Fix typo (READ/DDIR_READ).
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 unsigned long bytes_done[DDIR_RWDIR_CNT]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->io_axmap contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const uint64_t block)
28{
29 return !axmap_isset(f->io_axmap, block);
30}
31
32/*
33 * Mark a given offset as used in the map.
34 */
35static void mark_random_map(struct thread_data *td, struct io_u *io_u)
36{
37 unsigned int min_bs = td->o.rw_min_bs;
38 struct fio_file *f = io_u->file;
39 unsigned int nr_blocks;
40 uint64_t block;
41
42 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
43 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
44
45 if (!(io_u->flags & IO_U_F_BUSY_OK))
46 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
47
48 if ((nr_blocks * min_bs) < io_u->buflen)
49 io_u->buflen = nr_blocks * min_bs;
50}
51
52static uint64_t last_block(struct thread_data *td, struct fio_file *f,
53 enum fio_ddir ddir)
54{
55 uint64_t max_blocks;
56 uint64_t max_size;
57
58 assert(ddir_rw(ddir));
59
60 /*
61 * Hmm, should we make sure that ->io_size <= ->real_file_size?
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
71 if (!max_blocks)
72 return 0;
73
74 return max_blocks;
75}
76
77struct rand_off {
78 struct flist_head list;
79 uint64_t off;
80};
81
82static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
83 enum fio_ddir ddir, uint64_t *b)
84{
85 uint64_t r, lastb;
86
87 lastb = last_block(td, f, ddir);
88 if (!lastb)
89 return 1;
90
91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
92 uint64_t rmax;
93
94 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
95
96 if (td->o.use_os_rand) {
97 rmax = OS_RAND_MAX;
98 r = os_random_long(&td->random_state);
99 } else {
100 rmax = FRAND_MAX;
101 r = __rand(&td->__random_state);
102 }
103
104 dprint(FD_RANDOM, "off rand %llu\n", r);
105
106 *b = (lastb - 1) * (r / ((uint64_t) rmax + 1.0));
107 } else {
108 uint64_t off = 0;
109
110 if (lfsr_next(&f->lfsr, &off, lastb))
111 return 1;
112
113 *b = off;
114 }
115
116 /*
117 * if we are not maintaining a random map, we are done.
118 */
119 if (!file_randommap(td, f))
120 goto ret;
121
122 /*
123 * calculate map offset and check if it's free
124 */
125 if (random_map_free(f, *b))
126 goto ret;
127
128 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", *b);
129
130 *b = axmap_next_free(f->io_axmap, *b);
131 if (*b == (uint64_t) -1ULL)
132 return 1;
133ret:
134 return 0;
135}
136
137static int __get_next_rand_offset_zipf(struct thread_data *td,
138 struct fio_file *f, enum fio_ddir ddir,
139 uint64_t *b)
140{
141 *b = zipf_next(&f->zipf);
142 return 0;
143}
144
145static int __get_next_rand_offset_pareto(struct thread_data *td,
146 struct fio_file *f, enum fio_ddir ddir,
147 uint64_t *b)
148{
149 *b = pareto_next(&f->zipf);
150 return 0;
151}
152
153static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
154{
155 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
156 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
157
158 return r1->off - r2->off;
159}
160
161static int get_off_from_method(struct thread_data *td, struct fio_file *f,
162 enum fio_ddir ddir, uint64_t *b)
163{
164 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
165 return __get_next_rand_offset(td, f, ddir, b);
166 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
167 return __get_next_rand_offset_zipf(td, f, ddir, b);
168 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
169 return __get_next_rand_offset_pareto(td, f, ddir, b);
170
171 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
172 return 1;
173}
174
175static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
176 enum fio_ddir ddir, uint64_t *b)
177{
178 struct rand_off *r;
179 int i, ret = 1;
180
181 /*
182 * If sort not enabled, or not a pure random read workload without
183 * any stored write metadata, just return a random offset
184 */
185 if (!td->o.verifysort_nr || !(ddir == DDIR_READ && td->o.do_verify &&
186 td->o.verify != VERIFY_NONE && td_random(td)))
187 return get_off_from_method(td, f, ddir, b);
188
189 if (!flist_empty(&td->next_rand_list)) {
190 struct rand_off *r;
191fetch:
192 r = flist_entry(td->next_rand_list.next, struct rand_off, list);
193 flist_del(&r->list);
194 *b = r->off;
195 free(r);
196 return 0;
197 }
198
199 for (i = 0; i < td->o.verifysort_nr; i++) {
200 r = malloc(sizeof(*r));
201
202 ret = get_off_from_method(td, f, ddir, &r->off);
203 if (ret) {
204 free(r);
205 break;
206 }
207
208 flist_add(&r->list, &td->next_rand_list);
209 }
210
211 if (ret && !i)
212 return ret;
213
214 assert(!flist_empty(&td->next_rand_list));
215 flist_sort(NULL, &td->next_rand_list, flist_cmp);
216 goto fetch;
217}
218
219static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
220 enum fio_ddir ddir, uint64_t *b)
221{
222 if (!get_next_rand_offset(td, f, ddir, b))
223 return 0;
224
225 if (td->o.time_based) {
226 fio_file_reset(f);
227 if (!get_next_rand_offset(td, f, ddir, b))
228 return 0;
229 }
230
231 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
232 f->file_name, f->last_pos, f->real_file_size);
233 return 1;
234}
235
236static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
237 enum fio_ddir ddir, uint64_t *offset)
238{
239 assert(ddir_rw(ddir));
240
241 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based)
242 f->last_pos = f->last_pos - f->io_size;
243
244 if (f->last_pos < f->real_file_size) {
245 uint64_t pos;
246
247 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
248 f->last_pos = f->real_file_size;
249
250 pos = f->last_pos - f->file_offset;
251 if (pos)
252 pos += td->o.ddir_seq_add;
253
254 *offset = pos;
255 return 0;
256 }
257
258 return 1;
259}
260
261static int get_next_block(struct thread_data *td, struct io_u *io_u,
262 enum fio_ddir ddir, int rw_seq)
263{
264 struct fio_file *f = io_u->file;
265 uint64_t b, offset;
266 int ret;
267
268 assert(ddir_rw(ddir));
269
270 b = offset = -1ULL;
271
272 if (rw_seq) {
273 if (td_random(td))
274 ret = get_next_rand_block(td, f, ddir, &b);
275 else
276 ret = get_next_seq_offset(td, f, ddir, &offset);
277 } else {
278 io_u->flags |= IO_U_F_BUSY_OK;
279
280 if (td->o.rw_seq == RW_SEQ_SEQ) {
281 ret = get_next_seq_offset(td, f, ddir, &offset);
282 if (ret)
283 ret = get_next_rand_block(td, f, ddir, &b);
284 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
285 if (f->last_start != -1ULL)
286 offset = f->last_start - f->file_offset;
287 else
288 offset = 0;
289 ret = 0;
290 } else {
291 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
292 ret = 1;
293 }
294 }
295
296 if (!ret) {
297 if (offset != -1ULL)
298 io_u->offset = offset;
299 else if (b != -1ULL)
300 io_u->offset = b * td->o.ba[ddir];
301 else {
302 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n",
303 offset, b);
304 ret = 1;
305 }
306 }
307
308 return ret;
309}
310
311/*
312 * For random io, generate a random new block and see if it's used. Repeat
313 * until we find a free one. For sequential io, just return the end of
314 * the last io issued.
315 */
316static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
317{
318 struct fio_file *f = io_u->file;
319 enum fio_ddir ddir = io_u->ddir;
320 int rw_seq_hit = 0;
321
322 assert(ddir_rw(ddir));
323
324 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
325 rw_seq_hit = 1;
326 td->ddir_seq_nr = td->o.ddir_seq_nr;
327 }
328
329 if (get_next_block(td, io_u, ddir, rw_seq_hit))
330 return 1;
331
332 if (io_u->offset >= f->io_size) {
333 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
334 io_u->offset, f->io_size);
335 return 1;
336 }
337
338 io_u->offset += f->file_offset;
339 if (io_u->offset >= f->real_file_size) {
340 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
341 io_u->offset, f->real_file_size);
342 return 1;
343 }
344
345 return 0;
346}
347
348static int get_next_offset(struct thread_data *td, struct io_u *io_u)
349{
350 if (td->flags & TD_F_PROFILE_OPS) {
351 struct prof_io_ops *ops = &td->prof_io_ops;
352
353 if (ops->fill_io_u_off)
354 return ops->fill_io_u_off(td, io_u);
355 }
356
357 return __get_next_offset(td, io_u);
358}
359
360static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
361 unsigned int buflen)
362{
363 struct fio_file *f = io_u->file;
364
365 return io_u->offset + buflen <= f->io_size + get_start_offset(td);
366}
367
368static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
369{
370 const int ddir = io_u->ddir;
371 unsigned int buflen = 0;
372 unsigned int minbs, maxbs;
373 unsigned long r, rand_max;
374
375 assert(ddir_rw(ddir));
376
377 minbs = td->o.min_bs[ddir];
378 maxbs = td->o.max_bs[ddir];
379
380 if (minbs == maxbs)
381 return minbs;
382
383 /*
384 * If we can't satisfy the min block size from here, then fail
385 */
386 if (!io_u_fits(td, io_u, minbs))
387 return 0;
388
389 if (td->o.use_os_rand)
390 rand_max = OS_RAND_MAX;
391 else
392 rand_max = FRAND_MAX;
393
394 do {
395 if (td->o.use_os_rand)
396 r = os_random_long(&td->bsrange_state);
397 else
398 r = __rand(&td->__bsrange_state);
399
400 if (!td->o.bssplit_nr[ddir]) {
401 buflen = 1 + (unsigned int) ((double) maxbs *
402 (r / (rand_max + 1.0)));
403 if (buflen < minbs)
404 buflen = minbs;
405 } else {
406 long perc = 0;
407 unsigned int i;
408
409 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
410 struct bssplit *bsp = &td->o.bssplit[ddir][i];
411
412 buflen = bsp->bs;
413 perc += bsp->perc;
414 if ((r <= ((rand_max / 100L) * perc)) &&
415 io_u_fits(td, io_u, buflen))
416 break;
417 }
418 }
419
420 if (!td->o.bs_unaligned && is_power_of_2(minbs))
421 buflen = (buflen + minbs - 1) & ~(minbs - 1);
422
423 } while (!io_u_fits(td, io_u, buflen));
424
425 return buflen;
426}
427
428static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
429{
430 if (td->flags & TD_F_PROFILE_OPS) {
431 struct prof_io_ops *ops = &td->prof_io_ops;
432
433 if (ops->fill_io_u_size)
434 return ops->fill_io_u_size(td, io_u);
435 }
436
437 return __get_next_buflen(td, io_u);
438}
439
440static void set_rwmix_bytes(struct thread_data *td)
441{
442 unsigned int diff;
443
444 /*
445 * we do time or byte based switch. this is needed because
446 * buffered writes may issue a lot quicker than they complete,
447 * whereas reads do not.
448 */
449 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
450 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
451}
452
453static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
454{
455 unsigned int v;
456 unsigned long r;
457
458 if (td->o.use_os_rand) {
459 r = os_random_long(&td->rwmix_state);
460 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
461 } else {
462 r = __rand(&td->__rwmix_state);
463 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
464 }
465
466 if (v <= td->o.rwmix[DDIR_READ])
467 return DDIR_READ;
468
469 return DDIR_WRITE;
470}
471
472static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
473{
474 enum fio_ddir odir = ddir ^ 1;
475 struct timeval t;
476 long usec;
477
478 assert(ddir_rw(ddir));
479
480 if (td->rate_pending_usleep[ddir] <= 0)
481 return ddir;
482
483 /*
484 * We have too much pending sleep in this direction. See if we
485 * should switch.
486 */
487 if (td_rw(td)) {
488 /*
489 * Other direction does not have too much pending, switch
490 */
491 if (td->rate_pending_usleep[odir] < 100000)
492 return odir;
493
494 /*
495 * Both directions have pending sleep. Sleep the minimum time
496 * and deduct from both.
497 */
498 if (td->rate_pending_usleep[ddir] <=
499 td->rate_pending_usleep[odir]) {
500 usec = td->rate_pending_usleep[ddir];
501 } else {
502 usec = td->rate_pending_usleep[odir];
503 ddir = odir;
504 }
505 } else
506 usec = td->rate_pending_usleep[ddir];
507
508 /*
509 * We are going to sleep, ensure that we flush anything pending as
510 * not to skew our latency numbers.
511 *
512 * Changed to only monitor 'in flight' requests here instead of the
513 * td->cur_depth, b/c td->cur_depth does not accurately represent
514 * io's that have been actually submitted to an async engine,
515 * and cur_depth is meaningless for sync engines.
516 */
517 if (td->io_u_in_flight) {
518 int fio_unused ret;
519
520 ret = io_u_queued_complete(td, td->io_u_in_flight, NULL);
521 }
522
523 fio_gettime(&t, NULL);
524 usec_sleep(td, usec);
525 usec = utime_since_now(&t);
526
527 td->rate_pending_usleep[ddir] -= usec;
528
529 odir = ddir ^ 1;
530 if (td_rw(td) && __should_check_rate(td, odir))
531 td->rate_pending_usleep[odir] -= usec;
532
533 if (ddir_trim(ddir))
534 return ddir;
535 return ddir;
536}
537
538/*
539 * Return the data direction for the next io_u. If the job is a
540 * mixed read/write workload, check the rwmix cycle and switch if
541 * necessary.
542 */
543static enum fio_ddir get_rw_ddir(struct thread_data *td)
544{
545 enum fio_ddir ddir;
546
547 /*
548 * see if it's time to fsync
549 */
550 if (td->o.fsync_blocks &&
551 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
552 td->io_issues[DDIR_WRITE] && should_fsync(td))
553 return DDIR_SYNC;
554
555 /*
556 * see if it's time to fdatasync
557 */
558 if (td->o.fdatasync_blocks &&
559 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
560 td->io_issues[DDIR_WRITE] && should_fsync(td))
561 return DDIR_DATASYNC;
562
563 /*
564 * see if it's time to sync_file_range
565 */
566 if (td->sync_file_range_nr &&
567 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
568 td->io_issues[DDIR_WRITE] && should_fsync(td))
569 return DDIR_SYNC_FILE_RANGE;
570
571 if (td_rw(td)) {
572 /*
573 * Check if it's time to seed a new data direction.
574 */
575 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
576 /*
577 * Put a top limit on how many bytes we do for
578 * one data direction, to avoid overflowing the
579 * ranges too much
580 */
581 ddir = get_rand_ddir(td);
582
583 if (ddir != td->rwmix_ddir)
584 set_rwmix_bytes(td);
585
586 td->rwmix_ddir = ddir;
587 }
588 ddir = td->rwmix_ddir;
589 } else if (td_read(td))
590 ddir = DDIR_READ;
591 else if (td_write(td))
592 ddir = DDIR_WRITE;
593 else
594 ddir = DDIR_TRIM;
595
596 td->rwmix_ddir = rate_ddir(td, ddir);
597 return td->rwmix_ddir;
598}
599
600static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
601{
602 io_u->ddir = get_rw_ddir(td);
603
604 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
605 td->o.barrier_blocks &&
606 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
607 td->io_issues[DDIR_WRITE])
608 io_u->flags |= IO_U_F_BARRIER;
609}
610
611void put_file_log(struct thread_data *td, struct fio_file *f)
612{
613 int ret = put_file(td, f);
614
615 if (ret)
616 td_verror(td, ret, "file close");
617}
618
619void put_io_u(struct thread_data *td, struct io_u *io_u)
620{
621 td_io_u_lock(td);
622
623 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
624 put_file_log(td, io_u->file);
625 io_u->file = NULL;
626 io_u->flags &= ~IO_U_F_FREE_DEF;
627 io_u->flags |= IO_U_F_FREE;
628
629 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
630 td->cur_depth--;
631 flist_del_init(&io_u->list);
632 flist_add(&io_u->list, &td->io_u_freelist);
633 td_io_u_unlock(td);
634 td_io_u_free_notify(td);
635}
636
637void clear_io_u(struct thread_data *td, struct io_u *io_u)
638{
639 io_u->flags &= ~IO_U_F_FLIGHT;
640 put_io_u(td, io_u);
641}
642
643void requeue_io_u(struct thread_data *td, struct io_u **io_u)
644{
645 struct io_u *__io_u = *io_u;
646
647 dprint(FD_IO, "requeue %p\n", __io_u);
648
649 td_io_u_lock(td);
650
651 __io_u->flags |= IO_U_F_FREE;
652 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir))
653 td->io_issues[__io_u->ddir]--;
654
655 __io_u->flags &= ~IO_U_F_FLIGHT;
656 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
657 td->cur_depth--;
658 flist_del(&__io_u->list);
659 flist_add_tail(&__io_u->list, &td->io_u_requeues);
660 td_io_u_unlock(td);
661 *io_u = NULL;
662}
663
664static int fill_io_u(struct thread_data *td, struct io_u *io_u)
665{
666 if (td->io_ops->flags & FIO_NOIO)
667 goto out;
668
669 set_rw_ddir(td, io_u);
670
671 /*
672 * fsync() or fdatasync() or trim etc, we are done
673 */
674 if (!ddir_rw(io_u->ddir))
675 goto out;
676
677 /*
678 * See if it's time to switch to a new zone
679 */
680 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
681 td->zone_bytes = 0;
682 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
683 io_u->file->last_pos = io_u->file->file_offset;
684 td->io_skip_bytes += td->o.zone_skip;
685 }
686
687 /*
688 * No log, let the seq/rand engine retrieve the next buflen and
689 * position.
690 */
691 if (get_next_offset(td, io_u)) {
692 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
693 return 1;
694 }
695
696 io_u->buflen = get_next_buflen(td, io_u);
697 if (!io_u->buflen) {
698 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
699 return 1;
700 }
701
702 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
703 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
704 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
705 io_u->buflen, io_u->file->real_file_size);
706 return 1;
707 }
708
709 /*
710 * mark entry before potentially trimming io_u
711 */
712 if (td_random(td) && file_randommap(td, io_u->file))
713 mark_random_map(td, io_u);
714
715 /*
716 * If using a write iolog, store this entry.
717 */
718out:
719 dprint_io_u(io_u, "fill_io_u");
720 td->zone_bytes += io_u->buflen;
721 log_io_u(td, io_u);
722 return 0;
723}
724
725static void __io_u_mark_map(unsigned int *map, unsigned int nr)
726{
727 int idx = 0;
728
729 switch (nr) {
730 default:
731 idx = 6;
732 break;
733 case 33 ... 64:
734 idx = 5;
735 break;
736 case 17 ... 32:
737 idx = 4;
738 break;
739 case 9 ... 16:
740 idx = 3;
741 break;
742 case 5 ... 8:
743 idx = 2;
744 break;
745 case 1 ... 4:
746 idx = 1;
747 case 0:
748 break;
749 }
750
751 map[idx]++;
752}
753
754void io_u_mark_submit(struct thread_data *td, unsigned int nr)
755{
756 __io_u_mark_map(td->ts.io_u_submit, nr);
757 td->ts.total_submit++;
758}
759
760void io_u_mark_complete(struct thread_data *td, unsigned int nr)
761{
762 __io_u_mark_map(td->ts.io_u_complete, nr);
763 td->ts.total_complete++;
764}
765
766void io_u_mark_depth(struct thread_data *td, unsigned int nr)
767{
768 int idx = 0;
769
770 switch (td->cur_depth) {
771 default:
772 idx = 6;
773 break;
774 case 32 ... 63:
775 idx = 5;
776 break;
777 case 16 ... 31:
778 idx = 4;
779 break;
780 case 8 ... 15:
781 idx = 3;
782 break;
783 case 4 ... 7:
784 idx = 2;
785 break;
786 case 2 ... 3:
787 idx = 1;
788 case 1:
789 break;
790 }
791
792 td->ts.io_u_map[idx] += nr;
793}
794
795static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
796{
797 int idx = 0;
798
799 assert(usec < 1000);
800
801 switch (usec) {
802 case 750 ... 999:
803 idx = 9;
804 break;
805 case 500 ... 749:
806 idx = 8;
807 break;
808 case 250 ... 499:
809 idx = 7;
810 break;
811 case 100 ... 249:
812 idx = 6;
813 break;
814 case 50 ... 99:
815 idx = 5;
816 break;
817 case 20 ... 49:
818 idx = 4;
819 break;
820 case 10 ... 19:
821 idx = 3;
822 break;
823 case 4 ... 9:
824 idx = 2;
825 break;
826 case 2 ... 3:
827 idx = 1;
828 case 0 ... 1:
829 break;
830 }
831
832 assert(idx < FIO_IO_U_LAT_U_NR);
833 td->ts.io_u_lat_u[idx]++;
834}
835
836static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
837{
838 int idx = 0;
839
840 switch (msec) {
841 default:
842 idx = 11;
843 break;
844 case 1000 ... 1999:
845 idx = 10;
846 break;
847 case 750 ... 999:
848 idx = 9;
849 break;
850 case 500 ... 749:
851 idx = 8;
852 break;
853 case 250 ... 499:
854 idx = 7;
855 break;
856 case 100 ... 249:
857 idx = 6;
858 break;
859 case 50 ... 99:
860 idx = 5;
861 break;
862 case 20 ... 49:
863 idx = 4;
864 break;
865 case 10 ... 19:
866 idx = 3;
867 break;
868 case 4 ... 9:
869 idx = 2;
870 break;
871 case 2 ... 3:
872 idx = 1;
873 case 0 ... 1:
874 break;
875 }
876
877 assert(idx < FIO_IO_U_LAT_M_NR);
878 td->ts.io_u_lat_m[idx]++;
879}
880
881static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
882{
883 if (usec < 1000)
884 io_u_mark_lat_usec(td, usec);
885 else
886 io_u_mark_lat_msec(td, usec / 1000);
887}
888
889/*
890 * Get next file to service by choosing one at random
891 */
892static struct fio_file *get_next_file_rand(struct thread_data *td,
893 enum fio_file_flags goodf,
894 enum fio_file_flags badf)
895{
896 struct fio_file *f;
897 int fno;
898
899 do {
900 int opened = 0;
901 unsigned long r;
902
903 if (td->o.use_os_rand) {
904 r = os_random_long(&td->next_file_state);
905 fno = (unsigned int) ((double) td->o.nr_files
906 * (r / (OS_RAND_MAX + 1.0)));
907 } else {
908 r = __rand(&td->__next_file_state);
909 fno = (unsigned int) ((double) td->o.nr_files
910 * (r / (FRAND_MAX + 1.0)));
911 }
912
913 f = td->files[fno];
914 if (fio_file_done(f))
915 continue;
916
917 if (!fio_file_open(f)) {
918 int err;
919
920 err = td_io_open_file(td, f);
921 if (err)
922 continue;
923 opened = 1;
924 }
925
926 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
927 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
928 return f;
929 }
930 if (opened)
931 td_io_close_file(td, f);
932 } while (1);
933}
934
935/*
936 * Get next file to service by doing round robin between all available ones
937 */
938static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
939 int badf)
940{
941 unsigned int old_next_file = td->next_file;
942 struct fio_file *f;
943
944 do {
945 int opened = 0;
946
947 f = td->files[td->next_file];
948
949 td->next_file++;
950 if (td->next_file >= td->o.nr_files)
951 td->next_file = 0;
952
953 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
954 if (fio_file_done(f)) {
955 f = NULL;
956 continue;
957 }
958
959 if (!fio_file_open(f)) {
960 int err;
961
962 err = td_io_open_file(td, f);
963 if (err) {
964 dprint(FD_FILE, "error %d on open of %s\n",
965 err, f->file_name);
966 f = NULL;
967 continue;
968 }
969 opened = 1;
970 }
971
972 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
973 f->flags);
974 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
975 break;
976
977 if (opened)
978 td_io_close_file(td, f);
979
980 f = NULL;
981 } while (td->next_file != old_next_file);
982
983 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
984 return f;
985}
986
987static struct fio_file *__get_next_file(struct thread_data *td)
988{
989 struct fio_file *f;
990
991 assert(td->o.nr_files <= td->files_index);
992
993 if (td->nr_done_files >= td->o.nr_files) {
994 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
995 " nr_files=%d\n", td->nr_open_files,
996 td->nr_done_files,
997 td->o.nr_files);
998 return NULL;
999 }
1000
1001 f = td->file_service_file;
1002 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1003 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1004 goto out;
1005 if (td->file_service_left--)
1006 goto out;
1007 }
1008
1009 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1010 td->o.file_service_type == FIO_FSERVICE_SEQ)
1011 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1012 else
1013 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1014
1015 td->file_service_file = f;
1016 td->file_service_left = td->file_service_nr - 1;
1017out:
1018 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1019 return f;
1020}
1021
1022static struct fio_file *get_next_file(struct thread_data *td)
1023{
1024 if (!(td->flags & TD_F_PROFILE_OPS)) {
1025 struct prof_io_ops *ops = &td->prof_io_ops;
1026
1027 if (ops->get_next_file)
1028 return ops->get_next_file(td);
1029 }
1030
1031 return __get_next_file(td);
1032}
1033
1034static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1035{
1036 struct fio_file *f;
1037
1038 do {
1039 f = get_next_file(td);
1040 if (!f)
1041 return 1;
1042
1043 io_u->file = f;
1044 get_file(f);
1045
1046 if (!fill_io_u(td, io_u))
1047 break;
1048
1049 put_file_log(td, f);
1050 td_io_close_file(td, f);
1051 io_u->file = NULL;
1052 fio_file_set_done(f);
1053 td->nr_done_files++;
1054 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1055 td->nr_done_files, td->o.nr_files);
1056 } while (1);
1057
1058 return 0;
1059}
1060
1061
1062struct io_u *__get_io_u(struct thread_data *td)
1063{
1064 struct io_u *io_u = NULL;
1065
1066 td_io_u_lock(td);
1067
1068again:
1069 if (!flist_empty(&td->io_u_requeues))
1070 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
1071 else if (!queue_full(td)) {
1072 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
1073
1074 io_u->buflen = 0;
1075 io_u->resid = 0;
1076 io_u->file = NULL;
1077 io_u->end_io = NULL;
1078 }
1079
1080 if (io_u) {
1081 assert(io_u->flags & IO_U_F_FREE);
1082 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1083 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1084 io_u->flags &= ~IO_U_F_VER_LIST;
1085
1086 io_u->error = 0;
1087 flist_del(&io_u->list);
1088 flist_add_tail(&io_u->list, &td->io_u_busylist);
1089 td->cur_depth++;
1090 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1091 } else if (td->o.verify_async) {
1092 /*
1093 * We ran out, wait for async verify threads to finish and
1094 * return one
1095 */
1096 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1097 goto again;
1098 }
1099
1100 td_io_u_unlock(td);
1101 return io_u;
1102}
1103
1104static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1105{
1106 if (!(td->flags & TD_F_TRIM_BACKLOG))
1107 return 0;
1108
1109 if (td->trim_entries) {
1110 int get_trim = 0;
1111
1112 if (td->trim_batch) {
1113 td->trim_batch--;
1114 get_trim = 1;
1115 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1116 td->last_ddir != DDIR_READ) {
1117 td->trim_batch = td->o.trim_batch;
1118 if (!td->trim_batch)
1119 td->trim_batch = td->o.trim_backlog;
1120 get_trim = 1;
1121 }
1122
1123 if (get_trim && !get_next_trim(td, io_u))
1124 return 1;
1125 }
1126
1127 return 0;
1128}
1129
1130static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1131{
1132 if (!(td->flags & TD_F_VER_BACKLOG))
1133 return 0;
1134
1135 if (td->io_hist_len) {
1136 int get_verify = 0;
1137
1138 if (td->verify_batch)
1139 get_verify = 1;
1140 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1141 td->last_ddir != DDIR_READ) {
1142 td->verify_batch = td->o.verify_batch;
1143 if (!td->verify_batch)
1144 td->verify_batch = td->o.verify_backlog;
1145 get_verify = 1;
1146 }
1147
1148 if (get_verify && !get_next_verify(td, io_u)) {
1149 td->verify_batch--;
1150 return 1;
1151 }
1152 }
1153
1154 return 0;
1155}
1156
1157/*
1158 * Fill offset and start time into the buffer content, to prevent too
1159 * easy compressible data for simple de-dupe attempts. Do this for every
1160 * 512b block in the range, since that should be the smallest block size
1161 * we can expect from a device.
1162 */
1163static void small_content_scramble(struct io_u *io_u)
1164{
1165 unsigned int i, nr_blocks = io_u->buflen / 512;
1166 uint64_t boffset;
1167 unsigned int offset;
1168 void *p, *end;
1169
1170 if (!nr_blocks)
1171 return;
1172
1173 p = io_u->xfer_buf;
1174 boffset = io_u->offset;
1175 io_u->buf_filled_len = 0;
1176
1177 for (i = 0; i < nr_blocks; i++) {
1178 /*
1179 * Fill the byte offset into a "random" start offset of
1180 * the buffer, given by the product of the usec time
1181 * and the actual offset.
1182 */
1183 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1184 offset &= ~(sizeof(uint64_t) - 1);
1185 if (offset >= 512 - sizeof(uint64_t))
1186 offset -= sizeof(uint64_t);
1187 memcpy(p + offset, &boffset, sizeof(boffset));
1188
1189 end = p + 512 - sizeof(io_u->start_time);
1190 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1191 p += 512;
1192 boffset += 512;
1193 }
1194}
1195
1196/*
1197 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1198 * etc. The returned io_u is fully ready to be prepped and submitted.
1199 */
1200struct io_u *get_io_u(struct thread_data *td)
1201{
1202 struct fio_file *f;
1203 struct io_u *io_u;
1204 int do_scramble = 0;
1205
1206 io_u = __get_io_u(td);
1207 if (!io_u) {
1208 dprint(FD_IO, "__get_io_u failed\n");
1209 return NULL;
1210 }
1211
1212 if (check_get_verify(td, io_u))
1213 goto out;
1214 if (check_get_trim(td, io_u))
1215 goto out;
1216
1217 /*
1218 * from a requeue, io_u already setup
1219 */
1220 if (io_u->file)
1221 goto out;
1222
1223 /*
1224 * If using an iolog, grab next piece if any available.
1225 */
1226 if (td->flags & TD_F_READ_IOLOG) {
1227 if (read_iolog_get(td, io_u))
1228 goto err_put;
1229 } else if (set_io_u_file(td, io_u)) {
1230 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1231 goto err_put;
1232 }
1233
1234 f = io_u->file;
1235 assert(fio_file_open(f));
1236
1237 if (ddir_rw(io_u->ddir)) {
1238 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1239 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1240 goto err_put;
1241 }
1242
1243 f->last_start = io_u->offset;
1244 f->last_pos = io_u->offset + io_u->buflen;
1245
1246 if (io_u->ddir == DDIR_WRITE) {
1247 if (td->flags & TD_F_REFILL_BUFFERS) {
1248 io_u_fill_buffer(td, io_u,
1249 io_u->xfer_buflen, io_u->xfer_buflen);
1250 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS)
1251 do_scramble = 1;
1252 if (td->flags & TD_F_VER_NONE) {
1253 populate_verify_io_u(td, io_u);
1254 do_scramble = 0;
1255 }
1256 } else if (io_u->ddir == DDIR_READ) {
1257 /*
1258 * Reset the buf_filled parameters so next time if the
1259 * buffer is used for writes it is refilled.
1260 */
1261 io_u->buf_filled_len = 0;
1262 }
1263 }
1264
1265 /*
1266 * Set io data pointers.
1267 */
1268 io_u->xfer_buf = io_u->buf;
1269 io_u->xfer_buflen = io_u->buflen;
1270
1271out:
1272 assert(io_u->file);
1273 if (!td_io_prep(td, io_u)) {
1274 if (!td->o.disable_slat)
1275 fio_gettime(&io_u->start_time, NULL);
1276 if (do_scramble)
1277 small_content_scramble(io_u);
1278 return io_u;
1279 }
1280err_put:
1281 dprint(FD_IO, "get_io_u failed\n");
1282 put_io_u(td, io_u);
1283 return NULL;
1284}
1285
1286void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1287{
1288 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1289 const char *msg[] = { "read", "write", "sync", "datasync",
1290 "sync_file_range", "wait", "trim" };
1291
1292 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1293 return;
1294
1295 log_err("fio: io_u error");
1296
1297 if (io_u->file)
1298 log_err(" on file %s", io_u->file->file_name);
1299
1300 log_err(": %s\n", strerror(io_u->error));
1301
1302 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1303 io_u->offset, io_u->xfer_buflen);
1304
1305 if (!td->error)
1306 td_verror(td, io_u->error, "io_u error");
1307}
1308
1309static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1310 struct io_completion_data *icd,
1311 const enum fio_ddir idx, unsigned int bytes)
1312{
1313 unsigned long lusec = 0;
1314
1315 if (!td->o.disable_clat || !td->o.disable_bw)
1316 lusec = utime_since(&io_u->issue_time, &icd->time);
1317
1318 if (!td->o.disable_lat) {
1319 unsigned long tusec;
1320
1321 tusec = utime_since(&io_u->start_time, &icd->time);
1322 add_lat_sample(td, idx, tusec, bytes);
1323
1324 if (td->o.max_latency && tusec > td->o.max_latency) {
1325 if (!td->error)
1326 log_err("fio: latency of %lu usec exceeds specified max (%u usec)\n", tusec, td->o.max_latency);
1327 td_verror(td, ETIMEDOUT, "max latency exceeded");
1328 icd->error = ETIMEDOUT;
1329 }
1330 }
1331
1332 if (!td->o.disable_clat) {
1333 add_clat_sample(td, idx, lusec, bytes);
1334 io_u_mark_latency(td, lusec);
1335 }
1336
1337 if (!td->o.disable_bw)
1338 add_bw_sample(td, idx, bytes, &icd->time);
1339
1340 add_iops_sample(td, idx, &icd->time);
1341}
1342
1343static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1344{
1345 uint64_t secs, remainder, bps, bytes;
1346
1347 bytes = td->this_io_bytes[ddir];
1348 bps = td->rate_bps[ddir];
1349 secs = bytes / bps;
1350 remainder = bytes % bps;
1351 return remainder * 1000000 / bps + secs * 1000000;
1352}
1353
1354static void io_completed(struct thread_data *td, struct io_u *io_u,
1355 struct io_completion_data *icd)
1356{
1357 struct fio_file *f;
1358
1359 dprint_io_u(io_u, "io complete");
1360
1361 td_io_u_lock(td);
1362 assert(io_u->flags & IO_U_F_FLIGHT);
1363 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1364 td_io_u_unlock(td);
1365
1366 if (ddir_sync(io_u->ddir)) {
1367 td->last_was_sync = 1;
1368 f = io_u->file;
1369 if (f) {
1370 f->first_write = -1ULL;
1371 f->last_write = -1ULL;
1372 }
1373 return;
1374 }
1375
1376 td->last_was_sync = 0;
1377 td->last_ddir = io_u->ddir;
1378
1379 if (!io_u->error && ddir_rw(io_u->ddir)) {
1380 unsigned int bytes = io_u->buflen - io_u->resid;
1381 const enum fio_ddir idx = io_u->ddir;
1382 const enum fio_ddir odx = io_u->ddir ^ 1;
1383 int ret;
1384
1385 td->io_blocks[idx]++;
1386 td->this_io_blocks[idx]++;
1387 td->io_bytes[idx] += bytes;
1388
1389 if (!(io_u->flags & IO_U_F_VER_LIST))
1390 td->this_io_bytes[idx] += bytes;
1391
1392 if (idx == DDIR_WRITE) {
1393 f = io_u->file;
1394 if (f) {
1395 if (f->first_write == -1ULL ||
1396 io_u->offset < f->first_write)
1397 f->first_write = io_u->offset;
1398 if (f->last_write == -1ULL ||
1399 ((io_u->offset + bytes) > f->last_write))
1400 f->last_write = io_u->offset + bytes;
1401 }
1402 }
1403
1404 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1405 td->runstate == TD_VERIFYING)) {
1406 account_io_completion(td, io_u, icd, idx, bytes);
1407
1408 if (__should_check_rate(td, idx)) {
1409 td->rate_pending_usleep[idx] =
1410 (usec_for_io(td, idx) -
1411 utime_since_now(&td->start));
1412 }
1413 if (idx != DDIR_TRIM && __should_check_rate(td, odx))
1414 td->rate_pending_usleep[odx] =
1415 (usec_for_io(td, odx) -
1416 utime_since_now(&td->start));
1417 }
1418
1419 if (td_write(td) && idx == DDIR_WRITE &&
1420 td->o.do_verify &&
1421 td->o.verify != VERIFY_NONE)
1422 log_io_piece(td, io_u);
1423
1424 icd->bytes_done[idx] += bytes;
1425
1426 if (io_u->end_io) {
1427 ret = io_u->end_io(td, io_u);
1428 if (ret && !icd->error)
1429 icd->error = ret;
1430 }
1431 } else if (io_u->error) {
1432 icd->error = io_u->error;
1433 io_u_log_error(td, io_u);
1434 }
1435 if (icd->error) {
1436 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
1437 if (!td_non_fatal_error(td, eb, icd->error))
1438 return;
1439 /*
1440 * If there is a non_fatal error, then add to the error count
1441 * and clear all the errors.
1442 */
1443 update_error_count(td, icd->error);
1444 td_clear_error(td);
1445 icd->error = 0;
1446 io_u->error = 0;
1447 }
1448}
1449
1450static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1451 int nr)
1452{
1453 int ddir;
1454 if (!td->o.disable_clat || !td->o.disable_bw)
1455 fio_gettime(&icd->time, NULL);
1456
1457 icd->nr = nr;
1458
1459 icd->error = 0;
1460 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1461 icd->bytes_done[ddir] = 0;
1462}
1463
1464static void ios_completed(struct thread_data *td,
1465 struct io_completion_data *icd)
1466{
1467 struct io_u *io_u;
1468 int i;
1469
1470 for (i = 0; i < icd->nr; i++) {
1471 io_u = td->io_ops->event(td, i);
1472
1473 io_completed(td, io_u, icd);
1474
1475 if (!(io_u->flags & IO_U_F_FREE_DEF))
1476 put_io_u(td, io_u);
1477 }
1478}
1479
1480/*
1481 * Complete a single io_u for the sync engines.
1482 */
1483int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1484 unsigned long *bytes)
1485{
1486 struct io_completion_data icd;
1487
1488 init_icd(td, &icd, 1);
1489 io_completed(td, io_u, &icd);
1490
1491 if (!(io_u->flags & IO_U_F_FREE_DEF))
1492 put_io_u(td, io_u);
1493
1494 if (icd.error) {
1495 td_verror(td, icd.error, "io_u_sync_complete");
1496 return -1;
1497 }
1498
1499 if (bytes) {
1500 int ddir;
1501
1502 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1503 bytes[ddir] += icd.bytes_done[ddir];
1504 }
1505
1506 return 0;
1507}
1508
1509/*
1510 * Called to complete min_events number of io for the async engines.
1511 */
1512int io_u_queued_complete(struct thread_data *td, int min_evts,
1513 unsigned long *bytes)
1514{
1515 struct io_completion_data icd;
1516 struct timespec *tvp = NULL;
1517 int ret;
1518 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1519
1520 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1521
1522 if (!min_evts)
1523 tvp = &ts;
1524
1525 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1526 if (ret < 0) {
1527 td_verror(td, -ret, "td_io_getevents");
1528 return ret;
1529 } else if (!ret)
1530 return ret;
1531
1532 init_icd(td, &icd, ret);
1533 ios_completed(td, &icd);
1534 if (icd.error) {
1535 td_verror(td, icd.error, "io_u_queued_complete");
1536 return -1;
1537 }
1538
1539 if (bytes) {
1540 int ddir;
1541
1542 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1543 bytes[ddir] += icd.bytes_done[ddir];
1544 }
1545
1546 return 0;
1547}
1548
1549/*
1550 * Call when io_u is really queued, to update the submission latency.
1551 */
1552void io_u_queued(struct thread_data *td, struct io_u *io_u)
1553{
1554 if (!td->o.disable_slat) {
1555 unsigned long slat_time;
1556
1557 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1558 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1559 }
1560}
1561
1562/*
1563 * "randomly" fill the buffer contents
1564 */
1565void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1566 unsigned int min_write, unsigned int max_bs)
1567{
1568 io_u->buf_filled_len = 0;
1569
1570 if (!td->o.zero_buffers) {
1571 unsigned int perc = td->o.compress_percentage;
1572
1573 if (perc) {
1574 unsigned int seg = min_write;
1575
1576 seg = min(min_write, td->o.compress_chunk);
1577 fill_random_buf_percentage(&td->buf_state, io_u->buf,
1578 perc, seg, max_bs);
1579 } else
1580 fill_random_buf(&td->buf_state, io_u->buf, max_bs);
1581 } else
1582 memset(io_u->buf, 0, max_bs);
1583}