0)));
1004
1005 f = td->files[fno];
1006 if (fio_file_done(f))
1007 continue;
1008
1009 if (!fio_file_open(f)) {
1010 int err;
1011
1012 if (td->nr_open_files >= td->o.open_files)
1013 return ERR_PTR(-EBUSY);
1014
1015 err = td_io_open_file(td, f);
1016 if (err)
1017 continue;
1018 opened = 1;
1019 }
1020
1021 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1022 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1023 return f;
1024 }
1025 if (opened)
1026 td_io_close_file(td, f);
1027 } while (1);
1028}
1029
1030/*
1031 * Get next file to service by doing round robin between all available ones
1032 */
1033static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1034 int badf)
1035{
1036 unsigned int old_next_file = td->next_file;
1037 struct fio_file *f;
1038
1039 do {
1040 int opened = 0;
1041
1042 f = td->files[td->next_file];
1043
1044 td->next_file++;
1045 if (td->next_file >= td->o.nr_files)
1046 td->next_file = 0;
1047
1048 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1049 if (fio_file_done(f)) {
1050 f = NULL;
1051 continue;
1052 }
1053
1054 if (!fio_file_open(f)) {
1055 int err;
1056
1057 if (td->nr_open_files >= td->o.open_files)
1058 return ERR_PTR(-EBUSY);
1059
1060 err = td_io_open_file(td, f);
1061 if (err) {
1062 dprint(FD_FILE, "error %d on open of %s\n",
1063 err, f->file_name);
1064 f = NULL;
1065 continue;
1066 }
1067 opened = 1;
1068 }
1069
1070 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1071 f->flags);
1072 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1073 break;
1074
1075 if (opened)
1076 td_io_close_file(td, f);
1077
1078 f = NULL;
1079 } while (td->next_file != old_next_file);
1080
1081 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1082 return f;
1083}
1084
1085static struct fio_file *__get_next_file(struct thread_data *td)
1086{
1087 struct fio_file *f;
1088
1089 assert(td->o.nr_files <= td->files_index);
1090
1091 if (td->nr_done_files >= td->o.nr_files) {
1092 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1093 " nr_files=%d\n", td->nr_open_files,
1094 td->nr_done_files,
1095 td->o.nr_files);
1096 return NULL;
1097 }
1098
1099 f = td->file_service_file;
1100 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1101 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1102 goto out;
1103 if (td->file_service_left--)
1104 goto out;
1105 }
1106
1107 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1108 td->o.file_service_type == FIO_FSERVICE_SEQ)
1109 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1110 else
1111 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1112
1113 if (IS_ERR(f))
1114 return f;
1115
1116 td->file_service_file = f;
1117 td->file_service_left = td->file_service_nr - 1;
1118out:
1119 if (f)
1120 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1121 else
1122 dprint(FD_FILE, "get_next_file: NULL\n");
1123 return f;
1124}
1125
1126static struct fio_file *get_next_file(struct thread_data *td)
1127{
1128 if (td->flags & TD_F_PROFILE_OPS) {
1129 struct prof_io_ops *ops = &td->prof_io_ops;
1130
1131 if (ops->get_next_file)
1132 return ops->get_next_file(td);
1133 }
1134
1135 return __get_next_file(td);
1136}
1137
1138static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1139{
1140 struct fio_file *f;
1141
1142 do {
1143 f = get_next_file(td);
1144 if (IS_ERR_OR_NULL(f))
1145 return PTR_ERR(f);
1146
1147 io_u->file = f;
1148 get_file(f);
1149
1150 if (!fill_io_u(td, io_u))
1151 break;
1152
1153 put_file_log(td, f);
1154 td_io_close_file(td, f);
1155 io_u->file = NULL;
1156 fio_file_set_done(f);
1157 td->nr_done_files++;
1158 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1159 td->nr_done_files, td->o.nr_files);
1160 } while (1);
1161
1162 return 0;
1163}
1164
1165static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1166 unsigned long tusec, unsigned long max_usec)
1167{
1168 if (!td->error)
1169 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1170 td_verror(td, ETIMEDOUT, "max latency exceeded");
1171 icd->error = ETIMEDOUT;
1172}
1173
1174static void lat_new_cycle(struct thread_data *td)
1175{
1176 fio_gettime(&td->latency_ts, NULL);
1177 td->latency_ios = ddir_rw_sum(td->io_blocks);
1178 td->latency_failed = 0;
1179}
1180
1181/*
1182 * We had an IO outside the latency target. Reduce the queue depth. If we
1183 * are at QD=1, then it's time to give up.
1184 */
1185static int __lat_target_failed(struct thread_data *td)
1186{
1187 if (td->latency_qd == 1)
1188 return 1;
1189
1190 td->latency_qd_high = td->latency_qd;
1191
1192 if (td->latency_qd == td->latency_qd_low)
1193 td->latency_qd_low--;
1194
1195 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1196
1197 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1198
1199 /*
1200 * When we ramp QD down, quiesce existing IO to prevent
1201 * a storm of ramp downs due to pending higher depth.
1202 */
1203 io_u_quiesce(td);
1204 lat_new_cycle(td);
1205 return 0;
1206}
1207
1208static int lat_target_failed(struct thread_data *td)
1209{
1210 if (td->o.latency_percentile.u.f == 100.0)
1211 return __lat_target_failed(td);
1212
1213 td->latency_failed++;
1214 return 0;
1215}
1216
1217void lat_target_init(struct thread_data *td)
1218{
1219 td->latency_end_run = 0;
1220
1221 if (td->o.latency_target) {
1222 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1223 fio_gettime(&td->latency_ts, NULL);
1224 td->latency_qd = 1;
1225 td->latency_qd_high = td->o.iodepth;
1226 td->latency_qd_low = 1;
1227 td->latency_ios = ddir_rw_sum(td->io_blocks);
1228 } else
1229 td->latency_qd = td->o.iodepth;
1230}
1231
1232void lat_target_reset(struct thread_data *td)
1233{
1234 if (!td->latency_end_run)
1235 lat_target_init(td);
1236}
1237
1238static void lat_target_success(struct thread_data *td)
1239{
1240 const unsigned int qd = td->latency_qd;
1241 struct thread_options *o = &td->o;
1242
1243 td->latency_qd_low = td->latency_qd;
1244
1245 /*
1246 * If we haven't failed yet, we double up to a failing value instead
1247 * of bisecting from highest possible queue depth. If we have set
1248 * a limit other than td->o.iodepth, bisect between that.
1249 */
1250 if (td->latency_qd_high != o->iodepth)
1251 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1252 else
1253 td->latency_qd *= 2;
1254
1255 if (td->latency_qd > o->iodepth)
1256 td->latency_qd = o->iodepth;
1257
1258 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1259
1260 /*
1261 * Same as last one, we are done. Let it run a latency cycle, so
1262 * we get only the results from the targeted depth.
1263 */
1264 if (td->latency_qd == qd) {
1265 if (td->latency_end_run) {
1266 dprint(FD_RATE, "We are done\n");
1267 td->done = 1;
1268 } else {
1269 dprint(FD_RATE, "Quiesce and final run\n");
1270 io_u_quiesce(td);
1271 td->latency_end_run = 1;
1272 reset_all_stats(td);
1273 reset_io_stats(td);
1274 }
1275 }
1276
1277 lat_new_cycle(td);
1278}
1279
1280/*
1281 * Check if we can bump the queue depth
1282 */
1283void lat_target_check(struct thread_data *td)
1284{
1285 uint64_t usec_window;
1286 uint64_t ios;
1287 double success_ios;
1288
1289 usec_window = utime_since_now(&td->latency_ts);
1290 if (usec_window < td->o.latency_window)
1291 return;
1292
1293 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1294 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1295 success_ios *= 100.0;
1296
1297 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1298
1299 if (success_ios >= td->o.latency_percentile.u.f)
1300 lat_target_success(td);
1301 else
1302 __lat_target_failed(td);
1303}
1304
1305/*
1306 * If latency target is enabled, we might be ramping up or down and not
1307 * using the full queue depth available.
1308 */
1309int queue_full(const struct thread_data *td)
1310{
1311 const int qempty = io_u_qempty(&td->io_u_freelist);
1312
1313 if (qempty)
1314 return 1;
1315 if (!td->o.latency_target)
1316 return 0;
1317
1318 return td->cur_depth >= td->latency_qd;
1319}
1320
1321struct io_u *__get_io_u(struct thread_data *td)
1322{
1323 struct io_u *io_u = NULL;
1324
1325 if (td->stop_io)
1326 return NULL;
1327
1328 td_io_u_lock(td);
1329
1330again:
1331 if (!io_u_rempty(&td->io_u_requeues))
1332 io_u = io_u_rpop(&td->io_u_requeues);
1333 else if (!queue_full(td)) {
1334 io_u = io_u_qpop(&td->io_u_freelist);
1335
1336 io_u->file = NULL;
1337 io_u->buflen = 0;
1338 io_u->resid = 0;
1339 io_u->end_io = NULL;
1340 }
1341
1342 if (io_u) {
1343 assert(io_u->flags & IO_U_F_FREE);
1344 io_u_clear(io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1345 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1346 IO_U_F_VER_LIST);
1347
1348 io_u->error = 0;
1349 io_u->acct_ddir = -1;
1350 td->cur_depth++;
1351 assert(!(td->flags & TD_F_CHILD));
1352 io_u_set(io_u, IO_U_F_IN_CUR_DEPTH);
1353 io_u->ipo = NULL;
1354 } else if (td_async_processing(td)) {
1355 /*
1356 * We ran out, wait for async verify threads to finish and
1357 * return one
1358 */
1359 assert(!(td->flags & TD_F_CHILD));
1360 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1361 goto again;
1362 }
1363
1364 td_io_u_unlock(td);
1365 return io_u;
1366}
1367
1368static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1369{
1370 if (!(td->flags & TD_F_TRIM_BACKLOG))
1371 return 0;
1372
1373 if (td->trim_entries) {
1374 int get_trim = 0;
1375
1376 if (td->trim_batch) {
1377 td->trim_batch--;
1378 get_trim = 1;
1379 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1380 td->last_ddir != DDIR_READ) {
1381 td->trim_batch = td->o.trim_batch;
1382 if (!td->trim_batch)
1383 td->trim_batch = td->o.trim_backlog;
1384 get_trim = 1;
1385 }
1386
1387 if (get_trim && !get_next_trim(td, io_u))
1388 return 1;
1389 }
1390
1391 return 0;
1392}
1393
1394static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1395{
1396 if (!(td->flags & TD_F_VER_BACKLOG))
1397 return 0;
1398
1399 if (td->io_hist_len) {
1400 int get_verify = 0;
1401
1402 if (td->verify_batch)
1403 get_verify = 1;
1404 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1405 td->last_ddir != DDIR_READ) {
1406 td->verify_batch = td->o.verify_batch;
1407 if (!td->verify_batch)
1408 td->verify_batch = td->o.verify_backlog;
1409 get_verify = 1;
1410 }
1411
1412 if (get_verify && !get_next_verify(td, io_u)) {
1413 td->verify_batch--;
1414 return 1;
1415 }
1416 }
1417
1418 return 0;
1419}
1420
1421/*
1422 * Fill offset and start time into the buffer content, to prevent too
1423 * easy compressible data for simple de-dupe attempts. Do this for every
1424 * 512b block in the range, since that should be the smallest block size
1425 * we can expect from a device.
1426 */
1427static void small_content_scramble(struct io_u *io_u)
1428{
1429 unsigned int i, nr_blocks = io_u->buflen / 512;
1430 uint64_t boffset;
1431 unsigned int offset;
1432 void *p, *end;
1433
1434 if (!nr_blocks)
1435 return;
1436
1437 p = io_u->xfer_buf;
1438 boffset = io_u->offset;
1439 io_u->buf_filled_len = 0;
1440
1441 for (i = 0; i < nr_blocks; i++) {
1442 /*
1443 * Fill the byte offset into a "random" start offset of
1444 * the buffer, given by the product of the usec time
1445 * and the actual offset.
1446 */
1447 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1448 offset &= ~(sizeof(uint64_t) - 1);
1449 if (offset >= 512 - sizeof(uint64_t))
1450 offset -= sizeof(uint64_t);
1451 memcpy(p + offset, &boffset, sizeof(boffset));
1452
1453 end = p + 512 - sizeof(io_u->start_time);
1454 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1455 p += 512;
1456 boffset += 512;
1457 }
1458}
1459
1460/*
1461 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1462 * etc. The returned io_u is fully ready to be prepped and submitted.
1463 */
1464struct io_u *get_io_u(struct thread_data *td)
1465{
1466 struct fio_file *f;
1467 struct io_u *io_u;
1468 int do_scramble = 0;
1469 long ret = 0;
1470
1471 io_u = __get_io_u(td);
1472 if (!io_u) {
1473 dprint(FD_IO, "__get_io_u failed\n");
1474 return NULL;
1475 }
1476
1477 if (check_get_verify(td, io_u))
1478 goto out;
1479 if (check_get_trim(td, io_u))
1480 goto out;
1481
1482 /*
1483 * from a requeue, io_u already setup
1484 */
1485 if (io_u->file)
1486 goto out;
1487
1488 /*
1489 * If using an iolog, grab next piece if any available.
1490 */
1491 if (td->flags & TD_F_READ_IOLOG) {
1492 if (read_iolog_get(td, io_u))
1493 goto err_put;
1494 } else if (set_io_u_file(td, io_u)) {
1495 ret = -EBUSY;
1496 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1497 goto err_put;
1498 }
1499
1500 f = io_u->file;
1501 if (!f) {
1502 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1503 goto err_put;
1504 }
1505
1506 assert(fio_file_open(f));
1507
1508 if (ddir_rw(io_u->ddir)) {
1509 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1510 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1511 goto err_put;
1512 }
1513
1514 f->last_start[io_u->ddir] = io_u->offset;
1515 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1516
1517 if (io_u->ddir == DDIR_WRITE) {
1518 if (td->flags & TD_F_REFILL_BUFFERS) {
1519 io_u_fill_buffer(td, io_u,
1520 td->o.min_bs[DDIR_WRITE],
1521 io_u->xfer_buflen);
1522 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1523 !(td->flags & TD_F_COMPRESS))
1524 do_scramble = 1;
1525 if (td->flags & TD_F_VER_NONE) {
1526 populate_verify_io_u(td, io_u);
1527 do_scramble = 0;
1528 }
1529 } else if (io_u->ddir == DDIR_READ) {
1530 /*
1531 * Reset the buf_filled parameters so next time if the
1532 * buffer is used for writes it is refilled.
1533 */
1534 io_u->buf_filled_len = 0;
1535 }
1536 }
1537
1538 /*
1539 * Set io data pointers.
1540 */
1541 io_u->xfer_buf = io_u->buf;
1542 io_u->xfer_buflen = io_u->buflen;
1543
1544out:
1545 assert(io_u->file);
1546 if (!td_io_prep(td, io_u)) {
1547 if (!td->o.disable_slat)
1548 fio_gettime(&io_u->start_time, NULL);
1549 if (do_scramble)
1550 small_content_scramble(io_u);
1551 return io_u;
1552 }
1553err_put:
1554 dprint(FD_IO, "get_io_u failed\n");
1555 put_io_u(td, io_u);
1556 return ERR_PTR(ret);
1557}
1558
1559static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1560{
1561 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1562
1563 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1564 return;
1565
1566 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1567 io_u->file ? " on file " : "",
1568 io_u->file ? io_u->file->file_name : "",
1569 strerror(io_u->error),
1570 io_ddir_name(io_u->ddir),
1571 io_u->offset, io_u->xfer_buflen);
1572
1573 if (!td->error)
1574 td_verror(td, io_u->error, "io_u error");
1575}
1576
1577void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1578{
1579 __io_u_log_error(td, io_u);
1580 if (td->parent)
1581 __io_u_log_error(td, io_u);
1582}
1583
1584static inline int gtod_reduce(struct thread_data *td)
1585{
1586 return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat
1587 && td->o.disable_bw;
1588}
1589
1590static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1591 struct io_completion_data *icd,
1592 const enum fio_ddir idx, unsigned int bytes)
1593{
1594 const int no_reduce = !gtod_reduce(td);
1595 unsigned long lusec = 0;
1596
1597 if (no_reduce)
1598 lusec = utime_since(&io_u->issue_time, &icd->time);
1599
1600 if (!td->o.disable_lat) {
1601 unsigned long tusec;
1602
1603 tusec = utime_since(&io_u->start_time, &icd->time);
1604 add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1605
1606 if (td->flags & TD_F_PROFILE_OPS) {
1607 struct prof_io_ops *ops = &td->prof_io_ops;
1608
1609 if (ops->io_u_lat)
1610 icd->error = ops->io_u_lat(td, tusec);
1611 }
1612
1613 if (td->o.max_latency && tusec > td->o.max_latency)
1614 lat_fatal(td, icd, tusec, td->o.max_latency);
1615 if (td->o.latency_target && tusec > td->o.latency_target) {
1616 if (lat_target_failed(td))
1617 lat_fatal(td, icd, tusec, td->o.latency_target);
1618 }
1619 }
1620
1621 if (!td->o.disable_clat) {
1622 add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1623 io_u_mark_latency(td, lusec);
1624 }
1625
1626 if (td->parent)
1627 td = td->parent;
1628
1629 if (!td->o.disable_bw)
1630 add_bw_sample(td, idx, bytes, &icd->time);
1631
1632 if (no_reduce)
1633 add_iops_sample(td, idx, bytes, &icd->time);
1634
1635 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1636 uint32_t *info = io_u_block_info(td, io_u);
1637 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1638 if (io_u->ddir == DDIR_TRIM) {
1639 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1640 BLOCK_INFO_TRIMS(*info) + 1);
1641 } else if (io_u->ddir == DDIR_WRITE) {
1642 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1643 *info);
1644 }
1645 }
1646 }
1647}
1648
1649static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1650{
1651 uint64_t secs, remainder, bps, bytes;
1652
1653 assert(!(td->flags & TD_F_CHILD));
1654 bytes = td->this_io_bytes[ddir];
1655 bps = td->rate_bps[ddir];
1656 secs = bytes / bps;
1657 remainder = bytes % bps;
1658 return remainder * 1000000 / bps + secs * 1000000;
1659}
1660
1661static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1662 struct io_completion_data *icd)
1663{
1664 struct io_u *io_u = *io_u_ptr;
1665 enum fio_ddir ddir = io_u->ddir;
1666 struct fio_file *f = io_u->file;
1667
1668 dprint_io_u(io_u, "io complete");
1669
1670 assert(io_u->flags & IO_U_F_FLIGHT);
1671 io_u_clear(io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1672
1673 /*
1674 * Mark IO ok to verify
1675 */
1676 if (io_u->ipo) {
1677 /*
1678 * Remove errored entry from the verification list
1679 */
1680 if (io_u->error)
1681 unlog_io_piece(td, io_u);
1682 else {
1683 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1684 write_barrier();
1685 }
1686 }
1687
1688 if (ddir_sync(ddir)) {
1689 td->last_was_sync = 1;
1690 if (f) {
1691 f->first_write = -1ULL;
1692 f->last_write = -1ULL;
1693 }
1694 return;
1695 }
1696
1697 td->last_was_sync = 0;
1698 td->last_ddir = ddir;
1699
1700 if (!io_u->error && ddir_rw(ddir)) {
1701 unsigned int bytes = io_u->buflen - io_u->resid;
1702 const enum fio_ddir oddir = ddir ^ 1;
1703 int ret;
1704
1705 td->io_blocks[ddir]++;
1706 td->this_io_blocks[ddir]++;
1707 td->io_bytes[ddir] += bytes;
1708
1709 if (!(io_u->flags & IO_U_F_VER_LIST))
1710 td->this_io_bytes[ddir] += bytes;
1711
1712 if (ddir == DDIR_WRITE) {
1713 if (f) {
1714 if (f->first_write == -1ULL ||
1715 io_u->offset < f->first_write)
1716 f->first_write = io_u->offset;
1717 if (f->last_write == -1ULL ||
1718 ((io_u->offset + bytes) > f->last_write))
1719 f->last_write = io_u->offset + bytes;
1720 }
1721 if (td->last_write_comp) {
1722 int idx = td->last_write_idx++;
1723
1724 td->last_write_comp[idx] = io_u->offset;
1725 if (td->last_write_idx == td->o.iodepth)
1726 td->last_write_idx = 0;
1727 }
1728 }
1729
1730 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1731 td->runstate == TD_VERIFYING)) {
1732 struct thread_data *__td = td;
1733
1734 account_io_completion(td, io_u, icd, ddir, bytes);
1735
1736 if (td->parent)
1737 __td = td->parent;
1738
1739 if (__should_check_rate(__td, ddir)) {
1740 __td->rate_pending_usleep[ddir] =
1741 (usec_for_io(__td, ddir) -
1742 utime_since_now(&__td->start));
1743 }
1744 if (ddir != DDIR_TRIM &&
1745 __should_check_rate(__td, oddir)) {
1746 __td->rate_pending_usleep[oddir] =
1747 (usec_for_io(__td, oddir) -
1748 utime_since_now(&__td->start));
1749 }
1750 }
1751
1752 icd->bytes_done[ddir] += bytes;
1753
1754 if (io_u->end_io) {
1755 ret = io_u->end_io(td, io_u_ptr);
1756 io_u = *io_u_ptr;
1757 if (ret && !icd->error)
1758 icd->error = ret;
1759 }
1760 } else if (io_u->error) {
1761 icd->error = io_u->error;
1762 io_u_log_error(td, io_u);
1763 }
1764 if (icd->error) {
1765 enum error_type_bit eb = td_error_type(ddir, icd->error);
1766
1767 if (!td_non_fatal_error(td, eb, icd->error))
1768 return;
1769
1770 /*
1771 * If there is a non_fatal error, then add to the error count
1772 * and clear all the errors.
1773 */
1774 update_error_count(td, icd->error);
1775 td_clear_error(td);
1776 icd->error = 0;
1777 if (io_u)
1778 io_u->error = 0;
1779 }
1780}
1781
1782static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1783 int nr)
1784{
1785 int ddir;
1786
1787 if (!gtod_reduce(td))
1788 fio_gettime(&icd->time, NULL);
1789
1790 icd->nr = nr;
1791
1792 icd->error = 0;
1793 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1794 icd->bytes_done[ddir] = 0;
1795}
1796
1797static void ios_completed(struct thread_data *td,
1798 struct io_completion_data *icd)
1799{
1800 struct io_u *io_u;
1801 int i;
1802
1803 for (i = 0; i < icd->nr; i++) {
1804 io_u = td->io_ops->event(td, i);
1805
1806 io_completed(td, &io_u, icd);
1807
1808 if (io_u)
1809 put_io_u(td, io_u);
1810 }
1811}
1812
1813/*
1814 * Complete a single io_u for the sync engines.
1815 */
1816int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1817{
1818 struct io_completion_data icd;
1819 int ddir;
1820
1821 init_icd(td, &icd, 1);
1822 io_completed(td, &io_u, &icd);
1823
1824 if (io_u)
1825 put_io_u(td, io_u);
1826
1827 if (icd.error) {
1828 td_verror(td, icd.error, "io_u_sync_complete");
1829 return -1;
1830 }
1831
1832 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1833 td->bytes_done[ddir] += icd.bytes_done[ddir];
1834
1835 return 0;
1836}
1837
1838/*
1839 * Called to complete min_events number of io for the async engines.
1840 */
1841int io_u_queued_complete(struct thread_data *td, int min_evts)
1842{
1843 struct io_completion_data icd;
1844 struct timespec *tvp = NULL;
1845 int ret, ddir;
1846 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1847
1848 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1849
1850 if (!min_evts)
1851 tvp = &ts;
1852 else if (min_evts > td->cur_depth)
1853 min_evts = td->cur_depth;
1854
1855 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1856 if (ret < 0) {
1857 td_verror(td, -ret, "td_io_getevents");
1858 return ret;
1859 } else if (!ret)
1860 return ret;
1861
1862 init_icd(td, &icd, ret);
1863 ios_completed(td, &icd);
1864 if (icd.error) {
1865 td_verror(td, icd.error, "io_u_queued_complete");
1866 return -1;
1867 }
1868
1869 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1870 td->bytes_done[ddir] += icd.bytes_done[ddir];
1871
1872 return 0;
1873}
1874
1875/*
1876 * Call when io_u is really queued, to update the submission latency.
1877 */
1878void io_u_queued(struct thread_data *td, struct io_u *io_u)
1879{
1880 if (!td->o.disable_slat) {
1881 unsigned long slat_time;
1882
1883 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1884 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
1885 io_u->offset);
1886 }
1887}
1888
1889/*
1890 * See if we should reuse the last seed, if dedupe is enabled
1891 */
1892static struct frand_state *get_buf_state(struct thread_data *td,
1893 struct frand_state *save)
1894{
1895 unsigned int v;
1896 unsigned long r;
1897
1898 if (!td->o.dedupe_percentage)
1899 return &td->buf_state;
1900 else if (td->o.dedupe_percentage == 100) {
1901 frand_copy(save, &td->buf_state_prev);
1902 return &td->buf_state_prev;
1903 }
1904
1905 r = __rand(&td->dedupe_state);
1906 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
1907
1908 if (v <= td->o.dedupe_percentage)
1909 return &td->buf_state_prev;
1910
1911 return &td->buf_state;
1912}
1913
1914static void save_buf_state(struct thread_data *td, struct frand_state *rs,
1915 struct frand_state *save)
1916{
1917 if (rs == &td->buf_state)
1918 frand_copy(&td->buf_state_prev, rs);
1919 else if (rs == &td->buf_state_prev && td->o.dedupe_percentage == 100)
1920 frand_copy(rs, save);
1921}
1922
1923void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1924 unsigned int max_bs)
1925{
1926 struct thread_options *o = &td->o;
1927 struct frand_state save = { 0, };
1928
1929 if (o->compress_percentage || o->dedupe_percentage) {
1930 unsigned int perc = td->o.compress_percentage;
1931 struct frand_state *rs;
1932 unsigned int left = max_bs;
1933
1934 do {
1935 rs = get_buf_state(td, &save);
1936
1937 min_write = min(min_write, left);
1938
1939 if (perc) {
1940 unsigned int seg = min_write;
1941
1942 seg = min(min_write, td->o.compress_chunk);
1943 if (!seg)
1944 seg = min_write;
1945
1946 fill_random_buf_percentage(rs, buf, perc, seg,
1947 min_write, o->buffer_pattern,
1948 o->buffer_pattern_bytes);
1949 } else
1950 fill_random_buf(rs, buf, min_write);
1951
1952 buf += min_write;
1953 left -= min_write;
1954 save_buf_state(td, rs, &save);
1955 } while (left);
1956 } else if (o->buffer_pattern_bytes)
1957 fill_buffer_pattern(td, buf, max_bs);
1958 else if (o->zero_buffers)
1959 memset(buf, 0, max_bs);
1960 else
1961 fill_random_buf(get_buf_state(td, NULL), buf, max_bs);
1962}
1963
1964/*
1965 * "randomly" fill the buffer contents
1966 */
1967void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1968 unsigned int min_write, unsigned int max_bs)
1969{
1970 io_u->buf_filled_len = 0;
1971 fill_io_buffer(td, io_u->buf, min_write, max_bs);
1972}